WorldWideScience

Sample records for cerebellar neural cells

  1. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  2. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice.

    Science.gov (United States)

    Mendonça, Liliana S; Nóbrega, Clévio; Hirai, Hirokazu; Kaspar, Brian K; Pereira de Almeida, Luís

    2015-02-01

    Machado-Joseph disease is a neurodegenerative disease without effective treatment. Patients with Machado-Joseph disease exhibit significant motor impairments such as gait ataxia, associated with multiple neuropathological changes including mutant ATXN3 inclusions, marked neuronal loss and atrophy of the cerebellum. Thus, an effective treatment of symptomatic patients with Machado-Joseph disease may require cell replacement, which we investigated in this study. For this purpose, we injected cerebellar neural stem cells into the cerebellum of adult Machado-Joseph disease transgenic mice and assessed the effect on the neuropathology, neuroinflammation mediators and neurotrophic factor levels and motor coordination. We found that upon transplantation into the cerebellum of adult Machado-Joseph disease mice, cerebellar neural stem cells differentiate into neurons, astrocytes and oligodendrocytes. Importantly, cerebellar neural stem cell transplantation mediated a significant and robust alleviation of the motor behaviour impairments, which correlated with preservation from Machado-Joseph disease-associated neuropathology, namely reduction of Purkinje cell loss, reduction of cellular layer shrinkage and mutant ATXN3 aggregates. Additionally, a significant reduction of neuroinflammation and an increase of neurotrophic factors levels was observed, indicating that transplantation of cerebellar neural stem cells also triggers important neuroprotective effects. Thus, cerebellar neural stem cells have the potential to be used as a cell replacement and neuroprotective approach for Machado-Joseph disease therapy.

  3. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, V.; Ciotti, M.T.; Aloisi, F.; Levi, G.

    1986-01-01

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue /sup 3/H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of /sup 3/H-D-aspartate previously observed in this type of culture. In contrast, /sup 3/H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: /sup 3/H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. /sup 3/H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity /sup 3/H-GABA uptake.

  4. Synchrony and neural coding in cerebellar circuits

    Directory of Open Access Journals (Sweden)

    Abigail L Person

    2012-12-01

    Full Text Available The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input-output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor

  5. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.

    Science.gov (United States)

    Takeuchi, Miki; Matsuda, Koji; Yamaguchi, Shingo; Asakawa, Kazuhide; Miyasaka, Nobuhiko; Lal, Pradeep; Yoshihara, Yoshihiro; Koga, Akihiko; Kawakami, Koichi; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.

  6. Mapping the development of cerebellar Purkinje cells in zebrafish.

    Science.gov (United States)

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  7. Effect of Methamidophos on cerebellar neuronal cells

    African Journals Online (AJOL)

    olayemitoyin

    TH-mediated cerebellar neuronal cell development and function, and consequently could interfere with TH-regulated neuronal ... 1972), decreased number of synapses between the. Purkinje .... 0.008%DNase and triturated in same solution to ...

  8. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    Science.gov (United States)

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex.

  9. 神经干细胞移植治疗遗传性小脑萎缩的临床研究%Clinical study of transplantation of neural stem cells in therapy of inherited cerebellar atrophy

    Institute of Scientific and Technical Information of China (English)

    田增民; 陈涛; Nanbert ZHONG; 李志超; 尹丰; 刘爽

    2009-01-01

    Objective:To study the clinical effect of neural stem cell transplantation in the treatment of inherited cerebellar atrophy (CA). Methods: The cells from human fetal cerebellum (8-10 weeks of gestation) were grown and expanded in vitro. The cultured neurospheres were then implanted into the dentate nuclei of patients by stereo tactic operation. Totally, 12 patients (7 males and 5 females with age ranging 22-62 years, mean 43 years) were treated by this operation from August 2006 to August 2008. Results: The cells of fetal cerebellum were expanded by 107folds in undifferentiated state in the culture. After the operation, no rejection was detected. Follow up, the effective rates were 58. 3% after 3 months, 75.0% after 6 months, and 66.7% for 12-24 months (mean 18 months). Conclusion: the transplantation of in vitro cultured neural stem cell is a feasible and effective treatment for inherited CA, but the long term effectiveness need to be taken in consideration.

  10. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Muguruma

    2015-02-01

    Full Text Available During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19 promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester.

  11. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex

    Institute of Scientific and Technical Information of China (English)

    Joelle Alcock; Virginie Sottile

    2009-01-01

    Bergmann glia cells are a discrete radial glia population surrounding Purkinje cells in the cerebellar cortex. Al-though Bergmann glia are essential for the development and correct arborization of Purkinje cells, little is known about the regulation of this cell population after the developmental phase. In an effort to characterize this population at the molecular level, we have analyzed marker expression and established that adult Bergmann glia express Soxl, Sox2 and Sox9, a feature otherwise associated with neural stem cells (NSCs). In the present study, we have further analyzed the developmental pattern of Soxl-expressing cells in the developing cerebellum. We report that before be-coming restricted to the Purkinje cell layer, Soxl-positive cells are present throughout the immature tissue, and that these cells show characteristics of Bergmann glia progenitors. Our study shows that these progenitors express Soxl, Sox2 and Sox9, a signature maintained throughout cerebellar maturation into adulthood. When isolated in culture, the Soxl-expressing cerebellar population exhibited neurosphere-forming ability, NSC-marker characteristics, and demonstrated multipotency at the clonal level. Our results show that the Bergmann glia population expresses Soxl during cerebellar development, and that these cells can be isolated and show stem cell characteristics in vitro, sug-gesting that they could hold a broader potential than previously thought.

  12. Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors.

    Science.gov (United States)

    Nakashima, Kie; Umeshima, Hiroki; Kengaku, Mineko

    2015-06-01

    Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma. However, the details and mechanisms underlying neurogenesis from GCPs are not well understood. Using long-term live-cell imaging of proliferating GCPs transfected with a fluorescent newborn-granule cell marker, we found that GCPs underwent predominantly symmetric divisions, generating two GCPs or two neurons, while asymmetric divisions generating a GCP and a neuron were only occasionally observed, in both dissociated culture and within tissues of isolated cerebellar lobules. We found no significant difference in cell cycle length between proliferative and neurogenic divisions, or any consistent changes in cell cycle length during repeated proliferative division. Unlike neural stem cells in the cerebral cortex and spinal cord, which generate many neurons by repeated asymmetric division, cerebellar GCPs produce neurons predominantly by terminal symmetric division. These results indicate diverse mechanisms of neurogenesis in the mammalian brain. © 2015 Wiley Periodicals, Inc.

  13. The AMPA antagonist, NBQX, protects against ischemia-induced loss of cerebellar Purkinje cells

    DEFF Research Database (Denmark)

    Balchen, T.; Diemer, Nils Henrik

    1992-01-01

    Neuropathology, NBQX, AMPA antagonist, cerebellar cells, ischemia, rats, Purkinje, neuronal death......Neuropathology, NBQX, AMPA antagonist, cerebellar cells, ischemia, rats, Purkinje, neuronal death...

  14. Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1

    Science.gov (United States)

    Lee, Youngsoo; Katyal, Sachin; Li, Yang; El-Khamisy, Sherif F.; Russell, Helen R.; Caldecott, Keith W.; McKinnon, Peter J.

    2010-01-01

    Defective responses to DNA single strand breaks underpin various neurodegenerative diseases. However, the exact role of this repair pathway during development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor critical for the repair of DNA single strand breaks, we identified a profound neuropathology characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the first in vivo link between DNA single strand break repair and neurogenesis, and highlight the diverse consequences of specific types of genotoxic stress in the nervous system. PMID:19633665

  15. Encoding of whisker input by cerebellar Purkinje cells

    NARCIS (Netherlands)

    L.W.J. Bosman (Laurens); S.K.E. Koekkoek (Bas); J. Shapiro (Joël); B.F.M. Rijken (Bianca); F. Zandstra (Froukje); B. van der Ende (Barry); C.B. Owens (Cullen); J.W. Potters (Jan Willem); J.R. de Gruijl (Jornt); T.J.H. Ruigrok (Tom); C.I. de Zeeuw (Chris)

    2010-01-01

    textabstractThe cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre-parallel fibre pathway, modulating the simple spike activities of

  16. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  17. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  18. Contribution of Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase to neural activity-induced neurite outgrowth and survival of cerebellar granule cells.

    Science.gov (United States)

    Borodinsky, Laura N; Coso, Omar A; Fiszman, Mónica L

    2002-03-01

    In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+ ]e under serum-free conditions. We found that 25 mm KCl (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.

  19. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  20. The apical complex protein Pals1 is required to maintain cerebellar progenitor cells in a proliferative state.

    Science.gov (United States)

    Park, Jun Young; Hughes, Lucinda J; Moon, Uk Yeol; Park, Raehee; Kim, Sang-Bae; Tran, Khoi; Lee, Ju-Seog; Cho, Seo-Hee; Kim, Seonhee

    2016-01-01

    Through their biased localization and function within the cell, polarity complex proteins are necessary to establish the cellular asymmetry required for tissue organization. Well-characterized germinal zones, mitogenic signals and cell types make the cerebellum an excellent model for addressing the crucial function of polarity complex proteins in the generation and organization of neural tissues. Deletion of the apical polarity complex protein Pals1 in the developing cerebellum results in a remarkably undersized cerebellum with disrupted layers in poorly formed folia and strikingly reduced granule cell production. We demonstrate that Pals1 is not only essential for cerebellum organogenesis, but also for preventing premature differentiation and thus maintaining progenitor pools in cerebellar germinal zones, including cerebellar granule neuron precursors in the external granule layer. In the Pals1 mouse mutants, the expression of genes that regulate the cell cycle was diminished, correlating with the loss of the proliferating cell population of germinal zones. Furthermore, enhanced Shh signaling through activated Smo cannot overcome impaired cerebellar cell generation, arguing for an epistatic role of Pals1 in proliferation capacity. Our study identifies Pals1 as a novel intrinsic factor that regulates the generation of cerebellar cells and Pals1 deficiency as a potential inhibitor of overactive mitogenic signaling.

  1. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    Science.gov (United States)

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding either 2 cells in the same layer to increase surface area (β-events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α-events). As the cerebellum grows, therefore, β-events lie upstream of α-events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify inter-mitotic times for β-events on a per-cell basis in post-natal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereological studies. PMID:25668568

  2. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  3. Neurotransplantation therapy and cerebellar reserve.

    Science.gov (United States)

    Cendelin, Jan; Mitoma, Hiroshi; Manto, Mario

    2017-08-10

    Neurotransplantation has been recently the focus of interest as a promising therapy to substitute lost cerebellar neurons and improve cerebellar ataxias. However, since cell differentiation and synaptic formation are required to obtain a functional circuitry, highly integrated reproduction of cerebellar anatomy is not a simple process. Rather than a genuine replacement, recent studies have shown that grafted cells rescue surviving cells from neurodegeneration by exerting trophic effects, supporting mitochondrial function, modulating neuroinflammation, stimulating endogenous regenerative processes, and facilitating cerebellar compensatory properties thanks to neural plasticity. On the other hand, accumulating clinical evidence suggests that the self-recovery capacity is still preserved even if the cerebellum is affected by a diffuse and progressive pathology. We put forward the period with intact recovery capacity as "restorable stage" and the notion of reversal capacity as "cerebellar reserve". The concept of cerebellar reserve is particularly relevant, both theoretically and practically, to target recovery of cerebellar deficits by neurotransplantation. Reinforcing the cerebellar reserve and prolonging the restorable stage can be envisioned as future endpoints of neurotransplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Cerebellar clear cell ependymoma in a 10 year old girl

    Energy Technology Data Exchange (ETDEWEB)

    Thinzar Aye Nyein; Moon, Ah Rim; Hwang, Sun Chul; Hong, Hyun Sook; Lee, A Leum; Chang, Kee Hyun; Kim, Hee Kyung; Chin, Su Sie [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Park, Ji Sang [Soonchunhyang University Gumi Hospital, Gumi (Korea, Republic of)

    2016-01-15

    Clear cell ependymoma (CCE) is a histological rare variant (1–5%) of ependymoma, which is distinguished from other histological subtypes by the presence of fusiform cells arrayed radially around small blood vessels. These alleged perivascular pseudorosettes are significant characteristic features of ependymomas. About 95% of infratentorial ependymomas are found in the fourth ventricle and the remainder occurs as cerebellopontine angle lesions. In previous reports, the cerebellum is found to be a rare location for ependymoma. In this study we report one case of CCE originating from the cerebellar hemisphere, showing unusual morphology on 3T MRI.

  5. Healthy and pathological cerebellar Spiking Neural Networks in Vestibulo-Ocular Reflex.

    Science.gov (United States)

    Antonietti, Alberto; Casellato, Claudia; Geminiani, Alice; D'Angelo, Egidio; Pedrocchi, Alessandra

    2015-01-01

    Since the Marr-Albus model, computational neuroscientists have been developing a variety of models of the cerebellum, with different approaches and features. In this work, we developed and tested realistic artificial Spiking Neural Networks inspired to this brain region. We tested in computational simulations of the Vestibulo-Ocular Reflex protocol three different models: a network equipped with a single plasticity site, at the cortical level; a network equipped with a distributed plasticity, at both cortical and nuclear levels; a network with a pathological plasticity mechanism at the cortical level. We analyzed the learning performance of the three different models, highlighting the behavioral differences among them. We proved that the model with a distributed plasticity produces a faster and more accurate cerebellar response, especially during a second session of acquisition, compared with the single plasticity model. Furthermore, the pathological model shows an impaired learning capability in Vestibulo-Ocular Reflex acquisition, as found in neurophysiological studies. The effect of the different plasticity conditions, which change fast and slow dynamics, memory consolidation and, in general, learning capabilities of the cerebellar network, explains differences in the behavioral outcome.

  6. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    Science.gov (United States)

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease.

  7. Congenital Cerebellar Mixed Germ Cell Tumor Presenting with Hemorrhage in a Newborn

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Mok; Kim, Ji Hye; Yoo, So Young; Park, Won Soon; Jang, Yun Sil; Shin, Hyung Jin; Suh, Yeon Lim [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2008-07-15

    We report here on a neonate with congenital cerebellar mixed germ cell tumor, and this initially presented as cerebellar hemorrhage. Postnatal cranial ultrasonography revealed an echogenic cerebellar mass that exhibited the signal characteristics of hemorrhage rather than tumor on MR images. The short-term follow-up images also suggested a resolving cerebellar hemorrhage. One month later, the neonate developed vomiting. A second set of MR images demonstrated an enlarged mass that exhibited changed signal intensity at the same site, which suggested a neoplasm. Histological examination after the surgical resection revealed a mixed germ cell tumor.

  8. Mechanisms of ethanol-induced death of cerebellar granule cells.

    Science.gov (United States)

    Luo, Jia

    2012-03-01

    Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.

  9. Cerebellar Neural Circuits Involving Executive Control Network Predict Response to Group Cognitive Behavior Therapy in Social Anxiety Disorder.

    Science.gov (United States)

    MinlanYuan; Meng, Yajing; Zhang, Yan; Nie, Xiaojing; Ren, Zhengjia; Zhu, Hongru; Li, Yuchen; Lui, Su; Gong, Qiyong; Qiu, Changjian; Zhang, Wei

    2017-02-02

    Some intrinsic connectivity networks including the default mode network (DMN) and executive control network (ECN) may underlie social anxiety disorder (SAD). Although the cerebellum has been implicated in the pathophysiology of SAD and several networks relevant to higher-order cognition, it remains unknown whether cerebellar areas involved in DMN and ECN exhibit altered resting-state functional connectivity (rsFC) with cortical networks in SAD. Forty-six patients with SAD and 64 healthy controls (HC) were included and submitted to the baseline resting-state functional magnetic resonance imaging (fMRI). Seventeen SAD patients who completed post-treatment clinical assessments were included after group cognitive behavior therapy (CBT). RsFC of three cerebellar subregions in both groups was assessed respectively in a voxel-wise way, and these rsFC maps were compared by two-sample t tests between groups. Whole-brain voxel-wise regression was performed to examine whether cerebellar connectivity networks can predict response to CBT. Lower rsFC circuits of cerebellar subregions compared with HC at baseline (p circuits involving DMN and ECN are possible neuropathologic mechanisms of SAD. Stronger pretreatment cerebellar rsFC circuits involving ECN suggest potential neural markers to predict CBT response.

  10. Neural Induction, Neural Fate Stabilization, and Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Moody

    2002-01-01

    Full Text Available The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.

  11. Encoding of whisker input by cerebellar Purkinje cells

    Science.gov (United States)

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Joël; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-01-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells. We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres. PMID:20724365

  12. Cerebellar and basal ganglion involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I.; Baskan, O.; Haliloglu, M.; Aydingoz, U. [Department of Radiology, Hacettepe University Hospital, Sihhiye 06100, Ankara (Turkey)

    1999-06-01

    Langerhans cell histiocytosis (LCH) is a disease of unknown cause characterised by proliferation of histiocytic granulomas in tissues; the primary cerebral manifestation is diabetes insipidus caused by hypothalamic infiltration. We present a patient in whom, except for the absence of high signal on T 1 weighting in the posterior pituitary, consistent with central diabetes insipidus, MRI showed no evidence of hypothalamic involvement by histiocytosis, despite the long duration of the disease. However, there was bilateral, symmetrical involvement of the cerebellum and globus pallidus in addition to a calvarial lesion. High signal in the cerebellar white matter on T 2-weighted images may represent demyelination, gliosis and cell loss, as previously reported on pathologic examination. (orig.) With 5 figs., 22 refs.

  13. Cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario; Marmolino, Daniele

    2009-08-01

    The term 'cerebellar ataxias' encompasses the various cerebellar disorders encountered during daily practice. Patients exhibit a cerebellar syndrome and can also present with pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. The clinical diagnosis of subtypes of ataxias is complicated by the salient overlap of the phenotypes between genetic subtypes. The identification of the causative mutations of many hereditary ataxias and the development of relevant animal models bring hope for effective therapies in neurodegenerative ataxias. We describe the current classification of cerebellar ataxias and underline the recent discoveries in molecular pathogenesis. Cerebellar disorders can be divided into sporadic forms and inherited diseases. Inherited ataxias include autosomal recessive cerebellar ataxias, autosomal dominant cerebellar ataxias/spinocerebellar ataxia) and episodic ataxias, and X-linked ataxias. From a motor control point of view, the leading theories of ataxia are based on neural representations or 'internal models' to emulate fundamental natural processes such as body motion. Recent molecular advances have direct implications for research and daily practice. We provide a framework for the diagnosis of ataxias. For the first time, the therapeutic agents under investigation are targeted to deleterious pathways.

  14. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    Science.gov (United States)

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  15. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko

    2008-03-01

    Cerebellar Purkinje cells (PCs) play a principal role in motor coordination and motor learning. To fulfill these functions, PCs receive and integrate two types of excitatory inputs, climbing fiber (CF) and parallel fiber (PF). CFs are projection axons from the inferior olive, and convey error signals to PCs. On the other hand, PFs are T-shaped axons of cerebellar granule cells, and convey sensory and motor information carried through the pontocerebellar and spinocerebellar mossy fiber pathways. The most remarkable feature of PC circuits is the highly territorial innervation by these two excitatory afferents. A single climbing CF powerfully and exclusively innervates proximal PC dendrites, whereas hundreds of thousands of PFs innervate distal PC dendrites. Recent studies using gene-manipulated mice have been elucidating that the PC circuitry is formed and maintained by molecular mechanisms that fuel homosynaptic competition among CFs and heterosynaptic competition between CFs and PFs. GluRdelta2 (a PC-specific glutamate receptor) and precerebellin or Cbln1 (a granule cell-derived secretory protein) cooperatively work for selective strengthening of PF-PC synapses, and prevent excessive distal extension of CFs that eventually causes multiple innervation at distal dendrites. In contrast, P/Q-type Ca2+ channels, which mediate Ca2+ influx upon CF activity, selectively strengthen the innervation by a single main CF, and expel PFs and other CFs from proximal dendrites that it innervates. Therefore, we now understand that owing to these mechanisms, territorial innervation by CFs and PFs is properly structured and mono-innervation by CFs is established. Several key issues for future study are also discussed.

  16. A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2016-01-01

    Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

  17. A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification.

    Science.gov (United States)

    Zhao, Jing; Lin, Lo-Yi; Lin, Chih-Min

    2016-01-01

    The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

  18. Segmental identity and cerebellar granule cell induction in rhombomere 1

    Directory of Open Access Journals (Sweden)

    Bell Esther

    2004-06-01

    Full Text Available Abstract Background Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment? Results We show that a Gbx2-positive, Otx2-/Hoxa2-negative territory corresponding to rhombomere 1 forms prior to an identifiable isthmic organiser. Early global overexpression of Hoxa2 at embryonic day 0 has no effect on the expression of isthmic signalling molecules or the allocation of rhombomere 1 territory, but selectively results in the loss of granule cell markers at embryonic day 6 and the depletion of cell bodies from the external granule cell layer. By comparison the trochlear nucleus and locus coeruleus form normally in ventral rhombomere 1 under these conditions. Microsurgery, coupled with electroporation, to target Hoxa2 overexpression to rhombic lip precursors, reveals a profound, autonomous respecification of migration. Rhombic lip derivatives, normally destined to occupy the external granule cell layer, violate the cerebellar boundary to form a ventrolateral nucleus in a position comparable to that occupied by rhombic lip derived neurons in rhombomere 2. Conclusions Different overexpression strategies reveal that the recognition of migration cues by granule cell precursors is dependent on their identity as rhombomere 1 derivatives. Segmental patterning cues operate autonomously within the rhombic lip

  19. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging

    Science.gov (United States)

    Lomoio, S.; Necchi, D.; Scherini, E.

    2012-01-01

    We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2) immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging. PMID:23027343

  20. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging

    Directory of Open Access Journals (Sweden)

    S. Lomoio

    2012-06-01

    Full Text Available We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2 immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging.

  1. Stochastic differential equation model for cerebellar granule cell excitability.

    Science.gov (United States)

    Saarinen, Antti; Linne, Marja-Leena; Yli-Harja, Olli

    2008-02-29

    Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has formed to a large extent the basis for building biophysically and anatomically detailed models of neurons. However, the deterministic Hodgkin-Huxley formalism does not take into account the stochastic behavior of voltage-dependent ion channels. Ion channel stochasticity is shown to be important in adjusting the transmembrane voltage dynamics at or close to the threshold of action potential firing, at the very least in small neurons. In order to achieve a better understanding of the dynamic behavior of a neuron, a new modeling and simulation approach based on stochastic differential equations and Brownian motion is developed. The basis of the work is a deterministic one-compartmental multi-conductance model of the cerebellar granule cell. This model includes six different types of voltage-dependent conductances described by Hodgkin-Huxley formalism and simple calcium dynamics. A new model for the granule cell is developed by incorporating stochasticity inherently present in the ion channel function into the gating variables of conductances. With the new stochastic model, the irregular electrophysiological activity of an in vitro granule cell is reproduced accurately, with the same parameter values for which the membrane potential of the original deterministic model exhibits regular behavior. The irregular electrophysiological activity includes experimentally observed random subthreshold oscillations, occasional spontaneous spikes, and clusters of action potentials. As a conclusion, the new stochastic differential equation model of the cerebellar granule cell excitability is found to expand the range of dynamics

  2. Determinants of action potential propagation in cerebellar Purkinje cell axons.

    Science.gov (United States)

    Monsivais, Pablo; Clark, Beverley A; Roth, Arnd; Häusser, Michael

    2005-01-12

    Axons have traditionally been viewed as highly faithful transmitters of action potentials. Recently, however, experimental evidence has accumulated to support the idea that under some circumstances axonal propagation may fail. Cerebellar Purkinje neurons fire highfrequency simple spikes, as well as bursts of spikes in response to climbing fiber activation (the "complex spike"). Here we have visualized the axon of individual Purkinje cells to directly investigate the relationship between somatic spikes and axonal spikes using simultaneous somatic whole-cell and cell-attached axonal patch-clamp recordings at 200-800 microm from the soma. We demonstrate that sodium action potentials propagate at frequencies up to approximately 260 Hz, higher than simple spike rates normally observed in vivo. Complex spikes, however, did not propagate reliably, with usually only the first and last spikes in the complex spike waveform being propagated. On average, only 1.7 +/- 0.2 spikes in the complex spike were propagated during resting firing, with propagation limited to interspike intervals above approximately 4 msec. Hyperpolarization improved propagation efficacy without affecting total axonal spike number, whereas strong depolarization could abolish propagation of the complex spike. These findings indicate that the complex spike waveform is not faithfully transmitted to downstream synapses and that propagation of the climbing fiber response may be modulated by background activity.

  3. Diversity and complexity of roles of granule cells in the cerebellar cortex. Editorial.

    Science.gov (United States)

    Manto, Mario; De Zeeuw, Chris I

    2012-03-01

    The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.

