WorldWideScience

Sample records for cerebellar purkinje neurons

  1. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  2. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  3. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  4. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.

    Science.gov (United States)

    Khaliq, Zayd M; Raman, Indira M

    2005-01-12

    In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action potentials were recorded with a whole-cell pipette, and the corresponding axonal signals were recorded extracellularly with a loose-patch pipette. Propagation of spontaneous and evoked simple spikes was highly reliable. At somatic firing rates of approximately 200 spikes/sec, 375 Hz during somatic hyperpolarizations that silenced spontaneous firing to approximately 150 Hz during spontaneous activity. The probability of propagation of individual spikelets could be described quantitatively as a saturating function of spikelet amplitude, rate of rise, or preceding interspike interval. The results suggest that ion channels of Purkinje axons are adapted to produce extremely short refractory periods and that brief bursts of forward-propagating action potentials generated by complex spikes may contribute transiently to inhibition of postsynaptic neurons.

  5. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    Directory of Open Access Journals (Sweden)

    Anatoly Buchin

    2016-08-01

    Full Text Available Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR. While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.

  6. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Grasselli

    2016-03-01

    Full Text Available The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning.

  7. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  8. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  9. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  10. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  11. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.

    Science.gov (United States)

    Smith, S S

    1995-09-01

    1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the

  12. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  13. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    NARCIS (Netherlands)

    J. Luthman (Johannes); F.E. Hoebeek (Freek); R. Maex (Reinoud); N. Davey (Neil); R. Adams (Rod); C.I. de Zeeuw (Chris); V. Steuber (Volker)

    2011-01-01

    textabstractNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is

  14. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  15. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  16. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    International Nuclear Information System (INIS)

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana

    2007-01-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program

  17. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  18. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  19. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  20. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  1. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    G.A. Higuera (Gustavo A.); Iaffaldano, G. (Grazia); Bedar, M. (Meiwand); G. Shpak (Guy); R. Broersen (Robin); S.T. Munshi (Shashini T.); Dupont, C. (Catherine); J.H. Gribnau (Joost); F.M.S. Vrij (Femke); S.A. Kushner (Steven); C.I. de Zeeuw (Chris)

    2017-01-01

    textabstractThe directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it

  2. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    Higuera, Gustavo A; Iaffaldano, Grazia; Bedar, Meiwand; Shpak, Guy; Broersen, Robin; Munshi, Shashini T; Dupont, Catherine; Gribnau, Joost; de Vrij, Femke M S; Kushner, Steven A; De Zeeuw, Chris I

    2017-01-01

    The directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it has not

  3. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  4. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  5. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  6. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms

    Directory of Open Access Journals (Sweden)

    Ketty eLeto

    2012-02-01

    Full Text Available The variety of neuronal phenotypes that populate the cerebellum derives from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Progenitors of the ventricular zone produce GABAergic projection neurons (Purkinje cells and nucleo-olivary neurons at the onset of cerebellar neurogenesis. Later on, however, these progenitors migrate into the prospective white matter, where they continue to divide up to postnatal development and generate different categories of inhibitory interneurons, according to precise spatio-temporal schedules. Projection neurons derive from discrete progenitor pools located in distinct microdomains of the ventricular zone, whereas interneurons originate from a single population of precursors, distinguished by the expression of the transcription factor Pax-2. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the prospective white matter. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the postnatal cerebellum are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. On the other hand, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.

  7. Questioning the cerebellar doctrine.

    Science.gov (United States)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.

  8. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  9. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  11. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    Directory of Open Access Journals (Sweden)

    Chan Chung

    2016-05-01

    Full Text Available Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1, promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.

  12. Embryonic cerebellar neurons accumulate [3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neurons in vitro and in vivo

    International Nuclear Information System (INIS)

    Hatten, M.E.; Francois, A.M.; Napolitano, E.; Roffler-Tarlov, S.

    1984-01-01

    gamma-Aminobutyric acid (GABA) is the proposed neurotransmitter for four types of cerebellar neurons-Purkinje, Golgi, basket, and stellate neurons. With this investigation we have begun studies to establish when these neurons acquire their neurotransmitter ''identification''. Autoradiographic studies of both cultured embryonic (embryonic day 13) cerebellar cells and of intact embryonic cerebellum (embryonic day 13) were conducted with tritiated GABA. Two to 5% of the embryonic cerebellar cells accumulated [ 3 H]GABA in vitro. By morphological and immunocytochemical criteria, labeled cells were large neurons with either a thick, apical process, a multipolar shape, or were bipolar with longer processes. The identification of cells which accumulated [ 3 H]GABA as neuronal precursors was supported by the differential sensitivity to drugs that preferentially inhibit accumulation of [ 3 H]GABA by neurons and glia. The results of the in vitro experiments were confirmed and extended with in vivo experiments. When intact cerebellar tissue was removed at embryonic day 13, stripped of meninges and choroid plexus, exposed to low concentrations of [ 3 H]GABA, and processed for light microscopic autoradiography, heavily labeled cells were seen in the middle of the cerebellar anlage. Labeled cells were not seen in the ventricular zone of proliferating neuroblasts lining the fourth ventricle or in the external granular layer emerging at the lateral aspect of the pial surface. The accumulation of [ 3 H]GABA by these cells also showed the pharmacological characteristics of uptake by neurons. This study shows that among migrating, immature forms of the larger neurons of the embryonic cerebellum, there is a select group which accumulates [ 3 H]GABA and other classes of cells which do not. These results indicate very early acquisition of transmitter expression by cerebellar neurons, far in advance of their final positioning and establishment of synapses

  13. Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin

    Science.gov (United States)

    Fu, Chenglai; Xu, Jing; Li, Ruo-Jing; Crawford, Joshua A.; Khan, A. Basit; Ma, Ting Martin; Cha, Jiyoung Y.; Snowman, Adele M.; Pletnikov, Mikhail V.

    2015-01-01

    The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function. PMID:26245967

  14. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia.

    Science.gov (United States)

    Sawada, Yusuke; Konno, Ayumu; Nagaoka, Jun; Hirai, Hirokazu

    2016-06-13

    Neuron-specific enolase (NSE) is a glycolytic isoenzyme found in mature neurons and cells of neuronal origin. Injecting adeno-associated virus serotype 9 (AAV9) vectors carrying the NSE promoter into the cerebellar cortex is likely to cause the specific transduction of neuronal cells, such as Purkinje cells (PCs) and interneurons, but not Bergmann glia (BG). However, we found BG-predominant transduction without PC transduction along a traumatic needle tract for viral injection. The enhancement of neuroinflammation by the co-application of lipopolysaccharide (LPS) with AAV9 significantly expanded the BG-predominant area concurrently with the potentiated microglial activation. The BG-predominant transduction was gradually replaced by the PC-predominant transduction as the neuroinflammation dissipated. Experiments using glioma cell cultures revealed significant activation of the NSE promoter due to glucose deprivation, suggesting that intracellularly stored glycogen is metabolized through the glycolytic pathway for energy. Activation of the glycolytic enzyme promoter in BG concurrently with inactivation in PC may have pathophysiological significance for the production of lactate in activated BG and the utilization of lactate, which is provided by the BG-PC lactate shuttle, as a primary energy resource in injured PCs.

  15. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1 in normal and transformed cerebellar cells

    Directory of Open Access Journals (Sweden)

    Baader Stephan L

    2007-10-01

    Full Text Available Abstract Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.

  16. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  17. Transient developmental Purkinje cell axonal torpedoes in healthy and ataxic mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Lovisa Ljungberg

    2016-11-01

    Full Text Available Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wildtype and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11. This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occured largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6, and found elevated disease

  18. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Weimer, Jill M; Benedict, Jared W; Getty, Amanda L; Pontikis, Charlie C; Lim, Ming J; Cooper, Jonathan D; Pearce, David A

    2009-04-17

    Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.

  19. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Madhu

    ness of the cerebellar cortex as well as loss of neurons, and hypertrophy and ... Purkinje cells. (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. ... diminution in motor control and motor learning) underlying.

  20. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  1. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    Science.gov (United States)

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  2. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  4. Toxic agents causing cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario

    2012-01-01

    The cerebellum is particularly vulnerable to intoxication and poisoning, especially so the cerebellar cortex and Purkinje neurons. In humans, the most common cause of a toxic lesion to the cerebellar circuitry is alcohol related, but the cerebellum is also a main target of drug exposure (such as anticonvulsants, antineoplastics, lithium salts, calcineurin inhibitors), drug abuse and addiction (such as cocaine, heroin, phencyclidine), and environmental toxins (such as mercury, lead, manganese, toluene/benzene derivatives). Although data for the prevalence and incidence of cerebellar lesions related to intoxication and poisoning are still unknown in many cases, clinicians should keep in mind the list of agents that may cause cerebellar deficits, since toxin-induced cerebellar ataxias are not rare in daily practice. Moreover, the patient's status may require immediate therapies when the intoxication is life-threatening. 2012 Elsevier B.V. All rights reserved.

  5. Secretin Modulates the Postnatal Development of Mouse Cerebellar Cortex Via PKA- and ERK-dependent Pathways

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Postnatal development of the cerebellum is critical for its intact function such as motor coordination and has been implicated in the pathogenesis of psychiatric disorders. We previously reported that deprivation of secretin (SCT from cerebellar Purkinje neurons impaired motor coordination and motor learning function, while leaving the potential role of SCT in cerebellar development to be determined. SCT and its receptor (SCTR were constitutively expressed in the postnatal cerebellum in a temporal and cell-specific manner. Using a SCT knockout mouse model, we provided direct evidence showing altered developmental patterns of Purkinje cells (PCs and granular cells (GCs. SCT deprivation reduced the PC density, impaired the PC dendritic formation, induced accelerated GC migration and potentiated cerebellar apoptosis. Furthermore, our results indicated the involvement of protein kinase A (PKA and extracellular signal regulated kinase (ERK signaling pathways in SCT-mediated protective effects against neuronal apoptosis. Results of this study illustrated a novel function of SCT in the postnatal development of cerebellum, emphasizing the necessary role of SCT in cerebellar-related functions.

  6. Studying cerebellar circuits by remote control of selected neuronal types with GABA-A receptors

    Directory of Open Access Journals (Sweden)

    William Wisden

    2009-12-01

    Full Text Available Although GABA-A receptor-mediated inhibition of cerebellar Purkinje cells by molecular layer interneurons (MLIs has been studied intensely on the cellular level, it has remained unclear how this inhibition regulates cerebellum-dependent behaviour. We have implemented two complementary approaches to investigate the function of the MLI-Purkinje cell synapse on the behavioral level. In the first approach we permanently disrupted inhibitory fast synaptic transmission at the synapse by genetically removing the postsynaptic GABA-A receptors from Purkinje cells (PC-Δγ2 mice. We found that chronic disruption of the MLI-Purkinje cell synapse strongly impaired cerebellar learning of the vestibular occular reflex (VOR, presumably by disrupting the temporal patterns of Purkinje cell activity. However, in PC-Δγ2 mice the baseline VOR reflex was only mildly affected; indeed PC-Δγ2 mice showed no ataxia or gait abnormalities suggesting that MLI control of Purkinje cell activity is either not involved in ongoing motor tasks or that the system has found a way to compensate for its loss. To investigate the latter possibility we have developed an alternative genetic technique; we made the MLI-Purkinje cell synapse selectively sensitive to rapid manipulation with the GABAA receptor modulator zolpidem (PC-γ2-swap mice. Minutes after intraperitoneal zolpidem injection, these PC-γ2-swap mice developed severe motor abnormalities, revealing a substantial contribution of the MLI-Purkinje cell synapse to real time motor control. The cell-type selective permanent knockout of synaptic GABAergic input, and the fast reversible modulation of GABAergic input at the same synapse illustrate how pursuing both strategies gives a fuller view.

  7. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  8. The organization of plasticity in the cerebellar cortex: from synapses to control.

    Science.gov (United States)

    D'Angelo, Egidio

    2014-01-01

    The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.

  9. A new approach for determining phase response curves reveals that Purkinje cells can act as perfect integrators.

    Directory of Open Access Journals (Sweden)

    Elena Phoka

    2010-04-01

    Full Text Available Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs. PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.

  10. Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST.

    Science.gov (United States)

    Perkins, Emma M; Suminaite, Daumante; Clarkson, Yvonne L; Lee, Sin Kwan; Lyndon, Alastair R; Rothstein, Jeffrey D; Wyllie, David J A; Tanaka, Kohichi; Jackson, Mandy

    2016-10-15

    Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.

  11. Reminiscing about Jan Evangelista Purkinje: a pioneer of modern experimental physiology.

    Science.gov (United States)

    Cavero, Icilio; Guillon, Jean-Michel; Holzgrefe, Henry H

    2017-12-01

    This article reminisces about the life and key scientific achievements of Jan Evangelista Purkinje (1787-1869), a versatile 19th century Czech pioneer of modern experimental physiology. In 1804, after completing senior high school, Purkinje joined the Piarist monk order, but, after a 3-yr novitiate, he gave up the religious calling "to deal more freely with science." In 1818, he earned a Medical Doctor degree from Prague University by defending a dissertation on intraocular phenomena observed in oneself. In 1823, Purkinje became a Physiology and Pathology professor at the Prussian Medical University in Breslau, where he innovated the traditional teaching methods of physiology. Purkinje's contributions to physiology were manifold: accurate descriptions of various visual phenomena (e.g., Purkinje-Sanson images, Purkinje phenomenon), discovery of the terminal network of the cardiac conduction system (Purkinje fibers), identification of cerebellar neuronal bodies (Purkinje cells), formulation of the vertigo law (Purkinje's law), discovery of criteria to classify human fingerprints, etc. In 1850, Purkinje accepted and held until his death the Physiology chair at Prague Medical Faculty. During this period, he succeeded in introducing the Czech idiom (in addition to long-established German and Latin) as a Medical Faculty teaching language. Additionally, as a zealous Czech patriot, he actively contributed to the naissance and consolidation of a national Czech identity conscience. Purkinje was a trend-setting scientist who, throughout his career, worked to pave the way for the renovation of physiology from a speculative discipline, ancilla of anatomy, into a factual, autonomous science committed to the discovery of mechanisms governing in-life functions. Copyright © 2017 the American Physiological Society.

  12. Cerebellar neurodegeneration in the absence of microRNAs

    Science.gov (United States)

    Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul

    2007-01-01

    Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634

  13. Increased protein kinase C gamma activity induces Purkinje cell pathology in a mouse model of spinocerebellar ataxia 14.

    Science.gov (United States)

    Ji, Jingmin; Hassler, Melanie L; Shimobayashi, Etsuko; Paka, Nagendher; Streit, Raphael; Kapfhammer, Josef P

    2014-10-01

    Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  15. Questioning the cerebellar doctrine

    NARCIS (Netherlands)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells

  16. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  17. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  18. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    Science.gov (United States)

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-02

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.

  19. Does cerebellar neuronal integrity relate to cognitive ability?

    International Nuclear Information System (INIS)

    Rae, C.; Lee, M.; Dixon, R.M.; Blamire, A.; Thompson, C.; Styles, P.; Radda, G.K.; University of Sydney, NSW; Karmiloff-Smith, A.; Grant, J.

    1998-01-01

    Full text: Magnetic resonance spectroscopy (MRS) allows the non-invasive measurement of metabolite levels in the brain. One of these is N-acetylaspartate (NA), a molecule found solely in neurones, synthesised there by mitochondria. This compound can be considered as a marker of 1) neuronal density and 2) neuronal mitochondria function. We recently completed a joint MRS and neuropsychological investigation of Williams-Beuren syndrome (WBS), a rare (1/20,000) autosomal dominant disorder caused by a deletion which includes the elastin locus and LIM-kinase. The syndrome has an associated behavioural and cognitive profile which includes hyperactivity, hyperacusis and excessive sociability. Spatial skills are severely affected, while verbal skills are left relatively intact Our investigation showed loss of NA from the cerebellum in WBS compared with normal controls, with the subject population as a whole displaying a continuum of cerebellar NA concentration. Ability at cognitive tests, including the Weschler IQ scale and various verbal and spatial tests, was shown to correlate significantly and positively with the concentration of NA in the cerebellum. This finding can be interpreted in one of two ways: 1. Our sampling of cerebellar metabolite levels represents a 'global' sampling of total brain neuronal density and, as such, is independent of cerebellar integrity. 2. Cerebellar neuronal integrity is associated with performance at cognitive tests. If the latter interpretation is shown to be the case, it will have important implications for our current understanding of cerebellar function. Copyright (1998) Australian Neuroscience Society

  20. Antioxidant supplementation upregulates calbindin expression in cerebellar Purkinje cells of rat pups subjected to post natal exposure to sodium arsenite.

    Science.gov (United States)

    Dhar, Pushpa; Kaushal, Parul; Kumar, Pavan

    2018-07-01

    Optimal cytoplasmic calcium (Ca 2+ ) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca 2+ levels following impaired Ca 2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO 2 ) exposure (postnatal) of rat pups. NaAsO 2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  2. The Secreted Protein C1QL1 and Its Receptor BAI3 Control the Synaptic Connectivity of Excitatory Inputs Converging on Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Séverine M. Sigoillot

    2015-02-01

    Full Text Available Precise patterns of connectivity are established by different types of afferents on a given target neuron, leading to well-defined and non-overlapping synaptic territories. What regulates the specific characteristics of each type of synapse, in terms of number, morphology, and subcellular localization, remains to be understood. Here, we show that the signaling pathway formed by the secreted complement C1Q-related protein C1QL1 and its receptor, the adhesion-GPCR brain angiogenesis inhibitor 3 (BAI3, controls the stereotyped pattern of connectivity established by excitatory afferents on cerebellar Purkinje cells. The BAI3 receptor modulates synaptogenesis of both parallel fiber and climbing fiber afferents. The restricted and timely expression of its ligand C1QL1 in inferior olivary neurons ensures the establishment of the proper synaptic territory for climbing fibers. Given the broad expression of C1QL and BAI proteins in the developing mouse brain, our study reveals a general mechanism contributing to the formation of a functional brain.

  3. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  17. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  2. A low-density culture method of cerebellar granule neurons with paracrine support applicable for the study of neuronal morphogenesis.

    Science.gov (United States)

    Kubota, Kenta; Seno, Takeshi; Konishi, Yoshiyuki

    2013-11-20

    Cerebellar granule neuronal cultures have been used to study the molecular mechanisms underlying neuronal functions, including neuronal morphogenesis. However, a limitation of this system is the difficulty to analyze isolated neurons because these are required to be maintained at a high density. Therefore, in the present study, we aimed to develop a simple and cost-effective method for culturing low-density cerebellar granule neurons. Cerebellar granule cells at two different densities (low- and high-density) were co-cultivated in order for the low-density culture to be supported by the paracrine signals from the high-density culture. This method enabled morphology analysis of isolated cerebellar granule neurons without astrocytic feeder cultures or supplements such as B27. Using this method, we investigated the function of a polarity factor. Studies using hippocampal neurons suggested that glycogen synthase kinase-3 (GSK-3) is an essential regulator of neuronal polarity, and inhibition of GSK-3 results in the formation of multiple axons. Pharmacological inhibitors for GSK-3 (6-bromoindirubin-3'-oxime and lithium chloride) did not cause the formation of multiple axons of cerebellar granule neurons but significantly reduced their length. Consistent results were obtained by introducing kinase-dead form of GSK-3 beta (K85A). These results indicated that GSK-3 is not directly involved in the control of neuronal polarity in cerebellar granule neurons. Overall, this study provides a simple method for culturing low-density cerebellar granule neurons and insights in to the neuronal-type dependent function of GSK-3 in neuronal morphogenesis. © 2013 Elsevier B.V. All rights reserved.

  3. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  6. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups

    Science.gov (United States)

    Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David

    2018-01-01

    Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955

  7. File list: InP.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: InP.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: NoD.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: InP.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: NoD.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: NoD.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: InP.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  14. Cerebellar abiotrophy in a family of Border Collie dogs.

    Science.gov (United States)

    Sandy, J R; Slocombe, R E; Mitten, R W; Jedwab, D

    2002-11-01

    Cerebellar abiotrophies have a nonsex-linked, autosomal, recessively inherited basis in a number of species, and lesions typically reflect profound and progressive loss of Purkinje cells. In this report, an unusual form of abiotrophy is described for two sibling Border Collies. Extensive loss of the cerebellar granular cell layer was present with relative sparing of Purkinje cells of two female pups. The biochemical basis for this form of cerebellar abiotrophy is unknown, but the lack of disease in other siblings supports an autosomal recessive mode of inheritance.

  15. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  16. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  17. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element

    International Nuclear Information System (INIS)

    Arsenio Nunes, M.L.; Sotelo, C.; Wehrle, R.

    1988-01-01

    The organization of the spinocerebellar projection was analysed by the anterograde axonal WGA-HRP (horseradish peroxidase-wheat germ agglutinin conjugate) tracing method in three different types of agranular cerebellar cortex either induced experimentally by X-irradiation or occurring spontaneously in weaver (wv/wv) and staggerer (sg/sg) mutant mice. The results of this study show that in the X-irradiated rat and weaver mouse, in both of which the granule cells are directly affected and die early in development, the spinal axons reproduce, with few differences, the normal spinocerebellar pattern. Conversely, in staggerer mouse, in which the Purkinje cells are intrinsically affected and granule neurons do not seem to be primarily perturbed by the staggerer gene action, the spinocerebellar organization is severely modified. These findings appear somewhat paradoxical because if granule cells, the synaptic targets of mossy spinocerebellar fibers, were necessary for the organization of spinocerebellar projection, the staggerer cerebellum would exhibit a much more normal projectional map than the weaver and the X-irradiated cerebella. It is, therefore, obvious that granule cells, and even specific synaptogenesis, are not essential for the establishment of the normal spinocerebellar topography. On the other hand, the fact that the Purkinje cells are primarily affected in the unique agranular cortex in which the spinocerebellar organization is severely modified suggests that these neurons could be the main element in the organization of the spinocerebellar projection map. This hypothesis is discussed in correlation with already-reported findings on the zonation of the cerebellar cortex by biochemically different clusters of Purkinje cells

  18. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2016-11-01

    Full Text Available The parallel fiber-Purkinje cell synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fibers activity generates fast postsynaptic currents via AMPA receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression and long-term potentiation have been widely described for the parallel fiber-Purkinje cell synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The parallel fiber-Purkinje cell synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline, and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the parallel fiber-Purkinje cell synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, parallel fiber-Purkinje cell synapse dysfunctions have been identified in several murine models of spinocerebellar ataxia (SCA types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27, while in others the mGlu1 pathway is affected (SCA1, 3, 5. Interestingly, the parallel fiber-Purkinje cell synapse has been shown to be hyper-functional in a mutant mouse model of autism

  19. Plasticity of Cerebellar Purkinje Cells in Behavioral Training of Body Balance Control

    Directory of Open Access Journals (Sweden)

    Ray X. Lee

    2015-08-01

    Full Text Available Neural responses to sensory inputs caused by self-generated movements (reafference and external passive stimulation (exafference differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26 and complex spikes (CSs; 7 of 12 were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17 decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for

  20. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates

    Directory of Open Access Journals (Sweden)

    Bob eJacobs

    2014-04-01

    Full Text Available Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee, carnivores (Siberian tiger, clouded leopard, cetartiodactyls (humpback whale, giraffe and primates (human, common chimpanzee. Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317 of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967 and rodents (Palay and Chan-Palay, 1974, although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.

  1. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  2. Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning.

    Science.gov (United States)

    Kuroda, S; Yamamoto, K; Miyamoto, H; Doya, K; Kawat, M

    2001-03-01

    Mean firing rates (MFRs), with analogue values, have thus far been used as information carriers of neurons in most brain theories of learning. However, the neurons transmit the signal by spikes, which are discrete events. The climbing fibers (CFs), which are known to be essential for cerebellar motor learning, fire at the ultra-low firing rates (around 1 Hz), and it is not yet understood theoretically how high-frequency information can be conveyed and how learning of smooth and fast movements can be achieved. Here we address whether cerebellar learning can be achieved by CF spikes instead of conventional MFR in an eye movement task, such as the ocular following response (OFR), and an arm movement task. There are two major afferents into cerebellar Purkinje cells: parallel fiber (PF) and CF, and the synaptic weights between PFs and Purkinje cells have been shown to be modulated by the stimulation of both types of fiber. The modulation of the synaptic weights is regulated by the cerebellar synaptic plasticity. In this study we simulated cerebellar learning using CF signals as spikes instead of conventional MFR. To generate the spikes we used the following four spike generation models: (1) a Poisson model in which the spike interval probability follows a Poisson distribution, (2) a gamma model in which the spike interval probability follows the gamma distribution, (3) a max model in which a spike is generated when a synaptic input reaches maximum, and (4) a threshold model in which a spike is generated when the input crosses a certain small threshold. We found that, in an OFR task with a constant visual velocity, learning was successful with stochastic models, such as Poisson and gamma models, but not in the deterministic models, such as max and threshold models. In an OFR with a stepwise velocity change and an arm movement task, learning could be achieved only in the Poisson model. In addition, for efficient cerebellar learning, the distribution of CF spike

  3. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  4. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.

    Science.gov (United States)

    Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra

    2018-06-01

    The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

  5. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.

    Science.gov (United States)

    Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J

    2008-10-01

    A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.

  6. A note on the definition and the development of cerebellar purkinje cell zones

    NARCIS (Netherlands)

    J. Voogd (Jan)

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  7. A Note on the Definition and the Development of Cerebellar Purkinje Cell Zones

    OpenAIRE

    Voogd, J.

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  8. A novel approach to non-biased systematic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum.

    Science.gov (United States)

    Agashiwala, Rajiv M; Louis, Elan D; Hof, Patrick R; Perl, Daniel P

    2008-10-21

    Non-biased systematic sampling using the principles of stereology provides accurate quantitative estimates of objects within neuroanatomic structures. However, the basic principles of stereology are not optimally suited for counting objects that selectively exist within a limited but complex and convoluted portion of the sample, such as occurs when counting cerebellar Purkinje cells. In an effort to quantify Purkinje cells in association with certain neurodegenerative disorders, we developed a new method for stereologic sampling of the cerebellar cortex, involving calculating the volume of the cerebellar tissues, identifying and isolating the Purkinje cell layer and using this information to extrapolate non-biased systematic sampling data to estimate the total number of Purkinje cells in the tissues. Using this approach, we counted Purkinje cells in the right cerebella of four human male control specimens, aged 41, 67, 70 and 84 years, and estimated the total Purkinje cell number for the four entire cerebella to be 27.03, 19.74, 20.44 and 22.03 million cells, respectively. The precision of the method is seen when comparing the density of the cells within the tissue: 266,274, 173,166, 167,603 and 183,575 cells/cm3, respectively. Prior literature documents Purkinje cell counts ranging from 14.8 to 30.5 million cells. These data demonstrate the accuracy of our approach. Our novel approach, which offers an improvement over previous methodologies, is of value for quantitative work of this nature. This approach could be applied to morphometric studies of other similarly complex tissues as well.

