WorldWideScience

Sample records for cereal crop plants

  1. Cereal Crops Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Cereal Crops Research Unit is to 1) conduct basic research to identify and understand the biological processes affecting the growth, development...

  2. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    Science.gov (United States)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  3. Volatile Semiochemical Mediated Plant Defense in Cereals: A Novel Strategy for Crop Protection

    Directory of Open Access Journals (Sweden)

    Amanuel Tamiru

    2017-09-01

    Full Text Available Plants have evolved highly intriguing ways of defending themselves against insect attacks, including through emission of defense volatiles. These volatiles serve the plant’s defense by directly repelling phytophagous insects and/or indirectly through attracting natural enemies antagonistic to the herbivores. Several laboratory studies established the potential of improving plant resistance against insect attacks by manipulating the plant-derived volatile semiochemicals emissions. Yet, more efforts need to be conducted to translate the promising laboratory studies to fight economically-important crop pests under real field conditions. This is needed to address an increasing demand for alternative pest control options driven by ecological and environmental costs associated with the use of broad-spectrum insecticides. The practical examples discussed in this review paper demonstrate the real prospect of exploiting an inducible and constitutive plant volatile semiochemicals for developing novel and ecologically-sustainable pest management strategies to protect cereal crops from damaging insect pests.

  4. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    Science.gov (United States)

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes.

    Science.gov (United States)

    Abbo, Shahal; Pinhasi van-Oss, Ruth; Gopher, Avi; Saranga, Yehoshua; Ofner, Itai; Peleg, Zvi

    2014-06-01

    'Domestication syndrome' (DS) denotes differences between domesticated plants and their wild progenitors. Crop plants are dynamic entities; hence, not all parameters distinguishing wild progenitors from cultigens resulted from domestication. In this opinion article, we refine the DS concept using agronomic, genetic, and archaeobotanical considerations by distinguishing crucial domestication traits from traits that probably evolved post-domestication in Near Eastern grain crops. We propose that only traits showing a clear domesticated-wild dimorphism represent the pristine domestication episode, whereas traits showing a phenotypic continuum between wild and domesticated gene pools mostly reflect post-domestication diversification. We propose that our approach may apply to other crop types and examine its implications for discussing the timeframe of plant domestication and for modern plant science and breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Optimal root arrangement of cereal crops

    Science.gov (United States)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  7. Effect of intercropping cereal crops with forage legumes and source ...

    African Journals Online (AJOL)

    Effect of intercropping cereal crops with forage legumes and source of nutrients on cereal grain yield and fodder dry matter yields. ... La disposition en lignes a produit un rendement élévé en fourrages secs (5%) et en grains des céréales que les céréales plantés aux hazard. La valeur nutritive (CP, NDF et degradabilité de ...

  8. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    Directory of Open Access Journals (Sweden)

    Mingsheng Fan

    Full Text Available OBJECTIVE: China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. METHODS: The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. RESULTS: Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. CONCLUSIONS: Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving

  9. CCT family genes in cereal crops: A current overview

    Directory of Open Access Journals (Sweden)

    Yipu Li

    2017-12-01

    Full Text Available Control of flowering time is crucial for reproductive success of cereal crops, and has a significant impact on grain yield as well as adaptation to diverse environmental conditions. Plants integrate signals from both environmental cues and endogenous regulatory pathways to fine-tune flowering time. The CCT domain originally described to a 43-amino acid sequence at the C-terminus of three Arabidopsis proteins, namely CONSTANS (CO, CO-LIKE, and TIMING OF CAB1 (TOC1. The CCT domain-containing genes (CCT genes, which encode transcription co-factors, are the major genetic determinants that modulate flowering time, and this in turn enables plants to effectively expand their territory to take advantage of favorable habitats. Moreover, certain CCT genes have pleiotropic effects on morphological traits and confer resistance/tolerance to biotic/abiotic stresses. CCT genes can be classified into three families, namely COL (CONSTANS-like, PRR (Pseudo-response regulator, and CMF (CCT motif family, based on their non-CCT domains. During domestication, natural and artificial selection resulted in reduced nucleotide diversity of CCT genes in modern cultivated cereals than their wild types. Here, we review the features and functions of CCT genes in cereal crops and propose future research to focus on CCT genes and their utilization in crop breeding. Keywords: CCT domain, Flowering time, Photoperiod, Pleiotropy

  10. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication

  11. Current issues in cereal crop biodiversity.

    Science.gov (United States)

    Moreta, Danilo E; Mathur, Prem Narain; van Zonneveld, Maarten; Amaya, Karen; Arango, Jacobo; Selvaraj, Michael Gomez; Dedicova, Beata

    2015-01-01

    The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change. The genetic diversity of staple small grains, including rice, maize, wheat, millets, and more recently quinoa, have been surveyed to encourage utilization and prioritization of areas for germplasm conservation. Geographic information system technologies and spatial analysis are now being used as powerful tools to elucidate genetic and ecological patterns in the distribution of cultivated and wild species to establish coherent programs for the management of plant genetic resources for food and agriculture.

  12. Nuclear methods for plant nutrient and water balance studies. Results of an FAO/IAEA regional technical co-operation programme on nuclear methods for plant nutrients and water balance studies under legume-cereal or fallow-cereal crop rotation systems implemented for Middle Eastern countries (1991-1994)

    International Nuclear Information System (INIS)

    1996-04-01

    In semi-arid Middle Eastern countries, the increasing demand for food and other agricultural products calls for urgent measures to increase plant nutrient availability and water use efficiency. Water and plant nutrients are the two main crop yield limiting factors in these regions. Improved methods must be developed to sustain crop productivity of the legume-cereal rotation systems. It has been recognized for years that the growth of leguminous crops can improve the N status of the soil through biological nitrogen fixation (BNF). The conditions to improve the efficiency of the fixation process should be further investigated in order to fully benefit from this cheap N source. The BNF process is especially interesting for those areas facing limited fertilizer N availability or where the price of the fertilizers is too high for the farmers. In view of sustainable productivity, even with adequate supply of nutrients (nitrogen) and water, crop rotations have been promoted for years. However, the best rotation, taking into account the available nutrients and water in a specific place, is not always known. Furthermore, if a leguminous crop can be incorporated into a crop rotation system, free N is provided for this crop and some of it can serve as residual N for the next crop in the rotation. The use of 15 N technology provides a unique tool to separately study the behaviour of fertilizer N as well as soil N. In addition, the quantification of residual fertilizer N is possible, as well as the quantification of BNF. Refs, figs, tabs

  13. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement.

    Science.gov (United States)

    Hill, Camilla B; Li, Chengdao

    2016-01-01

    Cereal crop species including bread wheat ( Triticum aestivum L.), barley ( Hordeum vulgare L.), rice ( Oryza sativa L.), and maize ( Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth

  14. Resilience of cereal crops to abiotic stress: A review

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Key words: Cereal crops, abiotic stresses, food insecurity, molecular breeding, quantitative trait loci (QTLs), salinity, water stress. ... production of genetically modified (GM) crops, exo- genous use of osmo protectants etc. ... stressful environments is important to fulfill food demand of the ever-increasing world ...

  15. Determinants of rural household marketed surplus for cereal crops ...

    African Journals Online (AJOL)

    ... and supply of cereal crops to the market (market surplus). The study utilized cross sectional data obtained through multistage random sampling method. Ordinary least square method was used for the analysis. Finding revealed that the quantity of food crops reserved for home consumption by households increased their ...

  16. Distribution patterns of segetal weeds of cereal crops in tajikistan

    International Nuclear Information System (INIS)

    Nowak, A.; Nowak, S.

    2015-01-01

    Using the literature data and field research conducted in 2009-2013 the distribution patterns, habitat conditions, phytogeographical characterisation and endangerment of weeds occurring in cereal crops in Tajikistan were analysed. We found out that Tajik weed flora of cereal crops counts 686 taxa. The most species rich families include Asteraceae, Poaceae and Fabaceae. The highest number of cereal weeds were noted in large river valleys of Syr-Daria, Amu-Daria and their tributaries in south-western and northern Tajikistan. This subregions have the warmest climate conditions and extensive arable lands. The greatest weed species richness was observed in submontane and montane elevations between approx. 700 and 1,900 m a.s. Cereal weeds occur frequently outside segetal communities in Tajikistan. They were noted usually in screes, wastelands, xerothermophilous grasslands, river gravel beds and in steppes habitats. The assessment of threat status reveals that ca. 33% of total cereal weed flora in Tajikistan are disappearing or occur very rarely. According to the chorological data we find that in the cereals of Tajikistan, 35 endemic and 14 subendemic species occur. The most numerous chorological elements of threatened weed flora of Tajikistan are Irano-Turanian (55%), pluriregional (16%), cosmopolitan (14,5%), Mediterranean (9%) and Eurosiberian (5%) species. Further research is suggested to explore the distribution patterns of all weed species in Tajikistan as it should be useful for economy and effectiveness of crop production as well as conservation of most valuable species. (author)

  17. An Ultrasonic System for Weed Detection in Cereal Crops

    Directory of Open Access Journals (Sweden)

    Dionisio Andújar

    2012-12-01

    Full Text Available Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group

  18. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  19. Rhizobium as a crop enhancer and biofertilizer for increased cereal ...

    African Journals Online (AJOL)

    OHWESIRI IBUJE

    2010-09-13

    Sep 13, 2010 ... that rhizobia can make an association with graminaceous plants such as rice, wheat, maize, barley millets and other cereals .... Biofertilizers, microbial inoculants that can promote plant growth and productivity, are ..... association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91:117-126.

  20. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products.

    Science.gov (United States)

    Oliveira, Pedro M; Zannini, Emanuele; Arendt, Elke K

    2014-02-01

    Lactic acid bacteria (LAB) metabolites are a reliable alternative for reducing fungal infections pre-/post-harvest with additional advantages for cereal-base products which convene the food market's trend. Grain industrial use is in expansion owing to its applicability in generating functional food. The food market is directed towards functional natural food with clear health benefits for the consumer in detriment to chemical additives. The food market chain is becoming broader and more complex, which presents an ever-growing fungal threat. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. Cereal infections may occur in the field or post-processing, along the food chain. Consequently, the investigation of LAB metabolites with antifungal activity has gained prominence in the scientific research community. LAB bioprotection retards the development of fungal diseases in the field and inhibit pathogens and spoilage fungi in food products. In addition to the health safety improvement, LAB metabolites also enhance shelf-life, organoleptic and texture qualities of cereal-base foods. This review presents an overview of the fungal impact through the cereal food chain leading to investigation on LAB antifungal compounds. Applicability of LAB in plant protection and cereal industry is discussed. Specific case studies include Fusarium head blight, malting and baking. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Resilience of cereal crops to abiotic stress: A review | Ahmad ...

    African Journals Online (AJOL)

    In the last century, conventional selection and breeding program proved to be highly effective in improving crops against abiotic stresses. Therefore, breeding for abiotic stress tolerance in crop plants should be given high research priority as abiotic stresses are the main factor negatively affecting crop growth and ...

  2. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass

    DEFF Research Database (Denmark)

    Hu, Teng; Sørensen, Peter; Wahlström, Ellen Margrethe

    2018-01-01

    Reliable information on belowground plant biomass is essential to estimate belowground carbon inputs to soils. Estimations of belowground plant biomass are often based on a fixed allometric relationship of plant biomass between aboveground and belowground parts. However, environmental and managem......Reliable information on belowground plant biomass is essential to estimate belowground carbon inputs to soils. Estimations of belowground plant biomass are often based on a fixed allometric relationship of plant biomass between aboveground and belowground parts. However, environmental...... and management factors may affect this allometric relationship making such estimates uncertain and biased. Therefore, we aimed to explore how root biomass for typical cereal crops, catch crops and weeds could most reliably be estimated. Published and unpublished data on aboveground and root biomass (corrected...... to 0–25 cm depth) of cereal crops (wheat and barley), catch crops and weeds were collected from studies in Denmark. Leave one out cross validation was used to determine the model that could best estimate root biomass. Root biomass varied with year, farming system (organic versus conventional...