  4. Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo

    NARCIS (Netherlands)

    Canto, Cathrin B; Witter, L.; De Zeeuw, C.I.

    2016-01-01

    Cerebellar nuclei neurons integrate sensorimotor information and form the final output of the cerebellum, projecting to premotor brainstem targets. This implies that, in contrast to specialized neurons and interneurons in cortical regions, neurons within the nuclei encode and integrate complex

  5. Kv3.3 channels harbouring a mutation of spinocerebellar ataxia type 13 alter excitability and induce cell death in cultured cerebellar Purkinje cells.

    Science.gov (United States)

    Irie, Tomohiko; Matsuzaki, Yasunori; Sekino, Yuko; Hirai, Hirokazu

    2014-01-01

    The cerebellum plays crucial roles in controlling sensorimotor functions. The neural output from the cerebellar cortex is transmitted solely by Purkinje cells (PCs), whose impairment causes cerebellar ataxia. Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominant disease, and SCA13 patients exhibit cerebellar atrophy and cerebellar symptoms. Recent studies have shown that missense mutations in the voltage-gated K(+) channel Kv3.3 are responsible for SCA13. In the rodent brain, Kv3.3 mRNAs are expressed most strongly in PCs, suggesting that the mutations severely affect PCs in SCA13 patients. Nevertheless, how these mutations affect the function of Kv3.3 in PCs and, consequently, the morphology and neuronal excitability of PCs remains unclear. To address these questions, we used lentiviral vectors to express mutant mouse Kv3.3 (mKv3.3) channels harbouring an R424H missense mutation, which corresponds to the R423H mutation in the Kv3.3 channels of SCA13 patients, in mouse cerebellar cultures. The R424H mutant-expressing PCs showed decreased outward current density, broadened action potentials and elevated basal [Ca(2+)]i compared with PCs expressing wild-type mKv3.3 subunits or those expressing green fluorescent protein alone. Moreover, expression of R424H mutant subunits induced impaired dendrite development and cell death selectively in PCs, both of which were rescued by blocking P/Q-type Ca(2+) channels in the culture conditions. We therefore concluded that expression of R424H mutant subunits in PCs markedly affects the function of endogenous Kv3 channels, neuronal excitability and, eventually, basal [Ca(2+)]i, leading to cell death. These results suggest that PCs in SCA13 patients also exhibit similar defects in PC excitability and induced cell death, which may explain the pathology of SCA13.

  6. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui, E-mail: fuyh@fudan.edu.cn

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  7. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex.

    Science.gov (United States)

    Gmaz, Jimmie M; McKay, Bruce E

    2014-02-07

    Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  9. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning

    Science.gov (United States)

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval discrimination procedure in which one tone signaled a 250-msec conditioned stimulus-unconditioned stimulus (CS-US) interval and a second tone signaled a 750-msec CS-US interval. All rabbits showed conditioned responses to each CS with mean onset and peak latencies that coincided with the CS-US interval. Many anterior lobe Purkinje cells showed significant learning-related activity after eyeblink conditioning to one or both of the CSs. More Purkinje cells responded with inhibition than with excitation to CS presentation. In addition, when the firing patterns of all conditioning-related Purkinje cells were pooled, it appeared that the population showed a pattern of excitation followed by inhibition during the CS-US interval. Using cholera toxin-conjugated horseradish peroxidase, Purkinje cells in recording areas were found to project to the interpositus nucleus. These data support previous studies that have suggested a role for the anterior cerebellar cortex in eyeblink conditioning as well as models of cerebellar-mediated CR timing that postulate that Purkinje cell activity inhibits conditioned response (CR) generation during the early portion of a trial by inhibiting the deep cerebellar nuclei and permits CR generation during the later portion of a trial through disinhibition of the cerebellar nuclei. PMID:15897252

  10. Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro.

    Science.gov (United States)

    Spatkowski, Gabriele; Schilling, Karl

    2003-05-01

    Inhibitory interneurons in the molecular layer of the cerebellar cortex play an essential role in cerebellar physiology by providing feed-forward inhibition to efferent Purkinje cells. Morphologic characteristics have been utilized to classify these cells as either basket cells or stellate cells. Conflicting evidence exists as to whether these cells are of distinct lineage and develop by employing discrete genetic programs, or whether their characteristic morphologic differences result from external cues that they encounter only after they have settled in their final territory in the molecular layer. We used primary dissociated cerebellar cultures established from early postnatal mice to study dendritogenesis of basket/stellate cells, identified by immunostaining for parvalbumin, under experimentally controlled conditions. We find that the radial axonal orientation of stem dendrites is non-random, suggesting a cell-intrinsic component defining this morphologic trait. In contrast, the expanse and complexity of basket/stellate cell dendrites is modulated by the granule cell derived neurotrophin, BDNF. BDNF-induced morphogenetic effects decline with ongoing development. Overall, our data do not provide evidence for a distinct lineage or genetic makeup of cerebellar molecular layer inhibitory interneurons.

  11. Voltage-gated sodium channels in cerebellar Purkinje cells of mormyrid fish

    NARCIS (Netherlands)

    M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.R.W. Hansel (Christian)

    2006-01-01

    textabstractCerebellar Purkinje cells of mormyrid fish differ in some morphological as well as physiological parameters from their counterparts in mammals. Morphologically, Purkinje cells of mormyrids have larger dendrites that are characterized by a lower degree of branching in the molecular layer.

  12. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  13. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  14. Axonal abnormalities in cerebellar Purkinje cells of the Ts65Dn mouse.

    Science.gov (United States)

    Necchi, Daniela; Lomoio, Selene; Scherini, Elda

    2008-10-31

    Ts65Dn mice are a genetic model for Down syndrome. Among others, these mice have cerebellar pathology features which parallel those seen in Down syndrome patients. Both individuals with Down syndrome and Ts65Dn mice have reduced cerebellar volume and numbers of granule and Purkinje cells. In this report, we describe morphological abnormalities of axons of Purkinje cells in the cerebellum of Ts65Dn mice, by using anti-calbindin immunocytochemistry. A consistent number of Purkinje cells shows axons bearing giant varicosities along their transit through the granular layer. The cerebellar arbor vitae made by fasciculated Purkinje cell axons has a patchy appearance, some tracks being devoid of calbindin staining. The infraganglionic plexus, formed by recurrent collaterals of Purkinje cell axons, has enormously increased density, which is evidence for a compensatory reaction to degeneration of distal segments of axons. These alterations are accompanied by strong glial reaction as evidenced by GFAP immunocytochemistry. Moreover, the alterations are more consistent in the anterior lobules of the vermis and intermediate cortex. The axonal pathology of Purkinje cells may explain the impairment in cerebellar functions observed in Ts65Dn mice at the adulthood.

  15. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    Science.gov (United States)

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  16. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells

    OpenAIRE

    Hull, Court; Chu, YunXiang; Thanawala, Monica; Regehr, Wade G.

    2013-01-01

    Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, while GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can...

  17. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, G H; Hösli, E; Belhage, B;

    1991-01-01

    GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA/benzodiazepine/chloride channel complex. At the...

  18. Role of synchronous activation of cerebellar purkinje cell ensembles in multi-joint movement control

    NARCIS (Netherlands)

    T.M. Hoogland (Tycho); J.R. de Gruijl (Jornt); L. Witter (Laurens); M.I. Canto (Marcia Irene); C.I. de Zeeuw (Chris)

    2015-01-01

    textabstractIt is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated

  19. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    NARCIS (Netherlands)

    Hoogland, Tycho M; De Gruijl, Jornt R; Witter, Laurens; Canto, Cathrin B; De Zeeuw, Chris I

    2015-01-01

    It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what

  20. [Mathematical simulation of induction of long-term depression in cerebellar Purkinje cells].

    Science.gov (United States)

    Murzina, G B

    2003-01-01

    Mechanisms of associative and homosynaptic long-term depression (LTD) in cerebellar Purkinje cells are discussed. The possibility of LTD induction related to a decrease in efficacy of AMPA receptors through either their dephosphorylation or phosphorylation is investigated by mathematical simulation.

  1. Mathematical simulation of the induction of long-term depression in cerebellar Purkinje cells.

    Science.gov (United States)

    Murzina, G B

    2004-02-01

    The question of the mechanisms underlying the induction of associative and homosynaptic long-term depression in cerebellar Purkinje cells is addressed. Mathematical simulation was used to investigate the possibility that long-term depression, which is associated with a decrease in the efficiency of AMPA receptors, could be induced both by phosphorylation and dephosphorylation of these receptors.

  2. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N;

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  3. Role of synchronous activation of cerebellar purkinje cell ensembles in multi-joint movement control

    NARCIS (Netherlands)

    T.M. Hoogland (Tycho); J.R. de Gruijl (Jornt); L. Witter (Laurens); M.I. Canto (Marcia Irene); C.I. de Zeeuw (Chris)

    2015-01-01

    textabstractIt is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated

  4. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    NARCIS (Netherlands)

    Hoogland, Tycho M; De Gruijl, Jornt R; Witter, Laurens; Canto, Cathrin B; De Zeeuw, Chris I

    2015-01-01

    It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what ext

  5. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  6. Time‐invariant feed‐forward inhibition of Purkinje cells in the cerebellar cortex in vivo

    Science.gov (United States)

    Blot, Antonin; de Solages, Camille; Ostojic, Srdjan; Szapiro, German; Hakim, Vincent; Léna, Clément

    2016-01-01

    Key points We performed extracellular recording of pairs of interneuron–Purkinje cells in vivo.A single interneuron produces a substantial, short‐lasting, inhibition of Purkinje cells.Feed‐forward inhibition is associated with characteristic asymmetric cross‐correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. Abstract Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed‐forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short‐lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high‐frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output. PMID:26918702

  7. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  8. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  9. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture.

    Directory of Open Access Journals (Sweden)

    Daiane Gil Franco

    Full Text Available The constitutive activation of nuclear factor-κB (NF-κB, a key transcription factor involved in neuroinflammation, is essential for the survival of neurons in situ and of cerebellar granule cells in culture. Melatonin is known to inhibit the activation of NF-κB and has a cytoprotective function. In this study, we evaluated whether the cytoprotective effect of melatonin depends on the state of activation of a mixed cerebellar culture that is composed predominantly of granule cells; we tested the effect of melatonin on cultured rat cerebellar cells stimulated or not with lipopolysaccharide (LPS. The addition of melatonin (0.1 nM-1 µM reduced the survival of naïve cells while inhibiting LPS-induced cell death. Melatonin (100 nM transiently (15 min inhibited the nuclear translocation of both NF-κB dimers (p50/p50, p50/RelA and, after 60 min, increased the activation of p50/RelA. Melatonin-induced p50/RelA activity in naïve cells resulted in the transcription of inducible nitric oxide synthase (iNOS and the production of NO. Otherwise, in cultures treated with LPS, melatonin blocked the LPS-induced activation of p50/RelA and the reduction in p50/p50 levels and inhibited iNOS expression and NO synthesis. Therefore, melatonin in vehicle-treated cells induces cell death, while it protects against LPS-induced cytotoxicity. In summary, we confirmed that melatonin is a neuroprotective drug when cerebellar cells are challenged; however, melatonin can also lead to cell death when the normal balance of the NF-κB pathway is disturbed. Our data provide a mechanistic basis for understanding the influence of cell context on the final output response of melatonin.

  10. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Ma Wei-Hsien

    2011-08-01

    Full Text Available Abstract Background Spinocerebellar ataxia (SCA refers to a disease entity in which polyglutamine aggregates are over-produced in Purkinje cells (PCs of the cerebellum as well as other neurons in the central nervous system, and the formation of intracellular polyglutamine aggregates result in the loss of neurons as well as deterioration of motor functions. So far there is no effective neuroprotective treatment for this debilitating disease although numerous efforts have been made. Mesenchymal stem cells (MSCs possess multi-lineage differentiation potentials as well as immuno-modulatory properties, and are theoretically good candidates for SCA treatment. The purpose of this study is to investigate whether transplantation of human MSCs (hMSCs can rescue cerebellar PCs and ameliorate motor function deterioration in SCA in a pre-clinical animal model. Method Transgenic mice bearing poly-glutamine mutation in ataxin-2 gene (C57BL/6J SCA2 transgenic mice were serially transplanted with hMSCs intravenously or intracranially before and after the onset of motor function loss. Motor function of mice was evaluated by an accelerating protocol of rotarod test every 8 weeks. Immunohistochemical stain of whole brain sections was adopted to demonstrate the neuroprotective effect of hMSC transplantation on cerebellar PCs and engraftment of hMSCs into mice brain. Results Intravenous transplantation of hMSCs effectively improved rotarod performance of SCA2 transgenic mice and delayed the onset of motor function deterioration; while intracranial transplantation failed to achieve such neuroprotective effect. Immunohistochemistry revealed that intravenous transplantation was more effective in the preservation of the survival of cerebellar PCs and engraftment of hMSCs than intracranial injection, which was compatible to rotarod performance of transplanted mice. Conclusion Intravenous transplantation of hMSCs can indeed delay the onset as well as improve the motor

  11. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  12. Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias.

    Science.gov (United States)

    Mitoma, Hiroshi; Adhikari, Keya; Aeschlimann, Daniel; Chattopadhyay, Partha; Hadjivassiliou, Marios; Hampe, Christiane S; Honnorat, Jérôme; Joubert, Bastien; Kakei, Shinji; Lee, Jongho; Manto, Mario; Matsunaga, Akiko; Mizusawa, Hidehiro; Nanri, Kazunori; Shanmugarajah, Priya; Yoneda, Makoto; Yuki, Nobuhiro

    2016-04-01

    In the last few years, a lot of publications suggested that disabling cerebellar ataxias may develop through immune-mediated mechanisms. In this consensus paper, we discuss the clinical features of the main described immune-mediated cerebellar ataxias and address their presumed pathogenesis. Immune-mediated cerebellar ataxias include cerebellar ataxia associated with anti-GAD antibodies, the cerebellar type of Hashimoto's encephalopathy, primary autoimmune cerebellar ataxia, gluten ataxia, Miller Fisher syndrome, ataxia associated with systemic lupus erythematosus, and paraneoplastic cerebellar degeneration. Humoral mechanisms, cell-mediated immunity, inflammation, and vascular injuries contribute to the cerebellar deficits in immune-mediated cerebellar ataxias.

  13. DISP3 promotes proliferation and delays differentiation of neural progenitor cells.

    Science.gov (United States)

    Zíková, Martina; Konířová, Jana; Ditrychová, Karolína; Corlett, Alicia; Kolář, Michal; Bartůněk, Petr

    2014-11-03

    DISP3 (PTCHD2), a sterol-sensing domain-containing protein, is highly expressed in neural tissue but its role in neural differentiation is unknown. In the present study we used a multipotent cerebellar progenitor cell line, C17.2, to investigate the impact of DISP3 on the proliferation and differentiation of neural precursors. We found that ectopically expressed DISP3 promotes cell proliferation and alters expression of genes that are involved in tumorigenesis. Finally, the differentiation profile of DISP3-expressing cells was altered, as evidenced by delayed expression of neural specific markers and a reduced capacity to undergo neural differentiation. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Schousboe, A.; Frandsen, A.; Drejer, J. (Univ. of Copenhagen (Denmark))

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  15. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  16. A new Purkinje cell antibody (anti-Ca associated with subacute cerebellar ataxia: immunological characterization

    Directory of Open Access Journals (Sweden)

    Horn Sigrun

    2010-03-01

    Full Text Available Abstract We report on a newly discovered serum and cerebrospinal fluid (CSF reactivity to Purkinje cells (PCs associated with subacute inflammatory cerebellar ataxia. The patient, a previously healthy 33-year-old lady, presented with severe limb and gait ataxia, dysarthria, and diplopia two weeks after she had recovered from a common cold. Immunohistochemical studies on mouse, rat, and monkey brain sections revealed binding of a high-titer (up to 1:10,000 IgG antibody to the cerebellar molecular layer, Purkinje cell (PC layer, and white matter. The antibody is highly specific for PCs and binds to the cytoplasm as well as to the inner side of the membrane of PC somata, dendrites and axons. It is produced by B cell clones within the CNS, belongs to the IgG1 subclass, and activates complement in vitro. Western blotting of primate cerebellum extract revealed binding of CSF and serum IgG to an 80-97 kDa protein. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic antibodies known to be associated with cerebellar ataxia. Screening of >9000 human full length proteins by means of a protein array and additional confirmatory experiments revealed Rho GTPase activating protein 26 (ARHGAP26, GRAF, oligophrenin-1-like protein as the target antigen. Preadsorption of the patient's serum with human ARHGAP26 but not preadsorption with other proteins resulted in complete loss of PC staining. Our findings suggest a role of autoimmunity against ARHGAP26 in the pathogenesis of subacute inflammatory cerebellar ataxia, and extend the panel of diagnostic markers for this devastating disease.

  17. Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture.

    Science.gov (United States)

    Salas, Elvira; Carrasquero, Luz María G; Olivos-Oré, Luis A; Bustillo, Diego; Artalejo, Antonio R; Miras-Portugal, Maria Teresa; Delicado, Esmerilda G

    2013-12-01

    The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.

  18. Neural correlates of cerebellar-mediated timing during finger tapping in children with fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Lindie du Plessis

    2015-01-01

    Conclusions: The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.

  19. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius).

    Science.gov (United States)

    Armién, A G; McRuer, D L; Ruder, M G; Wünschmann, A

    2013-01-01

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective foliation. Heterotopic neurons were identified as immature Purkinje cells by their size, location, immunoreactivity for calbindin D-28 K, and ultrastructural features. The authors suggest that this cerebellar abnormality was likely due to a disruption of molecular mechanisms that dictate Purkinje cell migration, placement, and maturation in early embryonic development. The etiology of this condition remains undetermined. Congenital central nervous system disorders have rarely been reported in birds.

  20. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  1. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss.

    Science.gov (United States)

    Ramadoss, Jayanth; Lunde, Emilie R; Ouyang, Nengtai; Chen, Wei-Jung A; Cudd, Timothy A

    2008-08-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.

  2. Cerebellar Granule Cells: Dense, Rich and Evolving Representations

    NARCIS (Netherlands)

    Badura, Aleksandra; De Zeeuw, Chris I

    2017-01-01

    For half a century it was assumed that granule cells use ultra-sparse encoding, but now in vivo calcium-imaging studies have shown that large ensembles of granule cells provide dense signals, which themselves evolve and adapt during training.

  3. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse

    Science.gov (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian

    2008-01-01

    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  4. Properties and expression of Kv3 channels in cerebellar Purkinje cells.

    Science.gov (United States)

    Sacco, Tiziana; De Luca, Annarita; Tempia, Filippo

    2006-10-01

    In cerebellar Purkinje cells, Kv3 potassium channels are indispensable for firing at high frequencies. In Purkinje cells from young mice (P4-P7), Kv3 currents, recorded in whole-cell in slices, activated at -30 mV, with rapid activation and deactivation kinetics, and they were partially blocked by blood depressing substance-I (BDS-I, 1 microM). At positive potentials, Kv3 currents were slowly but completely inactivating, while the recovery from inactivation was about eightfold slower, suggesting that a previous firing activity or a small change of the resting potential could in principle accumulate inactivated Kv3 channels, thereby finely tuning Kv3 current availability for subsequent action potentials. Single-cell RT-PCR analysis showed the expression by all Purkinje cells (n=10 for each subunit) of Kv3.1, Kv3.3 and Kv3.4 mRNA, while Kv3.2 was not expressed. These results add to the framework for interpreting the physiological function and the molecular determinants of Kv3 currents in cerebellar Purkinje cells.

  5. Identification of MMP-2 as a novel enhancer of cerebellar granule cell proliferation.

    Science.gov (United States)

    Verslegers, Mieke; Van Hove, Inge; Buyens, Tom; Dekeyster, Eline; Knevels, Ellen; Moons, Lieve

    2013-11-01

    During the first postnatal days in the mouse, granule cells (GCs) undergo massive proliferation, which then gradually decreases. Matrix metalloproteinase-2 (MMP-2), a Zn(2+)-dependent proteolytic enzyme, is involved in a wide variety of pathological and physiological pathways. Evidence for a role of this proteinase in cell proliferation is emerging, reporting its involvement in pathological proliferation, as well as during neurogenesis and developmental proliferation of non-CNS tissues. In this study, MMP-2 protein expression was observed within the early postnatal cerebellar cortex, predominantly in Purkinje cells and within the GC proliferative zone, i.e. the superficial external granular layer (EGL). Consistently, the spatiotemporal MMP-2 mRNA and protein profiles highly correlated with the peak of GC precursor (GCP) proliferation and detailed morphometric analyses of MMP-2 deficient cerebella revealed a thinner EGL due to a decreased GCP proliferation. BrdU cumulative experiments, performed to measure the length of different cell cycle phases, further disclosed a transiently prolonged S-phase in MMP-2 deficient GCPs during early cerebellar development. In consequence, MMP-2 deficient animals displayed a transient delay in GC migration towards the IGL. In conclusion, our findings provide important evidence for a role for MMP-2 in neuronal proliferation and cell cycle kinetics in the developing CNS.

  6. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    and establishment of synaptic transmission. Here, we used calcium imaging in slice cultures of the postnatal cerebellum, and observe spontaneous propagating calcium waves in NeuN-positive granule-like cells. Wave formation was blocked by TTX and the AMPA antagonist NBQX, but persisted after NMDA receptor blockade...

  7. Cerebellar Mutism

    OpenAIRE

    1994-01-01

    Of a series of 15 children operated for cerebellar tumor at University Hospital Rotterdam-Dijkzigt, The Netherlands, 5 developed “cerebellar mutism” and subsequent dysarthria after surgery, and 2 had mild speech problems.

  8. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    Science.gov (United States)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  9. Common pediatric cerebellar tumors: correlation between cell densities and apparent diffusion coefficient metrics.

    Science.gov (United States)

    Koral, Korgün; Mathis, Derek; Gimi, Barjor; Gargan, Lynn; Weprin, Bradley; Bowers, Daniel C; Margraf, Linda

    2013-08-01

    To test whether there is correlation between cell densities and apparent diffusion coefficient (ADC) metrics of common pediatric cerebellar tumors. This study was reviewed for issues of patient safety and confidentiality and was approved by the Institutional Review Board of the University of Texas Southwestern Medical Center and was compliant with HIPAA. The need for informed consent was waived. Ninety-five patients who had preoperative magnetic resonance imaging and surgical pathologic findings available between January 2003 and June 2011 were included. There were 37 pilocytic astrocytomas, 34 medulloblastomas (23 classic, eight desmoplastic-nodular, two large cell, one anaplastic), 17 ependymomas (13 World Health Organization [WHO] grade II, four WHO grade III), and seven atypical teratoid rhabdoid tumors. ADCs of solid tumor components and normal cerebellum were measured. Tumor-to-normal brain ADC ratios (hereafter, ADC ratio) were calculated. The medulloblastomas and ependymomas were subcategorized according to the latest WHO classification, and tumor cellularity was calculated. Correlation was sought between cell densities and mean tumor ADCs, minimum tumor ADCs, and ADC ratio. When all tumors were considered together, negative correlation was found between cellularity and mean tumor ADCs (ρ = -0.737, P correlation between cellularity and ADC ratio. Negative correlation was found between cellularity and minimum tumor ADC in atypical teratoid rhabdoid tumors (ρ = -0.786, P correlation was found between cellularity and mean tumor ADC and ADC ratio. There was no correlation between the ADC metrics and cellularity of the pilocytic astrocytomas, medulloblastomas, and ependymomas. Negative correlation was found between cellularity and ADC metrics of common pediatric cerebellar tumors. Although ADC metrics are useful in the preoperative diagnosis of common pediatric cerebellar tumors and this utility is generally attributed to differences in cellularity of tumors

  10. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice.

    Science.gov (United States)

    Todorov, Boyan; Kros, Lieke; Shyti, Reinald; Plak, Petra; Haasdijk, Elize D; Raike, Robert S; Frants, Rune R; Hess, Ellen J; Hoebeek, Freek E; De Zeeuw, Chris I; van den Maagdenberg, Arn M J M

    2012-03-01

    The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.