  9. The morpho/functional discrepancy in the cerebellar cortex: Looks alone are deceptive.

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2008-12-01

    Full Text Available In a recent report we demonstrated that stimulation of cerebellar mossy fibers synchronously activates Purkinje cells that are located directly above the site of stimulation. We found that the activated Purkinje cells are arranged in a radial patch on the cerebellar surface and that this organization is independent of the integrity of the inhibitory system. This arrangement of activity is counterintuitive. The anatomical structure with the extensive parallel fiber system implies that mossy fiber stimulation will activate Purkinje cells along a beam of parallel fibers. In this short review we highlight this discrepancy between anatomical structure and functional dynamics and suggest a plausible underlying mechanism.

  10. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  11. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.

    Science.gov (United States)

    Jakoby, Patrick; Schmidt, Elke; Ruminot, Iván; Gutiérrez, Robin; Barros, L Felipe; Deitmer, Joachim W

    2014-01-01

    Glucose is the most important energy substrate for the brain, and its cellular distribution is a subject of great current interest. We have employed fluorescent glucose probes, the 2-deoxy-D-glucose derivates 6- and 2-([N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose) (2-NBDG), to measure transport and metabolism of glucose in acute slices of mouse hippocampus and cerebellum. In the hippocampus, 6-NBDG, which is not metabolized and hence indicates glucose transport, was taken up faster in astrocyte-rich layers (Stratum radiatum [S.r.], Stratum oriens [S.o.]) than in pyramidal cells. Metabolizable 2-NBDG showed larger signals in S.r. and S.o. than in Stratum pyramidale, suggesting faster glucose utilization rate in the astrocyte versus the neuronal compartment. Similarly, we found higher uptake and temperature-sensitive metabolism of 2-NBDG in Bergmann glia when compared with adjacent Purkinje neurons of cerebellar slices. A comparison between 6-NBDG transport and glucose transport in cultured cells using a fluorescence resonance energy transfer nanosensor showed that relative to glucose, 6-NBDG is transported better by neurons than by astrocytes. These results indicate that the preferential transport and metabolism of glucose by glial cells versus neurons proposed for the hippocampus and cerebellum by ourselves (in vitro) and for the barrel cortex by Chuquet et al. (in vivo) is more pronounced than anticipated.

  12. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  13. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2011-02-01

    Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders. Copyright © 2010 by the Research Society on Alcoholism.

  14. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  15. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  16. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  17. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  18. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.

  19. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    OpenAIRE

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified towards one in which sensory input modulates rather than dictate...

  20. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  1. TACTILE STIMULATION EVOKES LONG-LASTING POTENTIATION OF PURKINJE CELL DISCHARGE IN VIVO

    Directory of Open Access Journals (Sweden)

    Ramakrishnan eKanchipuram

    2016-02-01

    Full Text Available In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in PC spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here we show that facial tactile stimuli organized in theta-patterns can induce stereotyped NMDA and GABA-A receptor-dependent changes in Purkinje cell (PCs and molecular layer interneuron (MLIs firing: invariably, all PCs showed a long-lasting increase (spike-related potentiation or SR-P and MLIs a long-lasting decrease (spike-related suppression or SR-S in baseline activity and spike response probability. These observations suggests that natural sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber – parallel fiber pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that natural sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that Purkinje cell activity is potentiated when the mossy fiber - parallel fiber system is activated in the absence of conjunctive climbing fiber activity.

  2. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse.

    Science.gov (United States)

    Finnie, J W; Blumbergs, P C; Manavis, J

    2016-05-01

    This study examined the temporal sequence of post-mortem changes in the cerebellar cortical granular and Purkinje cell layers of mice kept at a constant ambient temperature for up to 4 weeks. Nuclei of granule cell microneurons became pyknotic early after death, increasing progressively until, by 7 days, widespread nuclear lysis resulted in marked cellular depletion of the granular layer. Purkinje cells were relatively unaltered until about 96 h post mortem, at which time there was shrinkage and multivacuolation of the amphophilic cytoplasm, nuclear hyperchromasia and, sometimes, a perinuclear clear space. By 7 days, Purkinje cells had hypereosinophilic cytoplasm and frequent nuclear pyknosis. By 2 weeks after death, Purkinje cells showed homogenization, the cytoplasm being uniformly eosinophilic, progressing to a 'ghost-like' appearance in which the cytoplasm had pale eosinophilic staining with indistinct cell boundaries, and nuclei often absent. The results of this study could assist in differentiating post-mortem autolysis from ante-mortem lesions in the cerebellar cortex and determining the post-mortem interval. Moreover, this information could be useful when interpreting brain lesions in valuable mice found dead unexpectedly during the course of biomedical experiments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. The volume of Purkinje cells decreases in the cerebellum of acrylamide-intoxicated rats, but no cells are lost

    DEFF Research Database (Denmark)

    Larsen, Jytte Overgaard; Tandrup, T; Braendgaard, H

    1994-01-01

    The effects of acrylamide intoxication on the numbers of granule and Purkinje cells and the volume of Purkinje cell perikarya have been evaluated with stereological methods. The analysis was carried out in the cerebella of rats that had received a dose of 33.3 mg/kg acrylamide, twice a week, for 7.......5 weeks. The total numbers of cerebellar granule and Purkinje cells were estimated using the optical fractionator and the mean volume of the Purkinje cell perikarya was estimated with the vertical rotator technique. The volumes of the molecular layer, the granular cell layer and the white matter were...... estimated using the Cavalieri principle. The mean weight of the cerebellum of the intoxicated rats was 7% lower than that of the control rats (2P = 0.001). The numbers of the Purkinje cells and granule cells were the same in both groups, but the mean volume of the perikarya of the Purkinje cells...

  4. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

    Science.gov (United States)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-05-21

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions. Copyright © 2014 the authors 0270-6474/14/347203-13$15.00/0.

  5. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.

    Science.gov (United States)

    Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra

    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the

  6. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  7. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling

    Science.gov (United States)

    Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.

    2015-01-01

    Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382

  8. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  9. Cerebellar Codings for Control of Compensatory Eye Movements

    NARCIS (Netherlands)

    M. Schonewille (Martijn)

    2008-01-01

    textabstractThis thesis focuses on the control of the cerebellum on motor behaviour, and more specifically on the role of the cerebellar Purkinje cells in exerting this control. As the cerebellum is an online control system, we look at both motor performance and learning, trying to identify

  10. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice.

    Science.gov (United States)

    Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L

    2017-10-18

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent

  11. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Eugene V. Golanov

    2017-09-01

    Full Text Available Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1 hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS-injected animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”.

  12. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  13. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  14. Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma.

    Science.gov (United States)

    Malhotra, Anshu; Dey, Abhinav; Prasad, Niyathi; Kenney, Anna Marie

    2016-01-01

    Sonic hedgehog (Shh) signaling is closely coupled with bioenergetics of medulloblastoma, the most common malignant pediatric brain tumor. Shh-associated medulloblastoma arises from cerebellar granule neuron precursors (CGNP), a neural progenitor whose developmental expansion requires signaling by Shh, a ligand secreted by the neighboring Purkinje neurons. Previous observations show that Shh signaling inhibits fatty acid oxidation although driving increased fatty acid synthesis. Proliferating CGNPs and mouse Shh medulloblastomas feature high levels of glycolytic enzymes in vivo and in vitro. Because both of these metabolic processes are closely linked to mitochondrial bioenergetics, the role of Shh signaling in mitochondrial biogenesis was investigated. This report uncovers a surprising decrease in mitochondrial membrane potential (MMP) and overall ATP production in CGNPs exposed to Shh, consistent with increased glycolysis resulting in high intracellular acidity, leading to mitochondrial fragmentation. Ultrastructural examination of mitochondria revealed a spherical shape in Shh-treated cells, in contrast to the elongated appearance in vehicle-treated postmitotic cells. Expression of mitofusin 1 and 2 was reduced in these cells, although their ectopic expression restored the MMP to the nonproliferating state and the morphology to a fused, interconnected state. Mouse Shh medulloblastoma cells featured drastically impaired mitochondrial morphology, restoration of which by ectopic mitofusin expression was also associated with a decrease in the expression of Cyclin D2 protein, a marker for proliferation. This report exposes a novel role for Shh in regulating mitochondrial dynamics and rescue of the metabolic profile of tumor cells to that of nontransformed, nonproliferating cells and represents a potential avenue for development of medulloblastoma therapeutics. ©2015 American Association for Cancer Research.

  15. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    Science.gov (United States)

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  16. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2010-12-01

    Full Text Available Abstract Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD. Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case or a DNA damage response (1 case were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.

  17. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  18. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    Science.gov (United States)

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  19. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia.

    Science.gov (United States)

    Main, Stacey L; Kulesza, Randy J

    2017-01-06

    Autism spectrum disorder (ASD) is a developmental brain disorder characterized by restricted and repetitive patterns of behavior, social and communication defects, and is commonly associated with difficulties with motor coordination. The etiology of ASD, while mostly idiopathic, has been linked to hereditary factors and teratogens, such as valproic acid (VPA). VPA is used clinically to treat epilepsy, mood disorders, and in the prevention of migraines. The use of VPA during pregnancy significantly increases the risk of ASD in the offspring. Neuropathological studies show decreased cerebellar function in patients with ASD, resulting in gait, balance and coordination impairments. Herein, we have exposed pregnant rats to a repeated oral dose of VPA on embryonic days 10 and 12 and performed a detailed investigation of the structure and function of the cerebellar vermis. We found that throughout all ten lobules of the cerebellar vermis, Purkinje cells were significantly smaller and expression of the calcium binding protein calbindin (CB) was significantly reduced. We also found that dendritic arbors of Purkinje cells were shorter and less complex. Additionally, animals exposed to a repeated dose of VPA performed significantly worse in a number of motor tasks, including beam walking and the rotarod. These results suggest that repeated embryonic exposure to VPA induces significant cerebellar dysfunction and is an effective animal model to study the cerebellar alterations in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  1. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  2. Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice

    Science.gov (United States)

    Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.

    2012-01-01

    Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542

  3. Expression of Brain-Derived Neurotrophic Factor (BDNF Increases the Resistance of Neurons to Death in the Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    I. V. Ostrova

    2015-01-01

    Full Text Available A search for substances that are able to protect brain cells from the damaging effect of hypoxia remains one of the most relevant issues in modern neurobiology and medicine. Whether neurotrophic factors, brain-derived neurotrophic factor (BDNF protein in particular, can be used to treat neurological diseases is the subject of wide speculation in the literature now. However, how the expression of this protein in the brain neurons changes after systemic circulatory arrest in the postresuscitation period remains uncertain.Objective: to estimate the level of BDNF expression in the highly ischemia-sensitive neuronal population of cerebellar Purkinje cells and the value of BDNF in the resistance of neurons to ischemia-reperfusion.Materials and methods. In mature outbred male albino rats (n=11, the heart was stopped under ether anesthesia at 12 minutes via intrathoracic ligation of the vascular fascicle, followed by revivification. A control group included pseudo-operated animals (n=11. On days 7 after revivification, a morphometric analysis of Nissl-stained paraffin sections 5—6 μm thick was used to determine the total number of Purkinje cells per 1 mm of their layer length. The expression of BDNF protein in the Purkinje cells was immunohistochemically examined by an indirect peroxidase-antiperoxidase test using primary polyclonal antibodies against BDNF. The count of Purkinje cells with different immune responses to BDNF protein was calculated. The intensity of BDNF expression was estimated from the mean optical density. Results. 12-minute systemic circulatory arrest in the rats resulted in a 12.5% reduction in the number of Purkinje cells. The immunohistochemical examination revealed a lower numbers of BDNF– neurons in the resuscitated rats. In this case, the count of BDNF+ and BDNF++ neurons corresponded to their reference level. Consequently, only BDNF-negative neurons, i.e. those that failed to express BDNF protein, died. Analysis of the

  4. Postresuscitative Changes of Brain-Derived Neurotrophic Factor (BDNF Protein Expression: Association With Neuronal Death

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2017-01-01

    Full Text Available Aim of the study: to evaluate expression level of BDNF and its association with the postresuscitative neuronal death in highly hypoxia-sensitive brain regions.Materials and methods. Cardiac arrest in adult albino male rats was evoked by intrathoracic clamping of supracardiac bundle of vessels for 10 min. Pyramidal neurons of the hippocampus and Purkinje cells of the cerebellum were analyzed at various time points after resuscitation (days 1, 4, 7, 14. Shame-operated rats served as controls. The expression of BDNF protein was immunohistochemically determined. The BDNF expression level was determined by evalution on the base of the average optical density. The number of neurons with different BDNF expression levels and the total number of neurons per 1 mm of the layer length were computed. Image analysis systems (Intel personal computer, Olympus BX-41 microscope, ImageScopeM, ImageJ 1,48v and MS Excel 2007 software packages were used in the study. Data statistical processing was performed with the aid of Statistica 7.0 program and Kolmogorov-Smirnov λ-test, Mann-Whitney U-test and Student's t-test.Results. The dynamics of postresuscitative shifts of BDNF immunoreactivity in neuronal populations of hippocampal pyramidal cells and cerebellar Purkinje cells was established. It was shown that the level of BDNF expression within the two neuronal populations decreased, that was accompanied by neuronal death. In the Purkinje cell population the neuronal death occurred by the 4th day after resuscitation, while in the hippocampus, it occurs only by the 7th day. Notably, only BDNF-negative neurons or neurons with low level of BDNF expression died in both neuronal populations.Conclusion. The results of the study indicate the existence of an interrelation between the shifts in BDNF expression and the postresuscitative neuronal death. It was shown that only the cells with none or poor BDNF expression underwent death in highly hypoxia-sensitive neuronal

  5. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  6. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  7. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  8. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    Science.gov (United States)

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  9. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum.

    Science.gov (United States)

    Obana, Edwin A; Lundell, Travis G; Yi, Kevin J; Radomski, Kryslaine L; Zhou, Qiong; Doughty, Martin L

    2015-06-01

    Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.

  10. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  11. Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Kortner, Trond M; Qu, Hong

    2006-01-01

    by labeling from [U-(13)C]glutamine added on day 7. Altogether the findings show continuous GABA synthesis and degradation throughout the culture period in the cerebellar neurons. At 10 microM AOAA, GABA synthesis from [U-(13)C]glutamine was not affected, indicating that transaminases are not involved in GABA...... that GABA synthesis is taking place via GAD in a subpopulation of the cerebellar neurons, throughout the culture period....

  12. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  13. Behavioral Analysis and Rescue of a Novel Cerebellar Mouse Model of Tuberous Sclerosis Complex

    Science.gov (United States)

    2012-05-01

    including: Purkinje cell loss, general cerebellar hypoplasia, vermal hypoplasia and hyperplasia, reduced gray matter, GABA dysfunction, and decreased...Lond B Biol Sci. 287, 167-201. Cappon, D., 1953. Clinical manifestations of autism and schizophrenia in childhood. Can Med Assoc J. 69, 44-9. Chan

  14. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    Science.gov (United States)

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  15. INTRINSIC ELECTRICAL PROPERTIES OF MAMMALIAN NEURONS AND CNS FUNCTION: A HISTORICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2014-11-01

    Full Text Available This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified towards one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function.

  16. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons.

    Science.gov (United States)

    Thellung, Stefano; Gatta, Elena; Pellistri, Francesca; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Robello, Mauro; Florio, Tullio

    2017-10-01

    Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrP Sc ). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca ++ ] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca ++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca ++ ] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca ++ ] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca ++ ] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE 2 release from glial cells. Thus, Ca ++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides

  17. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice

    NARCIS (Netherlands)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-01-01

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised

  18. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons.

    Science.gov (United States)

    Maex, Reinoud; Gutkin, Boris

    2017-07-01

    Inhibitory interneurons interconnected via electrical and chemical (GABA A receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we

  19. Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.

    Science.gov (United States)

    De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia

    2017-10-01

    Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  1. Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal x irradiation

    International Nuclear Information System (INIS)

    Woodward, D.J.; Hoffer, B.J.; Altman, J.

    1974-01-01

    Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x irradiation applied during the first two weeks of postnatal life. Purkinje neurons in these rats, studied when adults, exhibited sustained spiking activity in Halothane anesthetized preparations. Mean firing rates were 35 to 40/sec, no different from normal. Spontaneous bursts presumed to be generated by climbing fiber synaptic activity differed from normal by often consisting of full sized spikes rather than characteristic inactivation responses. Intracellularly observed correlates of bursts consisted of epsp's of several discretely different amplitudes appearing independently in time. Stimulation of white matter revealed evidence for, a) graded synaptic excitation of Purkinje cells indicating more than one converging excitatory synapse, and b) inhibitory actions on Purkinje cells either through a few remaining inhibitory interneurons or through Purkinje cell recurrent collaterals. Iontophoretic drug application studies showed normal chemosensitivity of the Purkinje cell membrane, i.e., excitation by flutamate and inhibition by gamma-amino butyric acid, serotonin, norepinephrine, and 3'5' cyclic AMP. These studies indicate considerable autonomy of Purkinje cell ontogenesis in the absence of normal interneuronal input. A unique synaptic relation only rarely found in normal cerebellum is the innervation of single Purkinje cells by more than one climbing fiber. (U.S.)

  2. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  3. Cerebellar Degeneration

    Science.gov (United States)

    ... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...

  4. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    Science.gov (United States)

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the

  5. Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity

    NARCIS (Netherlands)

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that

  6. Circadian Clock Proteins and Melatonin Receptors in Neurons and Glia of the Sapajus apella Cerebellum

    Directory of Open Access Journals (Sweden)

    Leila M. Guissoni Campos

    2018-02-01

    Full Text Available Oscillations of brain proteins in circadian rhythms are important for determining several cellular and physiological processes in anticipation of daily and seasonal environmental rhythms. In addition to the suprachiasmatic nucleus, the primary central oscillator, the cerebellum shows oscillations in gene and protein expression. The variety of local circuit rhythms that the cerebellar cortex contains influences functions such as motivational processes, regulation of feeding, food anticipation, language, and working memory. The molecular basis of the cerebellar oscillator has been demonstrated by “clock gene” expression within cells of the cerebellar layers. Genetic and epidemiological evidence suggests that disruption of circadian rhythms in humans can lead to many pathological conditions. Despite this importance, data about clock gene and protein expression in the cerebellum of diurnal (day-active species, specifically primates, is currently poorly explored, mainly in regard to cellular identity, as well as the relationship with other molecules also involved in cerebellar functions. These studies could contribute to clarification of the possible mechanisms behind cerebellar rhythmicity. Considering that calcium binding proteins (CaBPs play crucial roles in preserving and modulating cerebellar functions and that clock gene expression can be controlled by afferent projections or paracrine circadian signals such as the hormone melatonin, the present study aimed to describe cellular identities, distribution patterns and day/night expression changes in PER1, PER2, CaBPs, and MT1 and MT2 melatonin receptors in the cerebellar cortex of a diurnal primate using conventional fluorescence and peroxidase-antiperoxidase immunocytochemical techniques. PER1 and PER2 immunoreactive (IR cells were observed in the Purkinje cells of the cerebellum, and MT1 and MT2 receptors were localized around Purkinje cells in the Pj layer in Bergmann cells. This identity

  7. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    International Nuclear Information System (INIS)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H.

    1990-01-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C 6 glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C 6 glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion

  9. Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis

    NARCIS (Netherlands)

    Fazio, F.; Notartomaso, S.; Aronica, E.; Storto, M.; Battaglia, G.; Vieira, E.; Gatti, S.; Bruno, V.; Biagioni, F.; Gradini, R.; Nicoletti, F.; Di Marco, R.

    2008-01-01

    Recent evidence suggests that changes in the expression of membrane receptors/ion channels in cerebellar Purkinje cells contribute to the onset of cerebellar motor symptoms in patients with multiple sclerosis (MS). We examined the expression of group-I metabotropic glutamate receptors (mGlu1 and

  10. The histone demethylase Kdm6b regulates a mature gene expression program in differentiating cerebellar granule neurons.

    Science.gov (United States)

    Wijayatunge, Ranjula; Liu, Fang; Shpargel, Karl B; Wayne, Nicole J; Chan, Urann; Boua, Jane-Valeriane; Magnuson, Terry; West, Anne E

    2018-03-01

    The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  12. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  13. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  14. The effect of the timing of prenatal exposure to x-irradiation on Purkinje cell numbers in rat cerebellum

    International Nuclear Information System (INIS)

    Miki, T.; Satriotomo, I.; Matsumoto, Y.; Kuma, H.; Takeuchi, Y.; Gu

    2003-01-01

    Full text: Prenatal exposure of the developing brain to X-irradiation is known to cause various deleterious consequences. We have examined the effects of prenatal X-irradiation on the development of the cerebellum. Wistar rats were exposed to 1.5 Gy X-irradiation either on the 14, 15 or 16th day of gestation (E14, E15, E16). Sham-irradiated animals were used as controls. At seven postnatal weeks of age, male rats were deeply anesthetized and killed by intracardiac perfusion with 2.5 % glutaraldehyde in 0.1 M phosphate buffer. The unbiased stereological procedure known as the fractionator method was used to estimate the total number of Purkinje cells in the cerebellum. Body and cerebellar weights from E14 and E15, but not E16 irradiated rats showed significant deficits compared to control animals. Rats irradiated on E16 and control rats had about 285,100 - 304,800 Purkinje cells in the cerebellum. There was no significant difference between these values. However, E14 and E15 irradiated animals had about 117,500 and 196,300 Purkinje cells, respectively. These estimates were significantly different from those observed in both control and E16 irradiated rats. Given that the phase of division of Purkinje cell progenitors is mainly between E14-E15 and the phase of differentiation and migration is between E16-E20, it is concluded that the vulnerable period of the Purkinje cells to X-irradiation closely overlaps the phase of division of progenitors

  15. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  16. First report of cerebellar abiotrophy in an Arabian foal from Argentina

    Directory of Open Access Journals (Sweden)

    S.A. Sadaba

    2016-12-01

    Full Text Available Evidence of cerebellar abiotrophy (CA was found in a six-month-old Arabian filly with signs of incoordination, head tremor, wobbling, loss of balance and falling over, consistent with a cerebellar lesion. Normal hematology profile blood test and cerebrospinal fluid analysis excluded infectious encephalitis, and serological testing for Sarcocystis neurona was negative. The filly was euthanized. Postmortem X-ray radiography of the cervical cephalic region identified not abnormalities, discounting spinal trauma. The histopathological analysis of serial transverse cerebellar sections by electron microscopy revealed morphological characteristics of apoptotic cells with pyknotic nuclei and degenerate mitochondria, cytoplasmic condensation and areas with absence of Purkinje cells, matching with CA histopathological characteristics. The indirect DNA test for CA was positive in the filly, and DNA test confirmed the CA carrier state in the parents and the recessive inheritance of the disease. To our knowledge this is the first report of a CA case in Argentina.

  17. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.

    Science.gov (United States)

    Alviña, Karina; Sawtell, Nathaniel B

    2014-07-15

    Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. Copyright © 2014 the American Physiological Society.

  18. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    Science.gov (United States)

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  19. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.

    Science.gov (United States)

    Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J

    2015-01-21

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.

  20. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia....... Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures...... and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N...

  1. Critical periods during the in situ repair of radiation-induced DNA damage in rat cerebellar neurons and 9L brain tumor cells

    International Nuclear Information System (INIS)

    Wierowski, J.V.; Thomas, R.R.; Ritter, P.; Wheeler, K.T.

    1982-01-01

    The consequences of delivering a second 1250-rad dose at various times during and after the repair of DNA damage produced by an initial 1250-rad dose were assessed in intracerebral 9L tumor cells and rat cerebellar neurons by measuring the sedimentation properties of their DNA through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capabilities.In cerebellar neurons, separating the two doses by 15 min resulted in an accumulation of DNA damage as expressed by an increase in the amount of DNA sedimenting >250 S over that obtained from unirradiated controls. Although not statistically different from unirradiated controls, a slight increase in the amount of fast-sedimenting neuronal DNA also occurred when a 1-hr interval between the two doses was investigated. At intervals of 2 hr or more, no such increase in fast-sedimenting neuronal DNA was observed. None of the periods between doses resulted in an accumulation of DNA damage in intracerebral 9L tumor cells. The accumulation of this type of DNA damage in neurons but not in tumor cells suggests that avoidance of a critical period in neuronal DNA repair may someday be an important concept in the design of brain tumor therapy schedules

  2. A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons.

    Science.gov (United States)

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Alfonso, Carmen; Rodríguez, Paula; Otero, Paz; Alfonso, Amparo; Vale, Paulo; Hirama, Masahiro; Vieytes, Mercedes R; Botana, Luis M

    2011-04-18

    Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. The effect of ciguatoxin standards and contaminated ciguatoxin samples was evaluated by electrophysiological recordings in cultured cerebellar neurons. The toxins affected both voltage-gated sodium (Nav) and potassium channels (Kv) although with different potencies. CTX 3C was the most active toxin blocking the peak inward sodium currents, followed by P-CTX 1B and 51-OH CTX 3C. In contrast, P-CTX 1B was more effective in blocking potassium currents. The analysis of six different samples of contaminated fish, in which a ciguatoxin analogue of mass 1040.6, not identical with the standard 51-OH CTX 3C, was the most prevalent compound, indicated an additive effect of the different ciguatoxins present in the samples. The results presented here constitute the first comparison of the potencies of three different purified ciguatoxins on sodium and potassium channels in the same neuronal preparation and indicate that electrophysiological recordings from cultured cerebellar neurons may provide a valuable tool to detect and quantify ciguatoxins in the very low nanomolar range.

  3. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the

  4. Developmental disorders of the brain can be caused by PCBs; low doses of hydroxy-PCBs disrupt thyroid hormone-dependent dendrite formation from Purkinje neurons in culture

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Y; Kimura-Kuroda, J [Tokyo Metropol. Inst. for Neuroscience, Tokyo (Japan); Nagata, I [CREST/ JST, Tokyo (Japan)

    2004-09-15

    Exposure to some environmental chemicals during the perinatal period causes developmental disorders of the brain. Cognitive impairment and hyperactivity in infants were reported in Taiwan, known as Yu-cheng incidents caused by the accidental contamination of polychlorinated biphenyls (PCBs). Together with recent experimental data, Kuroda proposes a hypothesis that spatio-temporal disruptions of developing neuronal circuits by PCB exposure can cause the comobidity of learning disorders (LD), attention deficit hyperactivity disorder (ADHD) and autsm with the co-exposure to other environmental chemicals. PCBs and hydroxylated PCBs (OH-PCBs) have similar chemical structures to thyroid hormones (TH), thyroxine (T4) and triiodothyronine (T3). TH deficiency in the perinatal period causes cretinism children with severe cognitive and mental retardation. In primate model, Rice demonstrates that postnatal exposure to PCBs can dramatically influence later behavioral function. Epidemiological studies also indicate the possible developmental neurotoxicity of PCBs accumulated in human bodies. However, the precise underlying mechanisms and which types of PCB or OH-PCB with such effects have yet to be elucidated. It is important to establish a simple, reproducible, and sensitive in vitro assay for determining the effects of PCBs and OH-PCBs on the development of the central nervous system. Recently Iwasaki et al. established a reporter assay system and disclosed that low doses of PCBs potentially interfere TH-dependent gene expressions. This is the first demonstration that PCBs and OH-PCBs directly affect TH-receptor (TR)-mediated gene expressions crucial to the brain development, through unique mechanism. We also have demonstrated TH-dependent development of Purkinje neurons in vitro using a serum-free chemically defined medium. The degree of dendritic development of Purkinje cells is TH dose-dependent and exhibits high sensitivity in the pM order. Therefore, in the present study

  5. Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2δ-1 Subunit

    Science.gov (United States)

    Senatore, Assunta; Colleoni, Simona; Verderio, Claudia; Restelli, Elena; Morini, Raffaella; Condliffe, Steven B.; Bertani, Ilaria; Mantovani, Susanna; Canovi, Mara; Micotti, Edoardo; Forloni, Gianluigi; Dolphin, Annette C.; Matteoli, Michela; Gobbi, Marco; Chiesa, Roberto

    2012-01-01

    Summary How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α2δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α2δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies. PMID:22542184

  6. PIXE maps of intracellular element distribution in cerebellar neurons

    Czech Academy of Sciences Publication Activity Database

    Kranda, Karel; Havránek, Vladimír; Purkrtová, Z.; Vožeh, F.; Hájková, L.