  3. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  4. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...... as in Denmark using spring and winter cereal-grain legume intercrops. Intercropping involves simultaneously growing two or more crops in the same field for a significant period of time. The practice is ancient as early records from many human societies all over the world have shown. Intercropping systems...... are estimated to still provide as much as 15–20% of the world’s food supply. The practice was widespread in some European farming systems up until the 1950s – before the so-called fossilisation of agriculture. At that time as much as 50 % of all available nitrogen (N) may have originated from symbiotic N2...

  5. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  6. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.

    Science.gov (United States)

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyungsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-06-30

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

  7. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour...

  8. Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Lauren A. Du Fall

    2011-12-01

    Full Text Available Cereal crops such as wheat, rice and barley underpin the staple diet for human consumption globally. A multitude of threats to stable and secure yields of these crops exist including from losses caused by pathogens, particularly fungal. Plants have evolved complex mechanisms to resist pathogens including programmed cell death responses, the release of pathogenicity-related proteins and oxidative bursts. Another such mechanism is the synthesis and release of secondary metabolites toxic to potential pathogens. Several classes of these compounds have been identified and their anti-fungal properties demonstrated. However the lack of suitable analytical techniques has hampered the progress of identifying and exploiting more of these novel metabolites. In this review, we summarise the role of the secondary metabolites in cereal crop diseases and briefly touch on the analytical techniques that hold the key to unlocking their potential in reducing yield losses.

  9. The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics.

    Science.gov (United States)

    Sawers, Ruairidh J H; Ramírez-Flores, M Rosario; Olalde-Portugal, Víctor; Paszkowski, Uta

    2018-04-15

    Contents I. II. III. IV. V. References SUMMARY: Cereals (rice, maize, wheat, sorghum and the millets) provide over 50% of the world's caloric intake, a value that rises to > 80% in developing countries. Since domestication, cereals have been under artificial selection, largely directed towards higher yield. Throughout this process, cereals have maintained their capacity to interact with arbuscular mycorrhizal (AM) fungi, beneficial symbionts that associate with the roots of most terrestrial plants. It has been hypothesized that the shift from the wild to cultivation, and above all the last c. 50 years of intensive breeding for high-input farming systems, has reduced the capacity of the major cereal crops to gain full benefit from AM interactions. Recent studies have shed further light on the molecular basis of establishment and functioning of AM symbiosis in cereals, providing insight into where the breeding process might have had an impact. Classic phytohormones, targets of artificial selection during the generation of Green Revolution semi-dwarf varieties, have emerged as important regulators of AM symbiosis. Although there is still much to be learnt about the mechanistic basis of variation in symbiotic outcome, these advances are providing an insight into the role of arbuscular mycorrhiza in agronomic systems. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  10. CerealsDB 2.0: an integrated resource for plant breeders and scientists

    Directory of Open Access Journals (Sweden)

    Wilkinson Paul A

    2012-09-01

    Full Text Available Abstract Background Food security is an issue that has come under renewed scrutiny amidst concerns that substantial yield increases in cereal crops are required to feed the world’s booming population. Wheat is of fundamental importance in this regard being one of the three most important crops for both human consumption and livestock feed; however, increase in crop yields have not kept pace with the demands of a growing world population. In order to address this issue, plant breeders require new molecular tools to help them identify genes for important agronomic traits that can be introduced into elite varieties. Studies of the genome using next-generation sequencing enable the identification of molecular markers such as single nucleotide polymorphisms that may be used by breeders to identify and follow genes when breeding new varieties. The development and application of next-generation sequencing technologies has made the characterisation of SNP markers in wheat relatively cheap and straightforward. There is a growing need for the widespread dissemination of this information to plant breeders. Description CerealsDB is an online resource containing a range of genomic datasets for wheat (Triticum aestivum that will assist plant breeders and scientists to select the most appropriate markers for marker assisted selection. CerealsDB includes a database which currently contains in excess of 100,000 putative varietal SNPs, of which several thousand have been experimentally validated. In addition, CerealsDB contains databases for DArT markers and EST sequences, and links to a draft genome sequence for the wheat variety Chinese Spring. Conclusion CerealsDB is an open access website that is rapidly becoming an invaluable resource within the wheat research and plant breeding communities.

  11. Simulating and Predicting Cereal Crop Yields in Ethiopia: Model Calibration and Verification

    Science.gov (United States)

    Yang, M.; Wang, G.; Ahmed, K. F.; Eggen, M.; Adugna, B.; Anagnostou, E. N.

    2017-12-01

    Agriculture in developing countries are extremely vulnerable to climate variability and changes. In East Africa, most people live in the rural areas with outdated agriculture techniques and infrastructure. Smallholder agriculture continues to play a key role in this area, and the rate of irrigation is among the lowest of the world. As a result, seasonal and inter-annual weather patterns play an important role in the spatiotemporal variability of crop yields. This study investigates how various climate variables (e.g., temperature, precipitation, sunshine) and agricultural practice (e.g., fertilization, irrigation, planting date) influence cereal crop yields using a process-based model (DSSAT) and statistical analysis, and focuses on the Blue Nile Basin of Ethiopia. The DSSAT model is driven with meteorological forcing from the ECMWF's latest reanalysis product that cover the past 35 years; the statistical model will be developed by linking the same meteorological reanalysis data with harvest data at the woreda level from the Ethiopian national dataset. Results from this study will set the stage for the development of a seasonal prediction system for weather and crop yields in Ethiopia, which will serve multiple sectors in coping with the agricultural impact of climate variability.

  12. Associations and communities of cereal crops of the Łuków Plain. Part III. Intermediate and impoverished communities

    Directory of Open Access Journals (Sweden)

    Zofia Rzymowska

    2015-01-01

    Full Text Available This paper is the third and final part of a study attempting to analyse associations and communities in cereal crops of the Łuków Plain. It contains a description of intermediate and impoverished communities established in cereal crops of the Łuków Plain. Patches with phytocenoses without the combination of species characteristic of cereal associations were frequently observed. Impoverished communities of the alliance Aperion spicae-venti established in winter cereal crops. In turn, in spring cereal crops phytocenoses including species characteristic of tuber and root crops were found; they represented either a community with species characteristic of Panico-Setarion or an intermediate community with species characteristic of Aperion spicae-venti and Polygono-Chenopodion. Such communities are established, among others, because of production intensification which changes habitat conditions. Some patches found in the study area were intermediate between the two most frequently observed associations Arnoserido-Scleranthetum and Vicietum tetraspermae.

  13. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  14. Analysis of price and income elasticities for cereals food crops in an ...

    African Journals Online (AJOL)

    The objective of the study is to estimate the price and income elasticities of cereals food crops in the study area. The results of the price and income elasticities of demand suggest that urban households in general are responsive to changes in own price and income in adjusting their consumption patterns. It was shown that ...

  15. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... management. There were significant effects on annual N concentration and NO3single bondN leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction...

  16. Impact of sowing density and nitrogen fertilization on Rumex obtusifolius L. development in organic winter cereal crops

    Directory of Open Access Journals (Sweden)

    Bodson, B.

    2012-01-01

    Full Text Available The control of Rumex obtusifolius L. (broad-leafed dock is very important in organic farming systems. Indeed, concerns about managing this weed without the use of herbicides is one of the major factors limiting the uptake of these systems by conventional farmers. Against this background, we analyzed the impact of two management practices on the development of R. obtusifolius populations in two winter cereal trials: spelt (Triticum spelta [L.] Thell. and triticale (×Triticosecale [A.Camus] Wittm.. The management factors were sowing density (SD and nitrogen fertilization (NF at the tillering stage. The results showed that an increase in SD and NF led to stronger crop growth and better soil coverage by the end of spring, demonstrated by a significant decrease in photosynthetic active radiation (PAR at soil level. However, although there was an SD effect, it was too weak in April to restrict an increase in R. obtusifolius populations through the recruitment of new R. obtusifolius plants. An increase in R. obtusifolius population density was also linked to an increase in the NF level, illustrating the nitrophilic character of this weed. Although an increase in SD and NF at the tillering stage led to a higher canopy density, these two practices failed to reduce R. obtusifolius density in the cereal crops. Nevertheless, cereal yields were shown to be maintained or improved. Our results indicate that, even when combining weed harrowing and some cultural weed control methods, this perennial weed is difficult to control.

  17. Long Term Evaluation of Yield Stability Trend for Cereal Crops in Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2016-05-01

    Full Text Available During the last few decades cereals yield have increased drastically at the national level however, information about yield stability and its resistance to annual environmental variability are scare. In this study long term stability of grin yield of wheat, barley, rice, corn and overall cereals in Iran were evaluated during a 40-year period (1971-2011. Stability analysis was conducted using two different methods. In the first method the residuals of regression between crop yield and time (years were calculated as stability index. For this different segmented regression models including linear, bi-linear and tri-linear were fitted to yield trend data and the best model for each crop was selected based on statistical measures. Absolute residuals (the difference between actual and predicted yields for each year as well as relative residuals (absolute residuals as percent of predicted yield were estimated. In the second method yield stability was estimated from the slope of the regression line between average annual yield of all cereals (environmental index and the yield of each crop in the same year. Results indicted that in wheat and barley absolute and relative residuals were increased during the study period leading to reduction of stability despite considerable yield increment. However, for rice and corn residuals followed a decreasing trend and therefore yield stability of these crops was increased during the last 40 years. The same result was obtained with the environmental index but in this method reduction of yield stability in barley was lower than wheat. Based on the results, yield and yield stability of cereals crops in Iran increased during the last 40 years. However, the percentage increase in stability is lower than that of yield. Application of nitrogen fertilizers was led to reduction in stability. Yield stability of wheat, barley, rice, corn and overall cereals was improved with increasing their cultivated area.

  18. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    Science.gov (United States)

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( < 0.001) effect of lower NO-N leaching with cover crops compared with no cover but showed only small and periodically significant ( < 0.05) effects among the cultivars of barley, rye, and wheat covers. Nitrate-N leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate

    DEFF Research Database (Denmark)

    Doltra, Jordi; Olesen, Jørgen E

    2013-01-01

    common practices in organic farming. Measurements of dry matter (DM) and N content of grain cereals at harvest, above-ground biomass in catch crops and green manure crops in autumn and of the green manure crop at the first cutting were performed. The effect of catch crops on grain yield varied...... the nitrate leaching and increasing N retention, but also by improving yields. Management practices in relation to catch crops must be adapted to the specific soil and cropping systems....

  20. Segetal flora of cereal crop agrocenoses in the Suwałki Landscape Park

    Directory of Open Access Journals (Sweden)

    Matusiewicz Marta

    2016-06-01

    Full Text Available Segetal flora of cereal crop agrocenoses in the Suwałki Landscape Park was studied in between the years 2012 and 2013. One hundred phytosociological Braun-Blanquet releves were taken, documenting the occurrence of 152 species of vascular plants that represented 29 botanic families. Analysis of the contributions of geographic-historical groups revealed the dominance of the native species, apophytes (87 species, making 57.2%, over anthropophytes (65 species, 42.8%. The number of short-lived species was twice greater (103 species, 67.8% than the perennial ones (49 species, 32.2%. As regards the lifeforms, the therophytes were dominant (96 species, 63.2% over hemicryptophytes (44 species, 28.9% and geophytes (12 species, 7.9%. Among the species of segetal flora in the area studied, 23 valuable species classified to different categories of protection, were identified. The presence of Consolida regalis, Centaurea cyanus and Bromus secalinus, belonging to threatened species in other regions of Poland, was abundant. Also the species: Anthemis tinctoria, Echium vulgare and Anchusa officinalis were met with high frequency. The species: Agrostemma githago, Papaver argemone and Papaver dubium were represented by single plants, which can suggest their dying out. In the Park area, expansive species, threatening the biodiversity, such as Myosotis arvensis, Viola arvensis, Galeopsis tetraehit, Stellaria media, Artemisia vulgaris, Galinsoga parviflora, Elymus repens, Capsella bursa pastoris, Erodium cicutarium, Chamomilla recutita, Matricaria maritima subsp. inodora, Convolvulus arvensis, Polygonum persicaria, Polygonum lapathifolium subsp. pallidum and Polygonum lapathifolium subsp. lapathifolium, were commonly seen in the crop land.