  11. Regulation and functional roles of rebound potentiation at cerebellar stellate cell - Purkinje cell synapses

    Directory of Open Access Journals (Sweden)

    Tomoo eHirano

    2014-02-01

    Full Text Available Purkinje cells receive both excitatory and inhibitory synaptic inputs and send sole output from the cerebellar cortex. Long-term depression, a type of synaptic plasticity, at excitatory parallel fiber–Purkinje cell synapses has been studied extensively as a primary cellular mechanism of motor learning. On the other hand, at inhibitory synapses on a Purkinje cell, postsynaptic depolarization induces long-lasting potentiation of GABAergic synaptic transmission. This synaptic plasticity is called rebound potentiation (RP, and its molecular regulatory mechanisms have been studied. The increase in intracellular Ca2+ concentration caused by depolarization induces RP through enhancement of GABAA receptor (GABAAR responsiveness. RP induction depends on binding of GABAAR with GABAAR associated protein (GABARAP which is regulated by Ca2+/calmodulin-dependent kinase II (CaMKII. Whether RP is induced or not is determined by the balance between phosphorylation and de-phosphorylation activities regulated by intracellular Ca2+ and by metabotropic GABA and glutamate receptors. Recent studies have revealed that the subunit composition of CaMKII has significant impact on RP induction. A Purkinje cell expresses both alpha- and beta-CaMKII, and the latter has much higher affinity for Ca2+/calmodulin than the former. It was shown that when the relative amount of alpha- to beta-CaMKII is large, RP induction is suppressed. The functional significance of RP has also been studied using transgenic mice in which a peptide inhibiting association of GABARAP and GABAAR is expressed selectively in Purkinje cells. The transgenic mice show abrogation of RP and subnormal adaptation of vestibulo-ocular reflex, a type of motor learning. Thus, RP is involved in a certain type of motor learning.

  12. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    Science.gov (United States)

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  13. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  14. Climbing fiber synapse elimination in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko; Kano, Masanobu

    2011-11-01

    Innervation of Purkinje cells (PCs) by multiple climbing fibers (CFs) is refined into mono-innervation during the first three postnatal weeks of rodents' lives. In this review article, we will integrate the current knowledge on developmental process and mechanisms of CF synapse elimination. In the 'creeper' stage of CF innervation (postnatal day 0 (P0)∼), CFs creep among PC somata to form transient synapses on immature dendrites. In the 'pericellular nest' stage (P5∼), CFs densely surround and innervate PC somata. CF innervation is then displaced to the apical portion of PC somata in the 'capuchon' stage (P9∼), and translocate to dendrites in the 'dendritic' (P12∼) stage. Along with the developmental changes in CF wiring, functional and morphological distinctions become larger among CF inputs. PCs are initially innervated by more than five CFs with similar strengths (∼P3). During P3-7 only a single CF is selectively strengthened (functional differentiation), and it undergoes dendritic translocation from P9 on (dendritic translocation). Following the functional differentiation, perisomatic CF synapses are eliminated nonselectively; this proceeds in two distinct phases. The early phase (P7-11) is conducted independently of parallel fiber (PF)-PC synapse formation, while the late phase (P12-17) critically depends on it. The P/Q-type voltage-dependent Ca(2+) channel in PCs triggers selective strengthening of single CF inputs, promotes dendritic translocation of the strengthened CFs, and drives the early phase of CF synapse elimination. In contrast, the late phase is mediated by the mGluR1-Gαq-PLCβ4-PKCγ signaling cascade in PCs driven at PF-PC synapses, whose structural connectivity is stabilized and maintained by the GluRδ2-Cbln1-neurexin system.

  15. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  16. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Ito-Ishida, Aya; Kakegawa, Wataru; Kohda, Kazuhisa; Miura, Eriko; Okabe, Shigeo; Yuzaki, Michisuke

    2014-04-01

    The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.

  17. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1987-01-01

    . It was found that the cytoplasmic density of smooth endoplasmic reticulum was decreased, while the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles and coated vesicles was greatly enhanced after exposure of the cells to THIP (150 microM) for only 1 hr. In cerebellar granule cells...

  18. Depletion of polyamines prevents the neurotrophic activity of the GABA-agonist THIP in cultured rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Abraham, J H; Hansen, Gert Helge; Seiler, N

    1993-01-01

    Effects of polyamine depletion by alpha-difluoromethylornithine (DFMO) were studied on the GABA-agonist mediated enhancement of the morphological development of cultured rat cerebellar granule cells. An increase in the number of neurite extending cells and in the cytoplasmic density of organelles...... endoplasmic reticulum, Golgi apparatus and different types of vesicles was prevented by the exposure to DFMO....

  19. Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells.

    Science.gov (United States)

    Llorente, Ricardo; Gallardo, Meritxell López; Berzal, Alvaro Llorente; Prada, Carmen; Garcia-Segura, Luis Miguel; Viveros, María-Paz

    2009-05-01

    Adult animals submitted to a single prolonged episode of maternal deprivation [24h, postnatal day 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. According to the neurodevelopmental theory, these behavioral deficits might be mediated by detrimental neurodevelopmental processes that might be associated, at least partially, with stress-induced corticosterone responses. In order to address this hypothesis, we have focused on the hippocampus and cerebellar cortex, two brain regions that show high density of glucocorticoid receptors, and analyzed possible neuronal and glial alterations by immunohistochemical techniques. To evaluate the presence of degenerated neurons we used Fluoro-Jade-C (FJ-C) staining and for the study of astrocytes we employed glial fibrillary acidic protein (GFAP). Within control animals, females showed significantly more GFAP positive cells than males and a trend towards more FJ-C positive cells. Maternal deprivation induced neuronal degeneration and astroglial changes in the hippocampus and cerebellar cortex of neonatal rats that, in general, were more marked in males. This differential effect may be attributable to a greater vulnerability of males to this kind of early environmental insult and/or to sex-dependent differences in the onset and/or progression of the effects. The present experimental procedure may be instrumental in elucidating sex-dependent mechanisms of neurodevelopmental psychiatric disorders with a basis in early environmental insults.

  20. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting.

    Science.gov (United States)

    Furuya, S; Makino, A; Hirabayashi, Y

    1998-11-01

    We report here a novel cell culture protocol which facilitates in vitro survival and dendritic differentiation of cerebellar Purkinje cells in a monolayer, mixed culture setting. We found that the type of culture medium is a critical factor for the maintenance of these cells. Purkinje cells present in the single cell suspension of embryonic rat cerebellum were best maintained in a medium based on Dulbecco's modified Eagle's medium (DMEM)/F-12 without the addition of known neurotrophic factors. These cells maintained in DMEM/F-12-based media displayed an approximately 2.5-3.5-fold increase in survival compared with cells maintained in the widely used Basal Medium Eagle's (BME)-based serum-free culture medium with the same supplements. This novel protocol permits not only enhanced survival but also accelerated, improved dendritic differentiation of these cells. Purkinje cells developed highly branched spiny dendrites by 14-16 days in vitro, which matches the time course of the dendritic growth of these cells in vivo. The Purkinje cells expressed metabotropic glutamate receptor 1alpha in the cell bodies and branched dendrites, and the intradendritic calcium concentration increased when trans-ACPD, a selective agonist of this receptor, was applied. This novel protocol allows the development of functional branched dendrites and therefore is useful for electrophysiological and ion-imaging studies on dendrites of Purkinje cells grown in vitro.

  1. Growth hormone-releasing peptide-6 inhibits cerebellar cell death in aged rats.

    Science.gov (United States)

    Pañeda, Covadonga; Arroba, Ana I; Frago, Laura M; Holm, Anne Mette; Rømer, John; Argente, Jesús; Chowen, Julie A

    2003-08-26

    Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.

  2. Neural Stem Cells and Ischemic Brain

    OpenAIRE

    Zhang, ZhengGang; Chopp, Michael

    2016-01-01

    Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review...

  3. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    Science.gov (United States)

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  4. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.

    Science.gov (United States)

    McKay, B E; Turner, R W

    2004-08-01

    The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability to regulate Ca(2+) spike-dependent burst output. Here we identify the role of Kv3 K(+) channels in the regulation of Na(+) and Ca(2+) spike discharge, as well as burst output, using somatic and dendritic recordings in rat cerebellar Purkinje cells. Kv3 currents pharmacologically isolated in outside-out somatic membrane patches accounted for approximately 40% of the total K(+) current, were very fast and high voltage activating, and required more than 1 s to fully inactivate. Kv3 currents were differentiated from other tetraethylammonium-sensitive currents to establish their role in Purkinje cells under physiological conditions with current-clamp recordings. Dual somatic-dendritic recordings indicated that Kv3 channels repolarize Na(+) and Ca(2+) spikes, enabling high-frequency discharge for both types of cell output. We further show that during burst output Kv3 channels act together with large-conductance Ca(2+)-activated K(+) channels to ensure an effective coupling between Ca(2+) and Na(+) spike discharge by preventing Na(+) spike inactivation. By contributing significantly to the repolarization of Na(+) and especially Ca(2+) spikes, our data reveal a novel function for Kv3 K(+) channels in the maintenance of high-frequency burst output for cerebellar Purkinje cells.

  5. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  6. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    Directory of Open Access Journals (Sweden)

    Chris I De Zeeuw

    2015-07-01

    Full Text Available Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the Bergmann glial cell in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.

  7. The postnatal development of cerebellar Purkinje cells in the Gottingen minipig estimated with a new stereological sampling technique--the vertical bar fractionator

    DEFF Research Database (Denmark)

    Jelsing, Jacob; Gundersen, Hans Jørgen Gottlieb; Nielsen, Rune

    2006-01-01

    The postnatal development of total number and perikaryon volume of cerebellar Purkinje cells was estimated in the Gottingen minipig cerebellar cortex using a new stereological approach, the vertical bar fractionator. Data were obtained from the brains of five neonate and five adult female Gotting...

  8. Cytotoxic CD8+ T cells and CD138+ plasma cells prevail in cerebrospinal fluid in non-paraneoplastic cerebellar ataxia with contactin-associated protein-2 antibodies

    Directory of Open Access Journals (Sweden)

    Melzer Nico

    2012-07-01

    Full Text Available Abstract Objective The purpose of this paper is to report a patient with otherwise unexplained cerebellar ataxia with serum antibodies against contactin-associated protein-2 (CASPR-2 and provide a detailed description of the composition of cellular infiltrates in the cerebrospinal fluid (CSF compared to the peripheral blood (PB. CASPR-2 antibodies strongly labeling axons of cerebellar granule neurons have recently been identified in sera from nine patients with otherwise unexplained progressive cerebellar ataxia with mild to severe cerebellar atrophy. Design This is a report of a single case. Methods The study methods used were neurologic examination, magnetic resonance imaging, fluorodeoxyglucose positron emisson tomography, lumbar puncture and multicolor flow-cytometry. Results A 23-year-old Caucasian male presented with a two-year history of a progressive cerebellar and brainstem syndrome. Magnetic resonance imaging (MRI showed pronounced cerebellar atrophy, especially of the medial parts of the hemispheres and the vermis. Cerebral fluorodeoxyglucose positron emission tomography (FDG-PET showed pronounced hypometabolism of the whole cerebellum. CASPR-2 antibodies were detected in the serum but not the CSF, and none of the staging and laboratory assessments revealed other causes of progressive cerebellar degeneration. Interestingly, flow-cytometry of the CSF as compared to the PB showed increased fractions of CD138+ plasma cells as well as human leukocyte antigen (HLA-DR+ CD8+ T cells suggesting that both B cells and CD8+ T cells were preferentially recruited to and activated within the CSF- (and putatively central nervous system (CNS- compartment. Conclusion We confirm the association of CASPR-2 serum antibodies with cerebellar ataxia and provide the first evidence for a combined humoral and cellular immune response in this novel antibody-associated inflammatory CNS disease.

  9. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1987-01-01

    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays. It was f...... is extremely fast....

  10. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  11. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  12. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei.

    Science.gov (United States)

    Husson, Zoé; Rousseau, Charly V; Broll, Ilja; Zeilhofer, Hanns Ulrich; Dieudonné, Stéphane

    2014-07-09

    The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.

  13. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Hack, N; Balázs, R

    1994-01-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from d...... that although cultivation in 'high' K+ promotes biochemical differentiation in mouse cerebellar granule cells, these cells differ from their rat counterparts in that they do not develop a survival requirement for K(+)-induced membrane depolarization.......The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from...... degenerated cells was removed by prior DNAase treatment. These DNA estimates of cell numbers were comparable with values obtained by direct counting of fluorescein diacetate-stained viable cells. In agreement with previous studies, the survival of rat granule cells was promoted by increasing the concentration...

  14. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    OpenAIRE

    Rong Yang; Minglei Wang; Jia Wang; Xingxu Huang; Ru Yang; Wei-Qiang Gao

    2015-01-01

    Summary Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patche...

  15. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  16. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Science.gov (United States)

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  17. Ethanol Modulates the Spontaneous Complex Spike Waveform of Cerebellar Purkinje Cells Recorded in vivo in Mice

    Science.gov (United States)

    Zhang, Guang-Jian; Wu, Mao-Cheng; Shi, Jin-Di; Xu, Yin-Hua; Chu, Chun-Ping; Cui, Song-Biao; Qiu, De-Lai

    2017-01-01

    Cerebellar Purkinje cells (PCs) are sensitive to ethanol, but the effect of ethanol on spontaneous complex spike (CS) activity in these cells in vivo is currently unknown. Here, we investigated the effect of ethanol on spontaneous CS activity in PCs in urethane-anesthetized mice using in vivo patch-clamp recordings and pharmacological manipulation. Ethanol (300 mM) induced a decrease in the CS-evoked pause in simple spike (SS) firing and in the amplitude of the afterhyperpolarization (AHP) under current clamp conditions. Under voltage-clamp conditions, ethanol significantly decreased the area under the curve (AUC) and the number of CS spikelets, without changing the spontaneous frequency of the CSs or the instantaneous frequency of the CS spikelets. Ethanol-induced a decrease in the AUC of spontaneous CSs was concentration dependent. The EC50 of ethanol for decreasing the AUC of spontaneous CSs was 168.5 mM. Blocking N-methyl-D-aspartate receptors (NMDARs) failed to prevent the ethanol-induced decreases in the CS waveform parameters. However, blockade of cannabinoid receptor 1 (CB1) significantly suppressed the ethanol-induced effects on the CS-evoked pause in SS firing, amplitude of the AHP, spikelet number and the AUC of CSs. Moreover, a CB1 receptor agonist not only reduced the number of spikelets and the AUC of CSs, but also prevented the ethanol-induced inhibition of CS activity. Our results indicate that ethanol inhibits CS activity via activation of the CB1 receptor in vivo in mice, suggesting that excessive ethanol intake inhibits climbing fiber (CF)–PC synaptic transmission by modulating CB1 receptors in the cerebellar cortex. PMID:28293172

  18. Generalized Potential of Adult Neural Stem Cells

    Science.gov (United States)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  19. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    OpenAIRE

    Kaslin, Jan; Kroehne, Volker; Benato, Francesca; Argenton, Francesco; Brand, Michael

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost...

  20. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    OpenAIRE

    Kaslin, Jan; Kroehne, Volker; Benato, Francesca; Argenton, Francesco; Brand, Michael

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost...

  1. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A;

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after......, respectively, 4, 7, 10 and 14 days in culture. It was found that THIP treatment of 4- and 7-day-old cultures led to formation of low affinity GABA receptors, whereas such receptors could not be detected after THIP treatment in the older cultures (10 and 14 days) in spite of the fact that these cultured granule...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  2. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    Science.gov (United States)

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  3. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics

    Directory of Open Access Journals (Sweden)

    Rose John W

    2009-10-01

    Full Text Available Abstract Background Immunoglobulin G (IgG antibodies reactive with intracellular neuronal proteins have been described in paraneoplastic and other autoimmune disorders. Because neurons have been thought impermeable to immunoglobulins, however, such antibodies have been considered unable to enter neurons and bind to their specific antigens during life. Cerebellar Purkinje cells - an important target in paraneoplastic and other autoimmune diseases - have been shown in experimental animals to incorporate a number of molecules from cerebrospinal fluid. IgG has also been detected in Purkinje cells studied post mortem. Despite the possible significance of these findings for human disease, immunoglobulin uptake by Purkinje cells has not been demonstrated in living tissue or studied systematically. Methods To assess Purkinje cell uptake of immunoglobulins, organotypic cultures of rat cerebellum incubated with rat IgGs, human IgG, fluorescein-conjugated IgG, and rat IgM were studied by confocal microscopy in real time and following fixation. An IgG-daunorubicin immunotoxin was used to determine whether conjugation of pharmacological agents to IgG could be used to achieve Purkinje cell-specific drug delivery. Results IgG uptake was detected in Purkinje cell processes after 4 hours of incubation and in Purkinje cell cytoplasm and nuclei by 24-48 hours. Uptake could be followed in real time using IgG-fluorochrome conjugates. Purkinje cells also incorporated IgM. Intracellular immunoglobulin did not affect Purkinje cell viability, and Purkinje cells cleared intracellular IgG or IgM within 24-48 hours after transfer to media lacking immunoglobulins. The IgG-daunomycin immunotoxin was also rapidly incorporated into Purkinje cells and caused extensive, cell-specific death within 8 hours. Purkinje cell death was not produced by unconjugated daunorubicin or control IgG. Conclusion Purkinje cells in rat organotypic cultures incorporate and clear host (rat and non

  4. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    Science.gov (United States)

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.

  5. Dynamic changes of [Ca2+]i in cerebellar granule cells exposed to pulsed electric fields

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system.The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field.The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field.In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions,the increase of [Ca2+]i was still observable.It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.

  6. Dynamic changes of [Ca2+]i in cerebellar granule cells exposed to pulsed electric fields

    Institute of Scientific and Technical Information of China (English)

    陈雅; 王彦; 孙彤; 张锦珠; 景向红; 李瑞午

    2000-01-01

    Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system. The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field. The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field. In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions, the increase of [Ca2+]i was still observable. It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.

  7. Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells.

    Science.gov (United States)

    Russo, Marco J; Mugnaini, Enrico; Martina, Marco

    2007-06-01

    Neuronal firing patterns are determined by the cell's intrinsic electrical and morphological properties and are regulated by synaptic interactions. While the properties of cerebellar neurons have generally been studied in much detail, little is known about the unipolar brush cells (UBCs), a type of glutamatergic interneuron that is enriched in the granular layer of the mammalian vestibulocerebellum and participates in the representation of head orientation in space. Here we show that UBCs can be distinguished from adjacent granule cells on the basis of differences in membrane capacitance, input resistance and response to hyperpolarizing current injection. We also show that UBCs are intrinsically firing neurons. Using action potential clamp experiments and whole-cell recordings we demonstrate that two currents contribute to this property: a persistent TTX-sensitive sodium current and a ruthenium red-sensitive, TRP-like cationic current, both of which are active during interspike intervals and have reversal potentials positive to threshold. Interestingly, although UBCs are also endowed with a large I(h) current, this current is not involved in their intrinsic firing, perhaps because it activates at voltages that are more hyperpolarized than those associated with autonomous activity.

  8. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    Science.gov (United States)

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  9. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.

    Science.gov (United States)

    Hsieh, Jui-Yi; Ulrich, Brittany; Issa, Fadi A; Wan, Jijun; Papazian, Diane M

    2014-01-01

    The zebrafish has significant advantages for studying the morphological development of the brain. However, little is known about the functional development of the zebrafish brain. We used patch clamp electrophysiology in live animals to investigate the emergence of excitability in cerebellar Purkinje cells, functional maturation of the cerebellar circuit, and establishment of sensory input to the cerebellum. Purkinje cells are born at 3 days post-fertilization (dpf). By 4 dpf, Purkinje cells spontaneously fired action potentials in an irregular pattern. By 5 dpf, the frequency and regularity of tonic firing had increased significantly and most cells fired complex spikes in response to climbing fiber activation. Our data suggest that, as in mammals, Purkinje cells are initially innervated by multiple climbing fibers that are winnowed to a single input. To probe the development of functional sensory input to the cerebellum, we investigated the response of Purkinje cells to a visual stimulus consisting of a rapid change in light intensity. At 4 dpf, sudden darkness increased the rate of tonic firing, suggesting that afferent pathways carrying visual information are already active by this stage. By 5 dpf, visual stimuli also activated climbing fibers, increasing the frequency of complex spiking. Our results indicate that the electrical properties of zebrafish and mammalian Purkinje cells are highly conserved and suggest that the same ion channels, Nav1.6 and Kv3.3, underlie spontaneous pacemaking activity. Interestingly, functional development of the cerebellum is temporally correlated with the emergence of complex, visually-guided behaviors such as prey capture. Because of the rapid formation of an electrically-active cerebellum, optical transparency, and ease of genetic manipulation, the zebrafish has great potential for functionally mapping cerebellar afferent and efferent pathways and for investigating cerebellar control of motor behavior.

  10. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  11. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  12. Development of the cerebellar body in sharks: spatiotemporal relations of Pax6 expression, cell proliferation and differentiation.

    Science.gov (United States)

    Rodríguez-Moldes, Isabel; Ferreiro-Galve, Susana; Carrera, Iván; Sueiro, Catalina; Candal, Eva; Mazan, Sylvie; Anadón, Ramón

    2008-02-20

    We have studied the patterns of cell proliferation, regional organization and differentiation in the cerebellar body of embryos and juveniles of two shark species by immunohistochemistry with antibodies against proliferating cell nuclear antigen (PCNA), Pax6, reelin (RELN), GABA, glutamic acid decarboxylase (GAD) and calretinin (CR). The organization of Pax6-expressing cells was also studied by in situ hybridization. Our results reveal that a transient secondary matrix zone, the external germinal layer, is formed in sharks at early stages of cerebellar development and is the source of the earliest Pax6-expressing (granule) cells. Later in development, new granule Pax6-expressing cells arise from medial proliferation zones and accumulate medially in the granular eminences. The GABAergic components appear very early, and show clear regional differences. The medial proliferation zones remain active even in adults. Taken together, the proliferation and differentiation markers used in the present study highlight striking similarities during development between the cerebellar body of elasmobranchs and the cerebella of tetrapods. These results show the importance of elasmobranch models to reconstruct the evolutionary developmental history of the vertebrate cerebellum.

  13. Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2007-12-01

    Full Text Available The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711-729. Four main currents were shown to be involved, namely a persistent sodium current (INa-p, an h current (Ih, an SK-type calcium-dependent potassium current (IK-AHP, and a slow M-like potassium current (IK-slow. These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. INa-p and IK-slow emerged as the critical determinants of oscillations. Ih also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. IK-AHP, though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (INa-r and an A-current (IK-A, allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 1:4.

  14. Tetrabromobisphenol A disturbs zinc homeostasis in cultured cerebellar granule cells: A dual role in neurotoxicity.

    Science.gov (United States)

    Zieminska, Elzbieta; Ruszczynska, Anna; Lazarewicz, Jerzy W

    2017-09-14

    The brominated flame retardant tetrabromobisphenol A (TBBPA) has recognized neurotoxic properties mediated by intracellular Ca(2+) imbalance and oxidative stress. Although these factors are known to trigger the release of Zn(2+) from intracellular stores, the effects of TBBPA on Zn(2+) homeostasis in neurons and the role of Zn(2+)in TBBPA neurotoxicity have not yet been studied. Therefore, we investigated zinc transients in primary cultures of rat cerebellar granule cells and assessed their involvement in TBBPA neurotoxicity. The results demonstrate that TBBPA releases Zn(2+) from the intracellular stores and increases its intracellular concentration, followed by Zn(2+) displacement from the cells. TBBPA-evoked Zn(2+) transients are partially mediated by Ca(2+) and ROS. Application of TPEN, Zn(2+) chelator, potentiates TBBPA- and glutamate-induced (45)Ca uptake, enhances TBBPA-induced ROS production and potentiates decreases in the ΔΨm in cells treated with 25 μM TBBPA, revealing the potential neuroprotective capacity of endogenous Zn(2+). However, the administration of TPEN does not aggravate TBBPA neurotoxicity, and even slightly decreases neuronal death induced by 25 μM TBBPA. In summary, it was shown for the first time that TBBPA interferes with the cellular Zn(2+) homeostasis in neuronal cultures, and we revealed complex roles for endogenous Zn(2+) in cytoprotection and TBBPA toxicity in cultured neurons. Copyright © 2017. Published by Elsevier Ltd.

  15. Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation

    Directory of Open Access Journals (Sweden)

    Elisa Galliano

    2013-04-01

    Full Text Available Cerebellar granule cells (GCs account for more than half of all neurons in the CNS of vertebrates. Theoretical work has suggested that the abundance of GCs is advantageous for sparse coding during memory formation. Here, we minimized the output of the majority of GCs by selectively eliminating their CaV2.1 (P/Q-type Ca2+ channels, which mediate the bulk of their neurotransmitter release. This resulted in reduced GC output to Purkinje cells (PCs and stellate cells (SCs as well as in impaired long-term plasticity at GC-PC synapses. As a consequence modulation amplitude and regularity of simple spike (SS output were affected. Surprisingly, the overall motor performance was intact, whereas demanding motor learning and memory consolidation tasks were compromised. Our findings indicate that a minority of functionally intact GCs is sufficient for the maintenance of basic motor performance, whereas acquisition and stabilization of sophisticated memories require higher numbers of normal GCs controlling PC firing.

  16. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells.

    Science.gov (United States)

    Ohtsuki, Gen; Piochon, Claire; Adelman, John P; Hansel, Christian

    2012-07-12

    Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner.

  17. An integrator circuit in cerebellar cortex.

    Science.gov (United States)

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low ( 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.