    2012-01-01

    Roč. 22, 1-2 (2012), s. 65-72 ISSN 0129-0835 R&D Projects: GA ČR GA309/09/1189 Institutional support: RVO:61389005 Keywords : MicroPIXE * 2D-mapping * cerebellum * mutant mice * Purkinje cells * cell death * metan concentration Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  7. Differential 3’ processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

    Science.gov (United States)

    Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E

    2018-01-01

    Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408

  8. Cerebellar Ataxia and Coenzyme Q Deficiency Through Loss of Unorthodox Kinase Activity

    OpenAIRE

    Stefely, Jonathan A.; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G.; Kemmerer, Zachary A.; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E.; Ulbrich, Arne; Hutchins, Paul D.; Wilkerson, Emily M.; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S.; Guo, Xiao

    2016-01-01

    The UbiB protein kinase-like (PKL) family is widespread—comprising one-quarter of microbial PKLs and five human homologs—yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical ana...

  9. Structural alterations of the DNA in cerebellar neurons after whole-brain irradiation

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Winstein, R.E.; Kaufman, K.; Ritter, P.

    1981-01-01

    Male Sprague-Dawley rats weighing 260 to 280 g were whole-brain-irradiated with x-ray doses of 433, 867, 1083, 1300, 1516, and 1713 rad. Over the next 2.25 years rats were killed at various times, and the state of the DNA in their cerebellar neurons was examined by sedimentation through alkaline sucrose gradients in reorienting zonal rotors. The data were analyzed as the percentage of the sedimenting DNA with sedimentation coefficients greater than 300 S, an arbitrarily selected category of no defined molecular significance. The general pattern at all doses consisted first of a slow return to the unirradiated DNA state that was relatively dose dependent. This was followed by an increase in the amount of DNA sedimenting >300 S; both the extent and time course of this increase appeared to be dose dependent. Finally, the DNA degraded at a relatively dose independent rate. There was little change in the neuronal DNA from unirradiated rats during this study. The data suggest that increases in the amount of fast-sedimenting DNA observed 30 to 80 weeks after low to moderate doses of whole-brain irradiation represent a type of DNA damage rather than repair and that this damage ultimately results in degradation of the neuronal DNA and death of the rat

  10. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  11. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  12. Structural study of Purkinje cell axonal torpedoes in essential tremor.

    Science.gov (United States)

    Louis, Elan D; Yi, Hong; Erickson-Davis, Cordelia; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2009-02-06

    Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10-12nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study.

  13. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    Science.gov (United States)

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  14. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.

    Science.gov (United States)

    Lenz, Alexander; Anderson, Sean R; Pipe, A G; Melhuish, Chris; Dean, Paul; Porrill, John

    2009-12-01

    In this paper, a model of cerebellar function is implemented and evaluated in the control of a robot eye actuated by pneumatic artificial muscles. The investigated control problem is stabilization of the visual image in response to disturbances. This is analogous to the vestibuloocular reflex (VOR) in humans. The cerebellar model is structurally based on the adaptive filter, and the learning rule is computationally analogous to least-mean squares, where parameter adaptation at the parallel fiber/Purkinje cell synapse is driven by the correlation of the sensory error signal (carried by the climbing fiber) and the motor command signal. Convergence of the algorithm is first analyzed in simulation on a model of the robot and then tested online in both one and two degrees of freedom. The results show that this model of neural function successfully works on a real-world problem, providing empirical evidence for validating: 1) the generic cerebellar learning algorithm; 2) the function of the cerebellum in the VOR; and 3) the signal transmission between functional neural components of the VOR.

  15. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony.

    Science.gov (United States)

    Marshall, Sarah P; Lang, Eric J

    2009-11-11

    Complex spike (CS) synchrony patterns are modulated by the release of GABA within the inferior olive (IO). The GABAergic projection to most of the IO arises from the cerebellar nuclei, which are themselves subject to strong inhibitory control by Purkinje cells in the overlying cortex. Moreover, the connections between the IO and cerebellum are precisely aligned, raising the possibility that each cortical region controls its own CS synchrony distribution. This possibility was tested using multielectrode recordings of CSs and simple spikes (SSs) in crus 2a of anesthetized rats. Picrotoxin or muscimol was applied to the cerebellar cortex at the borders of the recording array. These drugs induced significant changes in CS synchrony and in CS and SS firing rates and changes in post-CS pauses and modulation of SS activity. The level of CS synchrony was correlated with SS firing rate in control, and application of picrotoxin increased both. In contrast, muscimol decreased CS synchrony. Furthermore, when picrotoxin was applied only at the lateral edge of the array, changes in CS synchrony occurred sequentially across the recording array, with cells located in the lateral half of the array having earlier and larger changes in CS synchrony than cells in the medial half. The results indicate that a double-inhibitory feedback circuit from Purkinje cells to the IO provides a mechanism by which SS activity may regulate CS synchrony. Thus, CS synchrony may be a physiologically controlled parameter of cerebellar activity, with the cerebellum and IO comprising a series of self-updating circuits.

  16. Information processing in the hemisphere of the cerebellar cortex for control of wrist movement

    Science.gov (United States)

    Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.

    2015-01-01

    A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515

  17. Transferences of Purkinje systems

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2011-12-01

    Full Text Available The transferences of heterocentric astigmatic Purkinje systems are special: submatrices B and C, that is, the disjugacy and the divergence of the system, are symmetric and submatrix D (the divarication is the transpose of submatrix A (the dilation.  It is the primary purpose of this paper to provide a proof.  The paper also derives other relationships among the fundamental properties and compact expressions for the transference and optical axis locator of a Purkinje system. (S Afr Optom 2011 70(2 57-60

  18. Cerebellum-from J. E. Purkyně up to Contemporary Research.

    Science.gov (United States)

    Vožeh, František

    2017-06-01

    Jan. Evangelista Purkyně, the most famous among Czech physiologists, was the first who identified and described the largest nerve cells in the cerebellum. The most distinguished researchers of the nervous system then recommended naming these neurons Purkinje cells in his honor. Through experiments by Purkinje and his followers, the function of the cerebellum was properly attributed to the precision of motor movements and skills. This traditional concept was valid until early 1990s, when it was readjusted and replenished with new and important findings. It was discovered that the cerebellar cortex contains more neurons than the cerebral cortex and shortly thereafter was gradually revealed that such enormous numbers of neural cells are not without impact on brain functions. It was shown that the cerebellum, in addition to its traditional role, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described in this work.

  19. Neuronal vacuolation and spinocerebellar degeneration associated with altered neurotransmission

    Directory of Open Access Journals (Sweden)

    Aggeliki Giannakopoulou

    2017-06-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species, such as the domestic dog (Canis lupus familiaris, and many are caused by mutations in the same genes as corresponding human conditions. In the present study, we report an inherited neurodegenerative condition, termed ‘neuronal vacuolation and spinocerebellar degeneration’ (NVSD which affects neonatal or young dogs, mainly Rottweilers, which recently has been linked with the homozygosity for the RAB3GAP1:c.743delC allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM, a severe developmental disorder characterized predominantly by abnormalities of the nervous system including axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 proteins, respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, autophagy, axonal transport and synaptic transmission. The present study attempts to carry out a detailed histopathological examination of NVSD disease, extending from peripheral nerves to lower brain structures focusing on the neurotransmitter alterations noted in the cerebellum, the major structure affected. NVSD dogs presented with progressive cerebellar ataxia and some clinical manifestations that recapitulate the WARBM phenotype. Neuropathological examination revealed dystrophic axons, neurodegeneration and intracellular vacuolization in specific nuclei. In the cerebellum, severe vacuolation of cerebellar nuclei neurons, atrophy of Purkinje cells, and diminishing of GABAergic and glutamatergic fibres constitute the most striking lesions. The balance of evidence suggests that the neuropathological lesions are a reaction to the altered neurotransmission. The canine phenotype could serve as a model to delineate the disease-causing pathological mechanisms in RAB3GAP1 mutation.

  20. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.

    Science.gov (United States)

    Raghavan, Ramanujan T; Lisberger, Stephen G

    2017-08-01

    We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the

  1. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.

    Science.gov (United States)

    Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas

    2011-10-01

    The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2014-11-01

    Full Text Available Angelman syndrome is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3am-/p+ Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of Angelman syndrome, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type mice is missing in Ube3am-/p+ mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3am-/p+ mice. The control exerted by the cerebellum on the excitation vs inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike–timing dependent plasticity (STDP of the pyramidal neurons are discussed in the context of the present hypothesis.

  3. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Johansen, Maja L.; Schousboe, Arne

    2012-01-01

    Synthesis of neuronal glutamate from a-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino...... group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 µ......]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. © 2012 Wiley Periodicals, Inc....

  4. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Crepel, F; Delhaye-Bouchaud, N; Dupont, J L [Paris-5 Univ., 75 (France); Sotelo, C [Hopital Foch, 92 - Suresnes (France). Centre Medico-Chirurgical

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields.

  5. [Degenerative cerebellar diseases and differential diagnoses].

    Science.gov (United States)

    Reith, W; Roumia, S; Dietrich, P

    2016-11-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions.

  6. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  7. CEREBELLUM: LINKS BETWEEN DEVELOPMENT, DEVELOPMENTAL DISORDERS AND MOTOR LEARNING

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2012-01-01

    Full Text Available The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodelling are being unravelled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip (RL, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signalling between granule cells and Purkinje neurons. The expression profile of SHH (Sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired development and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders.

  8. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  9. Localizing genes to cerebellar layers by classifying ISH images.

    Directory of Open Access Journals (Sweden)

    Lior Kirsch

    Full Text Available Gene expression controls how the brain develops and functions. Understanding control processes in the brain is particularly hard since they involve numerous types of neurons and glia, and very little is known about which genes are expressed in which cells and brain layers. Here we describe an approach to detect genes whose expression is primarily localized to a specific brain layer and apply it to the mouse cerebellum. We learn typical spatial patterns of expression from a few markers that are known to be localized to specific layers, and use these patterns to predict localization for new genes. We analyze images of in-situ hybridization (ISH experiments, which we represent using histograms of local binary patterns (LBP and train image classifiers and gene classifiers for four layers of the cerebellum: the Purkinje, granular, molecular and white matter layer. On held-out data, the layer classifiers achieve accuracy above 94% (AUC by representing each image at multiple scales and by combining multiple image scores into a single gene-level decision. When applied to the full mouse genome, the classifiers predict specific layer localization for hundreds of new genes in the Purkinje and granular layers. Many genes localized to the Purkinje layer are likely to be expressed in astrocytes, and many others are involved in lipid metabolism, possibly due to the unusual size of Purkinje cells.

  10. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor

    OpenAIRE

    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z

    2013-01-01

    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  11. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    Science.gov (United States)

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  12. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    Science.gov (United States)

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  13. Degenerative cerebellar diseases and differential diagnoses

    International Nuclear Information System (INIS)

    Reith, W.; Roumia, S.; Dietrich, P.

    2016-01-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [de

  14. Systematic Regional Variations in Purkinje Cell Spiking Patterns

    Science.gov (United States)

    Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.

    2014-01-01

    In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311

  15. Systematic regional variations in Purkinje cell spiking patterns.

    Directory of Open Access Journals (Sweden)

    Jianqiang Xiao

    Full Text Available In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+ and negative (Z- bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.

  16. 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer.

    Science.gov (United States)

    Muguruma, Keiko

    2017-01-01

    Pluripotent stem cells (PSCs) possess self-organizing abilities in 3D culture. This property has been demonstrated in recent studies, including the generation of various neuroectodermal and endodermal tissues. For example, PSCs are able to differentiate into specific type of neural tissues, such as the neocortex and the optic cup, in response to local positional information brought about by signals during embryogenesis. In contrast, the generation of cerebellar tissue from PSCs requires a secondary induction by a signaling center, called the isthmic organizer, which first appears in the cell aggregate in 3D culture. Such developmental complexity of cerebellum has hampered establishment of effective differentiation culture system from PSCs, thus far.We recently reported that cerebellar neurons are generated from human PSCs (hPSCs). In this chapter, we describe an efficient protocol for differentiation of 3D cerebellar neuroepithelium from hPSCs. We also describe the protocols for further differentiation into specific neurons in the cerebellar cortex, such as Purkinje cells and the granule cells.

  17. Motor Deficits and Cerebellar Atrophy in Elovl5 Knock Out Mice.

    Science.gov (United States)

    Hoxha, Eriola; Gabriele, Rebecca M C; Balbo, Ilaria; Ravera, Francesco; Masante, Linda; Zambelli, Vanessa; Albergo, Cristian; Mitro, Nico; Caruso, Donatella; Di Gregorio, Eleonora; Brusco, Alfredo; Borroni, Barbara; Tempia, Filippo

    2017-01-01

    Spino-Cerebellar-Ataxia type 38 (SCA38) is caused by missense mutations in the very long chain fatty acid elongase 5 gene, ELOVL5 . The main clinical findings in this disease are ataxia, hyposmia and cerebellar atrophy. Mice in which Elovl5 has been knocked out represent a model of the loss of function hypothesis of SCA38. In agreement with this hypothesis, Elovl5 knock out mice reproduced the main symptoms of patients, motor deficits at the beam balance test and hyposmia. The cerebellar cortex of Elovl5 knock out mice showed a reduction of thickness of the molecular layer, already detectable at 6 months of age, confirmed at 12 and 18 months. The total perimeter length of the Purkinje cell (PC) layer was also reduced in Elovl5 knock out mice. Since Elovl5 transcripts are expressed by PCs, whose dendrites are a major component of the molecular layer, we hypothesized that an alteration of their dendrites might be responsible for the reduced thickness of this layer. Reconstruction of the dendritic tree of biocytin-filled PCs, followed by Sholl analysis, showed that the distribution of distal dendrites was significantly reduced in Elovl5 knock out mice. Dendritic spine density was conserved. These results suggest that Elovl5 knock out mice recapitulate SCA38 symptoms and that their cerebellar atrophy is due, at least in part, to a reduced extension of PC dendritic arborization.

  18. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2017-09-01

    Full Text Available Changes in intracellular Na+ concentration ([Na+]i are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

  19. Familial Cortical Myoclonic Tremor with Epilepsy and Cerebellar Changes: Description of a New Pathology Case and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sarvi Sharifi

    2012-08-01

    Full Text Available Background: Over 60 Asian and European families with cortical myoclonic tremor and epilepsy have been reported under various names. Cerebellar changes may be part of the syndrome. In this study, we report the neuropathology findings in a new Dutch familial cortical myoclonic tremor with epilepsy case and review the literature on this syndrome.Methods: Neuropathological investigations were performed for a third case of the Dutch pedigree. In addition, we searched the literature for pedigrees meeting the criteria for benign familial myoclonic tremor and epilepsy.Results: Our third Dutch case showed cerebellar Purkinje cell changes and a normal cerebral cortex. The pedigrees described show phenotypical differences, cerebellar symptoms and cerebellar atrophy to a variable degree. Japanese pedigrees with linkage to chromosome 8q have been reported with milder disease features than members of Italian pedigrees with linkage to chromosome 2p. French pedigrees (5p possibly show even more severe and progressive disease, including cognitive changes and cerebellar features.Discussion: Currently, familial cortical myoclonic tremor is not listed by the International League Against Epilepsy, although it can be differentiated from other epileptic syndromes. Genetic heterogeneity and phenotypical differences between pedigrees exist. Cerebellar changes seem to be part of the syndrome in at least a number of pedigrees.

  20. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Lan Zhu

    Full Text Available Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA. In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF to Purkinje cell (PC synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP. Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

  1. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    International Nuclear Information System (INIS)

    Crepel, F.; Delhaye-Bouchaud, N.; Dupont, J.L.; Sotelo, C.

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields. (author)

  2. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  3. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  4. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network

    Directory of Open Access Journals (Sweden)

    Jean-Marc Good

    2017-11-01

    Full Text Available Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF to Purkinje cell (PC network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity.

  5. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    Science.gov (United States)

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  6. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    Science.gov (United States)

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  7. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kruse

    Full Text Available The firing patterns of cerebellar Purkinje cells (PCs, as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs, climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2 expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.

  8. Blood harmane is correlated with cerebellar metabolism in essential tremor: a pilot study.

    Science.gov (United States)

    Louis, Elan D; Zheng, Wei; Mao, Xiangling; Shungu, Dikoma C

    2007-08-07

    On proton magnetic resonance spectroscopic imaging ((1)H MRSI), there is a decrease in cerebellar N-acetylaspartate/total creatine (NAA/tCr) in essential tremor (ET), signifying cerebellar neuronal dysfunction or degeneration. Harmane, which is present in the human diet, is a potent tremor-producing neurotoxin. Blood harmane concentrations seem to be elevated in ET. To assess in patients with ET whether blood harmane concentration is correlated with cerebellar NAA/tCR, a neuroimaging measure of neuronal dysfunction or degeneration. Twelve patients with ET underwent (1)H MRSI. The major neuroanatomic structure of interest was the cerebellar cortex. Secondary regions were the central cerebellar white matter, cerebellar vermis, thalamus, and basal ganglia. Blood concentrations of harmane and another neurotoxin, lead, were also assessed. Mean +/- SD cerebellar NAA/tCR was 1.52 +/- 0.41. In a linear regression model that adjusted for age and gender, log blood harmane concentration was a predictor of cerebellar NAA/tCR (beta = -0.41, p = 0.009); every 1 g(-10)/mL unit increase in log blood harmane concentration was associated with a 0.41 unit decrease in cerebellar NAA/tCR. The association between blood harmane concentration and brain NAA/tCR only occurred in the cerebellar cortex; it was not observed in secondary brain regions of interest. Furthermore, the association was specific to harmane and not another neurotoxin, lead. This study provides additional support for the emerging link between harmane, a neurotoxin, and ET. Further studies are warranted to address whether cerebellar harmane concentrations are associated with cerebellar pathology in postmortem studies of the ET brain.

  9. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex

    Directory of Open Access Journals (Sweden)

    Bernd eKuhn

    2012-07-01

    Full Text Available Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN led to high levels of expression (50-100 µM in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs (≤10 μM, yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA, a second rAAV containing the bidirectional TET promoter (Ptetbi could drive strong D3cpv expression in PCs (10-300 µM, enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging.

  10. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  11. Morphometric magnetic resonance imaging and genetic testing in cerebellar abiotrophy in Arabian horses

    Science.gov (United States)

    2013-01-01

    Background Cerebellar abiotrophy (CA) is a rare but significant disease in Arabian horses caused by progressive death of the Purkinje cells resulting in cerebellar ataxia characterized by a typical head tremor, jerky head movements and lack of menace response. The specific role of magnetic resonance imaging (MRI) to support clinical diagnosis has been discussed. However, as yet MR imaging has only been described in one equine CA case. The role of MR morphometry in this regard is currently unknown. Due to the hereditary nature of the disease, genetic testing can support the diagnosis of CA. Therefore, the objective of this study was to perform MR morphometric analysis and genetic testing in four CA-affected Arabian horses and one German Riding Pony with purebred Arabian bloodlines in the third generation. Results CA was diagnosed pathohistologically in the five affected horses (2 months - 3 years) supported by clinical signs, necropsy, and genetic testing which confirmed the TOE1:g.2171G>A SNP genotype A/A in all CA-affected horses. On MR images morphometric analysis of the relative cerebellar size and relative cerebellar cerebrospinal fluid (CSF) space were compared to control images of 15 unaffected horses. It was demonstrated that in MR morphometric analyses, CA affected horses displayed a relatively smaller cerebellum compared to the entire brain mass than control animals (P = 0.0088). The relative cerebellar CSF space was larger in affected horses (P = 0.0017). Using a cut off value of 11.0% for relative cerebellar CSF space, the parameter differentiated between CA-affected horses and controls with a sensitivity of 100% and a specificity of 93.3%. Conclusions In conclusion, morphometric MRI and genetic analysis could be helpful to support the diagnosis of CA in vivo. PMID:23702154

  12. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  13. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Schousboe, A.; Frandsen, A.; Drejer, J.

    1989-01-01

    Evoked release of [ 3 H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP

  14. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice

    Science.gov (United States)

    Bortolussi, Giulia; Baj, Gabriele; Vodret, Simone; Viviani, Giulia; Bittolo, Tamara; Muro, Andrés F.

    2014-01-01

    Neonatal jaundice is caused by high levels of unconjugated bilirubin. It is usually a temporary condition caused by delayed induction of UGT1A1, which conjugates bilirubin in the liver. To reduce bilirubin levels, affected babies are exposed to phototherapy (PT), which converts toxic bilirubin into water-soluble photoisomers that are readily excreted out. However, in some cases uncontrolled hyperbilirubinemia leads to neurotoxicity. To study the mechanisms of bilirubin-induced neurological damage (BIND) in vivo, we generated a mouse model lacking the Ugt1a1 protein and, consequently, mutant mice developed jaundice as early as 36 hours after birth. The mutation was transferred into two genetic backgrounds (C57BL/6 and FVB/NJ). We exposed mutant mice to PT for different periods and analyzed the resulting phenotypes from the molecular, histological and behavioral points of view. Severity of BIND was associated with genetic background, with 50% survival of C57BL/6‑Ugt1−/− mutant mice at postnatal day 5 (P5), and of FVB/NJ-Ugt1−/− mice at P11. Life-long exposure to PT prevented cerebellar architecture alterations and rescued neuronal damage in FVB/NJ-Ugt1−/− but not in C57BL/6-Ugt1−/− mice. Survival of FVB/NJ-Ugt1−/− mice was directly related to the extent of PT treatment. PT treatment of FVB/NJ-Ugt1−/− mice from P0 to P8 did not prevent bilirubin-induced reduction in dendritic arborization and spine density of Purkinje cells. Moreover, PT treatment from P8 to P20 did not rescue BIND accumulated up to P8. However, PT treatment administered in the time-window P0–P15 was sufficient to obtain full rescue of cerebellar damage and motor impairment in FVB/NJ-Ugt1−/− mice. The possibility to modulate the severity of the phenotype by PT makes FVB/NJ-Ugt1−/− mice an excellent and versatile model to study bilirubin neurotoxicity, the role of modifier genes, alternative therapies and cerebellar development during high bilirubin conditions. PMID

  15. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  16. Glucose deprivation stimulates Cu(2+) toxicity in cultured cerebellar granule neurons and Cu(2+)-dependent zinc release.

    Science.gov (United States)

    Isaev, Nickolay K; Genrikhs, Elisaveta E; Aleksandrova, Olga P; Zelenova, Elena A; Stelmashook, Elena V

    2016-05-27

    Copper chloride (0.01mM, 2h) did not have significant influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution. However, CuCl2 caused severe neuronal damage by glucose deprivation (GD). The glutamate NMDA-receptors blocker MK-801 partially and antioxidant N-acetyl-l-cysteine (NAC) or Zn(2+) chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) almost entirely protected CGNs from this toxic effect. Measurements of intracellular calcium ions using Fluo-4 AM, or zinc ions with FluoZin-3 AM demonstrated that 1 h-exposure to GD induced intensive increase of Fluo-4 but not FluoZin-3 fluorescence in neurons. The supplementation of solution with CuCl2 caused an increase of FluoZin-3, Fluo-4 and CellROX Green (reactive oxygen species probe) fluorescence by GD. The stimulation of Fluo-4 but not FluoZin-3 fluorescence by copper could be prevented partially by MK-801 and as well as CellROX Green fluorescence by NAC at GD. This data imply that during GD copper ions induce intense displacement zinc ions from intracellular stores, in addition free radical production, glutamate release and Ca(2+) overload of CGNs, that causes death of neurons as a result. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  18. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  19. Cerebellar Circuit Mechanisms Which Accompany Coordinated Limb Trajectory Patterns in the Rat: Use of a Model of Spontaneous Changes

    National Research Council Canada - National Science Library

    Smith, Sherry

    1997-01-01

    ...) and its target, Purkinje cells in the paravermal cerebellum. In many cases, simultaneous recordings were carried out from as many as 48 neurons in both areas during tredmill locomotion tasks used to evaluate concomitant sensorimotor performance...

  20. Caveats in transneuronal tracing with unmodified rabies virus: an evaluation of aberrant results using a nearly perfect tracing technique

    Directory of Open Access Journals (Sweden)

    Tom J.H. Ruigrok

    2016-07-01

    Full Text Available Apart from the genetically engineered, modified, strains of rabies virus (RABV, unmodified ‘fixed’ virus strains of RABV, such as the ‘French’ subtype of CVS11, are used to examine synaptically connected networks in the brain. This technique has been shown to have all the prerequisite characteristics for ideal tracing as it does not metabolically affect infected neurons within the time span of the experiment, it is transferred transneuronally in one direction only and to all types of neurons presynaptic to the infected neuron, number of transneuronal steps can be precisely controlled by survival time and it is easily detectable with a sensitive technique.Here, using the ‘French’ CVS 11 subtype of RABV in Wistar rats, we show that some of these characteristics may not be as perfect as previously indicated. Using injection of RABV in hind limb muscles, we show that RABV-infected spinal motoneurons may already show lysis 1 or 2 days after infection. Using longer survival times we were able to establish that Purkinje cells may succumb approximately 3 days after infection. In addition, some neurons seem to resist infection, as we noted that the number of RABV-infected inferior olivary neurons did not progress in the same rate as other infected neurons. Furthermore, in our hands, we noted that infection of Purkinje cells did not result in expected transneuronal labeling of cell types that are presynaptic to Purkinje cells such as molecular layer interneurons and granule cells. However, these cell types were readily infected when RABV was injected directly in the cerebellar cortex. Conversely, neurons in the cerebellar nuclei that project to the inferior olive did not take up RABV when this was injected in the inferior olive, whereas these cells could be infected with RABV via a transneuronal route. These results suggest that viral entry from the extracellular space depends on other factors or mechanisms than those used for retrograde

  1. Understanding the Role of TSC1/2 in Cerebellar Purkinje Neurons

    Science.gov (United States)

    2017-09-01

    Grants Officer whenever there are significant changes in the project or its direction. If not previously reported in writing , provide the following...MSC 9537 Bethesda, MD 20892-9537 Contracting/Grants Officer: Vicky R Haines Email : vhaines@mail.nih.gov Phone: 301-496-1365 09/01/2016 - 08/31...Princeton, New Jersey 08540 Contracting/Grant Officer: Joan New (Grants Manager) Ph: 609-228-7313 ; Email : jnew@autismspeaks.org 01/01/2017 - 12/31/2018

  2. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  3. Cerebellar transcranial direct current stimulation modulates verbal working memory.