  1. Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.

    Science.gov (United States)

    Halford, Nigel G; Curtis, Tanya Y; Chen, Zhiwei; Huang, Jianhua

    2015-03-01

    The effects of abiotic stresses and crop management on cereal grain composition are reviewed, focusing on phytochemicals, vitamins, fibre, protein, free amino acids, sugars, and oils. These effects are discussed in the context of nutritional and processing quality and the potential for formation of processing contaminants, such as acrylamide, furan, hydroxymethylfurfuryl, and trans fatty acids. The implications of climate change for cereal grain quality and food safety are considered. It is concluded that the identification of specific environmental stresses that affect grain composition in ways that have implications for food quality and safety and how these stresses interact with genetic factors and will be affected by climate change needs more investigation. Plant researchers and breeders are encouraged to address the issue of processing contaminants or risk appearing out of touch with major end-users in the food industry, and not to overlook the effects of environmental stresses and crop management on crop composition, quality, and safety as they strive to increase yield. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the......Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay......-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic...

  3. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  4. Fertilizers in cereals crops. Effect of fertilization in grain quality

    International Nuclear Information System (INIS)

    Melaj, Mariana

    1997-01-01

    In the last years the yields of the maize cultivation in the Pampeana production region have constantly increased, foreseeing higher increases of yield in the next years. Such increase is due, between other motives, to the use of hybrids of higher potential yield. There is a direct relation between the yield potential of a genotype and the nutrients demand, fact that constitutes one of the geneticists concerns. Maize hybrids reach its maximum expression when the plant is cultivated in good supplied soils with balanced quantities of nutrients that in several cases are reached with the practice of fertilization. The quantitative and qualitative vegetal response to the use of phosphate fertilizers depend of soils, of the environmental conditions, of fertilizer and the way of its application as well as of the maize hybrid that was used. To direct the practice of fertilization towards the reposition of the soil nutrients extracted by genotypes of high yield without producing excesses that increase costs and put in danger the environment, it is necessary to know the real coefficient used by the plants of the phosphorus available in the soils. The isotopic methodology allows to distinguish the phosphorus coming from two nutrient sources: soil and fertilizer, even in the juvenile phase of vegetal development and to evaluate the efficiency of fertilizers in plant nutrition. The objective of the present work was to evaluate the use of phosphorus coming from one of the phosphorus source available (soil, fertilizer), that should allow to increase and make more specific the knowledge's level of the different maize hybrids. This is obtained by determination of the grade of use of nutrient (of the soil) and of the nutrient of fertilizers, evaluating the qualitative and quantitative responses to fertilization

  5. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  6. in crop plants

    Directory of Open Access Journals (Sweden)

    Jan Antoni Rafalski

    2017-05-01

    Full Text Available Most important crop productivity traits, such as yield under normal and environmental stress conditions, are determined by a large number of genes, each with a small phenotypic effect. Genetic improvement of these traits through breeding or genetic engineering has been frustrating researchers in academia and industry. The reasons for this include the complexity of the traits, the difficulty of precise phenotyping and the lack of validated candidate genes. Different approaches to the discovery of the genetic architecture of such traits, such as Genetic Association Mapping and Genomic Selection and their engineering, are expected to yield benefits for farmers and consumers.

  7. Development and Life History of Sitophilus zeamais (Coleoptera: Curculionidae on Cereal Crops

    Directory of Open Access Journals (Sweden)

    James Adebayo Ojo

    2016-01-01

    Full Text Available The maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae, is one of the most destructive pests of stored cereals. Knowledge of the life history and biology is important to the development of an integrated pest management program. Investigation was carried out on developmental biology of S. zeamais on four main cereal crops, maize, rice, sorghum, and millet, under laboratory conditions. Egg incubation, oviposition periods, and larval instar development were not different significantly among the food hosts. Number of eggs laid varied significantly among the cereal grains; mean fecundity was highest on maize (67.2±3.16 and lowest on millet (53.8±0.17. Number of immature (larva and pupa and adult stages varied significantly among the cereal grains. There exist four larval instars with a varied mean head capsule width, with a mean total instar larval developmental period of 23.1, 22.2, 22.2, and 21.6 d on maize, rice, sorghum, and millet, respectively. There was linear relationship and significant correlation between the stages of larval development and head capsule width. The mean developmental period from egg to adult varied, being highest on maize (34.7 d and lowest on sorghum (33.5 d.

  8. Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2009-01-01

    The effects of faba bean, lupin, pea and oat crops, with and without an undersown grass-clover mixture as a nitrogen (N) catch crop, on subsequent spring wheat followed by winter triticale crops were determined by aboveground dry matter (DM) harvests, nitrate (NO3) leaching measurements and soil ......−2) compared to lupin (950 g m−2), pea (850 g m−2) and oat (1,100 g m−2) independent of the catch crop strategy. Faba bean derived more than 90% of its N from N2 fixation, which was unusually high as compared to lupin (70–75%) and pea (50–60%). No effect of preceding crop was observed...

  9. Striga infestation of cereal crops - an unsolved problem in resource limited agriculture.

    Science.gov (United States)

    Scholes, Julie D; Press, Malcolm C

    2008-04-01

    The parasitic weed Striga causes devastating losses in cereal yields in sub-Saharan Africa. The parasite lifecycle is intimately linked with its host via a complex interchange of signals. Understanding the molecular basis of these interactions and of host resistance to Striga is essential for the identification of genes for improving crop yield via biotechnological or marker assisted breeding strategies. Cloning and sequencing of ESTs from the 'model' parasite Triphysaria versicolor is facilitating the identification of parasitism genes. The identification of resistance to Striga in sorghum and rice germplasm is allowing molecular dissection of these traits using genomic platforms and quantitative trait loci (QTL) analysis. QTL underlying different resistance phenotypes have been identified and the use of advanced backcross populations is allowing the exploitation of sources of resistance in wild relatives of cereals.

  10. The influence of sowing period and seeding norm on autumn vegetation, winter hardiness and yield of winter cereal crops

    Directory of Open Access Journals (Sweden)

    Potapova G. N.

    2017-10-01

    Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.

  11. Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides.

    Science.gov (United States)

    Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor

    2018-01-01

    Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.

  12. Physicochemical characteristics of the rhizosphere soils of some cereal crops in Ambo Woreda, West Shoa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Louis E. Attah

    2010-03-01

    Full Text Available In this study, physicochemical properties of rhizosphere soils of some cereal crops in Ambo Woreda, West Shoa in Ethiopia have been investigated. Soil samples were collected from four different localities, viz. Awaro, Senkele, Meja and Guder, and their edaphic characteristics are determined. The soils are dominated by clay (40.4-45.8% along with coarse particles of sand. Bulk density, organic carbon (1.52-1.81% and electrical conductivity (1.3-1.9 dSm are low in all the soil samples. The soils are acidic with pH varying from 6.2 to 6.7. There are similarities in the relatively low content of available phosphorus (1.4-2.4 mg kg-1 and high available nitrogen content (480-986 mg kg-1 in all the soil samples while available potassium content (240-496 mg kg-1 is found to be medium in Awaro soil but high in the other three soil samples. Deficiencies are observed in the levels of available micro-nutrients (Cu: 1.2-1.8 µg g-1, Zn: 1.2-1.8 µg g-1 and Mn: 3.2-3.8 µg g-1 while the Fe content is sufficient in all the soil samples (340-496 µg g-1. With proper soil management, the farmlands studied are recommended for the cultivation of cereal crops.

  13. Occurrence of Fusarium Mycotoxins in Cereal Crops and Processed Products (Ogi from Nigeria

    Directory of Open Access Journals (Sweden)

    Cynthia Adaku Chilaka

    2016-11-01

    Full Text Available In Nigeria, maize, sorghum, and millet are very important cash crops. They are consumed on a daily basis in different processed forms in diverse cultural backgrounds. These crops are prone to fungi infestation, and subsequently may be contaminated with mycotoxins. A total of 363 samples comprising of maize (136, sorghum (110, millet (87, and ogi (30 were collected from randomly selected markets in four agro-ecological zones in Nigeria. Samples were assessed for Fusarium mycotoxins contamination using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS method. Subsequently, some selected samples were analysed for the occurrence of hidden fumonisins. Overall, 64% of the samples were contaminated with at least one toxin, at the rate of 77%, 44%, 59%, and 97% for maize, sorghum, millet, and ogi, respectively. Fumonisins were the most dominant, especially in maize and ogi, occurring at the rate of 65% and 93% with mean values of 935 and 1128 μg/kg, respectively. The prevalence of diacetoxyscirpenol was observed in maize (13%, sorghum (18%, and millet (29%, irrespective of the agro-ecological zone. Other mycotoxins detected were deoxynivalenol, zearalenone, and their metabolites, nivalenol, fusarenon-X, HT-2 toxin, and hidden fumonisins. About 43% of the samples were contaminated with more than one toxin. This study suggests that consumption of cereals and cereal-based products, ogi particularly by infants may be a source of exposure to Fusarium mycotoxins.

  14. Growth in Turface® clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone.

    Science.gov (United States)

    Goron, Travis L; Watts, Sophia; Shearer, Charles; Raizada, Manish N

    2015-04-12

    In cereal crops, root hairs are reported to function within the root hair zone to carry out important roles in nutrient and water absorption. Nevertheless, these single cells remain understudied due to the practical challenges of phenotyping these delicate structures in large cereal crops growing on soil or other growth systems. Here we present an alternative growth system for examining the root hairs of cereal crops: the use of coarse Turface® clay alongside fertigation. This system allowed for root hairs to be easily visualized along the entire lengths of crown roots in three different cereal crops (maize, wheat, and finger millet). Surprisingly, we observed that the root hairs in these crops continued to grow beyond the canonical root hair zone, with the most root hair growth occurring on older crown root segments. We suggest that the Turface® fertigation system may permit a better understanding of the changing dynamics of root hairs as they age in large plants, and may facilitate new avenues for crop improvement below ground. However, the relevance of this system to field conditions must be further evaluated in other crops.

  15. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system.

    Science.gov (United States)

    Yao, Zhisheng; Yan, Guangxuan; Zheng, Xunhua; Wang, Rui; Liu, Chunyan; Butterbach-Bahl, Klaus

    2017-12-01

    High nitrogen (N) inputs in Chinese vegetable and cereal productions played key roles in increasing crop yields. However, emissions of the potent greenhouse gas nitrous oxide (N 2 O) and atmospheric pollutant nitric oxide (NO) increased too. For lowering the environmental costs of crop production, it is essential to optimize N strategies to maintain high crop productivity, while reducing the associated N losses. We performed a 2 year-round field study regarding the effect of different combinations of poultry manure and chemical N fertilizers on crop yields, N use efficiency (NUE) and N 2 O and NO fluxes from a Welsh onion-winter wheat system in the North China Plain. Annual N 2 O and NO emissions averaged 1.14-3.82 kg N ha -1 yr -1 (or 5.54-13.06 g N kg -1 N uptake) and 0.57-1.87 kg N ha -1 yr -1 (or 2.78-6.38 g N kg -1 N uptake) over all treatments, respectively. Both N 2 O and NO emissions increased linearly with increasing total N inputs, and the mean annual direct emission factors (EF d ) were 0.39% for N 2 O and 0.19% for NO. Interestingly, the EF d for chemical N fertilizers (N 2 O: 0.42-0.48%; NO: 0.07-0.11%) was significantly lower than for manure N (N 2 O: 1.35%; NO: 0.76%). Besides, a negative power relationship between yield-scaled N 2 O, NO or N 2 O + NO emissions and NUE was observed, suggesting that improving NUE in crop production is crucial for increasing crop yields while decreasing nitrogenous gas release. Compared to the current farmers' fertilization rate, alternative practices with reduced chemical N fertilizers increased NUE and decreased annual N 2 O + NO emissions substantially, while crop yields remained unaffected. As a result, annual yield-scaled N 2 O + NO emissions were reduced by > 20%. Our study shows that a reduction of current application rates of chemical N fertilizers by 30-50% does not affect crop productivity, while at the same time N 2 O and NO emissions would be reduced significantly. Copyright © 2017 Elsevier Ltd. All rights

  16. Protein improvement in crop plants

    International Nuclear Information System (INIS)

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  17. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants

    Directory of Open Access Journals (Sweden)

    Xiaofen Yu

    2018-03-01

    Full Text Available Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper.