  18. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    DEFF Research Database (Denmark)

    Nybroe, O; Albrechtsen, M; Dahlin, J;

    1985-01-01

    and a 115,000 Mr polypeptide C, whereas neurons expressed a 200,000 Mr polypeptide A as well as polypeptide B. Skeletal muscle cells produced polypeptide B. The polypeptides synthesized by the three cell types were immunochemically identical. The membrane association of polypeptide C was investigated......The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...... with methods that distinguish peripheral and integral membrane proteins. Polypeptide C was found to be a peripheral membrane protein, whereas polypeptides A and B were integral membrane proteins with cytoplasmic domains of approximately 50,000 and approximately 25,000 Mr, respectively. The affinity...

  19. Cerebellar Hypoplasia

    Science.gov (United States)

    ... such as ataxia telangiectasia. In an infant or young child, symptoms of a disorder that features cerebellar hypoplasia might include floppy muscle tone, developmental or speech delay, problems with walking ...

  20. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Science.gov (United States)

    Jiao, Jianwei; Nakajima, Akira; Janssen, William G M; Bindokas, Vytautas P; Xiong, Xiaoli; Morrison, John H; Brorson, James R; Tang, Ya-Ping

    2008-02-27

    It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  1. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Directory of Open Access Journals (Sweden)

    Jianwei Jiao

    Full Text Available It is believed that gene/environment interaction (GEI plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  2. Persistent posttetanic depression at cerebellar parallel fiber to Purkinje cell synapses.

    Directory of Open Access Journals (Sweden)

    Astrid Bergerot

    Full Text Available Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7-15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.

  3. A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation.

    Directory of Open Access Journals (Sweden)

    Lihong Zhao

    2011-05-01

    Full Text Available Sphingolipids, lipids with a common sphingoid base (also termed long chain base backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln and toppler (to, with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydroceramide synthase 1 (CerS1, which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases.

  4. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    Science.gov (United States)

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.

  5. Ectopic overexpression of engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions.

    Science.gov (United States)

    Baader, S L; Sanlioglu, S; Berrebi, A S; Parker-Thornburg, J; Oberdick, J

    1998-03-01

    Members of the En and Wnt gene families seem to play a key role in the early specification of the brain territory that gives rise to the cerebellum, the midhindbrain junction. To analyze the possible continuous role of the En and Wnt signaling pathway in later cerebellar patterning and function, we expressed En-2 ectopically in Purkinje cells during late embryonic and postnatal cerebellar development. As a result of this expression, the cerebellum is greatly reduced in size, and Purkinje cell numbers throughout the cerebellum are reduced by more than one-third relative to normal animals. Detailed analysis of both adult and developing cerebella reveals a pattern of selectivity to the loss of Purkinje cells and other cerebellar neurons. This is observed as a general loss of prominence of cerebellar fissures that is highlighted by a total loss of sublobular fissures. In contrast, mediolateral patterning is generally only subtly affected. That En-2 overexpression selectively affects Purkinje cells in the transition zone between lobules is evidenced by direct observation of selective Purkinje cell loss in certain fissures and by the observation that growth and migration of the external germinal layer (EGL) is selectively retarded in the deep fissures during early postnatal development. Thus, in addition to demonstrating the critical role of Purkinje cells in the generation and migration of granule cells, the heterogeneous distribution of cellular effects induced by ectopic En expression suggests a relatively late morphogenetic role for this and other segment polarity proteins, mainly oriented at lobule junctions.

  6. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    National Research Council Canada - National Science Library

    Jarius, S; Wildemann, B

    2015-01-01

    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis...

  7. Amburana cearensis seed extract protects brain mitochondria from oxidative stress and cerebellar cells from excitotoxicity induced by glutamate.

    Science.gov (United States)

    Lima Pereira, Érica Patrícia; Santos Souza, Cleide; Amparo, Jessika; Short Ferreira, Rafael; Nuñez-Figueredo, Yanier; Gonzaga Fernandez, Luzimar; Ribeiro, Paulo Roberto; Braga-de-Souza, Suzana; Amaral da Silva, Victor Diogenes; Lima Costa, Silvia

    2017-09-14

    Amburana cearensis (Allemao) A.C.Sm. is a medicinal plant of the Brazilian Caatinga reported to present antioxidant and anti-inflammatory activity. This study aimed to evaluate the neuroprotective effect of the extracts obtained from the seeds of A. cearensis in primary cultures of cerebellar cells subjected to excitotoxicity induced by glutamate and brain mitochondria submitted to oxidative stress. and methods: Primary cultures of cerebellar cells were treated with the ethanol (ETAC), hexane (EHAC), dichloromethane (EDAC) and ethyl acetate (EAAC) extracts of the seeds of A.cearensis and subjected to excitotoxicity induced by glutamate (10µM). Mitochondria isolated from rat brains were submitted to oxidative stress and treated with ETAC. Only the EHAC extract reduced cell viability by 30% after 72h of treatment. Morphological analyses by Immunofluorescence showed positive staining for glutamine synthetase, β-III tubulin, GFAP and IBA1 similar to control cultures, indicating a better preservation of astrocytes, neurons and microglia, after excitotoxic damage induced by glutamate in cerebellar cultures treated with the extracts. The ETAC extract also protected mitochondria isolated from rat brains from oxidative stress, reducing the swelling, dissipation of the membrane potential, ROS production and calcium influx. Thus, this study suggests that the seed extracts from A. Cearensis exhibit neuroprotective potential against oxidative stress and excitotoxicity induced by glutamate and can be considered a potential therapeutic agent in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development.

    Directory of Open Access Journals (Sweden)

    Shigeru Tanaka

    Full Text Available BACKGROUND: During postnatal murine and rodent cerebellar development, cerebellar granule precursors (CGP gradually stop proliferating as they differentiate after migration to the internal granule layer (IGL. Molecular events that govern this program remain to be fully elucidated. GPR3 belongs to a family of Gs-linked receptors that activate cyclic AMP and are abundantly expressed in the adult brain. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of this orphan receptor in CGP differentiation, we determined that exogenous GPR3 expression in rat cerebellar granule neurons partially antagonized the proliferative effect of Sonic hedgehog (Shh, while endogenous GPR3 inhibition by siRNA stimulated Shh-induced CGP proliferation. In addition, exogenous GPR3 expression in CGPs correlated with increased p27/kip expression, while GPR3 knock-down led to a decrease in p27/kip expression. In wild-type mice, GPR3 expression increased postnatally and its expression was concentrated in the internal granular layer (IGL. In GPR3 -/- mice, the IGL was widened with increased proliferation of CGPs, as measured by bromodeoxyuridine incorporation. Cell cycle kinetics of GPR3-transfected medulloblastoma cells revealed a G0/G1 block, consistent with cell cycle exit. CONCLUSIONS/SIGNIFICANCE: These results thus indicate that GPR3 is a novel antiproliferative mediator of CGPs in the postnatal development of murine cerebellum.

  9. Acute cerebellar ataxia

    Science.gov (United States)

    Cerebellar ataxia; Ataxia - acute cerebellar; Cerebellitis; Post-varicella acute cerebellar ataxia; PVACA ... Acute cerebellar ataxia in children, particularly younger than age 3, may occur several weeks after an illness caused by a virus. ...

  10. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Indian Academy of Sciences (India)

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  11. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  12. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  13. Qualitative and quantitative aspects of the microanatomy of the African elephant cerebellar cortex.

    Science.gov (United States)

    Maseko, Busisiwe C; Jacobs, Bob; Spocter, Muhammad A; Sherwood, Chet C; Hof, Patrick R; Manger, Paul R

    2013-01-01

    The current study provides a number of novel observations on the organization and structure of the cerebellar cortex of the African elephant by using a combination of basic neuroanatomical and immunohistochemical stains with Golgi and stereologic analysis. While the majority of our observations indicate that the cerebellar cortex of the African elephant is comparable to other mammalian species, several features were unique to the elephant. The three-layered organization of the cerebellar cortex, the neuronal types and some aspects of the expression of calcium-binding proteins were common to a broad range of mammalian species. The Lugaro neurons observed in the elephant were greatly enlarged in comparison to those of other large-brained mammals, suggesting a possible alteration in the processing of neural information in the elephant cerebellar cortex. Analysis of Golgi impregnations indicated that the dendritic complexity of the different interneuron types was higher in elephants than other mammals. Expression of parvalbumin in the parallel fibers and calbindin expressed in the stellate and basket cells also suggested changes in the elephant cerebellar neuronal circuitry. The stereologic analysis confirmed and extended previous observations by demonstrating that neuronal density is low in the elephant cerebellar cortex, providing for a larger volume fraction of the neuropil. With previous results indicating that the elephants have the largest relative cerebellar size amongst mammals, and one of the absolutely largest mammalian cerebella, the current observations suggest that the elephants have a greater volume of a potentially more complexly organized cerebellar cortex compared to other mammals. This quantitatively larger and more complex cerebellar cortex likely represents part of the neural machinery required to control the complex motor patterns involved in movement of the trunk and the production of infrasonic vocalizations.

  14. Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction.

    Science.gov (United States)

    Yip, Jane; Soghomonian, Jean-Jacques; Blatt, Gene J

    2008-02-15

    It has been widely reported that in autism, the number of Purkinje cells (PCs) is decreased, and recently, decreased expression of glutamic acid decarboxylase 67 (GAD67) mRNA in Purkinje cells also has been observed. However, the autism literature has not addressed key GABAergic inputs into Purkinje cells. Inhibitory basket and stellate cell interneurons in the molecular layer of the cerebellar cortex provide direct key GABAergic input into Purkinje cells and could potently influence the output of Purkinje cells to deep cerebellar nuclei. We investigated the capacity for interneuronal synthesis of gamma-amino butyric acid (GABA) in both types of interneurons that innervate the remaining PCs in the posterolateral cerebellar hemisphere in autism. The level of GAD67 mRNA, one of the isoforms of the key synthesizing enzymes for GABA, was quantified at the single-cell level using in situ hybridization in brains of autistic and aged-matched controls. The National Institutes of Health imaging system showed that expression of GAD67 mRNA in basket cells was significantly up-regulated, by 28%, in eight autistic brains compared with that in eight control brains (mean +/- SEM pixels per cell, 1.03 +/- 0.05 versus 0.69 +/- 0.05, respectively; P levels, but this did not reach significance. The results suggest that basket cells likely provide increased GABAergic feed-forward inhibition to PCs in autism, directly affecting PC output to target neurons in the dentate nucleus and potentially disrupting its modulatory role in key motor and/or cognitive behaviors in autistic individuals.

  15. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m......-natal mouse cerebellar cells by Fab fragments of both antibodies are at least additive, when compared with equal concentrations of the individual antibodies....

  16. Human Neural Cell-Based Biosensor

    Science.gov (United States)

    2013-05-28

    including incubation with factors such as SHH ) and proceed to Human Neural Progenitor Cells Dopaminergic Differentiation β-III Tubulin/TH...exposure in human embryonic stem cells. J Recept Signal Transduct Res. 2011 Jun;31(3):206-13. Gerwe BA, Angel PM, West FD, Hasneen K, Young A

  17. Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells.

    Science.gov (United States)

    Solinas, Sergio; Forti, Lia; Cesana, Elisabetta; Mapelli, Jonathan; De Schutter, Erik; D'Angelo, Egidio

    2007-01-01

    The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711-729). Four main currents were shown to be involved, namely a persistent sodium current (I(Na-p)), an h current (I(h)), an SK-type calcium-dependent potassium current (I(K-AHP)), and a slow M-like potassium current (I(K-slow)). These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. I(Na-p) and I(K-slow) emerged as the critical determinants of oscillations. I(h) also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. I(K-AHP), though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (I(Na-r)) and an A-current (I(K-A)), allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 2:4).

  18. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A;

    2000-01-01

    The neural cell adhesion molecule NCAM is involved in axonal outgrowth and target recognition in the developing nervous system. In vitro, NCAM-NCAM binding has been shown to induce neurite outgrowth, presumably through an activation of fibroblast growth factor receptors (FGFRs). We have recently...... identified a neuritogenic ligand, termed the C3 peptide, of the first immunoglobulin (lg) module of NCAM using a combinatorial library of synthetic peptides. Here we investigate whether stimulation of neurite outgrowth by this synthetic ligand of NCAM involves FGFRs. In primary cultures of cerebellar neurons...... from wild-type mice, the C3 peptide stimulated neurite outgrowth. This response was virtually absent in cultures of cerebellar neurons from transgenic mice expressing a dominant-negative form of the FGFR1. Likewise, in PC12E2 cells transiently expressing a dominant-negative form of the mouse FGFR1...

  19. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang, E-mail: fanxiaotang2005@163.com

    2016-09-02

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  20. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Science.gov (United States)

    Lucas, Elizabeth K.; Reid, Courtney S.; McMeekin, Laura J.; Dougherty, Sarah E.; Floyd, Candace L.; Cowell, Rita M.

    2014-01-01

    Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency. PMID

  1. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    2015-01-01

    Full Text Available Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α -/- mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV, a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2, structural (neurofilament heavy chain, Nefh, and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1 functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α -/- mice. We observed a significant loss of Purkinje cells by six weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α’s actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency.

  2. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons.

    Science.gov (United States)

    Tan, Y P; Llano, I

    1999-10-01

    1. Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. 2. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. alpha-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. 3. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; alpha-dendrotoxin had no effect. 4. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, alpha-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. alpha-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening.

  3. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...... of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations...

  4. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  5. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  6. Insights in spatio-temporal characterization of human fetal neural stem cells.

    Science.gov (United States)

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were

  7. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    Directory of Open Access Journals (Sweden)

    Rong Yang

    2015-11-01

    Full Text Available Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed and Patched+/− mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP;Dcx-DsRed;Patched+/− mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling.

  8. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    Science.gov (United States)

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119

  9. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination

    Science.gov (United States)

    Hayashi, Kanehiro; Furuya, Asako; Sakamaki, Yuriko; Akagi, Takumi; Shinoda, Yo; Sadakata, Tetsushi; Hashikawa, Tsutomu; Shimizu, Kazuki; Minami, Haruka; Sano, Yoshitake; Nakayama, Manabu

    2017-01-01

    Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance. PMID:28264072

  10. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell.

    Science.gov (United States)

    Muñoz, William A; Trainor, Paul A

    2015-01-01

    As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.

  11. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  12. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cere

  13. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  14. Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

    Directory of Open Access Journals (Sweden)

    Clara Penas

    2015-04-01

    Full Text Available Although casein kinase 1δ (CK1δ is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/CCdh1 ubiquitin ligase, and conditional deletion of the APC/CCdh1 activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/CCdh1 also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/CCdh1 controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.

  15. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo.

    Science.gov (United States)

    Ito-Ishida, Aya; Miura, Eriko; Emi, Kyoichi; Matsuda, Keiko; Iijima, Takatoshi; Kondo, Tetsuro; Kohda, Kazuhisa; Watanabe, Masahiko; Yuzaki, Michisuke

    2008-06-04

    Although many synapse-organizing molecules have been identified in vitro, their functions in mature neurons in vivo have been mostly unexplored. Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is the most recently identified protein involved in synapse formation in the mammalian CNS. In the cerebellum, Cbln1 is predominantly produced and secreted from granule cells; cbln1-null mice show ataxia and a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs), the axon bundle of granule cells. Here, we show that application of recombinant Cbln1 specifically and reversibly induced PF synapse formation in dissociated cbln1-null Purkinje cells in culture. Cbln1 also rapidly induced electrophysiologically functional and ultrastructurally normal PF synapses in acutely prepared cbln1-null cerebellar slices. Furthermore, a single injection of recombinant Cbln1 rescued severe ataxia in adult cbln1-null mice in vivo by completely, but transiently, restoring PF synapses. Therefore, Cbln1 is a unique synapse organizer that is required not only for the normal development of PF-Purkinje cell synapses but also for their maintenance in the mature cerebellum both in vitro and in vivo. Furthermore, our results indicate that Cbln1 can also rapidly organize new synapses in adult cerebellum, implying its therapeutic potential for cerebellar ataxic disorders.

  16. Viability of dielectrophoretically trapped neural cortical cells in culture

    NARCIS (Netherlands)

    Heida, T.; Vulto, P.; Rutten, W.L.C.; Marani, E.

    2001-01-01

    Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat

  17. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu

    2015-06-01

    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  18. Poly (ADP-ribose polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells

    Directory of Open Access Journals (Sweden)

    Chiu Sheng-Chun

    2012-03-01

    Full Text Available Abstract Background Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH. Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death. Methods Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline or poly (ADP-ribose polymerase (PARP inhibitors [3-aminobenzamide (3-AB and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF translocation to the nucleus, while PARP inhibitors (3-AB reduced this ratio. Results According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus. Conclusions We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.

  19. Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin

    OpenAIRE

    Fu, Chenglai; Xu, Jing; Li, Ruo-Jing; Crawford, Joshua A.; Khan, A. Basit; Ma, Ting Martin; Cha, Jiyoung Y.; Snowman, Adele M.; Pletnikov, Mikhail V.; Snyder, Solomon H.

    2015-01-01

    The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically...

  20. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    Science.gov (United States)

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  1. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N......-CAM contents indicated that NMDA rescued primarily nerve cells. The influence of NMDA in promoting cell survival was blocked by the receptor antagonist, 2-amino-5-phosphonovalerate. The effect depended both on the concentration of NMDA and on the degree of depolarization of cells, the affinity in the presence...... of 15 mM K+ being similar to that of NMDA receptor binding. The results attest a new role for excitatory amino acid transmitters by showing that they can exert a stage-dependent trophic action on developing nerve cells....

  2. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available BACKGROUND: Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice. METHODS AND MAIN RESULTS: Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation. CONCLUSIONS: These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  3. Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1.

    Directory of Open Access Journals (Sweden)

    Victoria L Patterson

    Full Text Available HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson's disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30-40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.

  4. GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors

    DEFF Research Database (Denmark)

    Belhage, B; Meier, E; Schousboe, A

    1986-01-01

    The kinetics of specific GABA-binding to membranes isolated from cerebellar granule cells, cultured for 12 days from dissociated cerebella of 7-day-old rats was studied using [3H]GABA as the ligand. The granule cells were cultured in the presence of the specific GABA receptor agonist 4, 5, 6, 7-t...

  5. Cause and Consequence of Purkinje Cell Signals in the Cerebellar Flocculus

    NARCIS (Netherlands)

    B.H.J. Winkelman (Beerend)

    2015-01-01

    markdownabstract__Abstract__ How environmental stimuli are processed by neural circuits and how neural circuits control behavior are fundamental questions in systems neuroscience, describing both ends of its research spectrum. At one end, neural structures can be identified that are dedicated to th

  6. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  7. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    Science.gov (United States)

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  8. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes...... the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical...

  9. Form Analysis by Neural Classification of Cells

    OpenAIRE

    Belaïd, Yolande; Belaïd, Abdel

    1999-01-01

    The original publication is available at www.springerlink.com/www.springerlink.com; Our aim in this paper is to present a methodology for linearly combining multi neural classifier for cell analysis of forms. Features used for the classification are relative to the text orientation and to its character morphology. Eight classes are extracted among numeric, alphabetic, vertical, horizontal, capitals, etc. Classifiers are multi-layered perceptrons considering firstly global features and refinin...

  10. Two outward potassium current types are expressed during the neural differentiation of neural stem cells

    OpenAIRE

    Bai, Ruiying; Gao, Guowei; Xing, Ying; Xue, Hong

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vi...

  11. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival

    DEFF Research Database (Denmark)

    Køhler, Lene B; Soroka, Vladislav; Korshunova, Irina

    2010-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and synaptic plasticity. The crystal structure of a fragment of NCAM comprising the three N-terminal immunoglobulin (Ig)-like modules indicates that the first and second Ig modules bind to each other...... module. It promoted survival of cultured cerebellar granule neurons (CGNs) and also induced neurite extension in cultures of dopaminergic neurons and CGNs; the latter effect was shown to be dependent on NCAM expression, indicating that plannexin mimics the neuritogenic effect of homophilic NCAM binding....

  12. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  13. Pipeline for Tracking Neural Progenitor Cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter

    2012-01-01

    Automated methods for neural stem cell lineage construction become increasingly important due to the large amount of data produced from time lapse imagery of in vitro cell growth experiments. Segmentation algorithms with the ability to adapt to the problem at hand and robust tracking methods play...... a key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur....... A matched filter for detection of mitotic candidates is constructed to ensure that cell division is only allowed in the model when relevant. Potentially the combination of these robust methods can simplify the initiation of cell lineage construction and extraction of statistics....

  14. Adult neural stem cells stake their ground.

    Science.gov (United States)

    Lim, Daniel A; Alvarez-Buylla, Arturo

    2014-10-01

    The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over 2 decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. In this review, we discuss recent findings regarding the unique organization of the V-SVZ NSC niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development.

  15. Subacute Cerebellar Degeneration due to a Paraneoplastic Phenomenon Associated with Metastatic Merkel Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Angelos Sharobeam

    2017-08-01

    Full Text Available Purpose: The aim of this article is to illustrate the diagnostic challenges and management of paraneoplastic neurological syndromes in Merkel cell carcinoma. Materials and Methods: We describe a previously functionally independent 85-year-old woman who presented with subacute onset of dizziness and gait ataxia in the setting of metastatic Merkel cell carcinoma. Results: Diagnosis was made on biopsy after positron emission tomography imaging revealed increased metabolic activity in 2 left inguinofemoral lymph nodes. Cerebrospinal fluid analysis was positive for anti-Hu on subsequent admission. Her functional status improved with methylprednisolone treatment and radiotherapy. Conclusion: The case highlights the challenge of the evaluation of patients who present with progressive cerebellar signs and the need to consider a paraneoplastic syndrome, especially in the setting of previous malignancy.

  16. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    Directory of Open Access Journals (Sweden)

    John E Greenlee

    Full Text Available Anti-Yo antibodies are immunoglobulin G (IgG autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1 Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2 whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3 whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient

  17. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Miki Takeuchi

    2015-10-01

    Full Text Available Granule cells (GCs are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs. Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  18. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    Science.gov (United States)

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-10-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  19. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    Science.gov (United States)

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  20. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions.

    Science.gov (United States)

    Ye, Li-Juan; Bian, Hui; Fan, Yao-Dong; Wang, Zheng-Bo; Yu, Hua-Lin; Ma, Yuan-Ye; Chen, Feng

    2016-09-01

    Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 10(5) cells/μL) were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  1. Propofol enhances facial stimulation-evoked responses in the cerebellar granule cell layer via NMDA receptor activation in mice in vivo.

    Science.gov (United States)

    Jin, Wen-Zhe; Liu, Heng; Wan, Peng; Chu, Chun-Ping; Qiu, De-Lai

    2016-10-05

    We recently reported that propofol depressed facial stimulation-evoked gamma-aminobutyric acid (GABA) transmission at cerebellar molecular layer interneuron-Purkinje cell (PC) synapses in mice in vivo, but facilitated excitatory parallel fiber inputs onto PCs. Here, we examine the effects of propofol on cerebellar granule cell layer (GCL) responses to facial stimulation in urethane-anesthetized mice, using electrophysiological and pharmacological methods. Cerebellar surface perfusion of propofol (50-1000μM) facilitated field potentials evoked in the cerebellar GCL by air-puff stimulation of the ipsilateral whisker pad, shown by increases in the half-width and area under the curve (AUC) of the stimulus onset response (Ron). Propofol also significantly increased the amplitude of the stimulus offset response (Roff) and Roff/Ron ratio. The propofol-induced increase in Ron AUC was dose-dependent, with a 50% effective concentration (EC50) of 242.4µM. Application of the GABAA receptor antagonist gabazine (20μM) significantly increased the amplitude, half-width, rise tau and AUC of Ron, but these parameters were further increased by additional application of propofol (300µM). Notably, application of the N-methyl-d-aspartate (NMDA) receptor blocker D-APV (250µM) significantly attenuated the half-width and AUC of Ron and the amplitude of Roff, without significantly changing the amplitude of Ron. These results indicate that propofol enhanced facial stimulation-evoked responses in the cerebellar GCL via NMDA receptor activation, which resulted in the facilitation of excitatory parallel fiber inputs onto cerebellar PCs in mice in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Our previous studies showed that the survival of cerebellar granule cells in culture is promoted by treatment with N-methyl-D-aspartate. Here we report on the influence of another glutamate analogue, kainic acid, which, in contrast to N-methyl-D-aspartate, is believed to stimulate transmitter rec...