    Science.gov (United States)

    Boehringer, Andreas; Macher, Katja; Dukart, Juergen; Villringer, Arno; Pleger, Burkhard

    2013-07-01

    Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    International Nuclear Information System (INIS)

    Soenmezoglu, K.; Sperling, B.; Lassen, N.A.; Henriksen, T.; Tfelt-Hansen, P.

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99m Tc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduction (average 10%) in contralateral hemispheric cortex. In all four cases clinical signs of unilateral cerebellar dysfunction were still present when rescanned 1 to 4 months later and the relative CBF decrease in the contralateral cortex of the forebrain also remained. The basal ganglia contralateral to the cerebellar lesion CBF showed variable alterations. A relative CBF decrease was seen in upper part of basal ganglia in all four cases, but it was not a constant phenomenon. A relative CBF increase in both early and late SPECT scans was seen at low levels of neostriatum in two cases. The remote CBF changes in cerebellar stroke seen in the forebrain are probably caused by reduced or abolished cerebellar output. The term ''Crossed Cerebral Diaschisis'' may be used to describe these CBF changes that would appear to reflect both decreased and increased neuronal activity. (au)

  5. Effect of the Nerve Growth Factor Mimetic GK-2 on Brain Structural and Functional State in the Early Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of the nerve growth factor mimetic GK-2 used to improve the structural and functional state of the brain in the early postresuscitation period. Material and methods. Cardiac arrest was induced in mature male albino rats for 12 minutes, followed by resuscitation. The neurological state of the resuscitated animals was assessed by a scoring scale. On postresuscitation day 7, the density and composition of neuronal populations of Purkinje cells in the lateral cerebellar region and pyramidal neurons in the hippocampal CA1 sector were determined by a differential morphometric analysis. The results were statistically processed using the ANOVA method. Results. The use of GK-2 was found to accelerate neurological recovery in the resuscitated animals. On day 7 after 12-minute cardiac arrest, the resuscitated animals showed neuronal dystrophic changes and death in the neuronal populations highly susceptible to ischemia. It was shown that the systemic administration of the nerve growth factor mimetic GK-2 contributed to a reduction in the magnitude and depth of postresuscitation changes in the cerebellar Purkinje cells and prevented dystrophic changes in the pyramidal cells of the hippocampal CA1 sector. The findings suggest that GK-2 has a neuroprotective effect in the recovery period after total body ischemia. Conclusion. The results of this study indicate the efficiency of the systemic administration of the nerve growth factor mimetic GK-2 in improving the brain structural and functional state in the early postresuscitation period. This determines perspectives for the use of GK-2 to prevent and correct posthypoxic encephalopathies. Key words: the nerve growth factor mimetic GK-2, postresuscitation period, neuronal dystrophic changes and death, neurological status.

  6. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases

    Science.gov (United States)

    Lin, Chi-Ying; Wang, Jie; Sims, Peter A.; Pan, Ming-Kai; Liou, Jyun-you; Lee, Danielle; Tate, William J.; Kelly, Geoffrey C.; Louis, Elan D.; Faust, Phyllis L.

    2017-01-01

    Changes in climbing fiber-Purkinje cell (CF-PC) synaptic connections have been found in the essential tremor (ET) cerebellum, and these changes are correlated with tremor severity. Whether these postmortem changes are specific to ET remains to be investigated. We assessed CF-PC synaptic pathology in the postmortem cerebellum across a range of degenerative movement disorders [10 Parkinson’s disease (PD) cases, 10 multiple system atrophy (MSA) cases, 10 spinocerebellar ataxia type 1 (SCA1) cases, and 20 ET cases] and 25 controls. We observed differences in terms of CF pathological features across these disorders. Specifically, PD cases and ET cases both had more CFs extending into the parallel fiber (PF) territory, but ET cases had more complex branching and increased length of CFs in the PF territory along with decreased CF synaptic density compared to PD cases. MSA cases and SCA1 cases had the most severely reduced CF synaptic density and a marked paucity of CFs extending into the PF territory. Furthermore, CFs in a subset of MSA cases formed collateral branches parallel to the PC layer, a feature not seen in other diagnostic groups. Using unsupervised cluster analysis, the cases and controls could all be categorized into four clusters based on the CF pathology and features of PC pathology, including counts of PCs and their axonal torpedoes. ET cases and PD cases co-segregated into two clusters, whereas SCA1 cases and MSA cases formed another cluster, separate from the control cluster. Interestingly, the presence of resting tremor seemed to be the clinical feature that separated the cases into the two ET-PD clusters. In conclusion, our study demonstrates that these degenerative movement disorders seem to differ with respect to the pattern of CF synaptic pathology they exhibit. It remains to be determined how these differences contribute to the clinical presentations of these diseases. PMID:27704282

  7. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Science.gov (United States)

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  8. Sensory coding by cerebellar mossy fibres through inhibition-driven phase resetting and synchronisation.

    Directory of Open Access Journals (Sweden)

    Tahl Holtzman

    Full Text Available Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex.

  9. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  10. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  11. Electrophysiological Monitoring of Injury ProgressionIn the Rat Cerebellar Cortex

    Directory of Open Access Journals (Sweden)

    Gokhan eOrdek

    2014-10-01

    Full Text Available The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI. The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing and mossy fibers. Here we demonstrate the use of cerebellar evoked potentials (EPs mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI. A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML of the posterior cerebellum via multi-electrode arrays (MEA. Post-injury evoked response amplitudes (EPAs were analyzed on a daily basis for one week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72±4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 hours of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24% were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47±0.1 to 0.35±0.04, p<0.001 along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.

  12. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat.

    Science.gov (United States)

    Gruart, A; Delgado-García, J M

    1994-07-01

    1. The spike activity of deep cerebellar nuclear neurons was recorded in the alert cat during spontaneous and during vestibularly and visually induced eye movements. 2. Neurons were classified according to their location in the nuclei, their antidromic activation from projection sites, their sensitivity to eye position and velocity during spontaneous eye movements, and their responses to vestibular and optokinetic stimuli. 3. Type I EPV (eye position and velocity) neurons were located mainly in the posterior part of the fastigial nucleus and activated antidromically almost exclusively from the medial longitudinal fasciculus close to the oculomotor complex. These neurons, reported here for the first time, increased their firing rate during saccades and eye fixations towards the contralateral hemifield. Their position sensitivity to eye fixations in the horizontal plane was 5.3 +/- 2.6 spikes s-1 deg-1 (mean +/- S.D.). Eye velocity sensitivity during horizontal saccades was 0.71 +/- 0.52 spikes s-1 deg-1 s-1. Variability of their firing rate during a given eye fixation was higher than that shown by abducens motoneurons. 4. Type I EPV neurons increased their firing rate during ipsilateral head rotations at 0.5 Hz with a mean phase lead over eye position of 95.3 +/- 9.5 deg. They were also activated by contralateral optokinetic stimulation at 30 deg s-1. Their sensitivity to eye position and velocity in the horizontal plane during vestibular and optokinetic stimuli yielded values similar to those obtained for spontaneous eye movements. 5. Type II neurons were located in both fastigial and dentate nuclei and were activated antidromically from the restiform body, the medial longitudinal fasciculus close to the oculomotor complex, the red nucleus and the pontine nuclei. Type II neurons were not related to spontaneous eye movements. These neurons increased their firing rate in response to contralateral head rotation and during ipsilateral optokinetic stimulation, and

  13. Inhibition of glycogen synthase kinase-3 reduces extension of the axonal leading process by destabilizing microtubules in cerebellar granule neurons.

    Science.gov (United States)

    Inami, Yoshihiro; Omura, Mitsuru; Kubota, Kenta; Konishi, Yoshiyuki

    2018-07-01

    Recent studies have uncovered various molecules that play key roles in neuronal morphogenesis. Nevertheless, the mechanisms underlying the neuron-type-dependent regulation of morphogenesis remain unknown. We have previously reported that inhibition of glycogen synthase kinase-3 (GSK3) markedly reduced axonal length of cerebellar granule neurons (CGNs) in a neuron-type-dependent manner. In the present study, we investigated the mechanisms by which the growth of CGN axons was severely suppressed upon GSK3 inhibition. Using time-lapse imaging of cultured CGNs at early morphogenesis, we found that extension of the leading process was severely inhibited by the pharmacological inhibition of GSK3. The rate of somal migration was also reduced with a GSK3 inhibitor in dissociated culture as well as in microexplant culture. In addition, CGNs ectopically expressed with a catalytically inactive mutant of GSK3 exhibited a migration defect in vivo. In axonal leading processes of CGNs, detyrosination and acetylation of α-tubulin, which are known to correlate with microtubule stability, were decreased by GSK3 inhibition. A photoconversion analysis found that inhibition of GSK3 increases the turnover of microtubules. Furthermore, in the presence of paclitaxel, a microtubule-stabilizing reagent, inhibition of GSK3 recovered the axonal leading process extension that was reduced by paclitaxel. Our results suggest that GSK3 supports the extension of axonal processes by stabilizing microtubules, contrary to its function in other neuron-types, lending mechanical insight into neuron-type-dependent morphological regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Neuropharmacologic characterization of strychnine seizure potentiation in the inferior olive lesioned rat

    International Nuclear Information System (INIS)

    Anderson, M.C.

    1988-01-01

    Cerebellar stimulation is associated with anticonvulsant activity in several animal models. There are two afferent inputs to cerebellar Purkinje cells: (1) parallel fibers, which relay mossy fiber input, from brainstem, spinal cord, cerebral cortex and cerebellum, and (2) climbing fibers, arising from the inferior olive. Both climbing and parallel fibers release excitatory amino acid neurotransmitters, which stimulate Purkinje cells and cause GABA release in the deep cerebellar nuclei. Climbing fibers also exert tonic inhibition over Purkinje cell activity by producing an absolute refractory period following stimulation, rendering Purkinje cells unresponsive to parallel fibers. Climbing fiber deafferentation by bilateral inferior olive lesions produced a specific decrease in threshold for strychnine-seizures in the rat. Inferior olive lesions produced no change in threshold to seizures induced by picrotoxin, bicuculline or pentylenetetrazole. Inferior olive lesions also produced abnormal motor behavior including, myoclonus, backward locomotion and hyperextension, which was significantly aggravated by strychnine, brucine, picrotoxin, bicuculline and pentylenetetrazole. Inferior olive lesions produced a significant increase in quisqualate sensitive [ 3 H]AMPA ((Rs)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding to cerebellar membranes. AMPA is a glutamate analog with high affinity for quisqualate sensitive receptors

  15. Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Géraldine Sicot

    2017-06-01

    Full Text Available Brain function is compromised in myotonic dystrophy type 1 (DM1, but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.

  16. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...... are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum...

  17. BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis.

    Science.gov (United States)

    Pediaditakis, Iosif; Kourgiantaki, Alexandra; Prousis, Kyriakos C; Potamitis, Constantinos; Xanthopoulos, Kleanthis P; Zervou, Maria; Calogeropoulou, Theodora; Charalampopoulos, Ioannis; Gravanis, Achille

    2016-01-01

    Neurotrophin receptors mediate a plethora of signals affecting neuronal survival. The p75 pan-neurotrophin receptor controls neuronal cell fate after its selective activation by immature and mature isoforms of all neurotrophins. It also exerts pleiotropic effects interacting with a variety of ligands in different neuronal or non-neuronal cells. In the present study, we explored the biophysical and functional interactions of a blood-brain-barrier (BBB) permeable, C17-spiroepoxy steroid derivative, BNN27, with p75 NTR receptor. BNN27 was recently shown to bind to NGF high-affinity receptor, TrkA. We now tested the p75 NTR -mediated effects of BNN27 in mouse Cerebellar Granule Neurons (CGNs), expressing p75 NTR , but not TrkA receptors. Our findings show that BNN27 physically interacts with p75 NTR receptors in specific amino-residues of its extracellular domain, inducing the recruitment of p75 NTR receptor to its effector protein RIP2 and the simultaneous release of RhoGDI in primary neuronal cells. Activation of the p75 NTR receptor by BNN27 reverses serum deprivation-induced apoptosis of CGNs resulting in the decrease of the phosphorylation of pro-apoptotic JNK kinase and of the cleavage of Caspase-3, effects completely abolished in CGNs, isolated from p75 NTR null mice. In conclusion, BNN27 represents a lead molecule for the development of novel p75 NTR ligands, controlling specific p75 NTR -mediated signaling of neuronal cell fate, with potential applications in therapeutics of neurodegenerative diseases and brain trauma.

  18. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  19. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  20. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  1. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  2. [Hering, Vintschgau and the problem of Purkinje's succession].

    Science.gov (United States)

    Sablik, K

    1989-01-01

    The problem of Jan Evangelista Purkinje's succession will be presented according to the results of archival research. The Ministery of Cult and Education in Vienna, and especially Karl Rokitansky, who was the adviser for medical education, in 1867 created a new professorship and Institute for Physiology, beside Purkinje and his Institute. Maximilian Vintschgau was to assist the world-famous 80 years old Purkinje but was not permitted to teach the whole field of physiology and to examine students. The fact that the professors of the Prague Medical Faculty in 1868 started to remove the restrictions for Vintschgau with the argument of academic freedom and in 1869 tried to keep the second institute for the future, is not yet mentioned in the literature. Discussions about the problems of the Czech language and its use in physiological lectures were scarcely mentioned by the Ministery: if one day there should be a Czech-speaking lecturer, the problem would be solved. Unfortunately Purkinje had no genuine pupil in Prague, and after his death, Vintschgau was provisional director of the Institute for half a year. In this situation Rokitansky decided that there should only be one institute for physiology in Prague. The Medical Faculty wanted to have Hermann Helmholtz to succeed Purkinje, but Helmholtz refused to come. Ewald Hering, who was nominated in the second place by the Faculty, accepted the call. Vintschgau had only rank four, third was Conrad Eckhard from Giessen. The Ministery in Vienna, however, made a special decision: The Medical Faculty of Innsbruck was founded in 1869, and there was not professor for physiology at the beginning of 1870. The candidates of the Insbruck Medical Faculty were neglected in favour of Vintschgau, who was considered to be a trustworthy Austrian patriot. Hering and Vintschgau became professors on March 6, 1870, and Hering started his work in Prague in a new institute in the "Wenzelsbad".

  3. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  4. Hypothesis: The Vestibular and Cerebellar Basis of the Mal de Debarquement Syndrome

    Directory of Open Access Journals (Sweden)

    Bernard Cohen

    2018-02-01

    Full Text Available The Mal de Debarquement syndrome (MdDS generally follows sea voyages, but it can occur after turbulent flights or spontaneously. The primary features are objective or perceived continuous rocking, swaying, and/or bobbing at 0.2 Hz after sea voyages or 0.3 Hz after flights. The oscillations can continue for months or years and are immensely disturbing. Associated symptoms appear to be secondary to the incessant sensation of movement. We previously suggested that the illness can be attributed to maladaptation of the velocity storage integrator in the vestibular system, but the actual neural mechanisms driving the MdDS are unknown. Here, based on experiments in subhuman primates, we propose a series of postulates through which the MdDS is generated: (1 The MdDS is produced in the velocity storage integrator by activation of vestibular-only (VO neurons on either side of the brainstem that are oscillating back and forth at 0.2 or 0.3 Hz. (2 The groups of VO neurons are driven by signals that originate in Purkinje cells in the cerebellar nodulus. (3 Prolonged exposure to roll, either on the sea or in the air, conditions the roll-related neurons in the nodulus. (4 The prolonged exposure causes a shift of the pitch orientation vector from its original position aligned with gravity to a position tilted in roll. (5 Successful treatment involves exposure to a full-field optokinetic stimulus rotating around the spatial vertical countering the direction of the vestibular imbalance. This is done while rolling the head at the frequency of the perceived rocking, swaying, or bobbing. We also note experiments that could be used to verify these postulates, as well as considering potential flaws in the logic. Important unanswered questions: (1 Why does the MdDS predominantly affect women? (2 What aspect of roll causes the prolongation of the tilted orientation vector, and why is it so prolonged in some individuals? (3 What produces the increase in symptoms of

  5. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  6. Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the Centrosome of Neurons in Developing Mouse Cerebral and Cerebellar Cortex

    International Nuclear Information System (INIS)

    Yonezawa, Satoshi; Shigematsu, Momoko; Hirata, Kazuto; Hayashi, Kensuke

    2015-01-01

    It has been recently reported that the centrosome of neurons does not have microtubule nucleating activity. Microtubule nucleation requires γ-tubulin as well as its recruiting proteins, GCP-WD/NEDD1 and CDK5RAP2 that anchor γ-tubulin to the centrosome. Change in the localization of these proteins during in vivo development of brain, however, has not been well examined. In this study we investigate the localization of γ-tubulin, GCP-WD and CDK5RAP2 in developing cerebral and cerebellar cortex with immunofluorescence. We found that γ-tubulin and its recruiting proteins were localized at centrosomes of immature neurons, while they were lost at centrosomes in mature neurons. This indicated that the loss of microtubule nucleating activity at the centrosome of neurons is due to the loss of γ-tubulin-recruiting proteins from the centrosome. RT-PCR analysis revealed that these proteins are still expressed after birth, suggesting that they have a role in microtubule generation in cell body and dendrites of mature neurons. Microtubule regrowth experiments on cultured mature neurons showed that microtubules are nucleated not at the centrosome but within dendrites. These data indicated the translocation of microtubule-organizing activity from the centrosome to dendrites during maturation of neurons, which would explain the mixed polarity of microtubules in dendrites

  7. N-acetylgalactosamine positive perineuronal nets in the saccade-related-part of the cerebellar fastigial nucleus do not maintain saccade gain.

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    Full Text Available Perineuronal nets (PNNs accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation. We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.

  8. An Investigation into the Effects of Peptide Neurotransmitters and Intracellular Second Messengers in Rat Central Neurons in Culture.

    Science.gov (United States)

    1988-02-04

    Purkinje neurons. 3. Neuromodulation of synaptic efficacy in an invertebrate preparation that may be a useful model system for the actions of histamine in...neurotransmitters, neuromodulators , affect brain function. Nerve cells are the functional units of the brain, and changes in neuronal activity are ultimately

  9. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers.

    Science.gov (United States)

    Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  10. Clinical characteristics of patients with cerebellar ataxia associated with anti-GAD antibodies

    Directory of Open Access Journals (Sweden)

    Tiago Silva Aguiar

    Full Text Available ABSTRACT The enzyme glutamic acid decarboxylase (GAD, present in GABAergic neurons and in pancreatic beta cells, catalyzes the conversion of gamma-aminobutyric acid (GABA. The cerebellum is highly susceptible to immune-mediated mechanisms, with the potentially treatable autoimmune cerebellar ataxia associated with the GAD antibody (CA-GAD-ab being a rare, albeit increasingly detected condition. Few cases of CA-GAD-ab have been described. Methods This retrospective and descriptive study evaluated the clinical characteristics and outcomes of patients with CA-GAD-ab. Result Three patients with cerebellar ataxia, high GAD-ab titers and autoimmune endocrine disease were identified. Patients 1 and 2 had classic stiff person syndrome and insidious-onset cerebellar ataxia, while Patient 3 had pure cerebellar ataxia with subacute onset. Patients received intravenous immunoglobulin therapy with no response in Patients 1 and 3 and partial recovery in Patient 2. Conclusion CA-GAD-ab is rare and its clinical presentation may hamper diagnosis. Clinicians should be able to recognize this potentially treatable autoimmune cerebellar ataxia.

  11. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  12. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and ...

  13. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    Directory of Open Access Journals (Sweden)

    Juan eJiang

    2015-07-01

    Full Text Available The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN, and the implications of this pre-cerebellar ‘detour’ for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of de

  14. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  15. N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons.

    Science.gov (United States)

    Isaev, Nickolay K; Avilkina, Svetlana; Golyshev, Sergey A; Genrikhs, Elisaveta E; Alexandrova, Olga P; Kapkaeva, Marina R; Stelmashook, Elena V

    2018-01-15

    Cadmium is a highly toxic heavy metal that is capable of accumulating in the body via direct exposure or through the alimentary and respiratory tract, leading to neurodegeneration. In this article, we show that the application of CdCl 2 (0.001-0.005mM) for 48h induced high dose-dependent death rate of cultured cerebellar granule neurons (CGNs). Unlike Trolox or vitamin E, antioxidant N-acetyl-l-cysteine (NAC, 1mM) and Mn 2+ (0.0025-0.005mM) significantly protected CGNs from this toxic effect. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24h-exposure to Cd 2+ induced intensive increase of Fluo-4 fluorescence in neurons accompanied by mitochondria swelling. These data imply that the cadmium-induced Ca 2+ increase is an important element in the death of neurons due to toxic effect of cadmium and the mechanism of protective action of manganese and NAC is mediated by the prevention of increase in calcium levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    Science.gov (United States)

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  17. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

    DEFF Research Database (Denmark)

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara

    2012-01-01

    to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21......Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT...

  18. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes

    Science.gov (United States)

    Urbano, Francisco J.; Simpson, John I.; Llinás, Rodolfo R.

    2006-01-01

    The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems. PMID:17050678

  19. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress

    International Nuclear Information System (INIS)

    Kaur, Parvinder; Aschner, Michael; Syversen, Tore

    2007-01-01

    Certain discrete areas of the CNS exhibit enhanced sensitivity towards MeHg. To determine whether GSH is responsible for this particular sensitivity, we investigated its role in MeHg-induced oxidative insult in primary neuronal and astroglial cell cultures of both cerebellar and cortical origins. For this purpose, ROS and GSH were measured with the fluorescent indicators, CMH 2 DCFDA and MCB. Cell associated-MeHg was measured with 14 C-radiolabeled MeHg. The intracellular GSH content was modified by pretreatment with NAC or DEM. For each of the dependent variables (ROS, GSH, and MTT), there was an overall significant effect of cellular origin, MeHg and pretreatment in all the cell cultures. A trend towards significant interaction between origin x MeHg x pretreatment was observed only for the dependent variable, ROS (astrocytes p = 0.056; neurons p = 0.000). For GSH, a significant interaction between origin x MeHg was observed only in astrocytes (p = 0.030). The cerebellar cell cultures were more vulnerable (astrocytes mean = 223.77; neurons mean = 138.06) to ROS than the cortical cell cultures (astrocytes mean = 125.18; neurons mean 107.91) for each of the tested treatments. The cell associated-MeHg increased when treated with DEM, and the cerebellar cultures varied significantly from the cortical cultures. Non-significant interactions between origin x MeHg x pretreatment for GSH did not explain the significant interactions responsible for the increased amount of ROS produced in these cultures. In summary, although GSH modulation influences MeHg-induced toxicity, the difference in the content of GSH in cortical and cerebellar cultures fails to account for the increased ROS production in cerebellar cultures. Hence, different approaches for the future studies regarding the mechanisms behind selectivity of MeHg have been discussed

  20. Differential association of GABAB receptors with their effector ion channels in Purkinje cells.

    Science.gov (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2018-04-01

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  1. Cerebellar atrophy is frequently associated with non-paraneoplastic sensory neuronopathy

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    2011-08-01

    Full Text Available Sensory neuronopathies (SN are peripheral nervous system disorders associated with degeneration of dorsal root ganglion neurons. Despite the evidence of a defective proprioceptive sensory input in SN,the prominent gait and truncal ataxia raises the question of a concomitant involvement of the cerebellum. OBJECTIVE: To evaluate cerebellar atrophy in SN. METHOD: We analyzed MRI-based volumetry of anterior lobe (paleocerebellum and total cerebellum in patients with non-paraneoplastic chronic SN and compared to age- and gender-matched controls. RESULTS: Cerebellum and anterior lobe MRI volumetry were performed in 20 patients and nine controls. Mean anterior lobe and cerebellar volume were not statistically different. Three patients (15%, however, had an abnormal anterior lobe and cerebellar volume index (values outside 2.5 standard deviations. One of them also had a specific atrophy of the anterior lobe. All these patients had infectious or dysimmune associated SN. CONCLUSION: Cerebellar atrophy is infrequently associated with SN, but can be found in some patients with SN related to infectious or immune mediated conditions. It can be more prominent in the anterior lobe and may contribute to the ataxia seen in these patients.

  2. A hereditary spastic paraplegia mouse model supports a role of ZFYVE26/SPASTIZIN for the endolysosomal system.

    Directory of Open Access Journals (Sweden)

    Mukhran Khundadze

    Full Text Available Hereditary spastic paraplegias (HSPs are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5 complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.

  3. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  4. Distinct cerebellar engrams in short-term and long-term motor learning.

    Science.gov (United States)

    Wang, Wen; Nakadate, Kazuhiko; Masugi-Tokita, Miwako; Shutoh, Fumihiro; Aziz, Wajeeha; Tarusawa, Etsuko; Lorincz, Andrea; Molnár, Elek; Kesaf, Sebnem; Li, Yun-Qing; Fukazawa, Yugo; Nagao, Soichi; Shigemoto, Ryuichi

    2014-01-07

    Cerebellar motor learning is suggested to be caused by long-term plasticity of excitatory parallel fiber-Purkinje cell (PF-PC) synapses associated with changes in the number of synaptic AMPA-type glutamate receptors (AMPARs). However, whether the AMPARs decrease or increase in individual PF-PC synapses occurs in physiological motor learning and accounts for memory that lasts over days remains elusive. We combined quantitative SDS-digested freeze-fracture replica labeling for AMPAR and physical dissector electron microscopy with a simple model of cerebellar motor learning, adaptation of horizontal optokinetic response (HOKR) in mouse. After 1-h training of HOKR, short-term adaptation (STA) was accompanied with transient decrease in AMPARs by 28% in target PF-PC synapses. STA was well correlated with AMPAR decrease in individual animals and both STA and AMPAR decrease recovered to basal levels within 24 h. Surprisingly, long-term adaptation (LTA) after five consecutive daily trainings of 1-h HOKR did not alter the number of AMPARs in PF-PC synapses but caused gradual and persistent synapse elimination by 45%, with corresponding PC spine loss by the fifth training day. Furthermore, recovery of LTA after 2 wk was well correlated with increase of PF-PC synapses to the control level. Our findings indicate that the AMPARs decrease in PF-PC synapses and the elimination of these synapses are in vivo engrams in short- and long-term motor learning, respectively, showing a unique type of synaptic plasticity that may contribute to memory consolidation.

  5. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  6. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons.