  18. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants.

    Science.gov (United States)

    Yu, Xiaofen; Luo, Qingchen; Huang, Kaixun; Yang, Guangxiao; He, Guangyuan

    2018-01-01

    Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper.

  19. Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940.

    Science.gov (United States)

    Fox, Ana Romina; Soto, Gabriela; Valverde, Claudio; Russo, Daniela; Lagares, Antonio; Zorreguieta, Ángeles; Alleva, Karina; Pascuan, Cecilia; Frare, Romina; Mercado-Blanco, Jesús; Dixon, Ray; Ayub, Nicolás Daniel

    2016-10-01

    A main goal of biological nitrogen fixation research has been to expand the nitrogen-fixing ability to major cereal crops. In this work, we demonstrate the use of the efficient nitrogen-fixing rhizobacterium Pseudomonas protegens Pf-5 X940 as a chassis to engineer the transfer of nitrogen fixed by BNF to maize and wheat under non-gnotobiotic conditions. Inoculation of maize and wheat with Pf-5 X940 largely improved nitrogen content and biomass accumulation in both vegetative and reproductive tissues, and this beneficial effect was positively associated with high nitrogen fixation rates in roots. 15 N isotope dilution analysis showed that maize and wheat plants obtained substantial amounts of fixed nitrogen from the atmosphere. Pf-5 X940-GFP-tagged cells were always reisolated from the maize and wheat root surface but never from the inner root tissues. Confocal laser scanning microscopy confirmed root surface colonization of Pf-5 X940-GFP in wheat plants, and microcolonies were mostly visualized at the junctions between epidermal root cells. Genetic analysis using biofilm formation-related Pseudomonas mutants confirmed the relevance of bacterial root adhesion in the increase in nitrogen content, biomass accumulation and nitrogen fixation rates in wheat roots. To our knowledge, this is the first report of robust BNF in major cereal crops. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. WHAT IS BEHIND BIASED TECHNICAL CHANGE IN PRODUCTION OF CEREAL AND OILSEED CROPS IN SLOVAKIA?

    Directory of Open Access Journals (Sweden)

    Peter FANDEL

    2014-11-01

    Full Text Available This study investigates the productivity change in the production of cereal and oilseed crops in Slovakia with special emphasis on technical change analysis. It employs a non-parametric distance function approach to measure Malmquist productivity index which is decomposed into technical efficiency change and technical change. Technical change is further decomposed into technical change magnitude and input- and output-bias indices. The productivity change components provide more detailed information about character of productivity change itself and its sources. Our results indicate that productivity in the analysed sector decreased approximately by 20% within the examined period of 1998-2007. The decrease was caused mostly by worsening the technical change (-41,6%. Indices of input- and output bias of technical change were various from unity what suggests that technical change was not Hicks’- neutral. Results of further analysis of the direction of technical change bias indicate that farms in average tend to apply fertilizers-using/seed-saving, seed-using/labour-saving, and fertilizers-using/labour-saving technical change bias over the whole sample period, as well as in the EU pre-accession and EU post-accession periods.

  1. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    OpenAIRE

    Murphy Denis J.

    2014-01-01

    The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has ...

  2. Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy

    International Nuclear Information System (INIS)

    Buratti, C.; Barbanera, M.; Fantozzi, F.

    2013-01-01

    Highlights: • GHG emissions of biomethane from energy crops cultivated in a central Italian farm were investigated. • Electricity consumption of the biogas plant was monitored. • Current scenario does not allow to achieve a GHG saving according to Renewable Energy Directive. • GHG emissions could be reduced by covering the storage tanks of digestate and installing a CHP plant. - Abstract: Biomethane from energy crops is a renewable energy carrier and therefore it potentially contributes to climate change mitigation. However, significant greenhouse gas (GHG) emissions resulting from cultivation and processing must be considered. Among those, the production and use of nitrogen fertilizers, the resulting nitrous oxide (N 2 O) emissions, the methane emissions from digestate storage and the energy consumption of the biogas plant are crucial factors. In the present paper an integrated life cycle assessment (LCA) of GHG emissions from biomethane production is carried out, taking into account own measurements and experience data from a modern biogas plant located in Umbria, Italy. The study is also focused on the electricity consumption of the biogas plant, assessing the specific absorption power of each machinery. The analysis is based on the methodology defined by the European Union Renewable Energy Directive 2009/28/EC (RED). The main result is that the biomethane chain exceeds the minimum value of GHG saving (35%) mainly due to the open storage of digestate. However by varying the system, using heat and electricity from a biogas CHP plant and covering digestate storage tank, a reduction of 68.9% could be obtained

  3. Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

    OpenAIRE

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyunsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-01-01

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stab...

  4. A Meta Analysis on Nitrogen Fertilizer Experiments on Cereal Crops in Iran

    Directory of Open Access Journals (Sweden)

    alireza koocheki

    2017-10-01

    Full Text Available Introduction Though chemical fertilizers increase crop production; their overuse has hardened the soil, decreased fertility, strengthened pesticides, polluted air and water, and released greenhouse gases, thereby bringing hazards to human health and environment as well. Using of chemical fertilizer in agriculture has a history of more than fifty years in Iran. Recently, nitrogen fertilizers consume more than 61 percent of the chemical fertilizer in our country. Globally, the role of chemical fertilizers especially nitrogen fertilizers in agricultural production has been widely studied over the past 50 years, and in our country a considerable amount of research in universities has been dedicated to studying in this field. Meta-analysis is a method for analyzing the results of various studies on a subject. In fact, meta-analysis is a type of research on other research to re-examine the various studies carried out on a particular topic, compare them statistically and, using specific statistical techniques, the results of all those studies combine into a single result. Experiments on the effects of nitrogen fertilizers on cereals yield have a long history in Iran. However, because of high variation in the results, a final conclusion is not readily achieved. Materials and methods In this study, the researches of the effect of different levels of nitrogen fertilizers on yield and yield components of cereals (wheat, corn and rice over the past 20 years have been investigated. These studies included a variety of scientific-research articles. So, 46 papers were selected and the information was extracted from them. To overcome such a difficulty meta-analysis was used to combine and re-analyze the data of independent experiments. For this, 46 published papers related to nitrogen application on cereals including 23, 14 and 9 papers, respectively on wheat, corn and rice were selected based on criteria to satisfy the required data for meta

  5. Biological characterization of fenpicoxamid, a new fungicide with utility in cereals and other crops.

    Science.gov (United States)

    Owen, W John; Yao, Chenglin; Myung, Kyung; Kemmitt, Greg; Leader, Andrew; Meyer, Kevin G; Bowling, Andrew J; Slanec, Thomas; Kramer, Vincent J

    2017-10-01

    The development of novel highly efficacious fungicides that lack cross-resistance is extremely desirable. Fenpicoxamid (Inatreq™ active) possesses these characteristics and is a member of a novel picolinamide class of fungicides derived from the antifungal natural product UK-2A. Fenpicoxamid strongly inhibited in vitro growth of several ascomycete fungi, including Zymoseptoria tritici (EC 50 , 0.051 mg L -1 ). Fenpicoxamid is converted by Z. tritici to UK-2A, a 15-fold stronger inhibitor of Z. tritici growth (EC 50 , 0.0033 mg L -1 ). Strong fungicidal activity of fenpicoxamid against driver cereal diseases was confirmed in greenhouse tests, where activity on Z. tritici and Puccinia triticina matched that of fluxapyroxad. Due to its novel target site (Q i site of the respiratory cyt bc1 complex) for the cereals market, fenpicoxamid is not cross-resistant to Z. tritici isolates resistant to strobilurin and/or azole fungicides. Across multiple European field trials Z. tritici was strongly controlled (mean, 82%) by 100 g as ha -1 applications of fenpicoxamid, which demonstrated excellent residual activity. The novel chemistry and biochemical target site of fenpicoxamid as well as its lack of cross-resistance and strong efficacy against Z. tritici and other pathogens highlight the importance of fenpicoxamid as a new tool for controlling plant pathogenic fungi. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  6. Cereal yield and quality as affected by N availability in organic and conventional crop rotations in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2011-01-01

    barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry...... systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark...

  7. Modelling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors

    DEFF Research Database (Denmark)

    Doltra, J; Olesen, Jørgen E; Báez, D

    2015-01-01

    Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal...... with the static chamber method with more frequent measurements post-fertilization and biweekly measurements when high fluxes were not expected. All cropping systems were simulated with the FASSET version 2.5 simulation model. Cumulative soil seasonal N2O emissions were about ten-fold higher at Mabegondo than...

  8. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Science.gov (United States)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  9. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Directory of Open Access Journals (Sweden)

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  10. Catch crops as universal and effective method for reducing nitrogen leaching loss in spring cereal production: A meta-analysis.

    Science.gov (United States)

    Valkama, Elena; Lemola, Riitta; Känkänen, Hannu; Turtola, Eila

    2016-04-01

    Sustainable farms produce adequate amounts of a high-quality product, protect their resources and are both environmentally friendly and economically profitable. Nitrogen (N) fertilization decisively influences the cereal yields as well as increases soil N balance (N input in fertilizer - N output in harvested yield), thereby leading to N losses to the environment. However, while N input reduction affects soil N balance, such approach would markedly reduce N leaching loss only in case of abnormally high N balances. As an alternative approach, the growing of catch crops aims to prevent nutrient leaching in autumn after harvest and during the following winter, but due to competition, catch crops may also reduce yields of the main crop. Although studies have explored the environmental effects of catch crops in cereal production in the Nordic countries (Denmark, Sweden, Finland and Norway) during the past 40 years, none has yet carried out a meta-analysis. We quantitatively summarized 35 studies on the effect of catch crops (non-legume and legume) undersown in spring cereals on N leaching loss or its risk as estimated by the content of soil nitrate N or its sum with ammonium in late autumn. The meta-analysis also included the grain yield and N content of spring cereals. To identify sources of variation, we studied the effects of soil texture and management (ploughing time, the amount of N applied, fertilizer type), as well as climatic (annual precipitation) and experimental conditions (duration of experiments, lysimeter vs. field experiments). Finally, we examined whether the results differed between the countries or over the decades. Compared to control groups with no catch crops, non-legume catch crops, mainly ryegrass species, reduced N leaching loss by 50% on average, and soil nitrate N or inorganic N by 35% in autumn. Italian ryegrass depleted soil N more effectively (by 60%) than did perennial ryegrass or Westerwolds ryegrass (by 25%). In contrast, legumes (white

  11. Comparison of Mechanical and Chemical Winter Cereal Cover Crop Termination Systems and Cotton Yield in Conservation Agriculture

    Science.gov (United States)

    An integral component of conservation agriculture systems in cotton is the use of a high-residue winter cover crop; however, terminating such cover crops is a cost and planting into high-residue is a challenge. Black oat, rye, and wheat winter cover crops were flattened with a straight-blade mechan...

  12. Plant protection and food safety: notes on cereal chain

    Directory of Open Access Journals (Sweden)

    Pasquale Trematerra

    Full Text Available Integrated Pest Management (or IPM is a decision-making process that prevents pest activity and infestation by combining several strategies to achieve long-term solutions. Components of an IPM program may include education, proper waste management, structural repair, maintenance, biological and mechanical control techniques, and pesticide application. These tactics should meet economic, public health and environmental goals. In this paper new methods and strategies of pest control in cereal chain are reported.

  13. Plant protection and food safety: notes on cereal chain

    OpenAIRE

    Pasquale Trematerra; Maria Lodovica Gullino

    2009-01-01

    Integrated Pest Management (or IPM) is a decision-making process that prevents pest activity and infestation by combining several strategies to achieve long-term solutions. Components of an IPM program may include education, proper waste management, structural repair, maintenance, biological and mechanical control techniques, and pesticide application. These tactics should meet economic, public health and environmental goals. In this paper new methods and strategies of pest control in cereal ...