  3. Segmentation and Tracking of Neural Stem Cell

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  4. The chemokine growth-related gene product β protects rat cerebellar granule cells from apoptotic cell death through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors

    Science.gov (United States)

    Limatola, Cristina; Ciotti, Maria Teresa; Mercanti, Delio; Vacca, Fabrizio; Ragozzino, Davide; Giovannelli, Aldo; Santoni, Angela; Eusebi, Fabrizio; Miledi, Ricardo

    2000-01-01

    Cultured cerebellar granule neurons are widely used as a cellular model to study mechanisms of neuronal cell death because they undergo programmed cell death when switched from a culture medium containing 25 mM to one containing 5 mM K+. We have found that the growth-related gene product β (GROβ) partially prevents the K+-depletion-induced cell death, and that the neuroprotective action of GROβ on granule cells is mediated through the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type of ionotropic glutamate receptors. GROβ-induced survival was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, which is a specific antagonist of AMPA/kainate receptors; it was not affected by the inhibitor of N-methyl-d-aspartate receptors, 2-amino-5-phosphonopentanoic acid, and was comparable to the survival of granule cells induced by AMPA (10 μM) treatment. Moreover, GROβ-induced neuroprotection was abolished when granule cells were treated with antisense oligonucleotides specific for the AMPA receptor subunits, which significantly reduced receptor expression, as verified by Western blot analysis with subunit-specific antibodies and by granule cell electrophysiological sensitivity to AMPA. Our data demonstrate that GROβ is neurotrophic for cerebellar granule cells, and that this activity depends on AMPA receptors. PMID:10811878

  5. Critical role of JSAP1 and JLP in axonal transport in the cerebellar Purkinje cells of mice.

    Science.gov (United States)

    Sato, Tokiharu; Ishikawa, Momoe; Yoshihara, Toru; Nakazato, Ryota; Higashida, Haruhiro; Asano, Masahide; Yoshioka, Katsuji

    2015-09-14

    JNK/stress-activated protein kinase-associated protein 1 (JSAP1) and JNK-associated leucine zipper protein (JLP) are structurally related scaffolding proteins that are highly expressed in the brain. Here, we found that JSAP1 and JLP play functionally redundant and essential roles in mouse cerebellar Purkinje cell (PC) survival. Mice containing PCs with deletions in both JSAP1 and JLP exhibited PC axonal dystrophy, followed by gradual, progressive neuronal loss. Kinesin-1 cargoes accumulated selectively in the swollen axons of Jsap1/Jlp-deficient PCs. In addition, autophagy inactivation in these mice markedly accelerated PC degeneration. These findings suggest that JSAP1 and JLP play critical roles in kinesin-1-dependent axonal transport, which prevents brain neuronal degeneration. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  7. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation

    Directory of Open Access Journals (Sweden)

    Dobkin Carl

    2011-05-01

    Full Text Available Abstract Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.

  8. Folate receptor alpha is necessary for neural plate cell apical constriction during Xenopus neural tube formation.

    Science.gov (United States)

    Balashova, Olga A; Visina, Olesya; Borodinsky, Laura N

    2017-03-02

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor-α (FRα) impairs neural tube formation and leads to NTDs. FRα knockdown in neural plate cells only is necessary and sufficient to induce NTDs. FRα-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model for folate receptor interacting with cell adhesion molecules, thus regulating apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism may unveil novel cellular and molecular events mediated by folate and lead to new means for preventing NTDs.

  9. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  10. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  11. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression

    Science.gov (United States)

    Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy

    2017-01-01

    The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338

  12. File list: Unc.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_Cortex mm9 Unclassified Neural Cerebellar Cortex SRX112...5781,SRX1125783,SRX1125780,SRX1125782,SRX1125788,SRX1125789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  13. File list: InP.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_Cortex mm9 Input control Neural Cerebellar Cortex SRX06...2943,SRX085442,SRX143824,SRX685926,SRX968954,SRX1318104,SRX1028898,SRX1318103 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  14. File list: His.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX323780,S...8093,SRX1318090,SRX1318091,SRX062940,SRX085445,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  15. File list: Pol.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685286,SRX685285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  16. File list: ALL.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX323...85926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  17. File list: ALL.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX323...85926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  18. File list: Unc.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_Cortex mm9 Unclassified Neural Cerebellar Cortex SRX112...5781,SRX1125780,SRX1125783,SRX1125782,SRX1125789,SRX1125788 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  19. File list: Oth.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  20. File list: Oth.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  1. File list: His.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX062940,S...92,SRX1318090,SRX1318091,SRX1318089,SRX1318093,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  2. File list: Unc.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_Cortex mm9 Unclassified Neural Cerebellar Cortex SRX112...5781,SRX1125780,SRX1125783,SRX1125782,SRX1125788,SRX1125789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  3. File list: ALL.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX112...18094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  4. File list: Oth.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  5. File list: InP.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_Cortex mm9 Input control Neural Cerebellar Cortex SRX06...2943,SRX1028898,SRX143824,SRX085442,SRX968954,SRX1318104,SRX1318103,SRX685926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  6. File list: ALL.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX112...18103 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  7. File list: Oth.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  8. File list: NoD.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_Cortex mm9 No description Neural Cerebellar Cortex http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  9. File list: Pol.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685286,SRX685285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  10. File list: His.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX323779,S...45,SRX1318089,SRX1318093,SRX1318090,SRX1318091,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  11. File list: NoD.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Cerebellar_Cortex mm9 No description Neural Cerebellar Cortex http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  12. File list: Pol.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685285,SRX685286 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  13. File list: Pol.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685286,SRX685285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  14. File list: InP.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_Cortex mm9 Input control Neural Cerebellar Cortex SRX96...8954,SRX062943,SRX085442,SRX143824,SRX1318104,SRX1028898,SRX1318103,SRX685926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  15. File list: NoD.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_Cortex mm9 No description Neural Cerebellar Cortex http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  16. File list: His.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX323780,S...78,SRX1318090,SRX1318089,SRX1318091,SRX1318093,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  17. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuro...ns SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neuro...ns http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: Unc.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: DNS.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  20. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1 in normal and transformed cerebellar cells

    Directory of Open Access Journals (Sweden)

    Baader Stephan L

    2007-10-01

    Full Text Available Abstract Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.

  1. Generation of diverse neural cell types through direct conversion

    Institute of Scientific and Technical Information of China (English)

    Gayle; F; Petersen; Padraig; M; Strappe

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.

  2. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    Science.gov (United States)

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  3. Gamma-aminobutyric acid agonist-induced alterations in the ultrastructure of cultured cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A;

    1988-01-01

    The effect of 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) on the ultrastructural composition of cultured cerebellar granule cells was investigated during development by quantitative electron microscopy (morphometric analysis). Granule cells were exposed to THIP (150 microM) for 6 h after...... 7 and 14 days, respectively, in culture. THIP treatment of 7-day-old cultures led to a statistically significant increase in the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles, and coated vesicles, whereas no significant increase in the cytoplasmic density...... of these organelles was observed in 14-day-old cultures exposed to THIP for 6 h. These findings show that the effect of THIP on the ultrastructural composition of cultured cerebellar granule cells is restricted to early development....

  4. Ulk4 Regulates Neural Stem Cell Pool.

    Science.gov (United States)

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331.

  5. New mechanism for neural stem cell maintenance in early embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Teamning up with co-workers from Japan, UK and US,CAS biochemists have revealed a novel mechanism for maintaining neural stem cells in early embryos. Their work was published on the 6 August issue of Cell Development.

  6. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  7. Effect of monocular deprivation on rabbit neural retinal cell densities

    Directory of Open Access Journals (Sweden)

    Philip Maseghe Mwachaka

    2015-01-01

    Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  8. Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro.

    Science.gov (United States)

    Shaker, Mohammed R; Kim, Joo Yeon; Kim, Hyun; Sun, Woong

    2015-05-15

    Secondary neurulation is an embryonic progress that gives rise to the secondary neural tube, the precursor of the lower spinal cord region. The secondary neural tube is derived from aggregated Sox2-expressing neural cells at the dorsal region of the tail bud, which eventually forms rosette or tube-like structures to give rise to neural tissues in the tail bud. We addressed whether the embryonic tail contains neural stem cells (NSCs), namely secondary NSCs (sNSCs), with the potential for self-renewal in vitro. Using in vitro neurosphere assays, neurospheres readily formed at the rosette and neural-tube levels, but less frequently at the tail bud tip level. Furthermore, we identified that sNSC-generated neurospheres were significantly smaller in size compared with cortical neurospheres. Interestingly, various cell cycle analyses revealed that this difference was not due to a reduction in the proliferation rate of NSCs, but rather the neuronal commitment of sNSCs, as sNSC-derived neurospheres contain more committed neuronal progenitor cells, even in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). These results suggest that the higher tendency for sNSCs to spontaneously differentiate into progenitor cells may explain the limited expansion of the secondary neural tube during embryonic development.

  9. Ionizing radiation-induced damage on developing cerebellar granule cells cultures can be prevented by an early amifostine post-treatment.

    Science.gov (United States)

    Guelman, Laura Ruth; Cabana, Javier Ignacio; del Luján Pagotto, Romina María; Zieher, Luis María

    2005-02-01

    Developing central nervous system (CNS) is highly sensitive to ionizing radiation due, in part, to reactive oxygen species (ROS) damage. A variety of compounds able to protect brain cells essentially by decreasing ROS production have been widely used to confirm ROS participation in different mechanisms of brain injury, as well as to evaluate them as therapeutic tools. To test if ionizing radiation-induced damage on immature cerebellar granule cells is mainly mediated by ROS accumulation, a free radical scavenger--amifostine (amf)--was used in an in vitro model. Moreover, the amf therapeutic effect was investigated. Results show that only an early (20-30 min) post-treatment with amf, acting through an antioxidant mechanism, has been effective in preventing cerebellar granule cell loss observed after ionizing radiation exposure in vitro. These data suggest that immature cerebellar granule cells grown in vitro are highly vulnerable to ROS damage and that a therapeutic intervention could be effective in a narrow temporal window. Moreover, radiation-induced cell death can be partially prevented by a complete limitation of ROS generation, suggesting that other mechanisms besides oxidative stress would also be responsible for the cellular damage found in this model.

  10. Generating trunk neural crest from human pluripotent stem cells

    OpenAIRE

    Miller Huang; Matthew L. Miller; McHenry, Lauren K.; Tina Zheng; Qiqi Zhen; Shirin Ilkhanizadeh; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typi...

  11. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Science.gov (United States)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  12. Combination Cell Therapy with Mesenchymal Stem Cells and Neural Stem Cells for Brain Stroke in Rats

    OpenAIRE

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-01-01

    Objectives Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stro...

  13. Directed Differentiation of Human Embryonic Stem Cells into Neural Progenitors.

    Science.gov (United States)

    Banda, Erin; Grabel, Laura

    2016-01-01

    A variety of protocols have been used to produce neural progenitors from human embryonic stem cells. We have focused on a monolayer culture approach that generates neural rosettes. To initiate differentiation, cells are plated in a serum-free nutrient-poor medium in the presence of a BMP inhibitor. Depending on the cell line used, additional growth factor inhibitors may be required to promote neural differentiation. Long-term culture and addition of the Notch inhibitor DAPT can promote terminal neuronal differentiation. Extent of differentiation is monitored using immunocytochemistry for cell type-specific markers.

  14. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes.

    Science.gov (United States)

    Webb, Robin L; Gallegos-Cárdenas, Amalia; Miller, Colette N; Solomotis, Nicholas J; Liu, Hong-Xiang; West, Franklin D; Stice, Steven L

    2017-04-01

    The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.

  15. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  16. Migrating neural crest cells in the trunk of the avian embryo are multipotent

    OpenAIRE

    Fraser, Scott E.; Bronner-Fraser, Marianne

    1991-01-01

    Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural t...

  17. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    Science.gov (United States)

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  18. Adult neural stem cells-Functional potential and therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; ZHU Jianhong

    2004-01-01

    The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.

  19. Trunk neural crest cells: formation, migration and beyond.

    Science.gov (United States)

    Vega-Lopez, Guillermo A; Cerrizuela, Santiago; Aybar, Manuel J

    2017-01-01

    Neural crest cells (NCCs) are a multipotent, migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. The trunk neural crest has long been considered of particular significance. First, it has been held that the trunk neural crest has a morphogenetic role, acting to coordinate the development of the peripheral nervous system, secretory cells of the endocrine system and pigment cells of the skin. Second, the trunk neural crest additionally has skeletal potential. However, it has been demonstrated that a key role of the trunk neural crest streams is to organize the innervation of the intestine. Although trunk NCCs have a limited capacity for self-renewal, sometimes they become neural-crest-derived tumor cells and reveal the fact that that NCCs and tumor cells share the same molecular machinery. In this review we describe the routes taken by trunk NCCs and consider the signals and cues that pattern these trajectories. We also discuss recent advances in the characterization of the properties of trunk NCCs for various model organisms in order to highlight common themes. Finally, looking to the future, we discuss the need to translate the wealth of data from animal studies to the clinical area in order to develop treatments for neural crest-related human diseases.

  20. Neural and Oligodendrocyte Progenitor Cells: Transferrin Effects on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Lucas Silvestroff

    2013-02-01

    Full Text Available NSC (neural stem cells/NPC (neural progenitor cells are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone of the mammalian CNS (central nervous system. These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres to evaluate the effects of Tf (transferrin on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein, Nestin and Sox2 and the OL (oligodendrocyte progenitor markers NG2 (nerve/glia antigen 2 and PDGFRα (platelet-derived growth factor receptor α. The results of this study indicate that aTf (apoTransferrin is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1. Since OPCs (oligodendrocyte progenitor cells represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.

  1. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  2. Role of neural precursor cells in promoting repair following stroke

    Institute of Scientific and Technical Information of China (English)

    Pooya DIBAJNIA; Cindi M MORSHEAD

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention.Two broad approaches to stem cell-based therapies have been taken:the transplantation of exogenous stem cells,and the activation of endogenous neural stem and progenitor cells (together termed neural precursors).Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results.Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate,migrate and differentiate into mature neurons in the uninjured adult brain.Studies have revealed that these neural precursor cell behaviours can be activated following stroke,whereby neural precursors will expand in number,migrate to the infarct site and differentiate into neurons.However,this innate response is insufficient to lead to functional recovery,making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery.Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.

  3. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage.

  4. Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells.

    Directory of Open Access Journals (Sweden)

    Yi Cao

    Full Text Available Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL, caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL, caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6(nclf/nclf cerebellar cells and compared them to wild-type and CbCln3(Δex7/8/Δex7/8 cerebellar cells. CbCln6(nclf/nclf cells and CbCln3(Δex7/8/Δex7/8 cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6(nclf/nclf cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6(nclf/nclf and CbCln3(Δex7/8/Δex7/8 cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3(Δex7/8 and Cln6(nclf mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival.

  5. Two outward potassium current types are expressed during the neural differentiation of neural stem cells**

    Institute of Scientific and Technical Information of China (English)

    Ruiying Bai; Guowei Gao; Ying Xing; Hong Xue

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  6. Preferential Transport and Metabolism of Glucose in Bergmann Glia over Purkinje Cells: A Multiphoton Study of Cerebellar Slices

    Institute of Scientific and Technical Information of China (English)

    L.F.BARROS; R.COURJARET; P.JAKOBY; A.LOAIZA; C.LOHR; J.W.DEITMER

    2009-01-01

    了解不同类型的细胞如何处理葡萄糖有助于解释能量供应是如何是如何根据大脑能量需求来进行调整的.荧光追踪结合共聚焦显微镜技术已用于研究培养的脑细胞摄取葡萄糖的实时动态过程.本文采用这种技术利用多光子显微镜观察急性制备的大鼠小脑脑片.带荧光的葡萄糖类似物2NBDG和6NBDG在小脑皮质的分子层中的转运速度比其在蒲肯野细胞胞体和颗粒细胞中快若干倍.洗脱游离示踪剂后,可见大部分磷酸化示踪剂都位于Bergmann胶质细胞,用胶质细胞标记物sulforhodamine 101免疫染色后进一步确认这一结果.有效回收荧光光漂白后显示,2NBDG-P可通过Bergmann胶质细胞之间的缝隙连接沿着分子层水平扩散.本文的结果表明在急性小脑切片中,Bergmann胶质细胞对葡萄糖的转运能力和糖酵解率高于蒲肯野细胞若干倍.由于小脑主要由葡萄糖提供能量,蒲肯野神经元被认为比Bergmann胶质细胞更耗能量,这些结果表明,在胶质细胞和神经元之间存在类似乳酸的能量代谢物介导的环路.%Knowing how different cell types handle glucose should help to decipher how energy supply is adjusted to energy demand in the brain. Previously, the uptake of glucose by cultured brain cells was studied in real-time using fluorescent tracers and confocal microscopy. Here, we have adapted this technique to acute slices prepared from the rat cerebellum by means of multiphoton microscopy. The transport of the fluorescent glucose analogs 2NBDG and 6NBDG was several-fold faster in the molecular layer of the cerebellar cortex than in Purkinje cell somata and granule cells. After washout of free tracer, it became apparent that most phosphorylated tracer was located in Bergmann glia, which was confirmed by counterstaining with the glial marker sulforhodamine 101. The effective recovery of fluorescence after photobleaching showed that 2NBDG-P can diffuse

  7. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    Science.gov (United States)

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  8. Utilizing stem cells for three-dimensional neural tissue engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs.

  9. Low-threshold Ca2+ currents in dendritic recordings from Purkinje cells in rat cerebellar slice cultures.

    Science.gov (United States)

    Mouginot, D; Bossu, J L; Gähwiler, B H

    1997-01-01

    Voltage-dependent Ca2+ conductances were investigated in Purkinje cells in rat cerebellar slice cultures using the whole-cell and cell-attached configurations of the patch-clamp technique. In the presence of 0.5 mM Ca2+ in the extracellular solution, the inward current activated with a threshold of -55 +/- 1.5 mV and reached a maximal amplitude of 2.3 +/- 0.4 nA at -31 +/- 2 mV. Decay kinetics revealed three distinct components: a fast (24.6 +/- 2 msec time constant), a slow (304 +/- 46 msec time constant), and a nondecaying component. Rundown of the slow and sustained components of the current, or application of antagonists for the P/Q-type Ca2+ channels, allowed isolation of the fast-inactivating Ca2+ current, which had a threshold for activation of -60 mV and reached a maximal amplitude of 0.7 nA at a membrane potential of -33 mV. Both activation and steady-state inactivation of this fast-inactivating Ca2+ current were described with Boltzmann equations, with half-activation and inactivation at -51 mV and -86 mV, respectively. This Ca2+ current was nifedipine-insensitive, but its amplitude was reduced reversibly by bath-application of NiCl2 and amiloride, thus allowing its identification as a T-type Ca2+ current. Channels with a conductance of 7 pS giving rise to a fast T-type ensemble current (insensitive to omega-Aga-IVA) were localized with a high density on the dendritic membrane. Channel activity responsible for the ensemble current sensitive to omega-Aga-IVA was detected with 10 mM Ba2+ as the charge carrier. These channels were distributed with a high density on dendritic membranes and in rare cases were also seen in somatic membrane patches.

  10. A note on the definition and the development of cerebellar purkinje cell zones

    NARCIS (Netherlands)

    J. Voogd (Jan)

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  11. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    Directory of Open Access Journals (Sweden)

    Biernat Wojciech

    2009-02-01

    Full Text Available Abstract Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA: exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP. Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+ and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8, as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.

  12. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  13. Drosophila neural stem cells in brain development and tumor formation.

    Science.gov (United States)

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  14. Multiple types of cerebellar target neurons and their circuitry in the vestibulo-ocular reflex.

    Science.gov (United States)

    Shin, Minyoung; Moghadam, Setareh H; Sekirnjak, Chris; Bagnall, Martha W; Kolkman, Kristine E; Jacobs, Richard; Faulstich, Michael; du Lac, Sascha

    2011-07-27

    The cerebellum influences behavior and cognition exclusively via Purkinje cell synapses onto neurons in the deep cerebellar and vestibular nuclei. In contrast with the rich information available about the organization of the cerebellar cortex and its synaptic inputs, relatively little is known about microcircuitry postsynaptic to Purkinje cells. Here we examined the cell types and microcircuits through which Purkinje cells influence an oculomotor behavior controlled by the cerebellum, the horizontal vestibulo-ocular reflex, which involves only two eye muscles. Using a combination of anatomical tracing and electrophysiological recordings in transgenic mouse lines, we identified several classes of neurons in the medial vestibular nucleus that receive Purkinje cell synapses from the cerebellar flocculus. Glycinergic and glutamatergic flocculus target neurons (FTNs) with somata densely surrounded by Purkinje cell terminals projected axons to the ipsilateral abducens and oculomotor nuclei, respectively. Of three additional types of FTNs that were sparsely innervated by Purkinje cells, glutamatergic and glycinergic neurons projected to the contralateral and ipsilateral abducens, respectively, and GABAergic neurons projected to contralateral vestibular nuclei. Densely innervated FTNs had high spontaneous firing rates and pronounced postinhibitory rebound firing, and were physiologically homogeneous, whereas the intrinsic excitability of sparsely innervated FTNs varied widely. Heterogeneity in the molecular expression, physiological properties, and postsynaptic targets of FTNs implies that Purkinje cell activity influences the neural control of eye movements in several distinct ways. These results indicate that the cerebellum regulates a simple reflex behavior via at least five different cell types that are postsynaptic to Purkinje cells.

  15. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro.

    Science.gov (United States)

    Crepel, F; Jaillard, D

    1991-01-01

    1. An in vitro slice preparation of rat cerebellar cortex was used to analyse long-lasting modifications of synaptic transmission at parallel fibre (PF)-Purkinje cell (PC) synapses. These use-dependent changes were induced by pairing PF-mediated EPSPs evoked at low frequency (1 Hz) with different levels of membrane polarization (or bioelectrical activities) of PCs for 15 min. 2. Experiments were performed on forty-eight PCs recorded intracellularly in a conventional perfused chamber, and in fifty other cells maintained in a static chamber either in the presence (n = 21) or in the absence (n = 29) of 400 nM-phorbol 12,13-dibutyrate (PDBu). 3. In these three experimental conditions, PF-mediated EPSPs were always measured on PCs maintained at a holding potential of -75 mV, and further hyperpolarized by constant hyperpolarizing pulses. This allowed us both to test the input resistance of PCs and to avoid their firing during PF-mediated EPSPs. 4. In all cells retained for the present study, latencies of PF-mediated EPSPs evoked at 0.2 Hz were stable during the pre-pairing period, and the same was true for their amplitude and time course. 5. In the perfused chamber, pairing of PF-mediated EPSPs with the same hyperpolarization of PCs as that used for measurements of synaptic responses had no effect on these EPSPs in 30% of PCs. It induced long-term depression (LTD) and long-term potentiation (LTP) in 23 and 47% of the tested cells respectively (n = 17). 6. In the perfused chamber, pairing of PF-mediated EPSPs with moderate depolarization of PCs (n = 19) giving rise to a sustained firing of sodium spikes significantly favoured the appearance of LTP as compared to the previous pairing protocol. However, there were still 27 and 15% of cells which showed no modification and LTD respectively. 7. In contrast, pairing of PF-mediated EPSPs with calcium (Ca2+) spikes evoked by strong depolarization of PCs (n = 12) led to LTD of synaptic transmission in nearly half of the tested

  16. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    Science.gov (United States)

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  17. Neural stem cells and Alzheimer's disease: challenges and hope.

    Science.gov (United States)

    Zhongling Feng; Gang Zhao; Lei Yu

    2009-01-01

    Alzheimer's disease is characterized by degeneration and dysfunction of synapses and neurons in brain regions critical for learning and memory functions. The endogenous generation of new neurons in certain regions of the mature brain, derived from primitive cells termed neural stem cells, has raised hope that neural stem cells may be recruited for structural brain repair. Stem cell therapy has been suggested as a possible strategy for replacing damaged circuitry and restoring learning and memory abilities in patients with Alzheimer's disease. In this review, we outline the promising investigations that are raising hope, and understanding the challenges behind translating underlying stem cell biology into novel clinical therapeutic potential in Alzheimer's disease.

  18. Neural Crest As the Source of Adult Stem Cells

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Maruniak, Joel A.; Kirk, Mark D.

    2012-01-01

    Recent studies suggest that adult stem cells can cross germ layer boundaries. For example, bone marrow-derived stem cells appear to differentiate into neurons and glial cells, as well as other types of cells. How can stem cells from bone marrow, pancreas, skin, or fat become neurons and glia; in other words, what molecular and cellular events direct mesodermal cells to a neural fate? Transdifferentiation, dediffereniation, and fusion of donor adult stem cells with fully differentiated host cells have been proposed to explain the plasticity of adult stem cells. Here we review the origin of select adult stem cell populations and propose a unifying hypothesis to explain adult stem cell plasticity. In addition, we outline specific experiments to test our hypothesis. We propose that peripheral, tissue-derived, or adult stem cells are all progeny of the neural crest. PMID:16646675

  19. Apoptotic cell death of cerebellar granule neurons in genetically ataxia (ax) mice.

    Science.gov (United States)

    Ohgoh, M; Yamazaki, K; Ogura, H; Nishizawa, Y; Tanaka, I

    2000-07-21

    An autosomal recessive neurological mutant, ataxia (ax) mouse, was investigated to determine whether neuronal cell death occurs in the brain. The brains of homozygotes (ax(J)/ax(J)) and phenotypically normal littermates (ax(J)/+ or +/+) aged at 23-38 days were examined by the terminal dUTP nick-end-labeling (TUNEL) method. A few TUNEL-positive cells were observed in the granule cell layer of the cerebellum, the dentate gyrus, and the olfactory bulb of normal mice. In the affected mice, the number of TUNEL-positive cells was significantly increased in the cerebellum, particularly in the granule cell layer, compared to normal littermates. The findings suggest that ax mice will be useful as a model for studies on the genetic basis of apoptotic neuronal cell death.