    Science.gov (United States)

    Taram, Faten; Winter, Aimee N; Linseman, Daniel A

    2016-10-01

    While the number of patients diagnosed with neurodegenerative disorders like Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease is increasing, there are currently no effective treatments that significantly limit the neuronal cell death underlying these diseases. Chlorogenic acid (CGA), a polyphenolic compound found in high concentration in coffee, is known to possess antioxidant and free radical scavenging activity. In this study, we investigated the neuroprotective effects of CGA and its major metabolites in primary cultures of rat cerebellar granule neurons. We show that CGA and caffeic acid displayed a dramatic protective effect against the nitric oxide donor, sodium nitroprusside. In marked contrast, ferulic acid and quinic acid had no protective effect against this nitrosative stress. While CGA and quinic acid had no protective effect against glutamate-induced cell death, caffeic acid and ferulic acid significantly protected neurons from excitotoxicity. Finally, caffeic acid was the only compound to display significant protective activity against hydrogen peroxide, proteasome inhibition, caspase-dependent intrinsic apoptosis, and endoplasmic reticulum stress. These results indicate that caffeic acid displays a much broader profile of neuroprotection against a diverse range of stressors than its parent polyphenol, CGA, or the other major metabolites, ferulic acid and quinic acid. We conclude that caffeic acid is a promising candidate for testing in pre-clinical models of neurodegeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cerebellar tDCS does not enhance performance in an implicit categorization learning task

    NARCIS (Netherlands)

    M.C. Verhage (Claire); E. Avila (Eric); M.A. Frens (Maarten); O. Donchin (Opher); J.N. van der Geest (Jos)

    2017-01-01

    textabstractBackground: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates

  8. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  9. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  10. Simulating spinal border cells and cerebellar granule cells under locomotion--a case study of spinocerebellar information processing.

    Directory of Open Access Journals (Sweden)

    Anton Spanne

    Full Text Available The spinocerebellar systems are essential for the brain in the performance of coordinated movements, but our knowledge about the spinocerebellar interactions is very limited. Recently, several crucial pieces of information have been acquired for the spinal border cell (SBC component of the ventral spinocerebellar tract (VSCT, as well as the effects of SBC mossy fiber activation in granule cells of the cerebellar cortex. SBCs receive monosynaptic input from the reticulospinal tract (RST, which is an important driving system under locomotion, and disynaptic inhibition from Ib muscle afferents. The patterns of activity of RST neurons and Ib afferents under locomotion are known. The activity of VSCT neurons under fictive locomotion, i.e. without sensory feedback, is also known, but there is little information on how these neurons behave under actual locomotion and for cerebellar granule cells receiving SBC input this is completely unknown. But the available information makes it possible to simulate the interactions between the spinal and cerebellar neuronal circuitries with a relatively large set of biological constraints. Using a model of the various neuronal elements and the network they compose, we simulated the modulation of the SBCs and their target granule cells under locomotion and hence generated testable predictions of their general pattern of modulation under this condition. This particular system offers a unique opportunity to simulate these interactions with a limited number of assumptions, which helps making the model biologically plausible. Similar principles of information processing may be expected to apply to all spinocerebellar systems.

  11. A cerebellar neuroprosthetic system: computational architecture and in vivo experiments

    Directory of Open Access Journals (Sweden)

    Ivan eHerreros Alonso

    2014-05-01

    Full Text Available Emulating the input-output functions performed by a brain structure opens the possibility for developing neuro-prosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model's inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuro-prosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step towards replacing lost functions of the central nervous system via neuro-prosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuro-prosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step towards the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term

  12. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, Ivan; Giovannucci, Andrea [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Taub, Aryeh H.; Hogri, Roni; Magal, Ari [Psychobiology Research Unit, Tel Aviv University, Tel Aviv (Israel); Bamford, Sim [Physics Laboratory, Istituto Superiore di Sanità, Rome (Italy); Prueckl, Robert [Guger Technologies OG, Graz (Austria); Verschure, Paul F. M. J., E-mail: paul.verschure@upf.edu [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain)

    2014-05-21

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  13. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    International Nuclear Information System (INIS)

    Herreros, Ivan; Giovannucci, Andrea; Taub, Aryeh H.; Hogri, Roni; Magal, Ari; Bamford, Sim; Prueckl, Robert; Verschure, Paul F. M. J.

    2014-01-01

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  14. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  15. [Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].

    Science.gov (United States)

    Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J

    2015-01-01

    Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  16. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    Science.gov (United States)

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  17. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  18. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures

    DEFF Research Database (Denmark)

    Skinner, P J; Koshy, B T; Cummings, C J

    1997-01-01

    a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic...... the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures approximately 0.......5 microm across, whereas the expanded ataxin-1 localizes to a single approximately 2-microm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show...

  19. Maternal Different Degrees of Iodine Deficiency during Pregnant and Lactation Impair the Development of Cerebellar Pinceau in Offspring

    Directory of Open Access Journals (Sweden)

    Jing Dong

    2017-05-01

    Full Text Available Aims: Iodine is critical for synthesis of thyroid hormones (TH. And iodine deficiency (ID is one of the most significant reasons of intellectual disability and motor memory impairment, although the potential mechanisms are still under investigation. Presently, mild ID and marginal ID are largely ignored problems for women of child bearing age. Mild ID is a subtle form of TH deficiency, which shows low levels of free thyroxine (FT4 and relatively normal free triiodothyronine (FT3 or thyroid stimulation hormone (TSH. And marginal ID is a milder form of ID with decreased total T4 (TT4 but relatively normal FT3, FT4, and TSH. Therefore, we investigated the effects of maternal different degrees of ID on the development of pinceau in cerebellar purkinje cells (PCs and studied the expression of pinceau related protein, which is crucial for the development and maturation of pinceau.Methods and Results: Three developmental iodine deficient rat models were created by feeding dam rats with an iodine-deficient diet and deionized water supplemented with potassiumiodide. Our study showed that different degrees of ID inhibited cerebellar pinceau synapse development and maturation on postnatal day (PN 14 and PN21. What's more, mild and severe ID reduced the expression of AnkG, β4-spectrin, neurofascin186 and NrCAM on PN7, PN14, and PN21. However, marginal ID rarely altered expression of these proteins in the offspring.Conclusion: These results suggested that maternal mild and severe ID impaired the development and maturation of cerebellar pinceau, which may be attributed to the decrease of AnkG, β4-spectrin, neurofascin 186, and NrCAM. And the alteration of development and maturation in cerebellar pinceau in the offspring were also observed following maternal marginal ID, which is slighter than that of mild ID.

  20. The Subcellular Dynamics of the Gs-Linked Receptor GPR3 Contribute to the Local Activation of PKA in Cerebellar Granular Neurons.

    Science.gov (United States)

    Miyagi, Tatsuhiro; Tanaka, Shigeru; Hide, Izumi; Shirafuji, Toshihiko; Sakai, Norio

    2016-01-01

    G-protein-coupled receptor (GPR) 3 is a member of the GPR family that constitutively activates adenylate cyclase. We have reported that the expression of GPR3 in cerebellar granular neurons (CGNs) contributes to neurite outgrowth and modulates neuronal proliferation and survival. To further identify its role, we have analyzed the precise distribution and local functions of GPR3 in neurons. The fluorescently tagged GPR3 protein was distributed in the plasma membrane, the Golgi body, and the endosomes. In addition, we have revealed that the plasma membrane expression of GPR3 functionally up-regulated the levels of PKA, as measured by a PKA FRET indicator. Next, we asked if the PKA activity was modulated by the expression of GPR3 in CGNs. PKA activity was highly modulated at the neurite tips compared to the soma. In addition, the PKA activity at the neurite tips was up-regulated when GPR3 was transfected into the cells. However, local PKA activity was decreased when endogenous GPR3 was suppressed by a GPR3 siRNA. Finally, we determined the local dynamics of GPR3 in CGNs using time-lapse analysis. Surprisingly, the fluorescent GPR3 puncta were transported along the neurite in both directions over time. In addition, the anterograde movements of the GPR3 puncta in the neurite were significantly inhibited by actin or microtubule polymerization inhibitors and were also disturbed by the Myosin II inhibitor blebbistatin. Moreover, the PKA activity at the tips of the neurites was decreased when blebbistatin was administered. These results suggested that GPR3 was transported along the neurite and contributed to the local activation of PKA in CGN development. The local dynamics of GPR3 in CGNs may affect local neuronal functions, including neuronal differentiation and maturation.

  1. Effect of SkQ1 Antioxidant on Structural and Functional Conditions of The Brain in PostResuscitation Period

    Directory of Open Access Journals (Sweden)

    M. L. Lovat

    2016-01-01

    Full Text Available The aim was to assess the efficacy of mitochondriatargeted antioxidant SkQ1 in prevention of structural and functional abnormalities of brain postresuscitation after cardiac arrest.Materials and methods. Adult male Wistar rats (n=19 underwent cardiac arrest for 7 minutes followed by resuscitation. Nine rats were administered with 500 nmol/kg SkQ1 per os with water for 2 weeks (1 week before and 1 week after resuscitation. A control group consisted of shamoperated animals (n=10. At days 4—6 post operation locomotor activity and anxiety («elevated plus maze» test and sensorimotor function of limbs («beam walking» test were examined. Total numbers of neurons per 1 mm of their layer length in vulnerable neuronal populations (cerebellar Purkinje cells and piramidal neurons of hippocampus fields CA1 and CA4 were estimated by histological analysis of the specimens stained with cresyl violet on day 7 postresuscitation. To identify possible mechanisms of SkQ1 action, the immunohistochemical study of a glialderived neurotrophic factor (GDNF expression in piramidal neurons of hippocampus was performed by indirect peroxidaseantiperoxidase method and antiGDNF primary polyclonal antibodies.Results. Ischemiareperfusion resulted in neuronal loss in all studied brain areas followed by reduction in locomotor activity and development of sensorimotor deficit. SkQ1 prevented development of postresuscitative locomotor and sensorimotor irregularities, significantly reduced Purkinje cells loss, prevented death of piramidal neurons in hippocampal field CA4, but not in CA1. Data demonstrated, that iIn Purkinje cells from resuscitated rats treated with SkQ1 there was a significant increase in number of GDNFpositive neurons, which were more resistant to ischemia (transition of GDNFnegative cells toward the category of cells actively expressing this factor that promoted their survival postresuscitation.Conclusion. Data confirm the positive effects of SkQ1

  2. Molecular layer interneurons of the cerebellum: developmental and morphological aspects.

    Science.gov (United States)

    Sotelo, Constantino

    2015-10-01

    During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.

  3. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  4. Stars and Stripes in the Cerebellar Cortex: A Voltage Sensitive Dye Study

    Science.gov (United States)

    Rokni, Dan; Llinas, Rodolfo; Yarom, Yosef

    2007-01-01

    The lattice-like structure of the cerebellar cortex and its anatomical organization in two perpendicular axes provided the foundations for many theories of cerebellar function. However, the functional organization does not always match the anatomical organization. Thus direct measurement of the functional organization is central to our understanding of cerebellar processing. Here we use voltage sensitive dye imaging in the isolated cerebellar preparation to characterize the spatio-temporal organization of the climbing and mossy fiber (MF) inputs to the cerebellar cortex. Spatial and temporal parameters were used to develop reliable criteria to distinguish climbing fiber (CF) responses from MF responses. CF activation excited postsynaptic neurons along a parasagittal cortical band. These responses were composed of slow (∼25 ms), monophasic depolarizing signals. Neither the duration nor the spatial distribution of CF responses were affected by inhibition. Activation of MF generated responses that were organized in radial patches, and were composed of a fast (∼5 ms) depolarizing phase followed by a prolonged (∼100 ms) negative wave. Application of a GABAA blocker eliminated the hyperpolarizing phase and prolonged the depolarizing phase, but did not affect the spatial distribution of the response, thus suggesting that it is not the inhibitory system that is responsible for the inability of the MF input to generate beams of activity that propagate along the parallel fiber system. PMID:18958242

  5. Stars and stripes in the cerebellar cortex: a voltage sensitive dye study

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2007-08-01

    Full Text Available The lattice-like structure of the cerebellar cortex and its anatomical organization in two perpendicular axes provided the foundations for many theories of cerebellar function. However, the functional organization does not always match the anatomical organization. Thus direct measurement of the functional organization is central to our understanding of cerebellar processing. Here we use voltage sensitive dye imaging in the isolated cerebellar preparation to characterize the spatio-temporal organization of the climbing and mossy fiber (MF inputs to the cerebellar cortex. Spatial and temporal parameters were used to develop reliable criteria to distinguish climbing fiber (CF responses from MF responses. CF activation excited postsynaptic neurons along a parasagittal cortical band. These responses were composed of slow (~25 ms, monophasic depolarizing signals. Neither the duration nor the spatial distribution of CF responses were affected by inhibition. Activation of MF generated responses that were organized in radial patches, and were composed of a fast (~5 ms depolarizing phase followed by a prolonged (~100 ms negative wave. Application of a GABAA blocker eliminated the hyperpolarizing phase and prolonged the depolarizing phase, but did not affect the spatial distribution of the response, thus suggesting that it is not the inhibitory system that is responsible for the inability of the MF input to generate beams of activity that propagate along the parallel fiber system.

  6. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang, E-mail: fanxiaotang2005@163.com

    2016-09-02

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  7. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    International Nuclear Information System (INIS)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-01-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  8. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.

    Science.gov (United States)

    Popa, Laurentiu S; Streng, Martha L; Hewitt, Angela L; Ebner, Timothy J

    2016-04-01

    The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.

  9. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD machinery.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (p(raw = 1.1x10(-7, p(genome = 7.5x10(-4. Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L, revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER-associated protein degradation (ERAD machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD-mediated neurodegenerative

  10. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  11. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling.

    Science.gov (United States)

    Kimura, Yuriko; Fujita, Yuki; Shibata, Kumi; Mori, Megumi; Yamashita, Toshihide

    2013-01-01

    Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca(2+) signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.

  12. The cerebellum for jocks and nerds alike

    Directory of Open Access Journals (Sweden)

    Laurentiu ePopa

    2014-06-01

    Full Text Available Historically the cerebellum has been implicated in the control of movement. However, the cerebellum’s role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex’s capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal

  13. The cerebellum for jocks and nerds alike.

    Science.gov (United States)

    Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non

  14. Intraocular lens alignment from purkinje and Scheimpflug imaging.

    Science.gov (United States)

    Rosales, Patricia; De Castro, Alberto; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2010-11-01

    The improved designs of intraocular lenses (IOLs) implanted during cataract surgery demand understanding of the possible effects of lens misalignment on optical performance. In this review, we describe the implementation, set-up and validation of two methods to measure in vivo tilt and decentration of IOLs, one based on Purkinje imaging and the other on Scheimpflug imaging. The Purkinje system images the reflections of an oblique collimated light source on the anterior cornea and anterior and posterior IOL surfaces and relies on the well supported assumption of the linearity of the Purkinje images with respect to IOL tilt and decentration. Scheimpflug imaging requires geometrical distortion correction and image processing techniques to retrieve the pupillary axis, IOL axis and pupil centre from the three-dimensional anterior segment image of the eye. Validation of the techniques using a physical eye model indicates that IOL tilt is estimated within an accuracy of 0.261 degree and decentration within 0.161 mm. Measurements on patients implanted with aspheric IOLs indicate that IOL tilt and decentration tend to be mirror symmetric between left and right eyes. The average tilt was 1.54 degrees and the average decentration was 0.21 mm. Simulated aberration patterns using custom models of the patients eyes, built using anatomical data of the anterior cornea and foveal position, the IOL geometry and the measured IOL tilt and decentration predict the experimental wave aberrations measured using laser ray tracing aberrometry on the same eyes. This reveals a relatively minor contribution of IOL tilt and decentration on the higher-order aberrations of the normal pseudophakic eye.

  15. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  16. Spikes matter for phase-locked bursting in inhibitory neurons

    Science.gov (United States)

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  17. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Physiological properties of afferents to the rat cerebellum during normal development and after postnatal x irradiation

    International Nuclear Information System (INIS)

    Puro, D.G.

    1975-01-01

    The consequences of an altered cerebellar cortical development on afferent transmission and terminal organization were analyzed in adult rats which had received x irradiation to the cerebellum postnatally. Rats, anesthetized with 0.5 percent halothane, were studied in various ages from day 3 to adult. The ascending mossy and climbing fiber systems were activated by electrical stimulation of the limbs with needle electrodes. Stimulation of the motor cortex activated the descending climbing fiber pathways. Extracellular responses from cerebellar Purkinje cells were observed on an oscilloscope as poststimulus time histograms were constructed ''on-line''. Conclusions and assertions include: (1) Synaptogenesis between incoming afferent fibers and target neurons takes place early in cerebellar cortical development. (2) Mossy fiber transmission is mature before the bulk of cerebellar synaptogenesis occurs. (3) The ascending and descending components of the climbing fiber system mature, with respect to latency, in synchrony. (4) The terminal synaptic organization has little effect on the development of transmission characteristics in these afferent systems. (5) One possible mechanism by which an adult neural structure can have an abnormal synaptic organization is to maintain immature synaptic relationships due to the neonatal loss of interneurons

  19. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.

    Science.gov (United States)

    Stefely, Jonathan A; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G; Kemmerer, Zachary A; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E; Ulbrich, Arne; Hutchins, Paul D; Wilkerson, Emily M; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S; Guo, Xiao; Freiberger, Elyse C; Reutenauer, Laurence; Jochem, Adam; Chergova, Maya; Johnson, Isabel E; Lohman, Danielle C; Rush, Matthew J P; Kwiecien, Nicholas W; Singh, Pankaj K; Schlagowski, Anna I; Floyd, Brendan J; Forsman, Ulrika; Sindelar, Pavel J; Westphall, Michael S; Pierrel, Fabien; Zoll, Joffrey; Dal Peraro, Matteo; Kannan, Natarajan; Bingman, Craig A; Coon, Joshua J; Isope, Philippe; Puccio, Hélène; Pagliarini, David J

    2016-08-18

    The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ondine's Curse in a Patient with Unilateral Medullary and Bilateral Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Hui-Tzu Ho

    2005-11-01

    Full Text Available Central sleep apnea (CSA, also known as Ondine's curse (OC, is a phenomenon characterized by episodes of repeated apnea during sleep due to disorders of the central nervous system. We report a patient with CSA/OC due to right dorsolateral medullary and bilateral cerebellar infarctions that occurred in the clinical setting of right vertebral artery stenosis. Polysomnography (PSG showed repeated episodes of absence of nasal cannula flow accompanying cessation of thoracic and abdominal respiratory movements and a decline in blood oxygen saturation. The duration of apnea was as long as 12 seconds. Brain magnetic resonance (MR images showed acute infarctions involving the right dorsolateral medulla, bilateral cerebellar vermis and paramedian cerebellar hemispheres. MR angiography showed nonvisualization of the right vertebral artery. Transcranial Doppler sonography showed a high resistance flow profile in the right vertebral artery and normal flow patterns in the basilar artery and left vertebral artery. These findings suggest that the medullary and bilateral cerebellar infarcts were caused by stenosis/pseudo-occlusion of the right vertebral artery. Reduced respiratory afferent inputs to the dorsal respiratory group of medullary neurons, the nucleus tractus solitarius and reduced “automatic” components of the respiratory drive may play a role in the development of CSA/OC.

  1. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  2. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Roles of molecular layer interneurons in sensory information processing in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Cerebellar cortical molecular layer interneurons (MLIs play essential roles in sensory information processing by the cerebellar cortex. However, recent experimental and modeling results are questioning traditional roles for molecular layer inhibition in the cerebellum.Synaptic responses of MLIs and Purkinje cells (PCs, evoked by air-puff stimulation of the ipsilateral whisker pad were recorded from cerebellar cortex Crus II in urethane-anesthetized ICR mice by in vivo whole-cell patch-clamp recording techniques. Under current-clamp (I = 0, air-puff stimuli were found to primarily produce inhibition in PCs. In MLIs, this stimulus evoked spike firing regardless of whether they made basket-type synaptic connections or not. However, MLIs not making basket-type synaptic connections had higher rates of background activity and also generated spontaneous spike-lets. Under voltage-clamp conditions, excitatory postsynaptic currents (EPSCs were recorded in MLIs, although the predominant response of recorded PCs was an inhibitory postsynaptic potential (IPSP. The latencies of EPSCs were similar for all MLIs, but the time course and amplitude of EPSCs varied with depth in the molecular layer. The highest amplitude, shortest duration EPSCs were recorded from MLIs deep in the molecular layer, which also made basket-type synaptic connections. Comparing MLI to PC responses, time to peak of PC IPSP was significantly slower than MLI recorded EPSCs. Blocking GABA(A receptors uncovered larger EPSCs in PCs whose time to peak, half-width and 10-90% rising time were also significantly slower than in MLIs. Biocytin labeling indicated that the MLIs (but not PCs are dye-coupled.These findings indicate that tactile face stimulation evokes rapid excitation in MLIs and inhibition occurring at later latencies in PCs in mouse cerebellar cortex Crus II. These results support previous suggestions that the lack of parallel fiber driven PC activity is due to the effect

  4. Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.

    Science.gov (United States)

    Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen

    2017-04-01

    Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits. Copyright © 2017. Published by Elsevier Inc.

  5. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.

    Science.gov (United States)

    Cheron, G; Márquez-Ruiz, J; Dan, B

    2016-04-01

    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

  6. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge

    1985-01-01

    By the use of primary cultures of neurons consisting of cerebral cortex interneurons or cerebellar granule cells it is possible to study biochemical and pharmacological aspects of receptors for GABA and glutamate. Cerebellar granule cells have been shown to express both high- and low-affinity GAB...

  7. Malignant Cerebellar Edema Subsequent to Accidental Prescription Opioid Intoxication in Children

    Directory of Open Access Journals (Sweden)

    Daniel Duran

    2017-07-01

    Full Text Available We present two recent cases of toddlers who developed malignant cerebellar edema subsequent to accidental ingestion of prescription opioids. Both children presented acute neurological decline, hydrocephalus, and tonsillar herniation requiring emergent ventricular drain placement, suboccipital craniectomy, and partial cerebellectomy. Together with several other reports, these cases suggest the existence of an uncommon yet severe syndrome of acute opioid-induced malignant cerebellar edema. We hypothesize that the condition results from a combination of primary opioid receptor-mediated changes in neuronal metabolism that are exacerbated by secondary hypoxic insult. If recognized promptly, this syndrome can be treated with emergent neurosurgical intervention with good clinical outcomes. These cases also illustrate the unintended consequences and innocent victims of the spiraling prescription opioid epidemic, which will likely increase in prevalence. Recognition of this syndrome by clinicians is thus critical.

  8. Dose response relationship of disturbed migration of Purkinje cells in the cerebellum due to X-irradiation

    International Nuclear Information System (INIS)

    Darmanto, W.; Inouye, Minoru; Hayasaka, Shizu; Takagishi, Yoshiko; Aolad, H.; Murata, Yoshiharu

    1998-01-01

    Pregnant rats were exposed to 2.0, 2.25 or 2.5 Gy X-irradiation on gestation day 21. Pups were sacrificed 12 hr after exposure, and on postnatal day 5 (P5), P7 and P9. Their cerebella were observed immunohistochemically using anti-inositol 1,4,5 triphosphate (IP3) receptor antibody to identify Purkinje cells. These cells were disturbed to migrate and remained in the internal granular layer and white matter of the cerebellum. They had short dendrites, and some showed an abnormal direction of dendrites in rats exposed to 2.25 or 2.5 Gy. Alignment of Purkinje cells was also disturbed when examined either on P5, P7 or P9 especially by doses of 2.25 and 2.5 Gy. There was a relationship between X-ray doses and the number of cells piling up in the Purkinje cell layer of the cerebellum. The dose-response relationship with the number of ectopic Purkinje cells was noted in the anterior lobes of the cerebellum. (author)

  9. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    Science.gov (United States)

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  10. Degenerative cerebellar diseases and differential diagnoses; Degenerative Kleinhirnerkrankungen und Differenzialdiagnosen

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Roumia, S.; Dietrich, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2016-11-15

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [German] Klinisch imponieren Kleinhirnsyndrome durch Ataxie, Dysarthrie, Dysmetrie, Intentionstremor und Augenbewegungsstoerungen. Neben der Anamnese und klinischen Untersuchung ist die Bildgebung v. a. wichtig um andere Erkrankungen wie Hydrozephalus und Multiinfarktdemenz von degenerativen Kleinhirnerkrankungen zu differenzieren. Zu den degenerativen Erkrankungen mit Kleinhirnbeteiligung gehoeren der Morbus Parkinson, die Multisystematrophie sowie weitere Erkrankungen einschliesslich der spinozerebellaeren Ataxien. Neben der MRT sind auch nuklearmedizinische Untersuchungen zur Differenzierung hilfreich. Axiale Fluid-attenuated-inversion-recovery(FLAIR)- und T2-gewichtete Sequenzen koennen mitunter eine Signalsteigerung im Pons als Ausdruck einer Degeneration der pontinen Neuronen und transversalen Bahnen im Brueckenfuss zeigen. Die Bildgebung ist aber v. a. notwendig, um andere Erkrankungen wie Normaldruckhydrozephalus

  11. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    Science.gov (United States)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  12. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    Science.gov (United States)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    In weightlessness, astronauts and cosmonauts may experience postural illusions as well as motion sickness symptoms known as the space adaptation syndrome. Upon return to Earth, they have irregularities in posture and balance. The adaptation to microgravity and subsequent re-adaptation to Earth occurs over several days. At the cellular level, a process called neuronal plasticity may mediate this adaptation. The term plasticity refers to the flexibility and modifiability in the architecture and functions of the nervous system. In fact, plastic changes are thought to underlie not just behavioral adaptation, but also the more generalized phenomena of learning and memory. The goal of this experiment was to identify some of the structural alterations that occur in the rat brain during the sensory and motor adaptation to microgravity. One brain region where plasticity has been studied extensively is the cerebellar cortex-a structure thought to be critical for motor control, coordination, the timing of movements, and, most relevant to the present experiment, motor learning. Also, there are direct as well as indirect connections between projections from the gravity-sensing otolith organs and several subregions of the cerebellum. We tested the hypothesis that alterations in the ultrastructural (the structure within the cell) architecture of rat cerebellar cortex occur during the early period of adaptation to microgravity, as the cerebellum adapts to the absence of the usual gravitational inputs. The results show ultrastructural evidence for neuronal plasticity in the central nervous system of adult rats after 24 hours of spaceflight. Qualitative studies conducted on tissue from the cerebellar cortex (specifically, the nodulus of the cerebellum) indicate that ultrastructural signs of plasticity are present in the cerebellar zones that receive input from the gravity-sensing organs in the inner ear (the otoliths). These changes are not observed in this region in cagematched

  13. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    Multiple regions in the CNS display propagating correlated activity during embryonic and postnatal development. This activity can be recorded as waves of increased calcium concentrations in spiking neurons or glia cells, and have been suggested to be involved in patterning, axonal guidance and es......, that the propagating wave activity is carried through the tissue by axonal collaterals formed by neighboring granule cells, and further suggest that the correlated activity may be related to processes that ensure correct postnatal wiring of the cerebellar circuits....

  14. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder.

    Science.gov (United States)

    Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q

    2018-05-23

    Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.