  14. Fungicide impacts on photosynthesis in crop plants.

    Science.gov (United States)

    Petit, Anne-Noëlle; Fontaine, Florence; Vatsa, Parul; Clément, Christophe; Vaillant-Gaveau, Nathalie

    2012-03-01

    Fungicides are widely used to control pests in crop plants. However, it has been reported that these pesticides may have negative effects on crop physiology, especially on photosynthesis. An alteration in photosynthesis might lead to a reduction in photoassimilate production, resulting in a decrease in both growth and yield of crop plants. For example, a contact fungicide such as copper inhibits photosynthesis by destroying chloroplasts, affecting photosystem II activity and chlorophyll biosynthesis. Systemic fungicides such as benzimidazoles, anilides, and pyrimidine are also phytotoxic, whereas azoles stimulate photosynthesis. This article focuses on the available information about toxic effects of fungicides on photosynthesis in crop plants, highlighting the mechanisms of perturbation, interaction, and the target sites of different classes of fungicides. © Springer Science+Business Media B.V. 2012

  15. Weed infestation of crops in different soils in the protective zone of Roztocze National Park. Part I. Winter and spring cereals

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of crops in different soils in the protective zone of RPN was conducted in the years 1991-1995. The characterization of weed infestation of winter and spring cereals was based on 306 phytosociological records. made with the use of Braun-Blanquet method. The degree of weed infestation in the fields in the protective zone of RPN depended on environment conditions. Both winter and spring cereals in majority of soils were most infested by: Cenaturea cyanus, Apera spica-venti and Vicia hirsta. In the lightest podsolic soils, made of loose sand and slightly loamy sand. winter and spring cereals were additionally infested by Equisetum arvense and two acidophylic species: Seleranthus annuus and Spergula arvensis. The crops in brown loess soil were infested by Matricaria maritima subsp. inodora. The most difficult weed species in brown soil formed from gaizes and limestone soil were: Convolvulus arvensis, Papaver rhoeas and Galium aparine. Moreover winter cercals in limestone soil showed high or medium infestation with Consolida regalis, Aethusa cynapium, Lathyrus tuberosus and low infestation with Apera spica-venti and Centaurea cyanus. Spring cereals were less infested than winter cereals. Apera spica-venti and Centaurea cyanus were less common with spring cereals than with winter cereals. Also, spring cereals showed high or medium infestation with Convolvulus arvensis. Spring cereals in some soil units were infested by Chenopodium album and Stellaria media. There was also higher infestation of spring cereals in limestone soils with Avena fatua, Veronica persica, Sinapis arvensis and Sonchus arvensis, compared to winter cereals in limestone soils.

  16. Growth in Turface? clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone

    OpenAIRE

    Goron, Travis L; Watts, Sophia; Shearer, Charles; Raizada, Manish N

    2015-01-01

    In cereal crops, root hairs are reported to function within the root hair zone to carry out important roles in nutrient and water absorption. Nevertheless, these single cells remain understudied due to the practical challenges of phenotyping these delicate structures in large cereal crops growing on soil or other growth systems. Here we present an alternative growth system for examining the root hairs of cereal crops: the use of coarse Turface? clay alongside fertigation. This system allowed ...

  17. The diet of the black widow spider Latrodectus mirabilis (Theridiidae in two cereal crops of central Argentina

    Directory of Open Access Journals (Sweden)

    Gabriel Pompozzi

    2013-12-01

    Full Text Available The spider Latrodectus mirabilis (Holmberg, 1876 is commonly found in cereals crops of central Argentina. We studied its diet composition at the field and capture rate on leaf-cutting ants based on laboratory experiments. This study comprises the first approach that documents the diet of L. mirabilis in wheat and oat fields of central Argentina. We identified 1,004 prey items collected from its webs during the last phenological stages of both cereal crops. The prey composition was variable but the spiders prey mainly on ants (Formicidae, Hymenoptera, who represented more than 86% of the total. Meanwhile, in the capture rate experiences we registered a high proportion of ants captured by spiders at the beginning of experiences, capturing the half of the ants from total in the first four hours. Summarizing, we reported a polyphagous diet of this spider species in wheat and oat fields. Ants were the most important prey item of this spider, as found in other Latrodectus spiders around the world.

  18. Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops.

    Directory of Open Access Journals (Sweden)

    Huawei Liu

    Full Text Available Ten strains of endophytic diazotroph were isolated and identified from the plants collected from three different agricultural crop species, wheat, rice and maize, using the nitrogen-free selective isolation conditions. The nitrogen-fixing ability of endophytic diazotroph was verified by the nifH-PCR assay that showed positive nitrogen fixation ability. These identified strains were classified by 879F-RAPD and 16S rRNA sequence analysis. RAPD analyses revealed that the 10 strains were clustered into seven 879F-RAPD groups, suggesting a clonal origin. 16S rRNA sequencing analyses allowed the assignment of the 10 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Paenibacillus, Enterobacter, Klebsiella and Pantoea. These representative genus are not endophytic diazotrophs in the conventional sense. They may have obtained nitrogen fixation ability through lateral gene transfer, however, the evolutionary forces of lateral gene transfer are not well known. Molecular identification results from 16S rRNA analyses were also confirmed by morphological and biochemical data. The test strains SH6A and MZB showed positive effect on the growth of plants.

  19. Integration of biochar and legumes in summer gap for enhancing productivity of wheat under cereal based cropping system

    International Nuclear Information System (INIS)

    Jalal, F.; Munif, F.; Khan, M. J.

    2016-01-01

    Biochar application is gaining popularity in agriculture system as prime technology in sustainable context. Field experiments were conducted at the Research Farm of the University of Agriculture Peshawar, during 2011-2013. Wheat-maize-wheat cropping pattern was followed with the adjustment of legumes in summer gap (land available after wheat harvest till maize sowing). Legumes i.e., mungbean, cowpea and Sesbania with a fallow were adjusted in the summer gap with and without biochar application. Biochar was applied at the rate of 0 and 50 t ha-1 with four N levels of 0, 60, 90 and 120 kg ha-1 to subsequent wheat crop. Biohcar application and plots previously sown with legumes improved thousand grain weight of wheat crop. Nitrogen application increased thousand spikes m-2, grains weight, grain and biological yield. It is concluded that integration of biochar and legumes could be a useful strategy for enhancing the overall farm profitability and productivity of cereal-based systems by providing increased yields from this additional summer gap crop. (author)

  20. Modeling branching in cereals

    NARCIS (Netherlands)

    Evers, J.B.; Vos, J.

    2013-01-01

    Cereals and grasses adapt their structural development to environmental conditions and the resources available. The primary adaptive response is a variable degree of branching, called tillering in cereals. Especially for heterogeneous plant configurations the degree of tillering varies per plant.

  1. Bio fertilization of Cereal and Legume Crops for Increasing Soil available P Uptake Using Nuclear Technique

    International Nuclear Information System (INIS)

    Soliman, S.; El-Gandour, E. A.; El Gala, A. M.; Ishac, Y. Z.

    2004-01-01

    Application of N and P in uncommon sources such as N 2 -fixers and AM fungi considered as an important source to save money and reduce pollution. In this concern, two pot experiments were carried out in sandy soils, to study the role of these neutral organisms in increasing the fertility of sandy soil. Wheat and faba bean were used. Seeds of wheat or faba bean were inoculated with Azotobacter or Rhizobium and planted in soils inoculated with and without AM fungi. A 20 mg P/kg soil in the form of single super phosphate (15.5 % P 2 O 5 ) or rock-P (26.6% P 2 O 5 ) were applied in the first experiment while KH 2 PO 4 was added in the second one. Dry weight, spore number, root infection, total and specific P were also determined. Maximum shoot growth were gained when either, wheat or faba bean inoculated with mycorrhizae and N2-fixers relative to the control. it was reached to 54 and 73%, respectively. Phosphorus uptake for shoots of both wheat and faba bean had been significantly increased upon inoculating with AM and/or Azotobacter or Rhizobium. Addition of fertilizer P help to identify the P uptake from soil or fertilizer. Mycorrhizal plants induced significant increase in Pdff by about 39 and 27% over inoculated with Azotobacter for wheat and Rhizobium for faba bean and it reached to 95 and 79% when inoculated with combined inoculation. This may be due to AM fungi absorb more available P than do nonmycorrhizal roots. FUE was increased from about 5 to 10% for wheat; 6 to 19% for faba bean. It can be concluded that, bio fertilizers can increase crop production and soil fertility. Rock-P might be recommended as a source of P fertilizer to be applied with AM fungi. (Authors)

  2. Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability.

    Science.gov (United States)

    Worthington, Margaret; Reberg-Horton, Chris

    2013-02-01

    Interest in breeding grain crops with improved weed suppressive ability is growing in response to the evolution and rapid expansion of herbicide resistant populations in major weeds of economic importance, environmental concerns, and the unmet needs of organic producers and smallholder farmers without access to herbicides. This review is focused on plant breeding for weed suppression; specifically, field and laboratory screening protocols, genetic studies, and breeding efforts that have been undertaken to improve allelopathy and competition in rice, wheat, and barley. The combined effects of allelopathy and competition determine the weed suppressive potential of a given cultivar, and research groups worldwide have been working to improve both traits simultaneously to achieve maximum gains in weed suppression. Both allelopathy and competitive ability are complex, quantitatively inherited traits that are heavily influenced by environmental factors. Thus, good experimental design and sound breeding procedures are essential to achieve genetic gains. Weed suppressive rice cultivars are now commercially available in the U.S. and China that have resulted from three decades of research. Furthermore, a strong foundation has been laid during the past 10 years for the breeding of weed suppressive wheat and barley cultivars.

  3. Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain.

    Science.gov (United States)

    Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca

    This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.

  4. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  5. Impact of broadcasting a cereal rye or oat cover crop before corn and soybean harvest on nitrate leaching

    Science.gov (United States)

    The corn and soybean rotation in Iowa has no living plants taking up water and nutrients from crop maturity until planting, a period of over six months in most years. In many fields, this results in losses of nitrate in effluent from artificial drainage systems during this time. In a long-term fiel...

  6. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    A field experiment was carried out in an arable organic cropping system and included a sequence with sole cropped fababean (Vicia faba L.), lupin (Lupinus angustifolius L.), pea (Pisum sativum L.), oat (Avena sativa L.) and pea–oat intercropping with or without an undersown perennial ryegrass...

  7. Crop systems and plant roots can modify the soil water holding capacity

    Science.gov (United States)

    Doussan, Claude; Cousin, Isabelle; Berard, Annette; Chabbi, Abad; Legendre, Laurent; Czarnes, Sonia; Toussaint, Bruce; Ruy, Stéphane

    2015-04-01

    . Finally, in field condition, on a larger time scale, we investigated the effect of crop alternations on the Lusignan ACBB SOERE site. That site presents on the same soil type different crop alternation treatments: an old, continuous grassland, a 8-year continuous cereal rotation and an alternation of cereal/grassland (3-years cereals and 3 to 6 years grassland). Measurements of AWC in these different crop systems setting, 8 years after implementation of the SOERE, show that AWC was different in the cereal/grassland alternation compared to the continuous cereal or grassland cropping systems (~15-20% increase). If such alteration of AWC may seem modest, modeling (in the case of ACBB SOERE) shows that this increase in AWC would increase the cereal yield but also decrease the water drainage out of the root zone, and the possible associated loss of nitrate and pesticides. As a conclusion, in line with some other literature data, roots can influence soil hydric properties and this opens a way to use plants as "soil engineers" to modulate the properties of the root zone, and thus the components of water balance, to mitigate effects of drought on crops… However, how and how much plants will modify the hydric properties, a question which mixes physics, biology, microbiology, crop system settings, is still in infancy and needs further research.