  20. Neural activity control of neural stem cells and SVZ niche response to brain injury

    OpenAIRE

    Páez González, Patricia

    2014-01-01

    Patricia Paez-Gonzalez Kuo Lab, Dept. of Cell Biology, Duke University Medical Center, NC,USA. Date: 11/16/2014 Utilizing stem cells in the adult brain hold great promise for regenerative medicine. Harnessing ability of adult neural stem cells (NSCs) to generate new neurons or other types of brain cells may provide much needed therapies for patients suffering from brain injuries or neuro-degenerative diseases such as Parkinson’s, Scizophrenia, or Alzheimer’s disease. However...

  1. Postnatal Migration of Cerebellar Interneurons

    Science.gov (United States)

    Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi

    2017-01-01

    Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295

  2. Role of polarized cell divisions in zebrafish neural tube formation.

    Science.gov (United States)

    Clarke, Jon

    2009-04-01

    Development of epithelial cell polarity and morphogenesis of a central lumen are essential prerequisites for the formation of the vertebrate neural tube. In teleost fish embryos this first involves the formation of a solid neural rod structure that then undergoes a process of cavitation to form a lumen. This process is initiated from a neural plate that has a distinct organization compared to other vertebrates, and involves complex cell intercalations and rearrangements. A key element is a mode of polarized cell division that generates daughters with mirror-image apico-basal polarity. These mirror-symmetric divisions have powerful morphogenetic influence because when they occur in ectopic locations they orchestrate the development of ectopic apical and basal specializations and the development of ectopic neural tubes.

  3. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.

    Science.gov (United States)

    Schreurs, B G; Gusev, P A; Tomsic, D; Alkon, D L; Shi, T

    1998-07-15

    Intradendritic recordings in Purkinje cells from a defined area in parasaggital slices of cerebellar lobule HVI, obtained after rabbits were given either paired (classical conditioning) or explicitly unpaired (control) presentations of tone and periorbital electrical stimulation, were used to assess the nature and duration of conditioning-specific changes in Purkinje cell dendritic membrane excitability. We found a strong relationship between the level of conditioning and Purkinje cell dendritic membrane excitability after initial acquisition of the conditioned response. Moreover, conditioning-specific increases in Purkinje cell excitability were still present 1 month after classical conditioning. Although dendritically recorded membrane potential, input resistance, and amplitude of somatic and dendritic spikes were not different in cells from paired or control animals, the size of a potassium channel-mediated transient hyperpolarization was significantly smaller in cells from animals that received classical conditioning. In slices of lobule HVI obtained from naive rabbits, the conditioning-related increases in membrane excitability could be mimicked by application of potassium channel antagonist tetraethylammonium chloride, iberiotoxin, or 4-aminopyridine. However, only 4-aminopyridine was able to reduce the transient hyperpolarization. The pharmacological data suggest a role for potassium channels and, possibly, channels mediating an IA-like current, in learning-specific changes in membrane excitability. The conditioning-specific increase in Purkinje cell dendritic excitability produces an afterhyperpolarization, which is hypothesized to release the cerebellar deep nuclei from inhibition, allowing conditioned responses to be elicited via the red nucleus and accessory abducens motorneurons.

  4. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  5. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2012-01-01

    Full Text Available The spontaneous expression of neural markers by mesenchymal stem cells (MSCs has been considered to be a demonstration of MSCs’ predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs at different culture passages (from early to late. rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.

  6. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  7. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells

    OpenAIRE

    Yu LIU; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-01-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca2+ and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the durati...

  8. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental

  9. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspect

  10. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: Simulations of their impact in vivo

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2007-12-01

    Full Text Available The Golgi cells are inhibitory interneurons of the cerebellar granular layer, which respond to afferent stimulation in vivo with a burst-pause sequence interrupting their irregular background low-frequency firing (Vos et al., 1999a. Eur. J. Neurosci. 11, 2621–2634. However, Golgi cells in vitro are regular pacemakers (Forti et al., 2006. J. Physiol. 574, 711–729, raising the question how their ionic mechanisms could impact on responses during physiological activity. Using patch-clamp recordings in cerebellar slices we show that the pacemaker cycle can be suddenly reset by spikes, making the cell highly sensitive to input variations. Moreover, the neuron resonates around the pacemaker frequency, making it specifically sensitive to patterned stimulation in the theta-frequency band. Computational analysis based on a model developed to reproduce Golgi cell pacemaking (Solinas et al., 2008 Front. Neurosci., 1:2 predicted that phase-reset required spike-triggered activation of SK channels and that resonance was sustained by a slow voltage-dependent potassium current and amplified by a persistent sodium current. Adding balanced synaptic noise to mimic the irregular discharge observed in vivo, we found that pacemaking converts into spontaneous irregular discharge, that phase-reset plays an important role in generating the burst-pause pattern evoked by sensory stimulation, and that repetitive stimulation at theta-frequency enhances the time-precision of spike coding in the burst. These results suggest that Golgi cell intrinsic properties exert a profound impact on time-dependent signal processing in the cerebellar granular layer.

  11. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo.

    Science.gov (United States)

    Solinas, Sergio; Forti, Lia; Cesana, Elisabetta; Mapelli, Jonathan; De Schutter, Erik; D'Angelo, Egidio

    2007-01-01

    The Golgi cells are inhibitory interneurons of the cerebellar granular layer, which respond to afferent stimulation in vivo with a burst-pause sequence interrupting their irregular background low-frequency firing (Vos et al., 1999a. Eur. J. Neurosci. 11, 2621-2634). However, Golgi cells in vitro are regular pacemakers (Forti et al., 2006. J. Physiol. 574, 711-729), raising the question how their ionic mechanisms could impact on responses during physiological activity. Using patch-clamp recordings in cerebellar slices we show that the pacemaker cycle can be suddenly reset by spikes, making the cell highly sensitive to input variations. Moreover, the neuron resonates around the pacemaker frequency, making it specifically sensitive to patterned stimulation in the theta-frequency band. Computational analysis based on a model developed to reproduce Golgi cell pacemaking (Solinas et al., 2008Front. Neurosci., 2:2) predicted that phase-reset required spike-triggered activation of SK channels and that resonance was sustained by a slow voltage-dependent potassium current and amplified by a persistent sodium current. Adding balanced synaptic noise to mimic the irregular discharge observed in vivo, we found that pacemaking converts into spontaneous irregular discharge, that phase-reset plays an important role in generating the burst-pause pattern evoked by sensory stimulation, and that repetitive stimulation at theta-frequency enhances the time-precision of spike coding in the burst. These results suggest that Golgi cell intrinsic properties exert a profound impact on time-dependent signal processing in the cerebellar granular layer.

  12. File list: NoD.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neuro...ns http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: InP.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: NoD.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: InP.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: InP.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: NoD.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: InP.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  19. Acute onset paraneoplastic cerebellar degeneration in a patient with small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bhatia R

    2003-04-01

    Full Text Available A patient with small cell lung cancer presented with a rare presentation of an acute onset pancerebellar dysfunction. His clinical condition markedly improved following the surgical removal of the tumor and chemo- and radiotherapy.

  20. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius)

    Science.gov (United States)

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective fo...

  1. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  2. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    Science.gov (United States)

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.

    2016-11-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.

  3. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.

    Science.gov (United States)

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-07-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.

  4. File list: Pol.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  5. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  6. File list: Unc.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  7. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  8. File list: ALL.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  9. File list: Unc.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  10. File list: Oth.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_Stem_Cells mm9 TFs and others Neural Neural Stem Cells SRX8...SRX869081,SRX869082,SRX869077,SRX869071 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  11. File list: Pol.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  12. File list: ALL.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...,SRX869077,SRX869071 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  13. File list: His.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707366,...SRX707369 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  14. File list: Pol.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  15. File list: Oth.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_Stem_Cells mm9 TFs and others Neural Neural Stem Cells SRX1...SRX869077,SRX869081,SRX869074,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  16. File list: ALL.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...SRX869067,SRX1433432 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  17. File list: Unc.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  18. File list: His.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX869069,S...7,SRX1433432 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  19. File list: His.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315277,SRX667383,SRX668241,SRX315278,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  20. File list: Pol.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  1. File list: Oth.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  2. File list: Oth.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  3. File list: His.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707366,...SRX707369 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  4. File list: His.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX505088,S...2,SRX1433429 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  5. File list: Unc.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  6. File list: Pol.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  7. File list: Pol.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  8. File list: Unc.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_Stem_Cells hg19 Unclassified Neural Neural Stem Cells SRX71...0680,SRX710679,SRX710682,SRX710681,SRX710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  9. File list: Pol.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  10. File list: Pol.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  11. File list: Oth.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  12. File list: DNS.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  13. File list: Oth.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  14. File list: Oth.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Neural_Stem_Cells mm9 TFs and others Neural Neural Stem Cells SRX3...SRX869081,SRX869082,SRX869071,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  15. File list: His.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707366,...SRX707369 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  16. File list: Unc.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  17. File list: His.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX505088,S...70,SRX869076 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  18. File list: ALL.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...SRX1433431,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  19. File list: ALL.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  20. File list: Unc.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  1. File list: Unc.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  2. File list: Pol.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  3. File list: Pol.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  4. File list: Oth.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  5. File list: His.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX315277,SRX667383,SRX668241,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  6. File list: Unc.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_Stem_Cells hg19 Unclassified Neural Neural Stem Cells SRX71...0680,SRX710679,SRX710682,SRX710681,SRX710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  7. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  8. File list: ALL.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...,SRX869076,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  9. File list: Pol.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  10. File list: Oth.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  11. File list: His.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315277,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  12. File list: Unc.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  13. File list: ALL.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  14. File list: His.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707369,...SRX707366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  15. File list: Oth.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  16. Electrical Property Characterization of Neural Stem Cells in Differentiation.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane and cytoplasm conductivity (σcytoplasm for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1 in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2 during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label

  17. Diacylglycerol kinase ε localizes to subsurface cisterns of cerebellar Purkinje cells.

    Science.gov (United States)

    Hozumi, Yasukazu; Fujiwara, Hiroki; Kaneko, Kenya; Fujii, Satoshi; Topham, Matthew K; Watanabe, Masahiko; Goto, Kaoru

    2017-02-13

    Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the sn-2 position. Recently, we demonstrated that hydrophobic residues in the N-terminus of DGKε play an important role in targeting the endoplasmic reticulum in transfected cells. However, its cellular expression and subcellular localization in the brain remain elusive. In the present study, we investigate this issue using specific DGKε antibody. DGKε was richly expressed in principal neurons of higher brain regions, including pyramidal cells in the hippocampus and neocortex, medium spiny neurons in the striatum and Purkinje cells in the cerebellum. In Purkinje cells, DGKε was localized to the subsurface cisterns and colocalized with inositol 1,4,5-trisphosphate receptor-1 in dendrites and axons. In dendrites of Purkinje cells, DGKε was also distributed in close apposition to DG lipase-α, which catalyzes arachidonoyl-DG to produce 2-arachidonoyl glycerol, a major endocannabinoid in the brain. Behaviorally, DGKε-knockout mice exhibited hyper-locomotive activities and impaired motor coordination and learning. These findings suggest that DGKε plays an important role in neuronal and brain functions through its distinct neuronal expression and subcellular localization and also through coordinated arrangement with other molecules involving the phosphoinositide signaling pathway.

  18. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex

    DEFF Research Database (Denmark)

    Walløe, Solveig; Pakkenberg, Bente; Fabricius, Katrine

    2014-01-01

    Our knowledge of the relationship between brain structure and cognitive function is still limited. Human brains and individual cortical areas vary considerably in size and shape. Studies of brain cell numbers have historically been based on biased methods, which did not always result in correct e...

  19. Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells.

    Science.gov (United States)

    Ramos-Hryb, Ana B; Da-Costa, Meline C; Trentin, Andréa G; Calloni, Giordano W

    2013-01-01

    The neural crest (NC) is composed of highly multipotent precursor cells able to differentiate into both neural and mesenchymal phenotypes. Until now, most studies focusing on NC cell differentiation have been performed with traditional two-dimensional (2D) cell culture systems. However, such culture systems do not reflect the complex three-dimensional (3D) microenvironments of in vivo NC cells. To address this limitation, we have developed a method of Matrigel™ coating to create 2D and 3D microenvironments in the same culture well. When we performed cultures of trunk neural crest cells (TNCCs) on three different lots of basement membrane matrix (Matrigel™), we observed that all analyzed Matrigel™ lots were equally efficient in allowing the appearance of glial cells, neurons, melanocytes, smooth muscle cells and chondrocytes. We further observed that chondrocytes were found predominantly in the 3D microenvironment, whereas smooth muscle cells were almost exclusively located in the 2D microenvironment. Glial cells were present in both environments, but with broader quantities on the 2D surface. Melanocytes and neurons were equally distributed in both 2D and 3D microenvironments, but with distinct morphologies. It is worth noting the higher frequency of chondrocytes detected in this study using the 3D Matrigel™ microenvironment compared to previous reports of chondrogenesis obtained from TNCCs on traditional 2D cultures. In conclusion, Matrigel™ represents an attractive scaffold to study NC multipotentiality and differentiation, since it permits the appearance of the major NC phenotypes.

  20. Applicability of tooth derived stem cells in neural regeneration

    Institute of Scientific and Technical Information of China (English)

    Ludovica Parisi; Edoardo Manfredi

    2016-01-01

    Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and otfen to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the re-search of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowa-days the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we brielfy introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and ifnally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  1. Applicability of tooth derived stem cells in neural regeneration

    Directory of Open Access Journals (Sweden)

    Ludovica Parisi

    2016-01-01

    Full Text Available Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and often to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the research of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowadays the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we briefly introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and finally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  2. Planar cell polarity genes and neural tube closure.

    Science.gov (United States)

    Ueno, Naoto; Greene, Nicholas D E

    2003-11-01

    Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.

  3. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  4. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  5. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex

    OpenAIRE

    Walløe, Solveig; Pakkenberg, Bente; Fabricius, Katrine

    2014-01-01

    Our knowledge of the relationship between brain structure and cognitive function is still limited. Human brains and individual cortical areas vary considerably in size and shape. Studies of brain cell numbers have historically been based on biased methods, which did not always result in correct estimates and were often very time-consuming. Within the last 20–30 years, it has become possible to rely on more advanced and unbiased methods. These methods have provided us with information about fe...

  6. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    NARCIS (Netherlands)

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  7. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  8. Planar cell polarity, ciliogenesis and neural tube defects.

    Science.gov (United States)

    Wallingford, John B

    2006-10-15

    Cilia are microtubule-based protrusions that are found on the surface of most vertebrate cells. Long studied by cell biologists, these organelles have recently caught the attention of developmental biologists and human geneticists. In this review, I will discuss recent findings suggesting a link between cilia and the planar cell polarity signaling cascade. In particular, I will focus on how this interaction may influence the process of neural tube closure and how these results may be relevant to our understanding of common human birth defects in which neural tube closure is compromised.

  9. Developing neural stem cell-based treatments for neurodegenerative diseases

    OpenAIRE

    Byrne, James A.

    2014-01-01

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer’s disease. Currently, no effective therapies for Alzheimer’s disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effecti...

  10. Embryonic and adult neural stem cell research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Neural stem cells(NSCs) are one specific type of multipotential stem cells that have the ability to proliferate for a long time and to differentiate into neural cells,including neurons,astrocytes and oligodendrocytes.These NSCs exist in both the embryonic and adult central nervous system(CNS) of all mammalian species.Progress has been made in the understanding of the developmental regulation of NSCs and their function in neurogenesis.This review discusses recent progress in this area,with emphasis on work done by investigators in China.

  11. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    National Research Council Canada - National Science Library

    Qin Shen; Susan K. Goderie; Li Jin; Nithin Karanth; Yu Sun; Natalia Abramova; Peter Vincent; Kevin Pumiglia; Sally Temple

    2004-01-01

    .... We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production...

  12. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  13. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  14. Conditioned medium from neural stem cells inhibits glioma cell growth.

    Science.gov (United States)

    Li, Z; Zhong, Q; Liu, H; Liu, P; Wu, J; Ma, D; Chen, X; Yang, X

    2016-10-31

    Malignant glioma is one of the most common brain tumors in the central nervous system. Although the significant progress has been made in recent years, the mortality is still high and 5-year survival rate is still very low. One of the leading causes to the high mortality for glioma patients is metastasis and invasion. An efficient method to control the tumor metastasis is a promising way to treat the glioma. Previous reports indicated that neural stem cells (NSCs) were served as a delivery vector to the anti-glioma therapy. Here, we used the conditioned medium from rat NSCs (NSC-CM) to culture the human glioblastoma cell lines. We found that NSC-CM could inhibit the glioma cell growth, invasion and migration in vitro and attenuate the tumor growth in vivo. Furthermore, this anti-glioma effect was mediated by the inactivation of mitogen activated protein kinase (MAPK) pathway. Above all, this study provided the direct evidence to put forward a simple and efficient method in the inhibition of glioma cells/tumor growth, potentially advancing the anti-glioma therapy.

  15. β-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest

    Science.gov (United States)

    Begalli, Federica; Abballe, Luana; Catanzaro, Giuseppina; Vacca, Alessandra; Napolitano, Maddalena; Tafani, Marco; Giangaspero, Felice; Locatelli, Franco

    2017-01-01

    Cell development is regulated by a complex network of mRNA-encoded proteins and microRNAs, all funnelling onto the modulation of self-renewal or differentiation genes. How intragenic microRNAs and their host genes are transcriptionally coregulated and their functional relationships for the control of neural stem cells (NSCs) are poorly understood. We propose here the intragenic miR-326 and its host gene β-arrestin1 as novel players whose epigenetic silencing maintains stemness in normal cerebellar stem cells. Such a regulation is mediated by CpG islands methylation of the common promoter. Epigenetic derepression of β-arrestin1/miR-326 by differentiation signals or demethylating agents leads to suppression of stemness features and cell growth and promotes cell differentiation. β-Arrestin1 inhibits cell proliferation by enhancing the nuclear expression of the cyclin-dependent kinase inhibitor p27. Therefore, we propose a new mechanism for the control of cerebellar NSCs where a coordinated epigenetic mechanism finely regulates β-arrestin1/miR-326 expression and consequently NSCs stemness and cell growth. PMID:28298929

  16. Bilateral otogenic cerebellar abscesses.

    Directory of Open Access Journals (Sweden)

    Nadkarni T

    1993-01-01

    Full Text Available An unusual presentation of bilateral otogenic cerebellar abscesses observed in two of our patients is reported. Both gave a history of otorrhoea, fever, headache, vomiting and had bilateral cerebellar signs and conductive hearing loss. The abscesses were detected on computerised tomography. X-rays revealed bilateral mastoiditis. The therapy followed was excision of abscesses, mastoidectomy and antibiotic therapy.

  17. Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx

    DEFF Research Database (Denmark)

    Bouchelouche, P; Belhage, B; Frandsen, A;

    1989-01-01

    The Ca2+ sensitive fluorescent probe, fura-2 has been used to monitor cytosolic free calcium levels in mature primary cultures of cerebellar granule cells during exposure to L-glutamate and other excitatory amino acids: quisqualate (QA) kainate (KA) and N-methyl-D-aspartate (NMDA). Glutamate...... at micromolar concentrations produced a prompt and dose-related increase in the intracellular concentration of free Ca2+, ([Ca2+]i), whereas QA, KA and NMDA had no effect. This increase was also seen in the absence of extracellular Ca2+, suggesting that L-glutamate promotes mobilization of Ca2+ from...

  18. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  19. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  20. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  1. Differentiation of monkey embryonic stem cells into neural lineages.

    Science.gov (United States)

    Kuo, Hung-Chih; Pau, K-Y Francis; Yeoman, Richard R; Mitalipov, Shoukhrat M; Okano, Hideyuki; Wolf, Don P

    2003-05-01

    Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.

  2. Neural stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neural stem cells are a pronising candidate for neural transplantation aimed at neural cell replacement and repair of the damaged host central nervous system (CNS). Recent studies using neural stem cells have shown that implanted neural stem cells can effectively incorporate into the damaged CNS and differentiate into neurons, astrocytes, and oligodendrocytes. The recent explosion in the field of neural stem cell research has provided insight into the inductive factors influencing neural stem cell differentiation and may yield potential therapies for several neurological disorders, including spinal cord injury. In this review, we summarize recent studies involving neural stem cell biology in both rodents and humans. We also discuss unique advantages and possible mechanisms of using neural stem cell trans plantation in the repair of spinal cord injury.

  3. Biological effect of velvet antler polypeptides on neural stem cells from embryonic rat brain

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; CHEN Lei; MENG Xiao-ting; YANG Fan; ZHANG Zhi-xin; CHEN Dong

    2005-01-01

    Background Velvet antler polypeptides (VAPs), which are derived from the antler velvets, have been reported to maintain survival and promote growth and differentiation of neural cells and, especially the development of neural tissues. This study was designed to explore the influence of VAPs on neural stem cells in vitro derived from embryonic rat brain. Methods Neural stem cells derived from E12-14 rat brain were isolated, cultured, and expanded for 7 days until neural stem cell aggregations and neurospheres were generated. The neurospheres were cultured under the condition of different concentration of VAPs followed by immunocytochemistry to detect the differentiation of neural stem cells. Results VAPs could remarkablely promote differentiation of neural stem cells and most neural stem cells were induced to differentiate towards the direction of neurons under certain concentration of VAPs.Conclusion Neural stem cells can be successfully induced into neurons by VAPs in vitro, which could provide a basis for regeneration of the nervous system.

  4. File list: ALL.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  5. File list: ALL.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  6. Enumeration of Neural Stem Cells Using Clonal Assays.

    Science.gov (United States)

    Narayanan, Gunaseelan; Yu, Yuan Hong; Tham, Muly; Gan, Hui Theng; Ramasamy, Srinivas; Sankaran, Shvetha; Hariharan, Srivats; Ahmed, Sohail

    2016-10-04

    Neural stem cells (NSCs) have the ability to self-renew and generate the three major neural lineages - astrocytes, neurons and oligodendrocytes. NSCs and neural progenitors (NPs) are commonly cultured in vitro as neurospheres. This protocol describes in detail how to determine the NSC frequency in a given cell population under clonal conditions. The protocol begins with the seeding of the cells at a density that allows for the generation of clonal neurospheres. The neurospheres are then transferred to chambered coverslips and differentiated under clonal conditions in conditioned medium, which maximizes the differentiation potential of the neurospheres. Finally, the NSC frequency is calculated based on neurosphere formation and multipotency capabilities. Utilities of this protocol include the evaluation of candidate NSC markers, purification of NSCs, and the ability to distinguish NSCs from NPs. This method takes 13 days to perform, which is much shorter than current methods to enumerate NSC frequency.

  7. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats.

    Science.gov (United States)

    Fujimura, Masatake; Cheng, Jinping; Zhao, Wenchang

    2012-06-29

    Methylmercury (MeHg) is an environmental pollutant that is toxic to the developing central nervous system (CNS) in children, even at low exposure levels. Perinatal exposure to MeHg is known to induce neurological symptoms with neuropathological changes in the CNS. However, the relationship between the neurological symptoms and neuropathological changes induced in offspring as a result of exposure to low-dose MeHg is not well defined. In the present study, neurobehavioral analyses revealed that exposure to a low level of MeHg (5 ppm in drinking water) during developmental caused a significant deficit in the motor coordination of rats in the rotating rod test. In contrast, general neuropathological findings, including neuronal cell death and the subsequent nerve inflammation, were not observed in the region of the cerebellum responsible for regulating motor coordination. Surprisingly, the expression of synaptophysin (SPP), a marker protein for synaptic formation, significantly decreased in cerebellar granule cells. These results showed that perinatal exposure to low-dose MeHg causes neurobehavioral impairment without general neuropathological changes in rats. We demonstrated for the first time that exposure to low-dose MeHg during development induces the dysfunction of motor coordination due to changes of synaptic homeostasis in cerebellar granule cells.

  8. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    Institute of Scientific and Technical Information of China (English)

    Masahiro; Otsu; Takashi; Nakayama; Nobuo; Inoue

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.