  15. Effects of Ethanol on the Cerebellum: Advances and Prospects.

    Science.gov (United States)

    Luo, Jia

    2015-08-01

    Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.

  16. Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia.

    Science.gov (United States)

    Gonçalves, Nélio; Simões, Ana T; Prediger, Rui D; Hirai, Hirokazu; Cunha, Rodrigo A; Pereira de Almeida, Luís

    2017-03-01

    Machado-Joseph disease (MJD) is a neurodegenerative spinocerebellar ataxia (SCA) associated with an expanded polyglutamine tract within ataxin-3 for which there is currently no available therapy. We previously showed that caffeine, a nonselective adenosine receptor antagonist, delays the appearance of striatal damage resulting from expression of full-length mutant ataxin-3. Here we investigated the ability of caffeine to alleviate behavioral deficits and cerebellar neuropathology in transgenic mice with a severe ataxia resulting from expression of a truncated fragment of polyglutamine-expanded ataxin-3 in Purkinje cells. Control and transgenic c57Bl6 mice expressing in the mouse cerebella a truncated form of human ataxin-3 with 69 glutamine repeats were allowed to freely drink water or caffeinated water (1g/L). Treatments began at 7 weeks of age, when motor and ataxic phenotype emerges in MJD mice, and lasted up to 20 weeks. Mice were tested in a panel of locomotor behavioral paradigms, namely rotarod, beam balance and walking, pole, and water maze cued-platform version tests, and then sacrificed for cerebellar histology. Caffeine consumption attenuated the progressive loss of general and fine-tuned motor function, balance, and grip strength, in parallel with preservation of cerebellar morphology through decreasing the loss of Purkinje neurons and the thinning of the molecular layer in different folia. Caffeine also rescued the putative striatal-dependent executive and cognitive deficiencies in MJD mice. Our findings provide the first in vivo demonstration that caffeine intake alleviates behavioral disabilities in a severely impaired animal model of SCA. Ann Neurol 2017;81:407-418. © 2016 American Neurological Association.

  17. Quantitative histologic study on confusion of the cerebellar cortex architecture in perinatally irradiated mice

    International Nuclear Information System (INIS)

    Sasaki, S.

    1986-01-01

    This study was designed to know dose-response relationship and age-dependence for two types of confusion of the cerebellar cortex architecture. The first is inhibition of the laminar-pattern development, and the second is persistent remaining of granule cells in the molecular and Purkinje layer which implies disturbance of cell migration. Male B6C3F 1 mice were used. Animals were irradiated at day 0 to 6 of the postnatal age or day 17 of the prenatal age with doses ranging from 50 to 700 rad of γ-rays, and killed at 60 days of age. Confusion of architecture was analysed using microscopic photographs. Development of the laminar-pattern was inhibited by irradiation with 100 rad or higher doses at day 0 to 3. There was a distinct regional difference in inhibition of the laminar-pattern development. Remaining of granule cells was detected after irradiation with 50 or higher doses at day 0 or 2. Irradiation at day 1 to 4 was most effective to disturb cell migration, though ectopic granule cells were detected in all irradiated groups. (orig.)

  18. Zebrin II Is Expressed in Sagittal Stripes in the Cerebellum of Dragon Lizards (Ctenophorus sp.).

    Science.gov (United States)

    Wylie, Douglas R; Hoops, Daniel; Aspden, Joel W; Iwaniuk, Andrew N

    2016-01-01

    Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles. © 2017 S. Karger AG, Basel.

  19. Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles.

    Science.gov (United States)

    Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J

    2011-12-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

  20. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus

    Directory of Open Access Journals (Sweden)

    Aloysius Y.T. Low

    2018-02-01

    Full Text Available The deep cerebellar nuclei (DCN represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA. We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements.

  1. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    Science.gov (United States)

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Metabolism of Mannose in Cultured Primary Rat Neurons.

    Science.gov (United States)

    Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf

    2017-08-01

    Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

  3. Autism Spectrum Disorders and Neuropathology of the Cerebellum

    Directory of Open Access Journals (Sweden)

    David R Hampson

    2015-11-01

    Full Text Available The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.

  4. Autism spectrum disorders and neuropathology of the cerebellum.

    Science.gov (United States)

    Hampson, David R; Blatt, Gene J

    2015-01-01

    The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.

  5. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  6. Autoradiographic localization of binding sites for (/sup 3/H). gamma. -aminobutyrate, (/sup 3/H) muscimol, (+) (/sup 3/H) bicuculline methiodide and (/sup 3/H) flunitrazepam in cultures of rat cerebellum and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Hoesli, E; Hoesli, L [Basel Univ. (Switzerland); Moehler, H; Richards, J G [Hoffmann-La Roche (F.) and Co., Basel (Switzerland)

    1980-01-01

    Cultures of rat cerebellum and spinal cord were used to visualize sites for (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol, (/sup 3/H)bicuculline methiodide and (/sup 3/H) flunitrazepam by autoradiography. In cerebellar cultures, many large neurons (presumably Purkinje cells) and interneurons were labelled. In spinal cord cultures, these compounds were mainly bound to small and medium-sized neurons, whereas the majority of large neurons were unlabelled. No binding sites for these radioligands were found on glial cells. Binding of (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol and (/sup 3/H)bicuculline methiodide was markedly reduced or inhibited by adding unlabelled ..gamma..-aminobutyrate, muscimol and bicuculline (10/sup -3/M) respectively to the incubation medium. Addition of a thienobenzazepine markedly reduced binding with (/sup 3/H)flunitrazepam. It is concluded that tissues cultures are an excellent tool to visualize the cellular localization of binding sites for neurotransmitters and drugs using autoradiography.

  7. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis.

    Science.gov (United States)

    Albert, Monika; Barrantes-Freer, Alonso; Lohrberg, Melanie; Antel, Jack P; Prineas, John W; Palkovits, Miklós; Wolff, Joachim R; Brück, Wolfgang; Stadelmann, Christine

    2017-11-01

    In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis. © 2016 International Society of Neuropathology.

  8. Opsoclonus-myoclonus syndrome: Correlation of radiographic and pathological observations

    International Nuclear Information System (INIS)

    Tuchman, R.F.; Alvarez, L.A.

    1989-01-01

    We report a case of a child with opsoclonus-myoclonus syndrome. Neuroradiological studies indicated a lesion in the cerebellar vermis. A cerebellar biopsy revealed changes consisting of Purkinje and granular cell loss with gliosis. This case report documents the correlation of radiologic and pathological findings in a patient with opsoclonus-myoclonus syndrome. (orig.)

  9. Canine hereditary ataxia in old english sheepdogs and gordon setters is associated with a defect in the autophagy gene encoding RAB24.

    Directory of Open Access Journals (Sweden)

    Caryline Agler

    2014-02-01

    Full Text Available Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.

  10. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    Science.gov (United States)

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  11. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Directory of Open Access Journals (Sweden)

    Aleksandra Somogyi

    2018-02-01

    Full Text Available Juvenile neuronal ceroid lipofuscinosis (JNCL is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase, which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.

  12. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Science.gov (United States)

    Somogyi, Aleksandra; Petcherski, Anton; Beckert, Benedikt; Huebecker, Mylene; Priestman, David A.; Banning, Antje; Cotman, Susan L.; Platt, Frances M.; Ruonala, Mika O.

    2018-01-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis. PMID:29470438

  13. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  14. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  15. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Clinicopathological features of cerebellar lipidized medulloblastoma: a case report and review of literatures

    Directory of Open Access Journals (Sweden)

    LIU Li-yan

    2012-06-01

    Full Text Available Objective To explore the clinicopathological features of cerebellar lipidized medulloblastoma. Methods The clinical manifestations, neuroimaging, histopathological and immunohistochemical features were analysed in one case of lipidized medulloblastoma in the cerebellar vermis. Related literatures were reviewed. Results A 26-year-old man presented with intermittent headache,accompanied by dizziness, nausea and vomiting. The magnetic resonance imaging (MRI demonstrated a mass located the cerebellar vermis convex to the fourth ventricle. The tumor with well-demarcated boundary was homogeneous hypointense on T1 weighted and heterogeneous hyperintense on T2 weighted images, and enhanced brilliantly and homogenously on contrast. The patient subsequently underwent gross total mass resection. Microscopically,there was diffuse infiltration by high cellularity of tumor cells. The cytoplasm were thin eosinophilic to amphophilic. The neoplastic cells showed round to oval hyperchromatic nuclei with a delicately stippled chromatin and occasional conspicuous nucleoli and numerous mitotic figures were also present. Thin-wall vascular proliferation was detected. Lipid-laden cells were focally distributed in tumor tissue. On immunohistochemical examination, the neoplasm was reactive for CD56 and synaptophysin (Syn, focally positive for neurofilament protein (NF, weakly positive for oligodendrocyte lineage transcription factor 2 (Olig-2, and negtive for nestin, neuronal nuclei (NeuN, S-100 protein (S-100, glial fibrillary acidic protein (GFAP and epithelial membrane antigen (EMA. TP53 protein was over expressed in 10% of tumor cells. Ki-67 antigen labeling index were about 40% . Conclusion Cerebellar lipidized medulloblastoma is rare. Neuroimaging showed space occupying lesion in cerebellar vermis. Histologically, the tumor cells were consisted of monotonous, round cells with focal accumulations of lipidized cells. The differential diagnosis include

  17. Synchronization in primate cerebellar granule cell layer local field potentials: Basic anisotropy and dynamic changes during active expectancy

    Directory of Open Access Journals (Sweden)

    Richard Courtemanche

    2009-07-01

    Full Text Available The cerebellar cortex is remarkable for its organizational regularity, out of which task-related neural networks should emerge. So, in Purkinje cells, both complex and simple spike network patterns are evident in sensorimotor behavior. However, task-related patterns of activity in the granule cell layer (GCL have been less studied. We recorded local field potential (LFP activity simultaneously in pairs of GCL sites in monkeys performing an active expectancy (lever-press task, in passive expectancy, and at rest. LFP sites were selected when they showed strong 10-25 Hz oscillations; pair orientation was in stereotaxic sagittal and coronal (mainly, and diagonal. As shown previously, LFP oscillations at each site were modulated during the lever-press task. Synchronization across LFP pairs showed an evident basic anisotropy at rest: sagittal pairs of LFPs were better synchronized (more than double the cross-correlation coefficients than coronal pairs, and more than diagonal pairs. On the other hand, this basic anisotropy was modifiable: during the active expectancy condition, where sagittal and coronal orientations were tested, synchronization of LFP pairs would increase just preceding movement, most notably for the coronal pairs. This lateral extension of synchronization was not observed in passive expectancy. The basic pattern of synchronization at rest, favoring sagittal synchrony, thus seemed to adapt in a dynamic fashion, potentially extending laterally to include more cerebellar cortex elements. This dynamic anisotropy in LFP synchronization could underlie GCL network organization in the context of sensorimotor tasks.

  18. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    Science.gov (United States)

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  19. Hypertensive cerebellar hemorrhage and cerebellar hemorrhage caused by cryptic angioma

    International Nuclear Information System (INIS)

    Yoshida, Shinichi; Sano, Keiji; Kwak, Suyong; Saito, Isamu.

    1981-01-01

    A series of 44 patients with hypertensive cerebellar hemorrhage and nine patients with cerebellar hemorrhage caused by small angiomas is described. Hypertensive hemorrhage occurred most frequently in the patients in their seventies, whereas the onset of angioma-caused hemorrhage was often seen below the age of 40. Clinical syndromes of cerebellar hemorrhages can be categorized into three basic types: the vertigo syndrome, cerebellar dysfunction syndrome and brain stem compression syndrome. Patients with small (>= 2 cm in diameter in CT scans) and medium-sized (2 cm = 3 cm) hematomas deteriorated into unresponsive conditions and developed signs of brain stem compression. Surgical mortality was 32% in the hypertensive group, while it was 0% in the angioma group. Mortality as well as morbidity in both groups was strongly influenced by the preoperative status of consciousness. Our results suggest that substantial improvement could be obtained in the overall outcome of this disease by emergency craniectomy and removal of hematomas in all patients with large hematomas regardless of the levels of consciousness and regardless of the causes of bleeding. Furthermore, when clinical information and CT findings are suggestive of a ''cryptic'' angioma as the causative lesion, posterior fossa surgery may be indicated to extirpate the lesion, even if the hematoma is small. (author)

  20. Cerebro-cerebellar circuits in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Anila M. D'Mello

    2015-11-01

    Full Text Available The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. In contrast, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  1. Cerebro-cerebellar circuits in autism spectrum disorder.

    Science.gov (United States)

    D'Mello, Anila M; Stoodley, Catherine J

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  2. Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.

    Science.gov (United States)

    Gilmer, Jesse I; Person, Abigail L

    2017-12-13

    Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs

  3. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.

    Science.gov (United States)

    Ohmae, Shogo; Kunimatsu, Jun; Tanaka, Masaki

    2017-03-29

    Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades. We found a sizeable preparatory neuronal activity before self-timed saccades across delay intervals, while the time course of activity correlated with the trial-by-trial variation of saccade latency in different ways depending on the length of the delay intervals. For the shorter delay intervals, the ramping up of neuronal firing rate started just after the visual cue and the rate of rise of neuronal activity correlated with saccade timing. In contrast, for the longest delay (2400 ms), the preparatory activity started late during the delay period, and its onset time correlated with self-timed saccade latency. Because electrical microstimulation applied to the recording sites during saccade preparation advanced self-timed but not reactive saccades, regardless of their directions, the signals in the cerebellum may have a causal role in self-timing. We suggest that the cerebellum may regulate timing in both sub-second and supra-second ranges, although its relative contribution might be greater for sub-second than for supra-second time intervals. SIGNIFICANCE STATEMENT How we decide the timing of self-initiated movement is a fundamental question. According to the prevailing hypothesis, the cerebellum plays a role in monitoring sub-second timing, whereas the basal ganglia are important for supra-second timing. To verify this, we explored neuronal signals in the monkey cerebellum while animals reported the passage of time in the range 400-2400 ms by making eye movements. Contrary to our expectations, we

  4. Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1.

    Science.gov (United States)

    Toelle, Sandra P; Poretti, Andrea; Weber, Peter; Seute, Tatjana; Bromberg, Jacoline E C; Scheer, Ianina; Boltshauser, Eugen

    2015-12-01

    Unidentified bright objects (UBO) and tumors are well-known cerebellar abnormalities in neurofibromatosis type 1 (NF1). Literature reports on malformative cerebellar anomalies in neurofibromatosis type 1 (NF1), however, are scant. We retrospectively studied the clinical and neuroimaging findings of 5 patients with NF1 (4 females, age 6 to 29 years at last follow-up) and cerebellar anomalies. Cerebellar symptoms on neurological examination were mild or even not evident whereas learning disabilities were more or less pronounced in four patients. Two patients had cerebellar hypoplasia (diffusely enlarged cerebellar interfoliar spaces) and three cerebellar dysmorphias involving mainly one cerebellar hemisphere. In NF1, malformative cerebellar anomalies are rare (estimated prevalence of about 1%), but most likely underestimated and easily overlooked, because physicians tend to focus on more prevalent, obvious, and well-known findings such as optic pathway gliomas, other tumors, and UBO. This kind of cerebellar anomaly in NF1 has most likely a malformative origin, but the exact pathogenesis is unknown. The individual clinical significance is difficult to determine. We suggest that cerebellar anomalies should be systematically evaluated in neuroimaging studies of NF1 patients.

  5. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  6. Sub-Lethal Dose of Shiga toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cythoarquitecture.

    Directory of Open Access Journals (Sweden)

    Luciana eD’Alessio

    2016-02-01

    Full Text Available Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test, and ultrastructural analysis (transmission electron microscope. Intravenous administration of vehicle (control group, sub-lethal dose of 0.5 ηg and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n=6. Blood–Brain Barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance.

  7. Cell Signaling and Neurotoxicity: 3H-Arachidonic acid release (Phospholipase A2) in cerebellar granule neurons

    Science.gov (United States)

    Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...

  8. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  9. Cerebellar mutism--report of four cases.

    Science.gov (United States)

    Ozimek, A; Richter, S; Hein-Kropp, C; Schoch, B; Gorissen, B; Kaiser, O; Gizewski, E; Ziegler, W; Timmann, D

    2004-08-01

    The aim of the present study was to investigate the manifestations of mutism after surgery in children with cerebellar tumors. Speech impairment following cerebellar mutism in children was investigated based on standardized acoustic speech parameters and perceptual criteria. Mutistic and non-mutistic children after cerebellar surgery as well as orthopedic controls were tested pre-and postoperatively. Speech impairment was compared with the localization of cerebellar lesions (i. e. affected lobules and nuclei). Whereas both control groups showed no abnormalities in speech and behavior, the mutistic group could be divided into children with dysarthria in post mutistic phase and children with mainly behavioral disturbances. In the mutistic children involvement of dentate and fastigial nuclei tended to be more frequent and extended than in the nonmutistic cerebellar children. Cerebellar mutism is a complex phenomenon of at least two types. Dysarthric symptoms during resolution of mutism support the anarthria hypothesis, while mainly behavioral changes suggest an explanation independent from speech motor control.

  10. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  11. Acute and long-term Purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat.

    Science.gov (United States)

    Idrus, Nirelia M; Napper, Ruth M A

    2012-08-01

    In the rat, binge-like ethanol (EtOH) exposure during the early neonatal period (a developmental period equivalent to the human third trimester) can result in a permanent deficit of cerebellar Purkinje cells (Pcells). However, the consequences of a moderate binge alcohol exposure on a single day during this postnatal period have not been established. This is an issue of importance as many pregnant women binge drink periodically at social drinking levels. This study aimed to identify both the acute and long-term effects of exposure to a single alcohol binge that achieved a mean peak blood EtOH concentration of approximately 250 mg/dl during early postnatal life using a rat model of fetal alcohol spectrum disorders. Acute apoptotic Pcell death 10 hours after a moderate dose binge EtOH exposure from postnatal days (PDs) 0 to 10 was assessed using active caspase-3 immunolabeling. Acute Pcell apoptosis was quantified in cerebellar vermal lobules I-X using the physical disector method. Long-term effects were assessed at PD 60 using stereological methods to determine total Pcell numbers in the vermis, lobule III, and lobule IX, following a moderate dose binge EtOH exposure at PDs 0, 2, or 4. Acute apoptosis was induced by EtOH on PDs 1 to 8 in a time and lobular-dependent manner. For EtOH exposure on PD 2, significant long-term Pcell loss occurred in lobule III. EtOH exposure on PD 4 resulted in significant long-term Pcell loss throughout the entire vermis. These results indicate that a single, early EtOH episode of moderate dose can create significant and permanent Pcell loss in the developing cerebellum. Copyright © 2012 by the Research Society on Alcoholism.

  12. Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks.

    Science.gov (United States)

    Passot, Jean-Baptiste; Luque, Niceto R; Arleo, Angelo

    2013-01-01

    The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models), and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories.

  13. Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste ePassot

    2013-07-01

    Full Text Available The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body–environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models, and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories.

  14. The Cerebellar-Cerebral Microstructure Is Disrupted at Multiple Sites in Very Preterm Infants with Cerebellar Haemorrhage.

    Science.gov (United States)

    Neubauer, Vera; Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula

    2018-01-01

    Recent advances in magnetic resonance imaging (MRI) techniques have prompted reconsideration of the anatomical correlates of adverse outcomes in preterm infants. The importance of the contribution made by the cerebellum is now increasingly appreciated. The effect of cerebellar haemorrhage (CBH) on the microstructure of the cerebellar-cerebral circuit is largely unexplored. To investigate the effect of CBH on the microstructure of cerebellar-cerebral connections in preterm infants aged microstructure (fractional anisotropy [FA] and apparent diffusion coefficient) were quantified in 5 vulnerable regions (the centrum semiovale, posterior limb of the internal capsule, corpus callosum, and superior and middle cerebellar peduncles). Group differences between infants with CBH and infants without CBH were assessed. There were 267 infants included in the study. Infants with CBH (isolated and combined) had significantly lower FA values in all regions investigated. Infants with isolated CBH showed lower FA in the middle and superior cerebellar peduncles and in the posterior limb of the internal capsule. This study provides evidence that CBH causes alterations in localised and remote WM pathways in the developing brain. The disruption of the cerebellar-cerebral microstructure at multiple sites adds further support for the concept of developmental diaschisis, which is propagated as an explanation for the consequences of early cerebellar injury on cognitive and affective domains. © 2017 S. Karger AG, Basel.

  15. Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning.

    Directory of Open Access Journals (Sweden)

    Hideaki Ogasawara

    2007-01-01

    Full Text Available Recent studies have shown that multiple internal models are acquired in the cerebellum and that these can be switched under a given context of behavior. It has been proposed that long-term depression (LTD of parallel fiber (PF-Purkinje cell (PC synapses forms the cellular basis of cerebellar learning, and that the presynaptically synthesized messenger nitric oxide (NO is a crucial "gatekeeper" for LTD. Because NO diffuses freely to neighboring synapses, this volume learning is not input-specific and brings into question the biological significance of LTD as the basic mechanism for efficient supervised learning. To better characterize the role of NO in cerebellar learning, we simulated the sequence of electrophysiological and biochemical events in PF-PC LTD by combining established simulation models of the electrophysiology, calcium dynamics, and signaling pathways of the PC. The results demonstrate that the local NO concentration is critical for induction of LTD and for its input specificity. Pre- and postsynaptic coincident firing is not sufficient for a PF-PC synapse to undergo LTD, and LTD is induced only when a sufficient amount of NO is provided by activation of the surrounding PFs. On the other hand, above-adequate levels of activity in nearby PFs cause accumulation of NO, which also allows LTD in neighboring synapses that were not directly stimulated, ruining input specificity. These findings lead us to propose the hypothesis that NO represents the relevance of a given context and enables context-dependent selection of internal models to be updated. We also predict sparse PF activity in vivo because, otherwise, input specificity would be lost.

  16. Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro.

    Science.gov (United States)

    Frederickson, Christopher J; Suh, Sang W; Koh, Jae-Young; Cha, Yoo K; Thompson, Richard B; LaBuda, Christopher J; Balaji, Rengarajan V; Cuajungco, Math P

    2002-12-01

    The membrane-impermeable chelator CaEDTA was introduced extracellularly among neurons in vivo and in vitro for the purpose of chelating extracellular Zn(2+). Unexpectedly, this treatment caused histochemically reactive Zn(2+) in intracellular compartments to drop rapidly. The same general result was seen with intravesicular Zn(2+), which fell after CaEDTA infusion into the lateral ventricle of the brain, with perikaryal Zn(2+) in Purkinje neurons (in vivo) and with cortical neurons (in vitro). These findings suggest either that the volume of zinc ion efflux and reuptake is higher than previously suspected or that EDTA can enter cells and vesicles. Caution is therefore warranted in attempting to manipulate extracellular or intracellular Zn(2+) selectively.

  17. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. [Memory transfer in cerebellar motor learning].

    Science.gov (United States)

    Nagao, Soichi

    2012-01-01

    Most of our motor skills are acquired through learning. Experiments of gain adaptation of ocular reflexes have consistently suggested that the memory of adaptation is initially formed in the cerebellar cortex, and is transferred to the cerebellar (vestibular) nuclei for consolidation to long-term memory after repetitions of training. We have recently developed a new system to evaluate the motor learning in human subjects using prism adaptation of hand reaching movement, by referring to the prism adaptation of dart throwing of Martin et al. (1996). In our system, the subject views the small target presented in the touch-panel screen, and touches it with his/her finger without direct visual feedback. After 15-30 trials of touching wearing prisms, an adaptation occurs in healthy subjects: they became able to touch the target correctly. Meanwhile, such an adaptation was impaired in patients of cerebellar disease. We have proposed a model of human prism adaptation that the memory of adaptation is initially encoded in the cerebellar cortex, and is later transferred to the cerebellar nuclei after repetitions of training. The memory in the cerebellar cortex may be formed and extinguished independently of the memory maintained in the cerebellar nuclei, and these two memories work cooperatively.

  19. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion.

    Science.gov (United States)

    Trentin, Andréa Gonçalves; De Aguiar, Cláudia Beatriz Nedel Mendes; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio

    2003-06-01

    The effects of thyroid hormone (T(3)) on extracellular matrix (ECM) expression and organization in cerebellar astrocytes were studied. Control astrocytes exhibit laminin immunostaining distributed in a punctate configuration and fibronectin concentrated in focal points at the cell surface. These cells attach to the substratum by membrane points, as shown by scanning microscopy, possibly by focal points stained to fibronectin. In contrast, after T(3) treatment, laminin assumes a fibrillary pattern and fibronectin becomes organized in filaments homogeneously distributed on the cell surface; the cells acquire a very flat and spread morphology. T(3) treatment also modulates astrocyte adhesion. In addition, increased expression of both laminin and fibronectin was detected by Western blot. These alterations in fibronectin and/or laminin production and organization may be involved in the flat and spread morphology and in altered adhesion. We observed that fibroblast growth factor-2 (FGF(2)) added to cultures had similar effects to those described to T(3). Neutralizing antibodies against FGF(2) reversed T(3) effects on fibronectin and laminin distribution. We also observed that cerebellar neurons co-cultured on T(3)-treated astrocytes had an increase in the number of cells and presented longer neurites. Thus, we propose a novel mechanism of the effect of thyroid hormone on cerebellar development mediated by astrocytes: T(3) may induce astrocyte secretion of growth factors, mainly FGF(2), that autocrinally stimulate astrocyte proliferation, reorganization in ECM proteins, and alterations in cell spreading and adhesion. These effects may indirectly influence neuronal development. Copyright 2003 Wiley-Liss, Inc.

  20. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  1. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    Science.gov (United States)

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  2. The contributions of the cerebellum in sensorimotor control: what are the prevailing opinions which will guide forthcoming studies?

    Science.gov (United States)

    Manto, Mario; Oulad Ben Taib, Nordeyn

    2013-06-01

    Although considerable progress has been made in developing models of cerebellar function in sensorimotor control, the exact nature of the basic operations performed by the cerebellum remain elusive. Several major theories have emerged these last decades. According to the hypothesis of Marr and Albus, the climbing fiber input carries an error signal weakening the strength of a subset of parallel fibers/Purkinje neurons synapses in the cerebellar cortex. Cerebellar circuits would gain the control of movement through trial and error. The hypothesis of internal models emulating movements is currently highly cited. There is a general agreement that (1) the central nervous system has to cope with an intrinsic time delay of sensory feedback related to motor activities and (2) estimations of future motor states are essential to perform fast and accurate movements. According to this second theory, cerebellar dysmetria, one of the cardinal cerebellar deficits, would result from a distorted predictive control. A third popular theory relates to the inverse models that would be stored in the cerebellum. Acquisition of a motor act would require forward models, and the acquisition process itself would generate an inverse model to allow an unconscious coordinated movement. Recently, an international panel of experts from various disciplines discussed the prevailing opinions in a consensus statement and tried to extract their clinical relevance in terms of pathogenesis of the clinical symptoms. Although a consensus is still not reached, the prevailing opinions provide a sound framework to conduct novel studies and try to discover the secrets of cerebellar circuits.