  8. Can non-inversion tillage and straw retainment reduce N leaching in cereal based crop rotations?

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Melander, Bo

    2010-01-01

    Finding ways of reducing nitrate leaching in Northern Europe has become an extremely important task, especially under the projected climate changes that are expected to exacerbate the problem. To this end, two field experiments were established under temperate coastal climate conditions to evaluate....../winter crop rotations, probably due to the spring/winter crop rotation including peas, which may be considered a high-risk crop. Our study highlights that management practices that improve biomass production throughout the year are crucial in order to tighten the nitrogen cycle and thereby reduce nitrate...

  9. Crop plants as models for understanding plant adaptation and diversification

    Science.gov (United States)

    Olsen, Kenneth M.; Wendel, Jonathan F.

    2013-01-01

    Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of “domestication syndrome” traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various “omics” involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution. PMID:23914199

  10. Crop plants as models for understanding plant adaptation and diversification

    Directory of Open Access Journals (Sweden)

    Kenneth M Olsen

    2013-08-01

    Full Text Available Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

  11. Irrigation treatments, water use efficiency and crop sustainability in cereal-forage rotations in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2012-10-01

    Full Text Available Agricultural systems based on crop rotation are beneficial to crop sustainability and productivity. Wheat-forage rotations combined with irrigation are the agronomic techniques best able to exploit Mediterranean environmental conditions. This paper describes a long-term field trial to ascertain the effect of combined irrigation and durum wheat-forage rotations on crop yield and soil chemical properties. The two forage crops: annual grass-clover winter binary mixture and perennial lucerne were carried out through 1991-2008 under rainfed and irrigated treatments. The experiments were used to highlight the effect of irrigation and wheat-forage crop rotations on water use efficiency (WUE and sustainability of organic matter (OM in topsoil. Irrigation increased the dry matter (DM of annual binary mixture and lucerne by 49.1% and 66.9%, respectively. Continuous wheat rotation reduced seed yield (SY, stability of production, and crude protein (CP characteristics of kernel and OM in topsoil. The yearly gain in wheat after forage crops was 0.04 t (ha yr-1 under rainfed and 0.07 t (ha yr-1 under irrigation treatments. The CP and soil OM of wheat forage crops rotations, compared with those of continuous wheat under rainfed and irrigated was a 0.8 and 0.5 % increase in CP and 5.1 and 4.4 in OM, respectively. The rotations of annual grass-clover winter binary mixture and lucerne meadow under both irrigated treatments increased the OM over continuous wheat (9.3 % and 8.5 in annual grass-clover winter binary mixture and 12.5 and 9.5 lucerne meadow under rainfed and irrigation, respectively. Irrigation reduced the impact of weather on crop growing, reducing water use efficiency (mean over rotations for DM production (15.5 in meadow and 17.5 in annual grass-clover winter binary mixture [L water (kg DM-1] and wheat SY. However, the agronomic benefits achieved by forage crops in topsoil are exhausted after three years of continuous wheat rotation.

  12. Nutritional evaluation of cereal mutants

    International Nuclear Information System (INIS)

    1977-01-01

    An advisory group of experts, comprising nutritionists, analysts and plant breeders, discussed the desirability of nutritional goals for plant breeding and attempted to specify the deficiencies of various cereal crops in essential nutrients. It considered the plant factors influencing the value for human and animal nutrition and the feasibility of improving these by genetic and plant breeding methods. Methods of assaying nutritional quality were discussed, particularly in relation to the need for rapid, inexpensive methods capable of being used as screening procedures in plant breeding programmes. The proceedings contain 9 scientific papers and a conclusion and recommendations, including a review of the chemical cuzymatic, microbiological and animal assay techniques that are available

  13. Household cereal crop harvest and children's nutritional status in rural Burkina Faso.

    Science.gov (United States)

    Belesova, Kristine; Gasparrini, Antonio; Sié, Ali; Sauerborn, Rainer; Wilkinson, Paul

    2017-06-20

    Reduction of child undernutrition is one of the Sustainable Development Goals for 2030. Achievement of this goal may be made more difficult in some settings by climate change through adverse impact on agricultural productivity. However, there is only limited quantitative evidence on the link between household crop harvests and child nutrition. We examined this link in a largely subsistence farming population in rural Burkina Faso. Data on the middle-upper arm circumference (MUAC) of 975 children ≤5 years of age, household crop yields, and other parameters were obtained from the Nouna Health and Demographic Surveillance System. Multilevel modelling was used to assess the relationship between MUAC and the household crop harvest in the year 2009 estimated in terms of kilocalories per adult equivalent per day (kcal/ae/d). Fourteen percent of children had a MUAC infrastructure and market presence, suggested a decline in MUAC below around 3000 kcal/ae/d. The mean MUAC was 2.49 (95% CI 0.45, 4.52) mm less at 1000 than at 3000 kcal/ae/d. Low per capita household crop production is associated with poorer nutritional status of children in a rural farming population in Burkina Faso. This and similar populations may thus be vulnerable to the adverse effects of weather on agricultural harvest, especially in the context of climate change.

  14. Absorption of plant lignans from cereals in an experimental pig model.

    Science.gov (United States)

    Bolvig, Anne Katrine; Adlercreutz, Herman; Theil, Peter Kappel; Jørgensen, Henry; Bach Knudsen, Knud Erik

    2016-05-28

    Plant lignans are diphenolic compounds ingested with whole grains and seeds and converted to enterolignans by the colonic microbiota. In the present study, we investigated absorption and metabolism of plant lignans and enterolignans in vivo after consumption of cereal-based diets. Six pigs fitted with catheters in the mesenteric artery and portal vein and with a flow probe attached to the portal vein along with twenty pigs for quantitative collection of urine were used for this study. The animals were fed bread based on wheat flour low in plant lignans and three lignan-rich breads based on whole-wheat grain, wheat aleurone flour or rye aleurone flour. Plant lignans and enterolignans in plasma were monitored daily at fast after 0-3 d of lignan-rich intake, and on the 4th day of lignan-rich intake a 10-h profile was completed. Urine samples were collected after 11 d of lignan-rich diet consumption. The concentrations of plant lignans were low at fast, and was 1·2-2·6 nmol/l after switching from the low-lignan diet to the lignan-rich diets. However, on the profile day, the concentration and quantitative absorption of plant lignans increased significantly from 33 nmol/h at fast to 310 nmol/h 0-2·5 h after ingestion with a gradual increase in the following periods. Quantitatively, the absorption of plant lignans across diets amounted to 7 % of ingested plant lignans, whereas the urinary excretion of plant lignans was 3 % across diets. In conclusion, there is a substantial postprandial uptake of plant lignans from cereals, suggesting that plant lignans are absorbed from the small intestine.

  15. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review.

    Science.gov (United States)

    Xue, Yanfang; Xia, Haiyong; Christie, Peter; Zhang, Zheng; Li, Long; Tang, Caixian

    2016-03-01

    Phosphorus (P), iron (Fe) and zinc (Zn) are essential elements for plant growth and development, but their availability in soil is often limited. Intercropping contributes to increased P, Fe and Zn uptake and thereby increases yield and improves grain nutritional quality and ultimately human health. A better understanding of how intercropping leads to increased plant P, Fe and Zn availability will help to improve P-fertilizer-use efficiency and agronomic Fe and Zn biofortification. This review synthesizes the literature on how intercropping of legumes with cereals increases acquisition of P, Fe and Zn from soil and recapitulates what is known about root-to-shoot nutrient translocation, plant-internal nutrient remobilization and allocation to grains. Direct interspecific facilitation in intercropping involves below-ground processes in which cereals increase Fe and Zn bioavailability while companion legumes benefit. This has been demonstrated and verified using isotopic nutrient tracing and molecular analysis. The same methodological approaches and field studies should be used to explore direct interspecific P facilitation. Both niche complementarity and interspecific facilitation contribute to increased P acquisition in intercropping. Niche complementarity may also contribute to increased Fe and Zn acquisition, an aspect poorly understood. Interspecific mobilization and uptake facilitation of sparingly soluble P, Fe and Zn from soil, however, are not the only determinants of the concentrations of P, Fe and Zn in grains. Grain yield and nutrient translocation from roots to shoots further influence the concentrations of these nutrients in grains. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Patterns of pesticide usage by cereal crop farmers in Western Australia.

    Science.gov (United States)

    Spickett, J T; Dolin, P J; Phillips, M R; Priestley, C J

    1989-01-01

    In Western Australia there has been an increase in the use of herbicides in recent years due to a change in farming practices. This change, together with more general public concern over exposure to chemicals, has resulted in farmers expressing concern over the possible long term health effects from exposure to herbicides. As part of a long term study of the possible health effects from such exposure, a survey was carried out to establish the extent of pesticide use within the cereal farming community of Western Australia. Of the 9,408 properties surveyed, 2,921 responses were received which represents a 32.2% response rate. The results indicate that a wide range of chemicals are used as insecticides, fumigants, seed dressings, seed pickles, herbicides, and rodent poisons. At the time of the survey in 1985, products containing prespruf and 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) were the most popular insecticide, and products containing diquat, diclofop-methyl, chlorsulfuron and glyphosate as active ingredients represented the four most popular herbicides.

  17. On the Global Water Productivity Distribution for Major Cereal Crops: some First Results from Satellite Measurements

    Science.gov (United States)

    Bastiaanssen, W. G.; Verstegen, J. A.; Steduto, P.; Goudriaan, R.; Wada, Y.

    2014-12-01

    Feeding the world requires 70 percent more food for an additional 2.3 billion people by 2050. The increasing competition for water resources prompts the modern consumer society to become more efficient with scarce water resources. The water footprint of agriculture is hundred times more than the footprint for domestic water use, yet we do not fully know how much water is used in relation to the amount of food being produced. Water Productivity describes the crop yield per unit of water consumed and is the ultimate indicator for the efficiency of water use in agriculture. Our basic understanding of actual and benchmark values for Water Productivity is limited, partially because operational measurements and guidelines for Water Productivity do not currently exist. Remote sensing algorithms have been developed over the last 20 years to compute crop yield Y and evapotranspiration ET, often in an independent manner. The new WatPro and GlobWat algorithms are based on directly solving the Y/ET ratio. Several biophysical parameter and processes such as solar radiation, Leaf Area Index, stomatal aperture and soil moisture affect biomass production and crop transpiration simultaneously, and this enabled us to simplify the schematization of a Y/ET model. Global maps of wheat, rice and maize were prepared from various open-access data sources, and Y/ET was computed across a period of 10 years. The global distribution demonstrates that 66 percent of the world's agricultural land cultivated with wheat, rice and corn performs below average. Furthermore, Water Productivity in most countries exhibits a significant spatial variability. Therefore, there is significant scope to produce the same food - or more food - from less water resources if packages with good practices are locally implemented. The global maps of water productivity will be demonstrated, along with some country examples.

  18. Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Galinha, C.; Freitas, M.C.; Anawar, H.M.; Pacheco, A.M.G.; Kamenik, J.; Kucera, J.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2012-01-01

    Selenium (Se) is an essential micronutrient for human health but it is deficient in at least 1 billion people around the globe. Cereals are by far the most significant agricultural crops, not only on a gross tonnage basis, but also by what they represent in terms of energy supply and dietary intake for human nutrition worldwide. Portugal is no exception to such pattern. The Portuguese situation is difficult to assess though, due to scarce information and lack of consistent studies on the subject. In these terms, the Se status of major cereals and their cultivation soils are dealt with herein. Two species of wheat-bread and durum wheat-were sown at the end of November 2009, and then sampled in different growth stages. Rye was collected during harvest season, and cultivation soils were analyzed as well. Se results were within the range of: 100-225 ng g -1 for soils; 3-55 ng g -1 for durum wheat; 6-80 ng g -1 for bread wheat; and 4-30 ng g -1 for rye. Accuracy of the RNAA procedure was proved by analysis of reference materials NIST-SRM 1515 and NIS-SRM 8433. (author)

  19. Evaluation of nutrient composition of some cereals and legumes ...

    African Journals Online (AJOL)

    The use of compost for horticultural crops production in Nigeria is beginning to gain some attention, since it has been reported to improve plant growth and yield. Some cereals and legumes crops residues with potentials of being used as compost materials such as Sorghum Stovers, Rice Straws, Maize Stovers, Millet ...