  9. Case of subacute cerebellar degeneration associated with pleocytosis and cerebellar swelling shown in computed tomography scanning

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Hiide; Anezaki, Toshiharu; Takashima, Noriko; Inuzuka, Takashi; Miyatake, Tadashi

    1988-02-01

    A 44 year old woman was healthy until January 3, 1986, when she had headache. On January 9, she developed gait ataxia and dysarthria. Cerebellar ataxia worsened rapidly. Aftar a week she could not sit without support and her consciousness was disturbed. Corticosteroid was administrated and consciousness proved alert, but cerebellar ataxia and dysarthria remained unchanged. The patient was found carcinoma of the lung in August 1986. Characteristic features of clinical and laboratory findings of this patient are acute progression, cerebrospinal fluid pleocytosis of 1,064/3 cells (860 mononuclear cell, 204 polymorphonuclear cell), and cerebellar swelling shown in computed tomography scanning. Though the mechanism of acute cerebellar degeneration is still uncertained, inflammatory process was supported to exist in cerebellum of this case.

  10. Methylene blue promotes quiescence of rat neural progenitor cells.

    Science.gov (United States)

    Xie, Luokun; Choudhury, Gourav R; Wang, Jixian; Park, Yong; Liu, Ran; Yuan, Fang; Zhang, Chun-Li; Yorio, Thomas; Jin, Kunlin; Yang, Shao-Hua

    2014-01-01

    Neural stem cell-based treatment holds a new therapeutic opportunity for neurodegenerative disorders. Here, we investigated the effect of methylene blue on proliferation and differentiation of rat neural progenitor cells (NPCs) both in vitro and in vivo. We found that methylene blue inhibited proliferation and promoted quiescence of NPCs in vitro without affecting committed neuronal differentiation. Consistently, intracerebroventricular infusion of methylene blue significantly inhibited NPC proliferation at the subventricular zone (SVZ). Methylene blue inhibited mTOR signaling along with down-regulation of cyclins in NPCs in vitro and in vivo. In summary, our study indicates that methylene blue may delay NPC senescence through enhancing NPCs quiescence.

  11. Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2.

    Science.gov (United States)

    Shakhova, Olga; Leung, Carly; van Montfort, Erwin; Berns, Anton; Marino, Silvia

    2006-05-15

    Medulloblastomas are among the most common malignant brain tumors in childhood. They typically arise from neoplastic transformation of granule cell precursors in the cerebellum via deregulation of molecular pathways involved in normal cerebellar development. In a mouse model, we show here that impairment of the balance between proliferation and differentiation of granule cell precursors in the external granular layer of the developing cerebellum predisposes but is not sufficient to induce neoplastic transformation of these progenitor cells. Using array-based chromosomal comparative genomic hybridization, we show that genetic instability resulting from inactivation of the p53 pathway together with deregulation of proliferation induced by Rb loss eventually leads to neoplastic transformation of these cells by acquiring additional genetic mutations, mainly affecting N-Myc and Ptch2 genes. Moreover, we show that p53 loss influences molecular mechanisms that cannot be mimicked by the loss of either p19(ARF), p21, or ATM.

  12. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1990-01-01

    GABA has been shown to exert a neurotrophic like activity by enhancing the morphological and functional maturation of neurons. Mechanisms involved in this effect of GABA are largely unknown but since GABA has been shown to mediate a hyperpolarizing action on neurons it can be assumed...... that this action might be important. In order to investigate this possibility, the ability to mimic the trophic actions of GABA of different agents known to influence the membrane potential or the GABA gated chloride channels was studied. Hence, GABA receptor expression as well as the ultrastructure of cerebellar...... granule cells were monitored after exposure of the cells in culture to either bromide, valinomycin or picrotoxin. It was found that cells which at early developmental stages (4 days in culture) were exposed to bromide or valinomycin expressed low affinity GABA receptors similar to cells treated...

  13. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  14. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  15. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  16. Applicability of tooth derived stem cells in neural regeneration

    OpenAIRE

    2016-01-01

    Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and often to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the research of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal st...

  17. A novel approach for treating cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario; Ben Taib, Nordeyn Oulad

    2008-01-01

    The terminology of cerebellar ataxias encompasses a variety of sporadic and inherited debilitating diseases. Patients exhibit disabling deficits such as dysmetria, kinetic tremor and ataxia of stance/gait. We are currently lacking effective treatments in degenerative cerebellar ataxias. Animal models of cerebellar disorders and studies in ataxic patients have demonstrated that the excitability of the sensorimotor cortex is severely depressed in case of cerebellar lesion. These reduced levels of excitability are associated with learning deficits. Recent experimental data show that transcranial direct current stimulation (tDCS) of the premotor cortex and low-frequency repetitive stimulation of the motor cortex (LFRSM1) restore the excitability of the motor cortex in hemicerebellectomized rats, reinstating the ability of the motor cortex to adapt to sustained peripheral stimulation. The hypothesis is based on the possibility that the combination of tDCS and contralateral LFRSM1 can improve human cerebellar ataxias. The proposed treatment consists of delivering trains of tDCS either in conjunction or in alternance with contralateral LFRSM1, in addition to application of peripheral nerve stimulation to sensitize the sensorimotor cortex. This hypothesis is to be tested in a procedure made of 3 steps in patients exhibiting a sporadic or inherited cerebellar disorder. First, patients are assessed clinically using validated scales of cerebellar ataxias and performing accepted quantified tests. Second, trains of tDCS and LFRSM1 are delivered, using a sham procedure in a cross-over design. Trains of peripheral stimulation are applied at peripheral nerves. Third, patients are re-assessed clinically and with quantified tests. Although grafting of stem cells and gene therapy are being developed, they will not be available soon. A successful treatment of combined neurostimulation would lead to a new and readily available approach in the management of cerebellar ataxias. This new

  18. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Science.gov (United States)

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.

  19. Anticonvulsive Activity in Audiogenic DBA/2 Mice of 1,4-Benzodiazepines and 1,5-Benzodiazepines with Different Activities at Cerebellar Granule Cell GABAA Receptors.

    Science.gov (United States)

    Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Robello, Mauro; Scicchitano, Francesca; Russo, Emilio; De Sarro, Giovambattista

    2016-12-01

    Herein, we tested in a model of generalized reflex epilepsy in mice different 1,4-benzodiazepines and 1,5-benzodiazepines with agonistic activity at the GABAA receptor population contributing to the peak component of the chloride current elicited by GABA in cerebellar granule cells (CGCs) in culture. The substances have all higher lipophilia than clobazam, an antiepileptic drug well known and used in human therapy. This ensures that they all can pass relatively easily the blood-brain barrier (BBB). The benzodiazepines were administered intraperitoneally (i.p.) and tested for their activity against sound-induced tonic and clonic seizures in a genetic model of experimental epilepsy, the DBA/2 mouse. Our data demonstrates an interesting inverse correlation between the ED50s and the efficacy (E %) of the drugs in increasing the peak chloride current elicited by GABA in cerebellar granule cells in culture. There is indication of the existence of a threshold of E % above which the increase of ED50 with increasing E % becomes linear. This is statistically significant for the clonic phase, whereas it is at the limit of significance for the tonic one. A possible interpretation of these results is that in this epilepsy model, projections from the cerebellum exert a convulsion prevention activity.

  20. Iatrogenic postoperative cerebellar cyst.

    Science.gov (United States)

    Sharif, Robin; Moscovici, Samuel; Wygoda, Marc; Eliahou, Ruth; Spektor, Sergey

    2016-12-01

    Cerebellar cyst is a known but uncommon entity. It is congenital in most cases, or may develop after brain parenchyma injuries or interventions. To our knowledge, de novo cerebellar cyst after extra-axial tumor excision, has not been described in the literature. We present the first reported case of a de novo cerebellar cyst developing in a 70-year-old woman following retrosigmoid craniotomy for vestibular schwannoma excision, and discuss the possible causes. Following cyst fenestration, there was no clinical or radiological evidence of a residual cyst. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification of neural cell adhesion molecule L1-derived neuritogenic ligands of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Kiselyov, Vladislav

    2009-01-01

    The neural cell adhesion molecule L1 plays an important role in axon growth, neuronal survival, and synaptic plasticity. We recently demonstrated that the L1 fibronectin type III (FN3) modules interact directly with the fibroblast growth factor (FGF) receptor (FGFR). Sequence alignment of individ......The neural cell adhesion molecule L1 plays an important role in axon growth, neuronal survival, and synaptic plasticity. We recently demonstrated that the L1 fibronectin type III (FN3) modules interact directly with the fibroblast growth factor (FGF) receptor (FGFR). Sequence alignment...... of individual L1 FN3 modules with various FGFs suggested that four sequence motifs located in the third and fifth L1 FN3 modules might be involved in interactions with FGFR. The present study found that corresponding synthetic peptides, termed elcamins 1, 2, 3, and 4, bind and activate FGFR in the absence...... of FGF1. Conversely, in the presence of FGF1, elcamins inhibited receptor phosphorylation, indicating that the peptides are FGFR partial agonists. Elcamins 1, 3, and 4 dose dependently induced neurite outgrowth in cultured primary cerebellar neurons. The neuritogenic effect of elcamins was dependent...

  2. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  3. Effect of a GABA agonist on the expression and distribution of GABAA receptors in the plasma membrane of cultured cerebellar granule cells: an immunocytochemical study

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1991-01-01

    The effect of the gamma-aminobutyric acid (GABA) agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 150 microM) on the localization and density of GABAA receptors in the plasma membrane of rat cerebellar granule cells in primary cultures was studied at the electron microscope (EM) level...... by preembedding immunogold staining using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA receptor complex. In THIP-treated as well as untreated control cultures, GABAA receptors were found to be evenly distributed in the plasma membrane of cell bodies as well as processes. However...... at the EM level using the preembedding immunogold technique. It is likely that low-affinity GABAA receptors are preferentially located in the cell processes and to a considerable extent in the form of 'hot spots'. However, these 'hot spots' also contain high-affinity receptors....

  4. Adult human neural stem cell therapeutics: Currentdevelopmental status and prospect

    Institute of Scientific and Technical Information of China (English)

    Hyun Nam; Kee-Hang Lee; Do-Hyun Nam; Kyeung Min Joo

    2015-01-01

    Over the past two decades, regenerative therapies usingstem cell technologies have been developed for variousneurological diseases. Although stem cell therapy is anattractive option to reverse neural tissue damage and torecover neurological deficits, it is still under developmentso as not to show significant treatment effects in clinicalsettings. In this review, we discuss the scientific andclinical basics of adult neural stem cells (aNSCs), andtheir current developmental status as cell therapeuticsfor neurological disease. Compared with other typesof stem cells, aNSCs have clinical advantages, suchas limited proliferation, inborn differentiation potentialinto functional neural cells, and no ethical issues. Inspite of the merits of aNSCs, difficulties in the isolationfrom the normal brain, and in the in vitro expansion,have blocked preclinical and clinical study using aNSCs.However, several groups have recently developed noveltechniques to isolate and expand aNSCs from normaladult brains, and showed successful applications ofaNSCs to neurological diseases. With new technologiesfor aNSCs and their clinical strengths, previous hurdlesin stem cell therapies for neurological diseases could beovercome, to realize clinically efficacious regenerativestem cell therapeutics.

  5. Could the endogenous opioid, morphine, prevent neural stem cell proliferation?

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Tabatabaei, Seyed Abdolreza Mortazavi; Verdi, Javad

    2011-02-01

    In spite of widespread use of morphine to treat pain in patients, little is known about the effects of this opioid on many cells including stem cells. Moreover the studies have been shown controversial results about morphine effects on several kinds of cells. It is well-known that morphine exposure could decrease testosterone levels in brain and spinal cord. Morphine could increase the activity of 5α-redutase, the enzyme that converts testosterone into its respective 5α-redutase derivative dihydrotestosterone (DHT). Also it could increase aromatase activity that converts testosterone to estradiol. Proliferation of neural stem cells was observed in human stem cells after exposure to certain combinations of steroids especially testosterone. On the other hand DHT has negative effect in neural stem cell reproduction. Morphine induces over-expression of p53 gene that could mediate stem cell apoptosis. Therefore we hypothesized that due to reduction in the testosterone levels, elevation in the DHT levels, and over-expression of p53 gene, morphine could prevent neural stem cell proliferation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment.

    Science.gov (United States)

    Ido, Atsushi; Ito, Kazuo

    2006-02-01

    There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells. Copyright 2005 Wiley-Liss, Inc.

  7. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    Science.gov (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  8. Study of neural cells on organic semiconductor ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  9. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  10. Developing neural stem cell-based treatments for neurodegenerative diseases.

    Science.gov (United States)

    Byrne, James A

    2014-05-30

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.

  11. Purification, Visualization, and Molecular Signature of Neural Stem Cells

    Science.gov (United States)

    Yu, Yuan Hong; Narayanan, Gunaseelan; Sankaran, Shvetha; Ramasamy, Srinivas; Chan, Shi Yu; Lin, Shuping; Chen, Jinmiao; Yang, Henry; Srivats, Hariharan

    2016-01-01

    Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity. PMID:26464067

  12. Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum.

    Science.gov (United States)

    Kanumilli, Srinivasan; Tringham, Elizabeth W; Payne, C Elizabeth; Dupere, Jonathan R B; Venkateswarlu, Kanamarlapudi; Usowicz, Maria M

    2006-01-12

    P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of omega-agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of CaV2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of CaV2.1 transcripts in different brain neurons and species.

  13. Neural stem cells: from neurobiology to clinical applications.

    Science.gov (United States)

    Andressen, Christian

    2013-01-01

    In spite of increasing numbers of publications about cell replacement therapies in various neurodegenerative diseases, reports on therapeutic benefits are still rare due to the huge array of parameters affecting the clinically relevant outcome. Limiting conditions can be attributed to origin and number of cells used for transplantation, their in vitro storage, propagation and/or predifferentiation. In addition, the ability of these cells for a site directed differentiation and functional integration in sufficient numbers is known to depend on extrinsic factors including intracerebral position of graft(s). Thus, obstacles to the use of cells in replacement therapies of neurological disorders reflect the molecular as well as cellular complexity of affected functional systems. This review will highlight central aspects of cell replacement strategies that are currently regarded as the most limiting issues in respect to survival, cell identity and site directed differentiation as well as functional integration of grafts. Special attention will be paid to neural stem cells, derived from either fetal or adult central nervous tissue. Unravelling the molecular biology of these proliferating cells in combination with instructive environmental cues for their site directed differentiation will pave the way to high reproducibility in collection, propagation, and predifferentiation of transplantable cells in vitro. In addition, this knowledge of intrinsic and extrinsic cues for a site directed neural differentiation during development will broaden the perspective for any pluripotent stem cell, namely embryonic stem and induced pluripotent stem cells, as an alternate source for a cell based therapy of neurodegenerative diseases.

  14. [Induced-division of neurons derived from neural stem cells].

    Science.gov (United States)

    Lin, Qiu-Xia; Que, Hai-Ping; Lu, Shuang-Hong; Liu, Shao-Jun

    2004-04-25

    In order to explore if mature neurons derived from neural stem cells have the potentiality to divide, we utilized the chemical digestion method to disperse the adult rat brain tissue into single cells, and culture them in serum-free medium. After being cultured for about eight days in vitro, the neural stem cells were induced to differentiate into neurons. The neurons were further induced to divide. Utilizing the method of serial photograph and NF-160 immunocytochemistry, the processes of division of some neurons were recorded. At the same time, PCNA+NF-160 (or Chat, GABA, GAD) double label were used to investigate if the dividing-neurons were mature ones. After the neural stem cells were induced to differentiate in vitro for eight days, they possessed the shape and character of mature neurons. The differentiated neuron had a big nucleus and one or two distinct nucleolus in the nuclear. Within the perikaryon,there were a large amount of dense and Nissl body-like structure. Several long processes emerged from various locations of the cell body. Then, EGF and bFGF were added into the medium to induce division. After two days of induced-division, neuron-like cells were observed to divide; moreover, the number of neuron-like cells in the region increased continually. Immunocytochemistry demonstrated these cells were NF-160-positive. Serial photographs of dividing-process of neuron-like cells were obtained and their daughter cells were also NF-160-positive. After PCNA+NF-160 (or Chat, GABA, GAD) double label, some cells showed brown cell plasma and black nucleus. The above-mentioned results indicate that neurons, which were previously thought to be end-differentiated, can be re-called into cell cycle under appropriate conditions. Mature neurons still have the potential to divide, proliferate and self-renew.

  15. Molecular Analysis of Stromal Cells-Induced Neural Differentiation of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Joshi, Ramila; Buchanan, James Carlton; Paruchuri, Sailaja; Morris, Nathan; Tavana, Hossein

    2016-01-01

    Deriving specific neural cells from embryonic stem cells (ESCs) is a promising approach for cell replacement therapies of neurodegenerative diseases. When co-cultured with certain stromal cells, mouse ESCs (mESCs) differentiate efficiently to neural cells. In this study, a comprehensive gene and protein expression analysis of differentiating mESCs is performed over a two-week culture period to track temporal progression of cells from a pluripotent state to specific terminally-differentiated neural cells such as neurons, astrocytes, and oligodendrocytes. Expression levels of 26 genes consisting of marker genes for pluripotency, neural progenitors, and specific neuronal, astroglial, and oligodendrocytic cells are tracked using real time q-PCR. The time-course gene expression analysis of differentiating mESCs is combined with the hierarchal clustering and functional principal component analysis (FPCA) to elucidate the evolution of specific neural cells from mESCs at a molecular level. These statistical analyses identify three major gene clusters representing distinct phases of transition of stem cells from a pluripotent state to a terminally-differentiated neuronal or glial state. Temporal protein expression studies using immunohistochemistry demonstrate the generation of neural stem/progenitor cells and specific neural lineages and show a close agreement with the gene expression profiles of selected markers. Importantly, parallel gene and protein expression analysis elucidates long-term stability of certain proteins compared to those with a quick turnover. Describing the molecular regulation of neural cells commitment of mESCs due to stromal signaling will help identify major promoters of differentiation into specific cell types for use in cell replacement therapy applications.

  16. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures.

    Science.gov (United States)

    Le Duc, Diana; Spataru, Ana; Ceanga, Mihai; Zagrean, Leon; Schöneberg, Torsten; Toescu, Emil C; Zagrean, Ana-Maria

    2015-07-21

    Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.

  17. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  18. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage.

    Science.gov (United States)

    Morales, Daniver; Hatten, Mary E

    2006-11-22

    The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.

  19. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3

    Directory of Open Access Journals (Sweden)

    ELISABETH DUPIN

    2001-12-01

    Full Text Available How the considerable diversity of neural crest (NC-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.O modo como a diversidade dos tipos celulares derivados da crista neural (CN surge, no embrião de vertebrado, tem sido uma pergunta chave na biologia do desenvolvimento. A pluripotência e a plasticidade na diferenciação da população de células da CN têm sido intensivamente documentadas, ficando deste modo estabelecido que os factores ambientais têm um papel importante na correta diferenciação dos derivados da CN no organismo. Na d

  20. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  1. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  2. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    Science.gov (United States)

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  3. Effect of a GABA agonist on the expression and distribution of GABAA receptors in the plasma membrane of cultured cerebellar granule cells: an immunocytochemical study

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1991-01-01

    , the density of the GABAA receptors was significantly increased in the THIP-treated cultures as compared to the control cultures and this effect of THIP was particularly pronounced in the processes. GABAA receptors were occasionally observed to form 'hot spots' in process-like structures and again......The effect of the gamma-aminobutyric acid (GABA) agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 150 microM) on the localization and density of GABAA receptors in the plasma membrane of rat cerebellar granule cells in primary cultures was studied at the electron microscope (EM) level...... by preembedding immunogold staining using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA receptor complex. In THIP-treated as well as untreated control cultures, GABAA receptors were found to be evenly distributed in the plasma membrane of cell bodies as well as processes. However...

  4. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    Directory of Open Access Journals (Sweden)

    Reem Malek

    Full Text Available Disruption of cerebellar granular neuronal precursor (GNP maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro, which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/- mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.

  5. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells

    Institute of Scientific and Technical Information of China (English)

    万虹; 安沂华; 张泽舜; 张亚卓; 王忠诚

    2003-01-01

    Objective To explore the factors which induce differentiation of embryonic neural stem cells. Methods Rat embryonic neural stem cells were co-cultured with newborn rat Schwann cells in serum-free medium. The phenotype and specific-markers including tubulin-β, glial fibrillary acidic protein (GFAP) and galactorcerebroside (GalC), were domonstrated by phase contrast microscopy and double immunofluorescence staining. Results Overall, 80%±5% of neural stem cells protruded several elongated processes and expressed tubulin-β antigen at high levels, while 20±3% of them protruded several short processes and were GalC or GFAP positive. Conclusion The factors secreted by Schwann cells could induce rat embryonic neural stem cell to differentiate.

  6. Capacity of Human Dental Follicle Cells to Differentiate into Neural Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Shingo Kanao

    2017-01-01

    Full Text Available The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. Human dental follicle cells (hDFCs have the capacity to commit to differentiation into multiple cell types. Here we investigated the capacity of hDFCs to differentiate into neural cells and the efficiency of a two-step strategy involving floating neurosphere-like bodies for neural differentiation. Undifferentiated hDFCs showed a spindle-like morphology and were positive for neural markers such as nestin, β-III-tubulin, and S100β. The cellular morphology of several cells was neuronal-like including branched dendrite-like processes and neurites. Next, hDFCs were used for neurosphere formation in serum-free medium containing basic fibroblast growth factor, epidermal growth factor, and B27 supplement. The number of cells with neuronal-like morphology and that were strongly positive for neural markers increased with sphere formation. Gene expression of neural markers also increased in hDFCs with sphere formation. Next, gene expression of neural markers was examined in hDFCs during neuronal differentiation after sphere formation. Expression of Musashi-1 and Musashi-2, MAP2, GFAP, MBP, and SOX10 was upregulated in hDFCs undergoing neuronal differentiation via neurospheres, whereas expression of nestin and β-III-tubulin was downregulated. In conclusion, hDFCs may be another optimal source of neural/glial cells for cell-based therapies to treat neurological diseases.

  7. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2017-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system. PMID:26940741

  8. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.

  9. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  10. Cerebellar contributions to neurological soft signs in healthy young adults.

    Science.gov (United States)

    Hirjak, Dusan; Thomann, Philipp A; Kubera, Katharina M; Stieltjes, Bram; Wolf, Robert C

    2016-02-01

    Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin, e.g., in patients with schizophrenia and autism. Yet NSS are also present in healthy individuals suggesting a neurodevelopmental signature of motor function, probably as a continuum between health and disease. So far, little is known about the neural mechanisms underlying these motor phenomena in healthy persons, and it is even less known whether the cerebellum contributes to NSS expression. Thirty-seven healthy young adults (mean age = 23 years) were studied using high-resolution structural magnetic resonance imaging (MRI) and "resting-state" functional MRI at three Tesla. NSS levels were measured using the "Heidelberg Scale." Cerebellar gray matter volume was investigated using cerebellum-optimized voxel-based analysis methods. Cerebellar function was assessed using regional homogeneity (ReHo), a measure of local network strength. The relationship between cerebellar structure and function and NSS was analyzed using regression models. There was no significant relationship between cerebellar volume and NSS (p motor coordination" and "hard signs" NSS domains. A negative relationship was found between lobule VI activity and "complex motor task" domain (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). The data indicate that in healthy young adults, distinct NSS domains are related to cerebellar activity, specifically with activity of cerebellar subregions with known cortical somatomotor projections. In contrast, cerebellar volume is not predictive of NSS in healthy persons.

  11. Neural precursors derived from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Peng Hongmei; Chen Gui'an

    2005-01-01

    Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells, hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs).The EBs were then cultured in N2 medium containing bFGF in poly- L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2-3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4-5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeⅢ, GABA, serotonin and synaptophysin.Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS) in vitro.

  12. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells.

    Science.gov (United States)

    Zhang, Zan; Lei, Anhua; Xu, Liyang; Chen, Lu; Chen, Yonglong; Zhang, Xuena; Gao, Yan; Yang, Xiaoli; Zhang, Min; Cao, Ying

    2017-08-04

    Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Application of adult stem cells in neural tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Lihong Piao; Wei Wang

    2006-01-01

    OBJECTTIVE:To investigate the progress in finding,isolation and culture.proliferation and differentiation,and application in neural tissue engineering of adult stem cells(ASCs).DATA SOURCES:Using the terms"adult stem cells,nerve,tissue engineering".we searched the PubMed for adult stem ceils-related studies published in English from January 2001 to August 2006.Meanwhile,we also performed a China National Knowledge Infrastructure(CNKI)search for homochronous correlative literatures on the computer by inputting the terms"adult stem cells,nerve,tissue engineering"in Chinese.texts were searched for.Inclusive criteria:①Literatures about the sources,distribution,culture.proliferation and differentiation.and application in the repair of neural ASCs by tissue engineering.②Articles recommended either by randomized.blind or by other methods were not excluded.Exclusive criteria:①Embryonic stem cells.②Review,repetitive study,case report,Meta analysis. DATA EXTRACTION:Totally 1 278 articles related to ASCs were collected,32 were involved and the other 1 246 were excluded. DATA SYNTHESIS:Adult stem cell has the ability of self-renewal.unceasing proliferation and transdifferentiation.It has wide source,which does not involved in ethical problems.It has advantages over embryonic stem cell.Studies on the isolation and culture,induction and differentiation and application in neural ASCs by tissue engineering contribute to obtaining considerable ASCs,so as to provide experimental and theoretical bases for CONCLUSION:ASCs play a very important role in neural tissue engineering.