  3. Crossed cerebellar diaschisis. A positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose

    International Nuclear Information System (INIS)

    Kajimoto, Katsufumi; Oku, Naohiko; Kimura, Yasuyuki

    2007-01-01

    Crossed cerebellar diaschisis (CCD) is defined as a depression of blood flow and oxidative metabolism of glucose in the cerebellum contralateral to a supratentorial brain lesion, as detected with positron emission tomography (PET) and single photon emission computed tomography. We examined whether L-[methyl- 11 C]methionine (MET) uptake is affected in CCD. In 12 patients with a unilateral supratentorial brain tumor, we evaluated the uptake of 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) and MET in the cerebellar hemispheres by means of PET. Asymmetry index (AI) was defined as a difference in the average count between the ipsilateral and contralateral cerebellar hemispheres divided by the average count in both cerebellar hemispheres. Patients with AI of FDG PET more than 0.1 and those with AI equal to 0.1 or less than 0.1 were classified as CCD-positive and CCD-negative, respectively. Six patients were CCD-positive and others were CCD-negative in the FDG PET study. Between CCD-positive and CCD-negative patients, mean AI of MET was not significantly different (0.017±0.023 and 0.014±0.039, respectively). Different from glucose metabolism, cerebellar MET uptake was not affected in CCD. The present study may indicate that cerebellar MET uptake is independent of suppression of cerebellar neuronal activity. (author)

  4. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    International Nuclear Information System (INIS)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-01-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc + neurons at 1000 ppm and Fos + neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased

  5. Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.

    Science.gov (United States)

    Louis, Elan D

    2016-06-01

    A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.

  6. Radiation 2006. In association with the Polymer Division, Royal Australian Chemical Institute. Incorporating the 21st AINSE Radiation Chemistry Conference and the 18th Radiation Biology Conference, conference handbook

    International Nuclear Information System (INIS)

    Lavin, M. F.; Luff, J.; Peng, Cheng; Chen, P.; Gueven, N.; Bottle, S.; Hosokawa, K.

    2006-01-01

    Full text: Ataxia-telangiectasia (A-T) is an autosomal recessive genetic disorder characterized by immunodeficiency, cancer predisposition and neurological degeneration. Cells from A-T patients are hypersensitive to radiation, display cell cycle checkpoint defects and genome instability. The gene product defective in this syndrome, ATM, is activated by double strand breaks in DNA and signals these to the DNA repair machinery and the cell cycle checkpoints via a series of phosphorylated intermediates including p53, Chk2, Nbs1 and SMC1. It has been suggested that the neurodegenerative phenotype in A-T patients arises as a consequence of oxidative stress. This is supported by observations that A-T patients have significantly reduced levels of total antioxidant capacity and that A-T cells in culture are more sensitive to oxidative stress that normal cells. We have demonstrated that in vitro survival of cerebellar Purkinje cells of Atm-mutant mice is significantly reduced compared to their wild-type littermates and most neurons from these animals have dramatically reduced dendritic branching. We also showed that in vitro administration of the antioxidant 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) to Atm-deficient mice reduced the rate of cell death of Purkinje cells and enhanced dendritogenesis to wild-type levels. Intraperitoneal administration of this antioxidant throughout pregnancy enhanced survival of Purkinje cell neurons from Atm-disrupted animals and protected against oxidative stress in older animals as determined by levels of nitro-tyrosinated proteins and amount of catalase activity in the cerebellum. This antioxidant, a member of the nitroxide group, is a stable, free radical, capable of scavenging reactive oxygen species and may also circumvent Fenton-derived pathways by oxidizing the metals involved. We have recently demonstrated that CTMIO correct neuro-behavioural deficits in these mice and reduces oxidative damage to Purkinje cells. We

  7. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    Directory of Open Access Journals (Sweden)

    Fernando B. R. da Silva

    2018-05-01

    Full Text Available Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF, pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  8. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    Science.gov (United States)

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  9. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    Science.gov (United States)

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  10. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats.

    Science.gov (United States)

    Jekabsons, Mika B; Gebril, Hoda M; Wang, Yan-Hong; Avula, Bharathi; Khan, Ikhlas A

    2017-10-01

    A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2- 13 C 2 ]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13 C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13 C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose

  11. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    Science.gov (United States)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  12. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    Science.gov (United States)

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  13. The bihemispheric posterior inferior cerebellar artery

    International Nuclear Information System (INIS)

    Cullen, Sean P.; Ozanne, Augustin; Alvarez, Hortensia; Lasjaunias, Pierre

    2005-01-01

    Rarely, a solitary posterior inferior cerebellar artery (PICA) will supply both cerebellar hemispheres. We report four cases of this variant. We present a retrospective review of clinical information and imaging of patients undergoing angiography at our institution to identify patients with a bihemispheric PICA. There were four patients: three males and one female. One patient presented with a ruptured arteriovenous malformation, and one with a ruptured aneurysm. Two patients had normal angiograms. The bihemispheric PICA was an incidental finding in all cases. The bihemispheric vessel arose from the dominant left vertebral artery, and the contralateral posterior inferior cerebellar artery was absent or hypoplastic. In all cases, contralateral cerebellar supply arose from a continuation of the ipsilateral PICA distal to the choroidal point and which crossed the midline dorsal to the vermis. We conclude that the PICA may supply both cerebellar hemispheres. This rare anatomic variant should be considered when evaluating patients with posterior fossa neurovascular disease. (orig.)

  14. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  15. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  16. [Computer-assisted measurement of ocular misalignment in infants and young children using the digital Purkinje reflection pattern procedure].

    Science.gov (United States)

    Barry, J C; Effert, R; Kaupp, A; Kleine, M; Reim, M

    1994-02-01

    A digital image recording and processing system is presented that allows a quick diagnosis of microstrabismus in non-cooperative children. It is thus particularly suited for screening purposes. The Purkinje Reflection Pattern Evaluation (RPE) method is used: three small flashes are used to produce the desired Purkinje images. Two horizontal rows of the three 1st Purkinje images (anterior corneal reflections) and of the three 4th Purkinje images (posterior crystalline lens reflections) stemming from the three light sources form the characteristic Purkinje image reflection pattern. Each eye's position is calculated from the shift between the upper and lower rows of reflections by means of two simple formulae. From the angles obtained in binocular fixation and monocular fixation the manifest angle of strabismus corresponding to the angle measured in the simultaneous prism-and-cover test is computed. The measurement is performed at a fixation distance of 50 cm under natural viewing conditions. To obtain a picture one only has to get the child's attention for a short moment. The primary position is triggered with the fixation light, which is operated by a switch. The digital image recording is done with a hand-held device comprising two miniaturized video cameras, three photo flashes and a fixation light that is operated manually. An IBM-compatible PC equipped with a hard disk and two frame grabbers was adapted for the storage and processing of the pictures. The pictures are evaluated interactively in a few minutes on the workstation's monitor immediately after the measurement. To this end specially designed menu-driven software was implemented. Examples of the measuring procedure and clinical results in infants with microtropic highlight the potential of the system as a screening apparatus and for the exact measurement of small and large squint angles. Usually even 1-year-old children can cooperate well enough to get good-quality pictures in binocular fixation. The new

  17. A role for cerebellum in the hereditary dystonia DYT1

    Science.gov (United States)

    Fremont, Rachel; Tewari, Ambika; Angueyra, Chantal; Khodakhah, Kamran

    2017-01-01

    DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets. DOI: http://dx.doi.org/10.7554/eLife.22775.001 PMID:28198698

  18. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  19. Prophylactic role of melatonin against radiation induced damage in mouse cerebellum with special reference to Purkinje cells

    Energy Technology Data Exchange (ETDEWEB)

    Sisodia, Rashmi; Kumari, Seema; Verma, Rajesh Kumar; Bhatia, A L [Neurobiology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004 (India)

    2006-06-15

    Melatonin, a hormone with a proven antioxidative efficacy, crosses all morphophysiological barriers, including the blood-brain barrier, and distributes throughout the cell. The present study is an attempt to investigate the prophylactic influence of a chronic low level of melatonin against an acute radiation induced oxidative stress in the cerebellum of Swiss albino mice, with special reference to Purkinje cells. After 15 days of treatment the mice were sacrificed at various intervals from 1 to 30 days. Biochemical parameters included lipid peroxidation (LPO) and glutathione (GSH) levels as the endpoints. The quantitative study included alterations in number and volume of Purkinje cells. Swiss albino mice were orally administered a very low dose of melatonin (0.25 mg/mouse/day) for 15 consecutive days before single exposure to 4 Gy gamma radiation. Melatonin checked the augmented levels of LPO, by approximately 55%, by day 30 day post-exposure. Radiation induced depleted levels of GSH could be raised by 68.9% by day 30 post-exposure. Radiation exposure resulted in a reduction of the volume of Purkinje cells and their total number. The administration of melatonin significantly protected against the radiation induced decreases in Purkinje cell volume and number. Results indicate the antioxidative properties of melatonin resulting in its prophylactic property against radiation induced biochemical and cellular alterations in the cerebellum. The findings support the idea that melatonin may be used as an anti-irradiation drug due to its potent free radical scavenging and antioxidative efficacy.

  20. Infantile onset progressive cerebellar atrophy and anterior horn cell degeneration--a late onset variant of PCH-1?

    Science.gov (United States)

    Lev, Dorit; Michelson-Kerman, Marina; Vinkler, Chana; Blumkin, Lubov; Shalev, Stavit A; Lerman-Sagie, Tally

    2008-03-01

    Despite major recent advances in our understanding of developmental cerebellar disorders, classification and delineation of these disorders remains difficult. The term pontocerebellar hypoplasia is used when there is a structural defect, originating in utero of both pons and cerebellar hemispheres. The term olivopontocerebellar atrophy is used when the disorder starts later in life and the process is a primary degeneration of cerebellar neurons. Pontocerebellar hypoplasia type 1 is associated with spinal anterior horn cell degeneration, congenital contractures, microcephaly, polyhydramnion and respiratory insufficiency leading to early death. However, anterior horn cell degeneration has also been described in cases with later onset pontocerebellar atrophy and recently the spectrum has even been further extended to include the association of anterior horn cell degeneration and cerebellar atrophy without pontine involvement. We describe two siblings from a consanguineous Moslem Arabic family who presented with progressive degeneration of both the cerebellum and the anterior horn cells. The patients presented after 1 year of age with a slow neurodegenerative course that included both cognitive and motor functions. There is considerable phenotypic variability; the sister shows a much milder course. Both children are still alive at 6 and 9 years. The sister could still crawl and speak two word sentences at the age of 3 years while the brother was bedridden and only uttered guttural sounds at the same age. Our cases further extend the phenotype of the cerebellar syndromes with anterior horn cell involvement to include a childhood onset and protracted course and further prove that this neurodegenerative disorder may start in utero or later in life.

  1. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  2. Stochasticity in Ca2+ increase in spines enables robust and sensitive information coding.

    Directory of Open Access Journals (Sweden)

    Takuya Koumura

    Full Text Available A dendritic spine is a very small structure (∼0.1 µm3 of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.

  3. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum.

    Directory of Open Access Journals (Sweden)

    Weixiang Guo

    Full Text Available Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.

  4. Impairment of DNA synthesis in Gunn rat cerebellum.

    Science.gov (United States)

    Yamada, N; Sawasaki, Y; Nakajima, H

    1977-05-06

    Brain DNA synthesis was developmentally investigated in Gunn rat with marked cerebellar hypoplasia due to hereditary hyperbilirubinemia. In this mutant rat, the Purkinje cell was nearly selectively affected in the cerebellar cortex by bilirubin. The impaired DNA synthesis was observed in homozygous (jj) Gunn rat cerebellum, in which the DNA content and [3H]thymidine incorporation rate into DNA decreased after 10 days of age compared to those in the heterozygous (Jj)littermate. In contrast, these impairments were not found in the non-cerebellar parts of the brain and liver of jj Gunn rat. The activity of cerebellar thymidine kinase in jj Gunn rat decreased from a very early stae, being 80% of Jj rat at 6 days, and 50% at 10 days of age. The enzyme activity was not affected in the non-cerebellar parts of the brain. Although bilirubin competitively inhibited cerebellar thymidine kinase activity in vitro (15% at 10(-5) M), such bilirubin level was found to be about 1000-fold that in vivo. Moreover, photo-degradation of bilirubin in jj cerebellum exhibited no improvement in thymidine kinase activity, and the presence of an enzyme inactivator was not suggested in jj cerebellum. These results seem to indicate that the induction of thymidine kinase might be affected in jj Gunn rat cerebellum. The possibility that the impaired DNA synthesis in the external granular cells in jj cerebellum may be due to Purkinje cell damage is discussed.

  5. The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients.

    Science.gov (United States)

    Ince Gunal, D; Agan, K; Afsar, N; Borucu, D; Us, O

    2008-04-01

    Autosomal dominant cerebellar ataxias are clinically and genetically heterogeneous neurodegenerative disorders. There is no known treatment to prevent neuronal cell death in these disorders. Current treatment is purely symptomatic; ataxia is one of the most disabling symptoms and represents the main therapeutic challenge. A previous case report suggesting benefit from administration of high dose piracetam inspired the present study of the efficacy of this agent in patients with cerebellar ataxia. Piracetam is a low molecular weight derivative of gamma-aminobutyric acid. Although little is known of its mode of action, its efficacy has been documented in a wide range of clinical indications, such as cognitive disorders, dementia, vertigo and dyslexia, as well as cortical myoclonus. The present report investigated the role of high dose piracetam in patients with cerebellar ataxia. Eight patients with autosomal dominant cerebellar ataxia were given intravenous piracetam 60 g/day by a structured protocol for 14 days. The baseline and end-of-the study evaluations were based on the International Cooperative Ataxia Rating Scale. Statistical analysis demonstrated a significant improvement in the patients' total score (P = 0.018) and a subscale analysis showed statistical significance for only the posture and gait disturbances item (P = 0.018). This study is providing good clinical observation in favour of high dose piracetam infusion to reduce the disability of the patients by improving their gait ataxia.

  6. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms.

    Directory of Open Access Journals (Sweden)

    Carrie M Margulies

    Full Text Available Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg. Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose polymerase 1 (Parp1. Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.

  7. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms.

    Science.gov (United States)

    Margulies, Carrie M; Chaim, Isaac Alexander; Mazumder, Aprotim; Criscione, June; Samson, Leona D

    2017-01-01

    Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.

  8. Brain plasticity and functionality explored by nonlinear optical microscopy

    Science.gov (United States)

    Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.

    2010-02-01

    In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising

  9. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    Science.gov (United States)

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  10. Etiology, Localization and Prognosis in Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Yavuz Yücel

    2006-01-01

    Full Text Available Cerebrovasculer disease are the most frequent disease of the brain. Cerebellar infarct remains % 1.5-4.2 of these diseases. Etiological factors, lesion localization, symptoms and findings and relationship with prognosis of our patients with cerebellar infarct were investigated in our study. For this purpose, 32 patients were evaluated who were admitted to the Dicle University Medical School Department of Neurology in 1995-2001 hospitalized with the diagnosis of clinically and radiological confirmed cerebellar infarction.All of patients in the study group, 21 (%65.6 were male and 11 (%34.3 female. Age of overall patients ranged between 40 and 75 years with a mean of 57.8±10.2 years. Atherothrombotic infarct was the most frequent reason at the etiologic clinical classification. The most frequently found localization was the posterior inferior cerebellar artery infarct (%50. The leading two risk factors were hypertension (%78.1 and cigarette smoking (%50. The most common sign and symptoms were vertigo (%93.7, vomiting (%75, headache (%68.7 and cerebellar dysfunction findings (%50. The mean duration of hospitalization was 16.3±7.6 days. Overall mortality rate was found to be % 6.2. Finally, the most remarkable risk factors at cerebellar infarct patients are hypertension and atherosclerosis at etiology. We are considering that, controlling of these factors will reduce the appearance frequency of cerebellar infarcts.

  11. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishikawa

    Full Text Available The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs. There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum.

  12. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Energy Technology Data Exchange (ETDEWEB)

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  13. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress.

    Science.gov (United States)

    Lopachev, A V; Lopacheva, O M; Abaimov, D A; Koroleva, O V; Vladychenskaya, E A; Erukhimovich, A A; Fedorova, T N

    2016-05-01

    Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.

  14. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Directory of Open Access Journals (Sweden)

    Susana González-Reyes

    2013-01-01

    Full Text Available Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1 expression and by 5.6–14.3-fold glutathione (GSH levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS production, by 94% the reduction of GSH/glutathione disulfide (GSSG ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2-like 2 (Nrf2 translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.

  15. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Science.gov (United States)

    González-Reyes, Susana; Guzmán-Beltrán, Silvia; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2013-01-01

    Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. PMID:24454990

  16. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing.

    Science.gov (United States)

    Feng, Xiaoxia; Li, Le; Zhang, Manli; Yang, Xiujie; Tian, Mengyu; Xie, Weiyi; Lu, Yao; Liu, Li; Bélanger, Nathalie N; Meng, Xiangzhi; Ding, Guosheng

    2017-04-01

    Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum's involvement in reading and reading impairment.

  17. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  18. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors.

    Science.gov (United States)

    Zhang, Yue; Kaneko, Ryosuke; Yanagawa, Yuchio; Saito, Yasuhiko

    2014-04-01

    Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. behavioural, biochemical and neurocytoarchitechural impact of ...

    African Journals Online (AJOL)

    2017-01-20

    Jan 20, 2017 ... dimensions, 100cm wide, 100cm long, and 50cm .... eyes color in the short term. Although .... coordination and memory function (Callaghan et al., 2006 .... of cerebellar Purkinje cells modulated by sensory stimulation. Nature ...

  20. The role of Abcb5 alleles in susceptibility to haloperidol-induced toxicity in mice and humans.

    KAUST Repository

    Zheng, Ming; Zhang, Haili; Dill, David L; Clark, J David; Tu, Susan; Yablonovitch, Arielle L; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M; Deng, Suhua; Eberlin, Livia S; Zare, Richard N; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution

  1. Secretin and autism: a basic morphological study about the distribution of secretin in the nervous system.

    Science.gov (United States)

    Köves, Katalin; Kausz, Mária; Reser, Diana; Illyés, György; Takács, József; Heinzlmann, Andrea; Gyenge, Eszter; Horváth, Károly

    2004-12-15

    For the first time, the relationship between secretin and autism has been demonstrated by one of us. Intravenous administration of secretin in autistic children caused a fivefold higher pancreaticobiliary fluid secretion than in healthy ones and, at least in some of the patients, better mental functions were reported after the secretin test. Because the precise localization of secretin in the brain is still not completely known, the abovementioned observation led us to map secretin immunoreactivity in the nervous system of several mammalian species. In the present work, the distribution of secretin immunoreactivity in cat and human nervous systems was compared with that of rats using an immunohistochemical approach. Secretin immunoreactivity was observed in the following brain structures of both humans and in colchicine-treated rats: (1) Purkinje cells in the cerebellar cortex; (2) central cerebellar nuclei; (3) pyramidal cells in the motor cortex; and (4) primary sensory neurons. Additionally, secretin immnoreactive cells were observed in the human hippocampus and amygdala and in third-order sensory neurons of the rat auditory system. In cats, secretin was only observed in the spinal ganglia. Our findings support the view that secretin is not only a gastrointestinal peptide but that it is also a neuropeptide. Its presence or the lack of its presence may have a role in the development of behavioral disorders.

  2. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  3. Humor and laughter in patients with cerebellar degeneration.

    Science.gov (United States)

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  4. CT and MR imaging of acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Shoji, H.; Hirai, S.; Ishikawa, K.; Aramaki, M.; Sato, Y.; Abe, T.; Kojima, K.

    1991-01-01

    An adult female showed mild cerebellar ataxia and CSF pleocytosis following an acute infection of the upper respiratory tract, and was diagnosed as having acute cerebellar ataxia (ACA). CT and MR appearances in the acute stage revealed moderate swelling of the cerebellum and bilaterally increased signal intensity in the cerebellar cortex. (orig.)

  5. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  6. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  7. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    Science.gov (United States)

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  8. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    Science.gov (United States)

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Measuring Feedforward Inhibition and Its Impact on Local Circuit Function.

    Science.gov (United States)

    Hull, Court

    2017-05-01

    This protocol describes a series of approaches to measure feedforward inhibition in acute brain slices from the cerebellar cortex. Using whole-cell voltage and current clamp recordings from Purkinje cells in conjunction with electrical stimulation of the parallel fibers, these methods demonstrate how to measure the relationship between excitation and inhibition in a feedforward circuit. This protocol also describes how to measure the impact of feedforward inhibition on Purkinje cell excitability, with an emphasis on spike timing. © 2017 Cold Spring Harbor Laboratory Press.

  10. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    Science.gov (United States)

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  12. Roles of Fukutin, the Gene Responsible for Fukuyama-Type Congenital Muscular Dystrophy, in Neurons: Possible Involvement in Synaptic Function and Neuronal Migration

    International Nuclear Information System (INIS)

    Hiroi, Atsuko; Yamamoto, Tomoko; Shibata, Noriyuki; Osawa, Makiko; Kobayashi, Makio

    2011-01-01

    Fukutin is a gene responsible for Fukuyama-type congenital muscular dystrophy (FCMD), accompanying ocular and brain malformations represented by cobblestone lissencephaly. Fukutin is related to basement membrane formation via the glycosylation of α-dystoglycan (α-DG), and astrocytes play a crucial role in the pathogenesis of the brain lesion. On the other hand, its precise function in neurons is unknown. In this experiment, the roles of fukutin in mature and immature neurons were examined using brains from control subjects and FCMD patients and cultured neuronal cell lines. In quantitative PCR, the expression level of fukutin looked different depending on the region of the brain examined. A similar tendency in DG expression appears to indicate a relation between fukutin and α-DG in mature neurons. An increase of DG mRNA and core α-DG in the FCMD cerebrum also supports the relation. In immunohistochemistry, dot-like positive reactions for VIA4-1, one of the antibodies detecting the glycosylated α-DG, in Purkinje cells suggest that fukutin is related to at least a post-synaptic function via the glycosylation of α-DG. As for immature neurons, VIA4-1 was predominantly positive in cells before and during migration with expression of fukutin, which suggest a participation of fukutin in neuronal migration via the glycosylation of α-DG. Moreover, fukutin may prevent neuronal differentiation, because its expression was significantly lower in the adult cerebrum and in differentiated cultured cells. A knockdown of fukutin was considered to induce differentiation in cultured cells. Fukutin seems to be necessary to keep migrating neurons immature during migration, and also to support migration via α-DG

  13. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Postmortem study of stable carbon isotope ratios in human cerebellar DNA: preliminary results

    International Nuclear Information System (INIS)

    Slatkin, D.N.; Irsa, A.P.; Friedman, L.

    1978-01-01

    It is observed that 13 C/ 12 C ratios in tissue specimens removed postmortem in the United States and Canada are significantly different from corresponding ratios in European specimens. On the basis of this information, measurements of carbon isotope ratios in DNA isolated from cerebella of native-born and European-born North Americans are in progress with the goal of estimating the average lifetime rate of DNA turnover in human neurons. Preliminary results from twenty postmortem examinations are consistent with the hypothesis that a significant proportion of human cerebellar DNA is renewed during the lifetime of an individual

  15. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  16. Climbing fibers predict movement kinematics and performance errors.

    Science.gov (United States)

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each

  17. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  18. Computed tomography in alcoholic cerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Haubek, A; Lee, K [Hvidovre Hospital Copenhagen (Denmark). Dept. of Radiology; Municipal Hospital, Copenhagen (Denmark). Dept. of Neurology)

    1979-01-01

    This is a controlled CT evaluation of the infratentorial region in 41 male alcoholics under age 35. Criteria for the presence of atrophy are outlined. Twelve patients had cerebellar atrophy. Vermian atrophy was present in all. Atrophy of the cerebellar hemispheres was demonstrated in eight patients as well. The results are statistically significant when compared to an age-matched group of 40 non-alcoholic males among whom two cases of vermian atrophy were found. There were clinical signs of alcoholic cerebellar atrophy in one patient only. The disparity between the clinical and the radiological data are discussed with reference to previous pneumoencephalographic findings. (orig.) 891 AJ/orig. 892 MKO.

  19. Acute Cerebellar Ataxia Induced by Nivolumab

    Science.gov (United States)

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy followed by the administration of decreasing doses of oral steroids. Nivolumab, an immune checkpoint inhibitor, is known to induce various neurological adverse events. However, this is the first report of acute cerebellar ataxia associated with nivolumab treatment. PMID:29249765

  20. Falls and cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    I. V. Damulin

    2015-01-01

    Full Text Available The paper considers the main causes of falls. Whatever their cause is, falls may lead to severe maladjustment in everyday life. In nearly 1 out of 10 cases, they are accompanied by severe injuries, including fractures (most commonly those of the proximal femur and humerus, hands, pelvic bones, and vertebrae, subdural hematoma, and severe soft tissue and head injuries. This process is emphasized to be multifactorial. Particular emphasis is laid on the involvement of the cerebellum and its associations, which may be accompanied by falls. This is clinically manifested mainly by gait disorders. Walking is a result of an interaction of three related functions (locomotion, maintenance of balance and adaptive reactions. In addition to synergies related to locomotion and balance maintenance, standing at rest and walking are influenced bythe following factors: postural and environmental information (proprioceptive, vestibular, and visual, the capacity to interpret and integrate this information, the ability of the musculoskeletal system to make movements, and the capability to optimally modulate these movements in view of the specific situation and the ability to choose and adapt synergy in terms of external factors and the capacities and purposes of an individual. The clinical signs of damage to the cerebellum and its associations are considered in detail. These structures are emphasized to be involved not only in movements, but also in cognitive functions. The major symptoms that permit cerebellar dysfunction to be diagnosed are given. Symptoms in cerebellar injuries are generally most pronounced when suddenly changing the direction of movements or attempting to start walking immediately after a dramatic rise. The magnitude of ataxia also increases in a patient who tries to decrease the step size. Falling tendencies or bending to one side (in other symptoms characteristic of cerebellar diseases suggest injury of the corresponding

  1. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  2. The prion protein constitutively controls neuronal store-operated Ca2+ entry through Fyn kinase

    Directory of Open Access Journals (Sweden)

    Agnese eDe Mario

    2015-10-01

    Full Text Available The prion protein (PrPC is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrPC involvement in prion propagation is well established, PrPC physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca2+ homeostasis. Because PrPC binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrPC acts as receptor for amyloid-β (Aβ oligomers associated with Alzheimer’s disease (AD, and that PrPC-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn.Here, use of gene-encoded Ca2+ probes targeting different cell domains in primary cerebellar granule neurons expressing, or not, PrPC allowed us to investigate whether PrPC regulates store-operated Ca2+ entry (SOCE and the implication of Fyn in this control. Our findings show that PrPC attenuates SOCE, and Ca2+ accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrPC-Fyn-SOCE triad in neurons.We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1-42 oligomers abrogates the control of PrPC over Fyn and SOCE, suggesting a PrPC-dependent mechanism for Aβ-induced neuronal Ca2+ dyshomeostasis.

  3. Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum.

    Directory of Open Access Journals (Sweden)

    Verena Pfeiffer

    Full Text Available This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12 but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.