  20. Epidemic classification of phytosanitary situations on cereal crops using mathematical modeling

    Science.gov (United States)

    Most plant protection researchers and experts divide emerging phytosanitary situations into three classes: epidemic, moderate development of disease, and yield depression. The known principles and methods for estimating these situations (Van der Plank J.E., Kranz J. et al.) do not fully describe th...

  1. Determination of optimal doses of radiation for the plant breeding of pseudo cereals

    International Nuclear Information System (INIS)

    Gonzalez J, J.; Gomez P, L.

    2005-01-01

    With the purpose of promoting the use of the radiations for the plant breeding of pseudo cereals, it was determined a simple and economic method that allows the quick selection of radiation dose that induce in the vegetable organisms the changes wanted. For it it was work with quinua seeds (Chenopodium quinoa Willd.) an Andean pseudo cereal that, due to their nutritious and physiologic characteristics it is considered by the FAO like one of the foods of the future and for the NASA like an organism that is good to remove the carbon dioxide from the atmosphere and at the same time, to generate food, oxygen and water for the crew during the space missions of long duration and that it has already improved by means of the radiation application. The proposed method consists on the evaluation, of the embryonic structures (radicule, hypocotyl and cotyledons) in the irradiated seeds as well as of the development of root, primary shaft and true leaves in the plants. The changes in the growth, form, number and color of the structures as well as the time of appearance of each one, allow to predict the morphological changes and inclusive some physiologic ones that will have the mature organisms, so that in only three weeks it is possible to select the doses more appropriate. (Author)

  2. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    Science.gov (United States)

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  3. Cesium distribution in the milling fractions of contaminated cereal crops: their decontamination, is it possible?

    International Nuclear Information System (INIS)

    Arapis, G.; Marti, J.M.; Gutierrez, J.; Kouskoutopoulos, A.

    1991-01-01

    A study of radioactivity transfer during an experimental milling of selected seeds of wheat and barley from Greek crops contaminated by the accident of Chernobyl was conducted. The Cs-137 and Ce-134 activities of the whole seeds, the flour fractions (three break and three reduction), the shorts and the bran were measured. The possibility of decontamination of seeds and bran was also investigated. The activity of whole seeds and bran, after cleaning with normal and saline (1M NaCl) water respectively, was measured. For wheat and barley, in both cases, the average activity concentration (Bq/g) of the 'reduction flour' fractions is about the half that of the whole seeds. Also, the average activity concentration for the total flours' fractions remains 60% less than the activity concentration of the whole seed. However, in the total 'break' and 'reduction' flour fractions only about 20% of the seed radioactivity remains. In the fraction of bran, the activity concentration appears to double the value of the seed and to be four times higher than the flours. After cleaning with normal water, the activity concentration in the whole seed was only 10% less than the original one. Finally, the activity concentration of bran after cleaning with saline water was reduced by a factor of 3 for wheat and of 2.4 for barley. But this diminution of activity concentration was found to represent only the 20% of the whole see activity. (author)

  4. Population Growth of Rhopalosiphum padi L. (Homoptera: Aphididae on Different Cereal Crops from the Semiarid Pampas of Argentina under Laboratory Conditions Crecimiento Poblacional de Rhopalosiphum padi L. (Homoptera: Aphididae sobre Diferentes Cereales de la Pampas Semiárida de Argentina en Condiciones de Laboratorio

    Directory of Open Access Journals (Sweden)

    Lilian R Descamps

    2011-09-01

    Full Text Available The bird cherry-oat aphid Rhopalosiphum padi L. (Homoptera: Aphididae is one of the main pests in a number of crops in the semiarid Pampas of Argentina. In the present study, the effect of different host plants, including Triticum aestivum L., ×Triticosecale Wittm., Hordeum vulgare L., Hordeum distichum L., Avena sativa L., and Secale cereale L. on biological parameters of R. padi L. was studied in the laboratory at 24 ± 1 °C, 65 ± 10% RH and a 14:10 photoperiod. Longevity, intrinsic rate of natural increase (r m, net reproductive rate (R0, mean generation time (T, doubling time (DT, and finite rate of increase (λ of the bird cherry-oat aphid on the different cereal crops were estimated. Differences in fertility life table parameters of R. padi among host plants were analyzed using pseudo-values, which were produced by Jackknife re-sampling. Results indicated that beer barley might be the most suitable food for R. padi due to greater adult longevity (20.88 d, higher fecundity (41 nymphs female-1, higher intrinsic rate of natural increase (0.309 females female-1 d-1, lower doubling time (2.24, and lower nymphal mortality (22.2%. Therefore, it can be concluded from the present study that R. padi prefers beer barley for fast and healthy development over other cereal crops.El áfido Rhopalosiphum padi L. (Homoptera: Aphididae es una de las principales plagas de numerosos cultivos de la región semiárida pampeana de Argentina. En el presente trabajo se estudió el efecto de diferentes cereales incluidos Triticum aestivum L., ×Triticosecale Wittm., Hordeum vulgare L., Hordeum distichum L., Avena sativa L. and Secale cereale L. sobre los parámetros biológicos de R. padi en laboratorio. Se estimaron longevidad, tasa intrínseca de crecimiento natural (r m, tasa neta de reproducción (R0, tiempo generacional medio (T, tiempo de duplicación (TD, y tasa finita de incremento (λ del pulgón de la avena en diferentes cereales. Las diferencias de

  5. Agrobiodiversity and genetic erosion of crop varieties and plant resources in the Central Great Caucasus

    Directory of Open Access Journals (Sweden)

    Maia Akhalkatsi

    2017-03-01

    Full Text Available Kazbegi Municipality is located in the Central Great Caucasus at an altitude between 1250 and 5047 m a.s.l. Agriculture of this area is extreme internal variability and complexity, with a multiplicity of highly localized providing the habitats and agricultural lands for much genetic erosion of crop varieties, animals, plants, fungi, and other life forms for wild plant resources. Historically, Kazbegi producers had begun cultivating the land to prepare for planting in of distribution local varieties of wheat, barley, rye, oats, etc. In the only cereals, legumes, herbs and some fruits are cultivated in alpine zone as the upper limit till the location of 2160 m a.s.l. Genetic erosion has been determined historically of aboriginal crops from sheep and cattle grazing problem and reached extreme levels from 1970s in Kazbegi Municipality and causes a problem to maintain agriculture. Plant resources remained in forests and subalpine grasslands and shrub lands. The problems of these materials are habitat degradation by disturbance in many forest types with destroyed and burned. Tree seedlings are grazing by animals and forest is not restoring naturally. Forest planting is good relation for restoration of plant wild species resources. Investigation on exchange on mountain agriculture and plant resources will now be rapidly accelerated in the vital interests of mountain communities.

  6. E.M. Freeman: early research on cereal diseases and the rise of plant pathology at the University of Minnesota.

    Science.gov (United States)

    Peterson, P D

    2001-01-01

    E.M. Freeman's role in early cereal disease research and the beginning of plant pathology at the University of Minnesota has been overshadowed largely by the enormous prestige of his student, E.C. Stakman. During the first decade of the twentieth century, Freeman was responsible for the transferral from Europe to the United States and the subsequent nurturing of important conceptual and technical developments in the area of cereal disease pathology. Under Freeman's leadership, these ideas would come to shape the direction of plant pathology research at the University of Minnesota for decades to follow.

  7. Estimation of leaf area index in cereal crops using red–green images

    DEFF Research Database (Denmark)

    Nielsen, Kristian Kirk; Andersen, Hans Jørgen; Thomsen, Anton

    2009-01-01

    ,L)-space 2.1.2. Projection of (g,L) and probabilistic labelling 2.1.3. Automatic thresholding procedure 2.2. Gap fraction estimation and inversion 2.3. Experiments 2.3.1. Experiment A 2.3.2. Experiment B 2.3.3. Experiment C 3. Results 3.1. Experiment A 3.2. Experiment B 3.3. Experiment C 4. Discussion 5...... fraction model and an ellipsoidal leaf angle distribution. The LAI estimates were compared with measurements taken using a LAI-2000 Plant Canopy Analyzer in terms of their correlation with results from harvested samples scanned with the LI-3100 Area Meter. The results showed that the method was capable...

  8. Transfer of radionuclides to crop plants through roots

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Sumiya, Misako; Ohmomo, Yoichiro

    1987-01-01

    In an atmospheric discharge of radioiodines, direct deposition of the nuclides onto leaf surface must be the most significant pathway. However, root uptake is also of importance specifically for 129 I because of its long half life of 1.57 x 10 7 years. In order to estimate the amount of the nuclide transferred to the crop plants from contaminated field, the experiments were carried out using solution culture. Rice plant, Oryza sativa cv. koshihikari, spinach, Spinacea oleracea L., radish, Raphanus sativus L., and the other four kinds of crop plants were exposed to culture solution in which Na 131 I were contained. The transfer rates, defined as the ratio of activity of plant sample per day to the mean activity of culture solution, were calculated. And the differences by the organs of each crop plant and by plant species were discussed in this paper. Temporal critical crop plants for 129 I were selected. (author)

  9. Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Jørnsgaard, B.; Kinane, J.

    2008-01-01

    Intercropping is the simultaneous cultivation of more than one crop species on the same piece of land and is regarded as the practical application of basic ecological principles such as diversity, competition and facilitation. Field experiments were carried out on a sandy loam soil and a sandy soil......-270 g m-2). Nitrogen fixation was very constant in grain legume SC over species and location, varying from 13.2 to 15.8 g N m-2, being lowest in peas and highest in faba bean and lupin. The intercropped grain legumes increased the proportion of plant N derived from N2-fixation by on average 10...... was comparable; however, it tended to be the highest in sole cropped faba bean, lupin and unfertilized barley, where the application of urea to barley reduced the weed infestation by around 50%. Reduction in disease was observed in all IC systems compared to the corresponding SC, with a general disease reduction...

  10. More protein in cereals?

    International Nuclear Information System (INIS)

    1969-01-01

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  11. Simulating the influence of crop spatial patterns on canola yield

    DEFF Research Database (Denmark)

    Griepentrog, H.W.; Nielsen, J.; Olsen, Jannie Maj

    2011-01-01

    The current non-uniform crop spatial distributions of individual cereal plants and widerspaced row crops like maize and sugar beet can limit crop performance because of nonoptimal resource utilization. The aim of the present study was to investigate the potential influence of two-dimensional crop...

  12. Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore

    Science.gov (United States)

    Plant infection by pathogens can induce volatile organic compounds (VOCs). We infected ‘McNeal’ wheat and ‘Harrington’ barley with a Fusarium spp. blend (graminearum, avenaceum, and culmorum). Both cereals had highest VOC induction 14 d after pathogen introduction, significantly slightly lower induc...

  13. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2017-10-01

    , Kerman, Ravar, Rafsanjan and Sirjan of Kerman province. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Each greenhouse gas, i.e. CO2, CH4 and N2O has a GWP, which is the warming influence relative to that of CO2. The emission was measured in terms of CO2. The GWP coefficient based on CO2 is shown in Table 1. Results and discussion The results showed that N and P fertilizers had the highest application share of chemical inputs. Maize had the significant different with wheat and barley based on N application per hectare. P application for maize and wheat was about 58 and 28% more than barley. In all conditions, CO2 was obtained extremely higher emission rather than N2O and CH4. This issue was due to the highest coefficient emission of CO2 compared to N2O and CH4. Due to higher usage value and coefficient emission of N fertilizer, GHGs emission for N fertilizer was higher than the other inputs in all three crops and all the regions. The pesticide inputs had lower GHGs emission in comparison with chemical fertilizers. The highest emission of CO2, N2O and CH4 was gained for wheat fallowed by maize, and barely had the lowest value. Jiroft and Rafsanjan were obtained the highest and lowest GHGs emission through the studied regions, respectively. Higher GHGs emission in Jiroft was due to the higher planting area compared with the others regions. Annual GWP in studied regions and cereals had the same trend with GHGs emission, whereas, the highest and lowest values of GWP per hectare were related to Jiroft and Sirjan, respectively. The GWP in maize (504 t. ha-1 was higher than wheat (404 ton.ha-1 and barely (431 ton.ha-1. Among the chemical inputs, N fertilizer brought about 87% of GWP. Conclusion Generally, the results showed that nitrogen fertilizer is the most important factor in greenhouse gas emissions in cereal. Corn cultivation has more share than wheat and barley in

  14. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... within approximately 10 years, whole genome sequencing of many lines will be the ultimate method of choice for a comprehensive genotyping effort. Table 1. Overview on large genotyping array development in major crop plants. Crop species. Array size*. Reference. Apple (Malus domestica). 8 K. Chagné ...