  14. Neural crest stem cells: discovery, properties and potential for therapy

    Institute of Scientific and Technical Information of China (English)

    Annita Achilleos; Paul A Trainor

    2012-01-01

    Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution.They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone,connective tissue,pigment and endocrine cells as well as neurons and glia amongst many others.Such incredible lineage potential combined with a limited capacity for self-renewal,which persists even into adult life,demonstrates that NC cells bear the key hallmarks of stem and progenitor cells.In this review,we describe the identification,characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms.We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.

  15. Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells.

    Science.gov (United States)

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U

    2010-04-23

    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans aggrecan, neurocan, and versican are expressed by cells in both the astrocytic and neuronal lineages. During the time period that hyaluronan was present, it co-localized with each of the hyaluronan-binding proteoglycans studied and was found to be clearly associated with beta-III tubulin-expressing neurons and oligodendrocytes expressing the O4 sulfatide marker. Although proteoglycan expression levels increased to varying degrees following neural differentiation, they did not change noticably during the following 2 weeks in culture, but there was a significant decrease in hyaluronan expression. Our studies therefore demonstrate the expression by neural stem cells and neural cells derived from them of hyaluronan and its associated proteoglycans, thereby providing a necessary foundation for integrating their specific properties into developing strategies for therapeutic applications.

  16. Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes.

    Science.gov (United States)

    Banda, Erin; McKinsey, Anna; Germain, Noelle; Carter, James; Anderson, Nickesha Camille; Grabel, Laura

    2015-04-15

    Embryonic stem cells (ESCs) undergoing neural differentiation form radial arrays of neural stem cells, termed neural rosettes. These structures manifest many of the properties associated with embryonic and adult neurogenesis, including cell polarization, interkinetic nuclear migration (INM), and a gradient of neuronal differentiation. We now identify novel rosette structural features that serve to localize key regulators of neurogenesis. Cells within neural rosettes have specialized basal as well as apical surfaces, based on localization of the extracellular matrix receptor β1 integrin. Apical processes of cells in mature rosettes terminate at the lumen, where adherens junctions are apparent. Primary cilia are randomly distributed in immature rosettes and tightly associated with the neural stem cell's apical domain as rosettes mature. Components of two signaling pathways known to regulate neurogenesis in vivo and in rosettes, Hedgehog and Notch, are apically localized, with the Hedgehog effector Smoothened (Smo) associated with primary cilia and the Notch pathway γ-secretase subunit Presenilin 2 associated with the adherens junction. Increased neuron production upon treatment with the Notch inhibitor DAPT suggests a major role for Notch signaling in maintaining the neural stem cell state, as previously described. A less robust outcome was observed with manipulation of Hedgehog levels, though consistent with a role in neural stem cell survival or proliferation. Inhibition of both pathways resulted in an additive effect. These data support a model by which cells extending a process to the rosette lumen maintain neural stem cell identity whereas release from this association, either through asymmetric cell division or apical abscission, promotes neuronal differentiation.

  17. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration.

    Science.gov (United States)

    Rodrigo Albors, Aida; Tazaki, Akira; Rost, Fabian; Nowoshilow, Sergej; Chara, Osvaldo; Tanaka, Elly M

    2015-11-14

    Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue.

  18. Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide.

    Science.gov (United States)

    Bieberich, Erhard

    2008-01-01

    Ceramide and its derivative sphingosine-1-phosphate (S1P) are important signaling sphingolipids for neural stem cell apoptosis and differentiation. Most recently, our group has shown that novel ceramide analogs can be used to eliminate teratoma (stem cell tumor)-forming cells from a neural stem cell graft. In new studies, we found that S1P promotes survival of specific neural precursor cells that undergo differentiation to cells expressing oligodendroglial markers. Our studies suggest that a combination of novel ceramide and S1P analogs eliminates tumor-forming stem cells and at the same time, triggers oligodendroglial differentiation. This review discusses recent studies on the function of ceramide and S1P for the regulation of apoptosis, differentiation, and polarity in stem cells. We will also discuss results from ongoing studies in our laboratory on the use of sphingolipids in stem cell therapy.

  19. Sonic hedgehog elevates N-myc gene expression in neural stem cells.

    Science.gov (United States)

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-08-05

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.

  20. Blood-neural barrier: its diversity and coordinated cell-to-cell communication.

    Science.gov (United States)

    Choi, Yoon Kyung; Kim, Kyu-Won

    2008-05-31

    The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

  1. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells.

    Science.gov (United States)

    Gao, Liyang; Zhao, Mingyan; Ye, Wei; Huang, Jinzhi; Chu, Jiaqi; Yan, Shouquan; Wang, Chaojun; Zeng, Rong

    2016-08-01

    The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.

  2. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells

    Science.gov (United States)

    Ottone, Cristina; Krusche, Benjamin; Whitby, Ariadne; Clements, Melanie; Quadrato, Giorgia; Pitulescu, Mara E.; Adams, Ralf H.; Parrinello, Simona

    2014-01-01

    The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment. PMID:25283993

  3. Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow.

    Science.gov (United States)

    Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K; Chotkowski, Gregory; Tarnow, Dennis P; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J

    2016-12-21

    Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.

  4. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    Science.gov (United States)

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.

  5. Exposure to extremely low-frequency electromagnetic fields modulates Na+ currents in rat cerebellar granule cells through increase of AA/PGE2 and EP receptor-mediated cAMP/PKA pathway.

    Directory of Open Access Journals (Sweden)

    Yan-Lin He

    Full Text Available Although the modulation of Ca(2+ channel activity by extremely low-frequency electromagnetic fields (ELF-EMF has been studied previously, few reports have addressed the effects of such fields on the activity of voltage-activated Na(+ channels (Na(v. Here, we investigated the effects of ELF-EMF on Na(v activity in rat cerebellar granule cells (GCs. Our results reveal that exposing cerebellar GCs to ELF-EMF for 10-60 min significantly increased Na(v currents (I(Na by 30-125% in a time- and intensity-dependent manner. The Na(v channel steady-state activation curve, but not the steady-state inactivation curve, was significantly shifted (by 5.2 mV towards hyperpolarization by ELF-EMF stimulation. This phenomenon is similar to the effect of intracellular application of arachidonic acid (AA and prostaglandin E(2 (PGE(2 on I(Na in cerebellar GCs. Increases in intracellular AA, PGE(2 and phosphorylated PKA levels in cerebellar GCs were observed following ELF-EMF exposure. Western blottings indicated that the Na(V 1.2 protein on the cerebellar GCs membrane was increased, the total expression levels of Na(V 1.2 protein were not affected after exposure to ELF-EMF. Cyclooxygenase inhibitors and PGE(2 receptor (EP antagonists were able to eliminate this ELF-EMF-induced increase in phosphorylated PKA and I(Na. In addition, ELF-EMF exposure significantly enhanced the activity of PLA(2 in cerebellar GCs but did not affect COX-1 or COX-2 activity. Together, these data demonstrate for the first time that neuronal I(Na is significantly increased by ELF-EMF exposure via a cPLA2 AA PGE(2 EP receptors PKA signaling pathway.

  6. Exposure to extremely low-frequency electromagnetic fields modulates Na+ currents in rat cerebellar granule cells through increase of AA/PGE2 and EP receptor-mediated cAMP/PKA pathway.

    Science.gov (United States)

    He, Yan-Lin; Liu, Dong-Dong; Fang, Yan-Jia; Zhan, Xiao-Qin; Yao, Jin-Jing; Mei, Yan-Ai

    2013-01-01

    Although the modulation of Ca(2+) channel activity by extremely low-frequency electromagnetic fields (ELF-EMF) has been studied previously, few reports have addressed the effects of such fields on the activity of voltage-activated Na(+) channels (Na(v)). Here, we investigated the effects of ELF-EMF on Na(v) activity in rat cerebellar granule cells (GCs). Our results reveal that exposing cerebellar GCs to ELF-EMF for 10-60 min significantly increased Na(v) currents (I(Na)) by 30-125% in a time- and intensity-dependent manner. The Na(v) channel steady-state activation curve, but not the steady-state inactivation curve, was significantly shifted (by 5.2 mV) towards hyperpolarization by ELF-EMF stimulation. This phenomenon is similar to the effect of intracellular application of arachidonic acid (AA) and prostaglandin E(2) (PGE(2)) on I(Na) in cerebellar GCs. Increases in intracellular AA, PGE(2) and phosphorylated PKA levels in cerebellar GCs were observed following ELF-EMF exposure. Western blottings indicated that the Na(V) 1.2 protein on the cerebellar GCs membrane was increased, the total expression levels of Na(V) 1.2 protein were not affected after exposure to ELF-EMF. Cyclooxygenase inhibitors and PGE(2) receptor (EP) antagonists were able to eliminate this ELF-EMF-induced increase in phosphorylated PKA and I(Na). In addition, ELF-EMF exposure significantly enhanced the activity of PLA(2) in cerebellar GCs but did not affect COX-1 or COX-2 activity. Together, these data demonstrate for the first time that neuronal I(Na) is significantly increased by ELF-EMF exposure via a cPLA2 AA PGE(2) EP receptors PKA signaling pathway.

  7. The 40-year history of modeling active dendrites in cerebellar Purkinje cells: Emergence of the first single cell 'Community Model'

    Directory of Open Access Journals (Sweden)

    James M Bower

    2015-10-01

    Full Text Available The subject of the effects of the active properties of the Purkinje cell dendrite on neuronal function has been an active subject of study for more than 40 years. Somewhat unusually, some of these investigations, from the outset have involved an interacting combination of experimental and model-based techniques. This paper recounts that 40-year history, and the view of the functional significance of the active properties of the Purkinje cell dendrite that has emerged. It specifically considers the emergence from these efforts of what is arguably the first single cell ‘community’ model in neuroscience. The paper also considers the implications of the development of this model for future studies of the complex properties of neuronal dendrites.

  8. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1(fl/fl)), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1(fl/fl) brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Meier, E;

    1990-01-01

    differentiation and GABA receptor expression was investigated in cultured cerebellar granule cells. After 4 days in culture the neurons were exposed to the inhibitors for 6 h in the simultaneous presence of THIP. Subsequently, cultures were either fixed for electron microscopic examination or used for preparation...... of membranes for [3H]GABA binding assays. In some experiments the functional activity of the newly induced low-affinity GABA receptors was assessed by investigation of the ability of GABA to inhibit neurotransmitter release from the neurons. These experiments were performed to differentiate between...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  10. Control of neural stem cell survival by electroactive polymer substrates.

    Directory of Open Access Journals (Sweden)

    Vanessa Lundin

    Full Text Available Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy, a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs. NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS, tosylate (TsO, perchlorate (ClO(4 and chloride (Cl, showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS but low on PPy containing TsO, ClO(4 and Cl. On PPy(DBS, NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  11. Neural progenitor and hemopoietic stem cells inhibit the growth of low-differentiated glioma.

    Science.gov (United States)

    Baklaushev, V P; Grinenko, N F; Savchenko, E A; Bykovskaya, S N; Yusubalieva, G M; Viktorov, I V; Bryukhovetskii, A S; Bryukhovetskii, I S; Chekhonin, V P

    2012-02-01

    The effects of neural progenitor and hemopoietic stem cells on C6 glioma cells were studied in in vivo and in vitro experiments. Considerable inhibition of proliferation during co-culturing of glioma cells with neural progenitor cells was revealed by quantitative MTT test and bromodeoxyuridine incorporation test. Labeled neural progenitor and hemopoietic stem cells implanted into the focus of experimental cerebral glioma C6 survive in the brain of experimental animals for at least 7 days, migrate with glioma cells, and accumulate in the peritumoral space. Under these conditions, neural progenitor cells differentiate with the formation of long processes. Morphometric analysis of glioma cells showed that implantation of neural progenitor and hemopoietic stem cells is accompanied by considerable inhibition of the growth of experimental glioma C6 in comparison with the control. The mechanisms of tumor-suppressive effects of neural and hemopoietic stem cells require further investigation.

  12. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    Science.gov (United States)

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  13. Adult neural stem cells in the mammalian central nervous system

    Institute of Scientific and Technical Information of China (English)

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  14. Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice.

    Science.gov (United States)

    Wakai, Takuma; Narasimhan, Purnima; Sakata, Hiroyuki; Wang, Eric; Yoshioka, Hideyuki; Kinouchi, Hiroyuki; Chan, Pak H

    2016-12-01

    Previous studies have shown that intraparenchymal transplantation of neural stem cells ameliorates neurological deficits in animals with intracerebral hemorrhage. However, hemoglobin in the host brain environment causes massive grafted cell death and reduces the effectiveness of this approach. Several studies have shown that preconditioning induced by sublethal hypoxia can markedly improve the tolerance of treated subjects to more severe insults. Therefore, we investigated whether hypoxic preconditioning enhances neural stem cell resilience to the hemorrhagic stroke environment and improves therapeutic effects in mice. To assess whether hypoxic preconditioning enhances neural stem cell survival when exposed to hemoglobin, neural stem cells were exposed to 5% hypoxia for 24 hours before exposure to hemoglobin. To study the effectiveness of hypoxic preconditioning on grafted-neural stem cell recovery, neural stem cells subjected to hypoxic preconditioning were grafted into the parenchyma 3 days after intracerebral hemorrhage. Hypoxic preconditioning significantly enhanced viability of the neural stem cells exposed to hemoglobin and increased grafted-cell survival in the intracerebral hemorrhage brain. Hypoxic preconditioning also increased neural stem cell secretion of vascular endothelial growth factor. Finally, transplanted neural stem cells with hypoxic preconditioning exhibited enhanced tissue-protective capability that accelerated behavioral recovery. Our results suggest that hypoxic preconditioning in neural stem cells improves efficacy of stem cell therapy for intracerebral hemorrhage.

  15. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  16. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  17. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  18. TGFβ1 downregulates neurite outgrowth, expression of Ca2+ transporters, and mitochondrial dynamics of in vitro cerebellar granule cells.

    Science.gov (United States)

    Jaskova, Katarina; Pavlovicova, Michaela; Cagalinec, Michal; Lacinova, Lubica; Jurkovicova, Dana

    2014-03-26

    Acute injury to central nervous system (CNS) triggers neurodegenerative processes that can result in serious damage or complete loss of function. After injury, production of transforming growth factor β1 (TGFβ1) increases and initiates creation of a fibrotic scar that prevents normal growth, plasticity, and recovery of damaged neurons. Administration of TGFβ1 antagonists can prevent its pathological effects. To define consequences of increased TGFβ1 release on calcium signaling, neuronal plasticity, excitability, and mitochondrial dynamics in CNS neurons we directly exposed a rat primary culture of cerebellar granule neurons to TGFβ1. We focused on changes in expression of intracellular calcium transporters, especially inositol-1,4,5-trisphosphate receptor (IP3R) type 1, mitochondrial dynamics, and membrane excitability. TGFβ1 significantly decreased the gene and protein expression of inositol-1,4,5-trisphosphate receptor type 1 and the gene expression of additional intracellular Ca transporters such as IP3R2, ryanodine receptor type 1 (RyR1), RyR2, and SERCA2. Altered calcium signaling suppressed neurite outgrowth and significantly decreased the length of the mitochondria and the frequency of mitochondrial fusion. The resting membrane potential of cerebellar granule neurons was hyperpolarized and slow after depolarization of single action potential was suppressed. LY364947, a blocker of TGFβ1 receptor I, prevented these effects, and IP3 receptor blocker 2-aminoethoxydiphenyl borate (2APB) mimicked them. After CNS injury TGFβ1 downregulates intracellular Ca levels and alters Ca signaling within injured neurons. We suggest that in our model TGFβ1 may trigger both neurodegenerative and neuroprotective events through IP3-induced Ca signaling.

  19. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  20. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases.

    Science.gov (United States)

    Suksuphew, Sarawut; Noisa, Parinya

    2015-03-26

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, and Huntington's disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.

  1. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  2. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  3. Live imaging of adult neural stem cells in rodents

    Directory of Open Access Journals (Sweden)

    Felipe eOrtega

    2016-03-01

    Full Text Available The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric versus asymmetric that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions

  4. Neural stem cell-based treatment for neurodegenerative diseases.

    Science.gov (United States)

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury. © 2013 Japanese Society of Neuropathology.

  5. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  6. Climbing fiber signaling and cerebellar gain control

    NARCIS (Netherlands)

    G. Ohtsuki (Gen); C. Piochon (Claire); C.R.W. Hansel (Christian)

    2009-01-01

    textabstractThe physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje

  7. HISTOGENESIS OF HUMAN FOETAL CEREBELLAR CORTEX

    African Journals Online (AJOL)

    External granular layer is observed at 13 weeks of gestation and purkinje cell layer is arranged at 17 weeks as a ... brain that begins first to differentiate but last to mature .... Development of human cerebellar granular layer: a morphometric ...

  8. Cerebellar white matter pathways are associated with reading skills in children and adolescents.

    Science.gov (United States)

    Travis, Katherine E; Leitner, Yael; Feldman, Heidi M; Ben-Shachar, Michal

    2015-04-01

    Reading is a critical life skill in the modern world. The neural basis of reading incorporates a distributed network of cortical areas and their white matter connections. The cerebellum has also been implicated in reading and reading disabilities. However, little is known about the contribution of cerebellar white matter pathways to major component skills of reading. We used diffusion magnetic resonance imaging (dMRI) with tractography to identify the cerebellar peduncles in a group of 9- to 17-year-old children and adolescents born full term (FT, n = 19) or preterm (PT, n = 26). In this cohort, no significant differences were found between fractional anisotropy (FA) measures of the peduncles in the PT and FT groups. FA of the cerebellar peduncles correlated significantly with measures of decoding and reading comprehension in the combined sample of FT and PT subjects. Correlations were negative in the superior and inferior cerebellar peduncles and positive in the middle cerebellar peduncle. Additional analyses revealed that FT and PT groups demonstrated similar patterns of reading associations within the left superior cerebellar peduncle, middle cerebellar peduncle, and left inferior cerebellar peduncle. Partial correlation analyses showed that distinct sub-skills of reading were associated with FA in segments of different cerebellar peduncles. Overall, the present findings are the first to document associations of microstructure of the cerebellar peduncles and the component skills of reading. © 2014 Wiley Periodicals, Inc.

  9. Long-term exposure to dieldrin reduces gamma-aminobutyric acid type A and N-methyl-D-aspartate receptor function in primary cultures of mouse cerebellar granule cells.

    Science.gov (United States)

    Babot, Zoila; Vilaró, M Teresa; Suñol, Cristina

    2007-12-01

    The organochlorine pesticide dieldrin is a persistent organic pollutant that accumulates in the fatty tissue of living organisms. In mammals, it antagonizes the GABA(A) receptor, producing convulsions after acute exposure. Although accumulation in human brain has been reported, little is known about the effects of long-term exposure to dieldrin in the nervous system. Homeostatic control of the balance between excitation and inhibition has been reported when neuronal activity is chronically altered. We hypothesized that noncytotoxic concentrations of dieldrin could decrease glutamatergic neurotransmission as a consequence of a prolonged reduction in GABA(A) receptor function. Long-term exposure of primary cerebellar granule cell cultures to 3 microM dieldrin reduced the GABA(A) receptor function to 55% of control, as measured by the GABA-induced (36)Cl(-) uptake. This exposure produced a significant reduction (approximately 35%) of the NMDA-induced increase in [Ca(2+)](i) and of the [(3)H]MK-801 binding, which was not accompanied by a reduction in the NMDA receptor subunit NR1, as determined by Western blot. Consistent with the decreased NMDA receptor function, dieldrin-treated cultures were insensitive to an excitotoxic stimulus induced by exposure to high potassium. In summary, we report that the chronic reduction of GABA(A) receptor function induced by dieldrin decreases the number of functional NMDA receptors, which may be attributable to a mechanism of synaptic scaling. These effects could underlie neural mechanisms involved in cognitive impairment produced by low-level exposure to dieldrin. (c) 2007 Wiley-Liss, Inc.

  10. Generation of Neural Crest-Like Cells From Human Periodontal Ligament Cell-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tomokiyo, Atsushi; Hynes, Kim; Ng, Jia; Menicanin, Danijela; Camp, Esther; Arthur, Agnes; Gronthos, Stan; Mark Bartold, Peter

    2017-02-01

    Neural crest cells (NCC) hold great promise for tissue engineering, however the inability to easily obtain large numbers of NCC is a major factor limiting their use in studies of regenerative medicine. Induced pluripotent stem cells (iPSC) are emerging as a novel candidate that could provide an unlimited source of NCC. In the present study, we examined the potential of neural crest tissue-derived periodontal ligament (PDL) iPSC to differentiate into neural crest-like cells (NCLC) relative to iPSC generated from a non-neural crest derived tissue, foreskin fibroblasts (FF). We detected high HNK1 expression during the differentiation of PDL and FF iPSC into NCLC as a marker for enriching for a population of cells with NCC characteristics. We isolated PDL iPSC- and FF iPSC-derived NCLC, which highly expressed HNK1. A high proportion of the HNK1-positive cell populations generated, expressed the MSC markers, whilst very few cells expressed the pluripotency markers or the hematopoietic markers. The PDL and FF HNK1-positive populations gave rise to smooth muscle, neural, glial, osteoblastic and adipocytic like cells and exhibited higher expression of smooth muscle, neural, and glial cell-associated markers than the PDL and FF HNK1-negative populations. Interestingly, the HNK1-positive cells derived from the PDL-iPSC exhibited a greater ability to differentiate into smooth muscle, neural, glial cells and adipocytes, than the HNK1-positive cells derived from the FF-iPSC. Our work suggests that HNK1-enriched NCLC from neural crest tissue-derived iPSC more closely resemble the phenotypic and functional hallmarks of NCC compared to the HNK1-low population and non-neural crest iPSC-derived NCLC. J. Cell. Physiol. 232: 402-416, 2017. © 2016 Wiley Periodicals, Inc.

  11. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  12. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  13. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  14. Endothelial cells regulate neural crest and second heart field morphogenesis.

    Science.gov (United States)

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  15. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  16. Cerebellar Hypoplasia and Autism

    OpenAIRE

    1989-01-01

    The size of the cerebellar hemisphere and vermal lobules was measured in ten autistic and eight normal control subjects at the Neuropsychology Research Laboratory, Children’s Hospital Research Center, and the Departments of Neurosciences and Radiology, School of Medicine, University of California at San Diego, LaJolla.

  17. Mouse neural stem cells cultured in vitro and expressing an exogenous gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neural stem cells are the multipotential, self-re- newing cells in central nerve system, and play an essential role in the development and differentiation of nerve system. Neural stem cells can be used to treat the nerve system diseases, especially, the transplantation of neural stem cells to rescue the degenerated neural cells has become a very promising therapeutic way. We successfully cultured neural stem cells isolated from the brains of embryonic mice in vitro and determined their distribution in the E17 mice brains. The neural stem cells were transfected with adenoviral vector carrying GFP (green fluorescence protein) gene and then highly expressed the exogenous gene. It paves the way for gene therapy of degenerative nerve system diseases.

  18. An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro.

    Science.gov (United States)

    Zhou, Jun-Mei; Chu, Jian-Xin; Chen, Xue-Jin

    2008-01-01

    Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.

  19. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  20. Metabolites of cerebellar neurons and hippocampal neurons play opposite roles in pathogenesis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jing Du

    Full Text Available Metabolites of neural cells, is known to have a significant effect on the normal physiology and function of neurons in brain. However, whether they play a role in pathogenesis of neurodegenerative diseases is unknown. Here, we show that metabolites of neurons play essential role in the pathogenesis of Alzheimer's disease (AD. Firstly, in vivo and in vitro metabolites of cerebellar neurons both significantly induced the expression of Abeta-degrading enzymes in the hippocampus and cerebral cortex and promoted Abeta clearance. Moreover, metabolites of cerebellar neurons significantly reduced brain Abeta levels and reversed cognitive impairments and other AD-like phenotypes of APP/PS1 transgenic mice, in both early and late stages of AD pathology. On the other hand, metabolites of hippocampal neurons reduced the expression of Abeta-degrading enzymes in the cerebellum and caused cerebellar neurodegeneration in APP/PS1 transgenic mice. Thus, we report, for the first time, that metabolites of neurons not only are required for maintaining the normal physiology of neurons but also play essential role in the pathogenesis of AD and may be responsible for the regional-specificity of Abeta deposition and AD pathology.