  4. Rac1 regulates neuronal polarization through the WAVE complex

    DEFF Research Database (Denmark)

    Tahirovic, Sabina; Hellal, Farida; Neukirchen, Dorothee

    2010-01-01

    the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo...... and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE...... function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex...

  5. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    Science.gov (United States)

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  6. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  7. Purkinje Cell Signaling Deficits in Animal Models of Ataxia

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2018-04-01

    Full Text Available Purkinje cell (PC dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1 reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF-PC synapse, mutations of glutamate delta-2 (GluD2 or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1 receptors is necessary to avoid ataxia. Failure of climbing fiber (CF maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming

  8. Effects of perinatal hypo- and hyperthyroidism on the levels of nerve growth factor and its low-affinity receptor in cerebellum.

    Science.gov (United States)

    Figueiredo, B C; Otten, U; Strauss, S; Volk, B; Maysinger, D

    1993-04-16

    Deficits or excesses of thyroid hormones during critical periods of mammalian cerebellar development can lead to profound biochemical and morphological abnormalities in this system. The goal of this study was to investigate the effects of perinatal hypo- and hyperthyroidism on the ontogeny of nerve growth factor (NGF) and its low-affinity receptor (p75NGFR) in the rat cerebellum. The concentration of NGF and of p75NGFR immunoreactivity (IR) were measured, several days after birth, in cerebella of rats which had received propylthiouracil (PTU) or thyroxine. NGF concentration was markedly enhanced only on postnatal day 2 (P2) in hyperthyroid rats, whereas in hypothyroid (PTU-treated) rats NGF values were similar to age-matched controls. These observations suggest that thyroid hormone affects NGF synthesis during early periods of cerebellar development. In Purkinje cells of control animals, p75NGFR IR peaked at P10. In hypothyroid rats, the expression of p75NGFR was retarded, peaking at P15, whereas in hyperthyroid rats it was advanced, peaking at P8. The increased p75NGFR IR found in Purkinje cell bodies and the delayed disappearance of p75NGFR IR from the external granular layer of hypothyroid rats suggest different roles for thyroid hormone in the developing cerebellum. We conclude that p75NGFR and NGF are independently regulated by thyroid hormone during critical periods of cerebellar development. The effect of thyroid hormone deficiency on p75NGFR content in Purkinje cells may involve complex mechanisms such as impaired efficiency of axonal transport.

  9. Interferon-γ increases neuronal death in response to amyloid-β1-42

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2006-03-01

    Full Text Available Abstract Background Alzheimer's disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-β1-42. These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimer's disease. In the current study we examined the effects of interferon (IFN-γ, tumour necrosis factor (TNFα, interleukin (IL-1β and IL-6 on neurons. Methods Primary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A2 or phospholipase C γ-1. Results While none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-γ sensitised neurons to the toxic effects of amyloid-β1-42 or HuPrP82-146 (a neurotoxic peptide found in prion diseases. The effects of IFN-γ were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-γ did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-γ increased the levels of cytoplasmic phospholipase A2 in SH-SY5Y cells and increased prostaglandin E2 production in response to amyloid-β1-42. Conclusion Treatment of neuronal cells

  10. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    Science.gov (United States)

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  11. Factors associated with the misdiagnosis of cerebellar infarction.

    Science.gov (United States)

    Masuda, Yoko; Tei, Hideaki; Shimizu, Satoru; Uchiyama, Shinichiro

    2013-10-01

    Cerebellar infarction is easily misdiagnosed or underdiagnosed. In this study, we investigated factors leading to misdiagnosis of cerebellar infarction in patients with acute ischemic stroke. Data on neurological and radiological findings from 114 consecutive patients with acute cerebellar infarction were analyzed. We investigated factors associated with misdiagnosis from the data on clinical findings. Thirty-two (28%) patients were misdiagnosed on admission. Misdiagnosis was significantly more frequent in patients below 60 years of age and in patients with vertebral artery dissection, and significantly less frequent in patients with dysarthria. It tended to be more frequent in patients with the medial branch of posterior inferior cerebellar artery territory infarction, and infrequent in patients with the medial branch of the superior cerebellar artery territory infarction. Thirty out of 32 (94%) misdiagnosed patients were seen by physicians that were not neurologists at the first visit. Twenty-four of 32 (75%) misdiagnosed patients were screened only by brain CT. However, patients were not checked by brain MRI or follow-up CT until their conditions worsened. Patients below 60 years of age and patients with vertebral artery dissection are more likely to have a cerebellar infarction misdiagnosed by physicians other than neurologists. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Cerebellar arteriovenous malformations in children

    International Nuclear Information System (INIS)

    Griffiths, P.D.; Humphreys, R.P.

    1998-01-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.)

  13. Cerebellar arteriovenous malformations in children

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Acad. Dept. of Radiol.; Blaser, S.; Armstrong, D.; Chuang, S.; Harwood-Nash, D. [Division of Neuroradiology, The Hospital for Sick Children and University of Toronto, Toronto (Canada); Humphreys, R.P. [Division of Neurosurgery, The Hospital for Sick Children and University of Toronto, Toronto (Canada)

    1998-05-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.) With 4 figs., 4 tabs., 23 refs.

  14. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  15. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas.

    Science.gov (United States)

    Palesi, Fulvia; De Rinaldis, Andrea; Castellazzi, Gloria; Calamante, Fernando; Muhlert, Nils; Chard, Declan; Tournier, J Donald; Magenes, Giovanni; D'Angelo, Egidio; Gandini Wheeler-Kingshott, Claudia A M

    2017-10-09

    Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated.

  16. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  17. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  18. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    Science.gov (United States)

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    Science.gov (United States)

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  20. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  1. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Science.gov (United States)

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  2. Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development

    Directory of Open Access Journals (Sweden)

    Frederique Zindy

    2014-06-01

    Full Text Available The miR-17∼92 cluster family is composed of three members encoding microRNAs that share seed sequences. To assess their role in cerebellar and medulloblastoma (MB development, we deleted the miR-17∼92 cluster family in Nestin-positive neural progenitors and in mice heterozygous for the Sonic Hedgehog (SHH receptor Patched 1 (Ptch1+/−. We show that mice in which we conditionally deleted the miR-17∼92 cluster (miR-17∼92floxed/floxed; Nestin-Cre+ alone or together with the complete loss of the miR-106b∼25 cluster (miR-106b∼25−/− were born alive but with small brains and reduced cerebellar foliation. Remarkably, deletion of the miR-17∼92 cluster abolished the development of SHH-MB in Ptch1+/− mice. Using an orthotopic transplant approach, we showed that granule neuron precursors (GNPs purified from the cerebella of postnatal day 7 (P7 Ptch1+/−; miR-106b∼25−/− mice and overexpressing Mycn induced MBs in the cortices of naïve recipient mice. In contrast, GNPs purified from the cerebella of P7 Ptch1+/−; miR-17∼92floxed/floxed; Nestin-Cre+ animals and overexpressing Mycn failed to induce tumors in recipient animals. Taken together, our findings demonstrate that the miR-17∼92 cluster is dispensable for cerebellar development, but required for SHH-MB development.

  3. Aberrant cerebellar connectivity in bipolar disorder with psychosis.

    Science.gov (United States)

    Shinn, Ann K; Roh, Youkyung S; Ravichandran, Caitlin T; Baker, Justin T; Öngür, Dost; Cohen, Bruce M

    2017-07-01

    The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.

  4. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention.......Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  5. Acute Cerebellar Ataxia Induced by Nivolumab

    OpenAIRE

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy follow...

  6. Disorganized foliation of unilateral cerebellar hemisphere as cerebellar cortical dysplasia in patients with recurrent seizures: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-09-15

    We present a rare case of abnormal foliation for one cerebellar hemisphere on MR imaging, showing vertically-oriented folia. Foliation of contralateral cerebellar hemisphere and other structures in the posterior fossa were normal, and the patient has no neurologic deficits. This rare and unique abnormality is considered a kind of developmental error of the cerebellum.

  7. Absence of Rapid Propagation through the Purkinje Network as a Potential Cause of Line Block in the Human Heart with Left Bundle Branch Block.

    Science.gov (United States)

    Okada, Jun-Ichi; Washio, Takumi; Nakagawa, Machiko; Watanabe, Masahiro; Kadooka, Yoshimasa; Kariya, Taro; Yamashita, Hiroshi; Yamada, Yoko; Momomura, Shin-Ichi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo

    2018-01-01

    Background: Cardiac resynchronization therapy is an effective device therapy for heart failure patients with conduction block. However, a problem with this invasive technique is the nearly 30% of non-responders. A number of studies have reported a functional line of block of cardiac excitation propagation in responders. However, this can only be detected using non-contact endocardial mapping. Further, although the line of block is considered a sign of responders to therapy, the mechanism remains unclear. Methods: Herein, we created two patient-specific heart models with conduction block and simulated the propagation of excitation based on a cellmodel of electrophysiology. In one model with a relatively narrow QRS width (176 ms), we modeled the Purkinje network using a thin endocardial layer with rapid conduction. To reproduce a wider QRS complex (200 ms) in the second model, we eliminated the Purkinje network, and we simulated the endocardial mapping by solving the inverse problem according to the actual mapping system. Results: We successfully observed the line of block using non-contact mapping in the model without the rapid propagation of excitation through the Purkinje network, although the excitation in the wall propagated smoothly. This model of slow conduction also reproduced the characteristic properties of the line of block, including dense isochronal lines and fractionated local electrocardiograms. Further, simulation of ventricular pacing from the lateral wall shifted the location of the line of block. By contrast, in the model with the Purkinje network, propagation of excitation in the endocardial map faithfully followed the actual propagation in the wall, without showing the line of block. Finally, switching the mode of propagation between the two models completely reversed these findings. Conclusions: Our simulation data suggest that the absence of rapid propagation of excitation through the Purkinje network is the major cause of the functional line

  8. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs.

    Science.gov (United States)

    Dosdall, Derek J; Tabereaux, Paul B; Kim, Jong J; Walcott, Gregory P; Rogers, Jack M; Killingsworth, Cheryl R; Huang, Jian; Robertson, Peter G; Smith, William M; Ideker, Raymond E

    2008-08-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.

  9. Anomalous cerebellar anatomy in Chinese children with dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Hui eYang

    2016-03-01

    Full Text Available The cerebellar deficit hypothesis for developmental dyslexia (DD claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia.

  10. Garcinia kola seeds may prevent cognitive and motor dysfunctions in a type 1 diabetes mellitus rat model partly by mitigating neuroinflammation.

    Science.gov (United States)

    Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella

    2017-04-15

    Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.

  11. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control

    Science.gov (United States)

    Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.

    2018-01-01

    Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications

  12. His-Purkinje system-related incessant ventricular tachycardia arising from the left coronary cusp

    Directory of Open Access Journals (Sweden)

    Eiji Sato, MD

    2014-08-01

    Full Text Available We describe the case of a 23-year-old woman who had His-Purkinje system-related incessant ventricular tachycardia with a narrow QRS configuration. The ventricular tachycardia was ablated successfully in the left coronary cusp where the earliest endocardial activation had been recorded. We hypothesize that a remnant of the subaortic conducting tissue was the source of the ventricular arrhythmias.

  13. Evaluation of Morphological Plasticity in the Cerebella of Basketball Players with MRI

    Science.gov (United States)

    Park, In Sung; Han, Jong Woo; Lee, Kea Joo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah

    2006-01-01

    Cerebellum is a key structure involved in motor learning and coordination. In animal models, motor skill learning increased the volume of molecular layer and the number of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is to investigate whether the analogous change of cerebellar volume occurs in human population who learn specialized motor skills and practice them intensively for a long time. Magnetic resonance image (MRI)-based cerebellar volumetry was performed in basketball players and matched controls with V-works image software. Total brain volume, absolute and relative cerebellar volumes were compared between two groups. There was no significant group difference in the total brain volume, the absolute and the relative cerebellar volume. Thus we could not detect structural change in the cerebellum of this athlete group in the macroscopic level. PMID:16614526

  14. Back to front: cerebellar connections and interactions with the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2014-02-01

    Full Text Available Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN in awake, behaving rats evokes distinct local field potential (LFP responses (onset latency ~13 ms in the prelimbic (PrL subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anaesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5-10 Hz. Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors.

  15. Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss.

    Science.gov (United States)

    Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung

    2016-12-01

    Cerebellar ischemic stroke is one of the common causes of vascular vertigo. It usually accompanies other neurological symptoms or signs, but a small infarct in the cerebellum can present with vertigo without other localizing symptoms. Approximately 11 % of the patients with isolated cerebellar infarction simulated acute peripheral vestibulopathy, and most patients had an infarct in the territory of the medial branch of the posterior inferior cerebellar artery (PICA). A head impulse test can differentiate acute isolated vertigo associated with PICA territory cerebellar infarction from more benign disorders involving the inner ear. Acute hearing loss (AHL) of a vascular cause is mostly associated with cerebellar infarction in the territory of the anterior inferior cerebellar artery (AICA), but PICA territory cerebellar infarction rarely causes AHL. To date, at least eight subgroups of AICA territory infarction have been identified according to the pattern of neurotological presentations, among which the most common pattern of audiovestibular dysfunction is the combined loss of auditory and vestibular functions. Sometimes acute isolated audiovestibular loss can be the initial symptom of impending posterior circulation ischemic stroke (particularly within the territory of the AICA). Audiovestibular loss from cerebellar infarction has a good long-term outcome than previously thought. Approximately half of patients with superior cerebellar artery territory (SCA) cerebellar infarction experienced true vertigo, suggesting that the vertigo and nystagmus in the SCA territory cerebellar infarctions are more common than previously thought. In this article, recent findings on clinical features of vertigo and hearing loss from cerebellar ischemic stroke syndrome are summarized.

  16. Learning of Sensory Sequences in Cerebellar Patients

    Science.gov (United States)

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  17. Magnetic resonance imaging of neuronal ceroid lipofuscinosis in a border collie.

    Science.gov (United States)

    Koie, Hiroshi; Shibuya, Hisashi; Sato, Tsuneo; Sato, Akane; Nawa, Koji; Nawa, Yuko; Kitagawa, Masato; Sakai, Manabu; Takahashi, Tomoko; Yamaya, Yoshiki; Yamato, Osamu; Watari, Toshihiro; Tokuriki, Mikihiko

    2004-11-01

    A castrated male border collie 23 months of age weighing 19.4 kg was referred to the Animal Medical Center of Nihon University with complaints of visual disturbance and behavioral abnormality, hyperacusis and morbid fear. The MRI examination revealed the slight dilated cerebral sulci and cerebellar fissures and left ventricular enlargement. This is the first report of MRI findings of canine neuronal ceroid lipofuscinosis.

  18. The clinical impact of cerebellar grey matter pathology in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    Full Text Available BACKGROUND: The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. OBJECTIVE: To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. METHODS: Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS and cerebellar functional system (FS score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT and the Symbol-Digit Modalities Test (SDMT. Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. RESULTS: After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001, cerebellar FS (p = 0.002, arm function (p = 0.049, and for leg function (p<0.001. Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013, while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015. CONCLUSIONS: Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.

  19. Human neuronal stargazin-like proteins, γ2, γ3 and γ4; an investigation of their specific localization in human brain and their influence on CaV2.1 voltage-dependent calcium channels expressed in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dolphin Annette C

    2003-09-01

    Full Text Available Abstract Background Stargazin (γ2 and the closely related γ3, and γ4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA receptor regulatory proteins (TARPs. In this investigation, we examined the distribution patterns of the stargazin-like proteins γ2, γ3, and γ4 in the human central nervous system (CNS. In addition, we investigated whether human γ2 or γ4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. Results The mRNA encoding human γ2 is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas γ3 is abundant in cerebral cortex and amygdala and γ4 in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both γ2 and γ4 are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only γ2 is clearly detected in granule cells. The hippocampus stains for γ2 and γ4 throughout the layers of the every CA region and the dentate gyrus, whilst γ3 appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a CaV2.1/β4 VDCC complex, either in the absence or presence of an α2δ2 subunit, neither γ2 nor γ4 significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. Conclusion The human γ2, γ3 and γ4 stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those

  20. A possible role of the non-GAT1 GABA transporters in transfer of GABA from GABAergic to glutamatergic neurons in mouse cerebellar neuronal cultures

    DEFF Research Database (Denmark)

    Suñol, C; Babot, Z; Cristòfol, R

    2010-01-01

    Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons......3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule......M concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1...

  1. Microvascular anatomy of the cerebellar parafloccular perforating space.

    Science.gov (United States)

    Sosa, Pablo; Dujovny, Manuel; Onyekachi, Ibe; Sockwell, Noressia; Cremaschi, Fabián; Savastano, Luis E

    2016-02-01

    The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle-namely, the paraflocculus or parafloccular perforating space-has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to elucidate their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maximum of 26 vessels per parafloccular perforating space. The average outer diameter of the cisternal portion of the perforating arteries was 0.11 ± 0.042 mm (mean ± SD) and the average length was 2.84 ± 1.2 mm. Detailed schematics and the surgical anatomy of the perforating vessels at the CPC and their clinical relevance are reported. The parafloccular space is a key entry point for many perforating vessels toward the middle cerebellar peduncle and lateral brainstem, and it must be respected and protected during surgical approaches to the

  2. New evidence for the cerebellar involvement in personality traits

    Directory of Open Access Journals (Sweden)

    Eleonora ePicerni

    2013-10-01

    Full Text Available Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI. High resolution T1-weighted and Diffusion Tensor Images of 100 healthy subjects aged 18-59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM or White Matter (WM volumes, GM Mean Diffusivity (MD, and WM Fractional Anisotropy (FA were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty.

  3. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    Science.gov (United States)

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  4. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.

    Directory of Open Access Journals (Sweden)

    Stefano Lise

    Full Text Available β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5, an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1. In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.

  5. Verbal Memory Impairments in Children after Cerebellar Tumor Resection

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2008-01-01

    Full Text Available This study was designed to investigate cerebellar lobular contributions to specific cognitive deficits observed after cerebellar tumor resection. Verbal working memory (VWM tasks were administered to children following surgical resection of cerebellar pilocytic astrocytomas and age-matched controls. Anatomical MRI scans were used to quantify the extent of cerebellar lobular damage from each patient's resection. Patients exhibited significantly reduced digit span for auditory but not visual stimuli, relative to controls, and damage to left hemispheral lobule VIII was significantly correlated with this deficit. Patients also showed reduced effects of articulatory suppression and this was correlated with damage to the vermis and hemispheral lobule IV/V bilaterally. Phonological similarity and recency effects did not differ overall between patients and controls, but outlier patients with abnormal phonological similarity effects to either auditory or visual stimuli were found to have damage to hemispheral lobule VIII/VIIB on the left and right, respectively. We postulate that damage to left hemispheral lobule VIII may interfere with encoding of auditory stimuli into the phonological store. These data corroborate neuroimaging studies showing focal cerebellar activation during VWM paradigms, and thereby allow us to predict with greater accuracy which specific neurocognitive processes will be affected by a cerebellar tumor resection.

  6. Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium

    Directory of Open Access Journals (Sweden)

    Marine E. Martinez

    2018-06-01

    Full Text Available Alteration of action potential duration (APD heterogeneity contributes to arrhythmogenesis. Purkinje-muscle junctions (PMJs present differential electrophysiological properties including longer APD. The goal of this study was to determine if Purkinje-related or myocardial focal activation modulates ventricular repolarization differentially in healthy and ischemic myocardium. Simultaneous epicardial (EPI and endocardial (ENDO optical mapping was performed on sheep left ventricular (LV wedges with intact free-running Purkinje network (N = 7. Preparations were paced on either ENDO or EPI surfaces, or the free-running Purkinje fibers (PFs, mimicking normal activation. EPI and ENDO APDs were assessed for each pacing configuration, before and after (7 min of the onset of no-flow ischemia. Experiments were supported by simulations. In control conditions, maximal APD was found at endocardial PMJ sites. We observed a significant transmural APD gradient for PF pacing with PMJ APD = 347 ± 41 ms and EPI APD = 273 ± 36 ms (p < 0.001. A similar transmural gradient was observed when pacing ENDO (49 ± 31 ms; p = 0.005. However, the gradient was reduced when pacing EPI (37 ± 20 ms; p = 0.005. Global dispersion of repolarization was the most pronounced for EPI pacing. In ischemia, both ENDO and EPI APD were reduced (p = 0.005 and the transmural APD gradient (109 ± 55 ms was increased when pacing ENDO compared to control condition or when pacing EPI (p < 0.05. APD maxima remained localized at functional PMJs during ischemia. Local repolarization dispersion was significantly higher at the PMJ than at other sites. The results were consistent with simulations. We found that the activation sequence modulates repolarization heterogeneity in the ischemic sheep LV. PMJs remain active following ischemia and exert significant influence on local repolarization patterns.

  7. Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Samira Abbasi

    2016-01-01

    Discussion: Therefore, inhibition of SK channel in DCN can cause cerebellar ataxia, and SK channel openers can have a therapeutic effect on cerebellar ataxia. In addition, the location of SK channels could be important in therapeutic goals. Dendritic SK channels can be a more effective target compared to somatic SK channels

  8. Apoptosis of Purkinje and granular cells of the cerebellum following chronic ethanol intake.

    Science.gov (United States)

    Oliveira, Suelen A; Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz Aparecida; Lizarte Neto, Fermino Sanches; Novais, Paulo Cezar; Tirapelli, Luiz Fernando; Oishi, Jorge Camargo; Takase, Luiz Fernando; Stefanini, Maira Aparecida; Martinez, Marcelo; Martinez, Francisco Eduardo

    2014-12-01

    Ethanol alters motricity, learning, cognition, and cellular metabolism in the cerebellum. We evaluated the effect of ethanol on apoptosis in Golgi, Purkinje, and granule cells of the cerebellum in adult rats. There were two groups of 20 rats: a control group that did not consume ethanol and an experimental group of UChA rats that consumed ethanol at 10% (cerebellum of adult UChA rats.

  9. Differential distribution patterns in cerebellar irrigation. A study with autopsy material

    Directory of Open Access Journals (Sweden)

    Hernando Yesid Estupiñan

    2018-02-01

    Full Text Available Aim: The aim of this investigation was characterize morphologically the cerebellar artery and its branches in a specimen of autopsy material. Methods: This descriptive cross-sectional study evaluated the anatomical characteristics of the cerebellar arteries and their branches in 93 brain stem and cerebellum blocks obtained from fresh cadavers. The specimens were perfused bilaterally channeling the proximal segments of the internal carotid and vertebral arteries with a semi-synthetic resin (Palatal GP40L 85%; styrene 15% impregnated with mineral red dye. We evaluated the distribution patterns of the cerebellar artery and its branches. Results: The calibers of the superior cerebellar artery (SCA, anterior inferior cerebellar artery (AICA and posterior inferior cerebellar artery (PICA were 1.46 ± 0.2 mm, 1.02 ± 0.35 mm and 1.45 ± 0.37 mm, respectively. Agenesis of the SCA was observed in six specimens (3.2%, AICA in 30 (16.1%, and PICA in 14 (7.5% specimens. Usual irrigation was observed in 44 (47.3% cerebellar blocks, whereas 49 (52.7% specimens showed irrigation variants, 23 (46.9% of which appeared bilaterally. The dominant distribution of the cerebellar arteries corresponded to SCA in 9 (12.5% cases, AICA in 46 (63.9% and PICA in 7 (9.7% specimens; shared dominance was found in 10 (13.9% specimens. Conclusion: The high variability of the cerebellar arteries observed in the present study is consistent with previous reports. The diverse anatomic expressions of the cerebellar arteries were typified in relation to their dominance and territories irrigated, useful for the diagnosis and clinical-surgical management of the cerebellum blood supply.

  10. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation.

    Directory of Open Access Journals (Sweden)

    Kirsten Ridder

    2014-06-01

    Full Text Available Mechanisms behind how the immune system signals to the brain in response to systemic inflammation are not fully understood. Transgenic mice expressing Cre recombinase specifically in the hematopoietic lineage in a Cre reporter background display recombination and marker gene expression in Purkinje neurons. Here we show that reportergene expression in neurons is caused by intercellular transfer of functional Cre recombinase messenger RNA from immune cells into neurons in the absence of cell fusion. In vitro purified secreted extracellular vesicles (EVs from blood cells contain Cre mRNA, which induces recombination in neurons when injected into the brain. Although Cre-mediated recombination events in the brain occur very rarely in healthy animals, their number increases considerably in different injury models, particularly under inflammatory conditions, and extend beyond Purkinje neurons to other neuronal populations in cortex, hippocampus, and substantia nigra. Recombined Purkinje neurons differ in their miRNA profile from their nonrecombined counterparts, indicating physiological significance. These observations reveal the existence of a previously unrecognized mechanism to communicate RNA-based signals between the hematopoietic system and various organs, including the brain, in response to inflammation.

  11. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  12. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    Directory of Open Access Journals (Sweden)

    Chris I De Zeeuw

    2015-07-01

    Full Text Available Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the Bergmann glial cell in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.

  13. A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats.

    Science.gov (United States)

    McBride, Devin W; Nowrangi, Derek; Kaur, Harpreet; Wu, Guangyong; Huang, Lei; Lekic, Tim; Tang, Jiping; Zhang, John H

    2018-03-01

    Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.

  14. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  15. Effects of vestibular rehabilitation combined with transcranial cerebellar direct current stimulation in patients with chronic dizziness: An exploratory study.

    Science.gov (United States)

    Koganemaru, Satoko; Goto, Fumiyuki; Arai, Miki; Toshikuni, Keitaro; Hosoya, Makoto; Wakabayashi, Takeshi; Yamamoto, Nobuko; Minami, Shujiro; Ikeda, Satoshi; Ikoma, Katsunori; Mima, Tatsuya

    Vestibular rehabilitation is useful to alleviate chronic dizziness in patients with vestibular dysfunction. It aims to induce neuronal plasticity in the central nervous system (especially in the cerebellum) to promote vestibular compensation. Transcranial cerebellar direct current stimulation (tcDCS) reportedly enhances cerebellar function. We investigated whether vestibular rehabilitation partially combined with tcDCS is superior to the use of rehabilitation alone for the alleviation of dizziness. Patients with chronic dizziness due to vestibular dysfunction received rehabilitation concurrently with either 20-min tcDCS or sham stimulation for 5 days. Pre- and post-intervention (at 1 month) dizziness handicap inventory (DHI) scores and psychometric and motor parameters were compared. Sixteen patients completed the study. DHI scores in the tcDCS group showed significant improvement over those in the sham group (Mann-Whitney U test, p = 0.033). Vestibular rehabilitation partially combined with tcDCS appears to be a promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  17. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  18. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  19. Histomorphometric studies on the effect of cyanide consumption of ...

    African Journals Online (AJOL)

    The density and size of the Purkinje cells were the same in both the control and experimental groups (P>0.05). Conclusion: Maternal consumption of 500 ppm cyanide in rats does not significantly affect light microscopic prenatal cerebellar development, but causes mild changes in the post-natal life. Maternal cyanide ...

  20. Improving cerebellar segmentation with statistical fusion

    Science.gov (United States)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.