  15. Distribution Frequency and Incidence of Seed-borne Pathogens of Some Cereals and Industrial Crops in Serbia

    Directory of Open Access Journals (Sweden)

    Jelena Lević

    2012-01-01

    Full Text Available A total of 41 species of fungi were isolated from seed samples of barley, maize, soybean,and sunflower collected at different locations in Serbia. The majority of detected speciesoccurred on barley (35 of 41 species or 87.8% comparing to soybean (17 of 41 species or41.5%, sunflower (16 of 41 species or 39.0% and maize (15 of 41 species or 36.9%. Speciesbelonging to genera Alternaria, Chaetomium, Epicoccum, Fusarium, Penicillium and Rhizopuswere present on seeds of all four plant species. Alternaria species were dominant on soybean,barley and sunflower seeds (85.7%, 84.7% and 76.9%. F. verticillioides and Penicilliumspp. were mainly isolated from maize seeds (100 and 92.3% respectively, while other specieswere isolated up to 38.5% (Chaetomium spp. and Rhizopus spp.. F. graminearum, F. proliferatum,F. poae and F. sporotrichioides were the most common Fusarium species isolatedfrom barley (51.1-93.3%, while on the soybean seeds F. oxysporum (71.4%, F. semitectum(57.1% and F. sporotrichioides (57.1% were prevalent. Frequency of Fusarium species onsunflower seeds varied from 7% (F. equiseti, F. graminearum, F. proliferatum and F. subglutinansto 15.4% (F. verticillioides. Statistically significant negative correlation (r = –0.678* wasdetermined for the incidence of F. graminearum and Alternaria spp., as well as, Fusarium spp.and Alternaria spp. (r = –0.614*, on barley seeds. The obtained results revealed that seedbornepathogens were present in most seed samples of important cereals and industrialcrops grown under different agroecological conditions in Serbia. Some of the identifiedfungi are potential producers of mycotoxins, thus their presence is important in termsof reduced food safety for humans and animals. Therefore, an early and accurate diagnosisand pathogen surveillance will provide time for the development and the applicationof disease strategies.

  16. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  17. Energy crops for biogas plants. Thuringia; Energiepflanzen fuer Biogasanlagen. Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Bischof, R.; Conrad, M. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Thuringia. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  18. Energy crops for biogas plants. Saxony; Energiepflanzen fuer Biogasanlagen. Sachsen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Buttlar, C. von; Conrad, M. [and others

    2012-08-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  19. Transfer of radionuclides to crop plants through roots

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Sumiya, Misako; Ohmomo, Yoichiro

    1987-01-01

    In assessing the internal radiation dose to man from radionuclides released from nuclear facilities including ground disposal facilities, the soil-crop plants-man pathway is one of the important ones. The information on this pathway, however, is quite limited in Japan. This paper focuses on transfer of 54 Mn, 65 Zn and 60 Co from culture solution to crop plants, particularly to the edible parts of the plants. Rice plant (Oryza sativa cv. Koshihikari), spinach (Spinacea oleracea L.), soybean (Glycine max Merr.), and the other four kinds of crop plants were transplanted to culture solution in which 54 MnCl 2 , 65 ZnCl 2 or 60 CoCl 2 were contained, and their transfer rates in each organ of the plants were obtained. The differences in the distribution patterns among the crop plant species, among the nuclides and the effect of the stable isotope concentration in the solution on their distributions were discussed in this paper. And critical crop plants for 54 Mn, 65 Zn and 60 Co were also selected. (author)

  20. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    Science.gov (United States)

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Host settling behavior, reproductive performance, and effects on plant growth of an exotic cereal aphid, Metopolophium festucae subsp. cerealium (Hemiptera: Aphididae).

    Science.gov (United States)

    Davis, T S; Wu, Y; Eigenbrode, S D

    2014-06-01

    The cereal aphid Metopolophium festucae subsp. cerealium (Stroyan) is a recent addition to North America, but little is known about this species in its exotic habitat. We surveyed aphid populations for 3 years (2011-2013) to investigate changes in aphid density in the Pacific Northwest United States. We tested aphid host settling preference and fecundity on eight grass species, four native grasses (bluebunch wheatgrass, blue wild rye, Idaho fescue, and rough fescue) and four cereal crops (corn, wheat, barley, and oat), and evaluated the effects of aphid feeding on plant biomass. Four important findings emerged: 1) aphid prevalence in sweep net samples increased from 2011 to 2012, but remained stable from 2012 to 2013; 2) aphids preferentially settled on wheat and avoided corn, but aphids did not discriminate between barley, oat, and native grasses; 3) aphid fecundity was high on wheat and barley, intermediate on oat and blue wild rye, low on Idaho fescue, rough fescue, and bluebunch wheatgrass, and aphids did not reproduce at all on corn; and 4) barley, corn, oats, Idaho fescue, and blue wild rye were not susceptible to aphid feeding damage, but wheat, rough fescue, and bluebunch wheatgrass were susceptible to aphid feeding damage. Our results suggest that wheat and barley are preferred by M. festucae cerealium, and that aphids reproduce most rapidly on these hosts and cause significant reductions in wheat but not barley growth. Also, M. festucae cerealium appears capable of surviving on native grasses, although only bluebunch wheatgrass and rough fescue were susceptible to aphid feeding damage.

  2. In Vitro Fermentative Production of Plant Lignans from Cereal Products in Relationship with Constituents of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Elena Bartkiene

    2012-01-01

    Full Text Available Recently special attention has been paid to dietary fibre-associated phytoestrogens such as plant lignans, which are related to the prevention of different hormone-dependent diseases. Therefore, phytoestrogens associated with dietary fibre and their metabolites are of interest for investigation. The aim of this work is to investigate the formation of enterolignans: enterolactone (ENL and enterodiol (END from their precursors by the action of intestinal microflora and their relationship with non-starch polysaccharides (NSP in various cereal products from wheat, rye, barley and oats. For the investigation of the bioconversion of plant lignans, a technique of in vitro fermentation was used and the quantitative analysis of their metabolites ENL and END was performed by high-performance liquid chromatography (HPLC with coulometric electrode array detection. The enterolignan formation in various cereal products ranged from 78.3 to 321.9 nmol/g depending on the product type: END from 8.7 to 149.3 nmol/g and ENL from 64.4 to 278.3 nmol/g. The lignan production in bran was about two times higher than that in whole flour of the same kind of cereals. Close correlations were found between the total NSP content and the total amount of enterolignans and ENL; between pentoses and the total amount of enterolignans and ENL; between arabinose or xylose and ENL; and between galactose and END values. Considering the correlations between hexoses and END as well as between pentoses and ENL found in cereals, it can be assumed that pentoses are closely related to the quantities of plant lignans in cereal products and their conversion to enterolignans.

  3. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  4. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    Science.gov (United States)

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  5. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    Science.gov (United States)

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-07-18

    The use of non-crop plants to provide the resources that herbivorous crop pests' natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize ( Spodoptera frugiperda and Rhopalosiphum maidis ), as well as other species that serve as alternative hosts of these natural enemies.

  6. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management

    NARCIS (Netherlands)

    Yu, Yang; Stomph, Tjeerd-Jan; Makowski, David; Zhang, Lizhen; Werf, van der Wopke

    2016-01-01

    Intercrops of cereals and legumes are grown worldwide, both in smallholder agriculture in developing countries and in organic farming systems in developed countries. The competitive balance between species is a key factor determining productivity in mixtures. Management factors, e.g. sowing time,

  7. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    Directory of Open Access Journals (Sweden)

    Murphy Denis J.

    2014-11-01

    Full Text Available The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has been focused on genomic approaches to plant breeding with the deployment of a new generation of technologies, such as marker-assisted selection, next-generation sequencing, transgenesis (genetic engineering or GM and automatic mutagenesis/selection (TILLING, TargetIng Local Lesions IN Genomes. These methods are now being applied to a wide range of crops and have particularly good potential for oil crop improvement in terms of both overall food and non-food yield and nutritional and technical quality of the oils. Key targets include increasing overall oil yield and stability on a per seed or per fruit basis and very high oleic acid content in seed and fruit oils for both premium edible and oleochemical applications. Other more specialised targets include oils enriched in nutritionally desirable “fish oil”-like fatty acids, especially very long chain !-3 acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, or increased levels of lipidic vitamins such as carotenoids, tocopherols and tocotrienes. Progress in producing such oils in commercial crops has been good in recent years with several varieties being released or at advanced stages of development.

  8. Crop and medicinal plants proteomics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Keyvan eAghaei

    2013-01-01

    Full Text Available Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

  9. Investigation of the herbicide glyphosate and the plant growth regulators chlormequat and mepiquat in cereals produced in Denmark

    DEFF Research Database (Denmark)

    Granby, Kit; Gabrielsen, Martin Vahl

    2001-01-01

    An LC-MS/ MS method for analysing glyphosate and aminomethylphosphonic acid (AMPA) in cereals was developed. The method is based on extraction with water and detection of the ions from the fragmentation m/z 170 --> 88 (glyphosate) and m/z 112 --> 30 (AMPA), using electrospray interface in the pos......An LC-MS/ MS method for analysing glyphosate and aminomethylphosphonic acid (AMPA) in cereals was developed. The method is based on extraction with water and detection of the ions from the fragmentation m/z 170 --> 88 (glyphosate) and m/z 112 --> 30 (AMPA), using electrospray interface....../kg for the 1998 harvest (n=49). Thus, the figures were well below the maximum residue limit (MRL) and no violations were observed. The plant growth regulators chlormequat and/or mepiquat were investigated in cereals from the Danish harvest of 1999 where 83% of the samples contained chlormequat (n=46) compared...... with 87% of the samples from the 1997 harvest (n=52). The average concentration of chlormequat in 1999 was 0.32 mg/kg compared with 0.23 mg/kg in 1997. At 2.9 mg/kg, one sample of wheat bran was exceeding the MRL of 2 mg/kg for wheat. The intakes of the pesticides through the diet of cereals were...

  10. Modification of flavonoid biosynthesis in crop plants

    NARCIS (Netherlands)

    Schijlen, E.G.W.M.; Vos, de C.H.; Tunen, van A.J.; Bovy, A.G.

    2004-01-01

    Flavonoids comprise the most common group of polyphenolic plant secondary metabolites. In plants, flavonoids play an important role in biological processes. Beside their function as pigments in flowers and fruits, to attract pollinators and seed dispersers, flavonoids are involved in UV-scavenging,

  11. Plant factories; crop transpiration and energy balance

    NARCIS (Netherlands)

    Graamans, Luuk; Dobbelsteen, van den Andy; Meinen, Esther; Stanghellini, Cecilia

    2017-01-01

    Population growth and rapid urbanisation may result in a shortage of food supplies for cities in the foreseeable future. Research on closed plant production systems, such as plant factories, has attempted to offer perspectives for robust (urban) agricultural systems. Insight into the explicit role

  12. Targeted modification of plant genomes for precision crop breeding.

    Science.gov (United States)

    Hilscher, Julia; Bürstmayr, Hermann; Stoger, Eva

    2017-01-01

    The development of gene targeting and gene editing techniques based on programmable site-directed nucleases (SDNs) has increased the precision of genome modification and made the outcomes more predictable and controllable. These approaches have achieved rapid advances in plant biotechnology, particularly the development of improved crop varieties. Here, we review the range of alterations which have already been implemented in plant genomes, and summarize the reported efficiencies of precise genome modification. Many crop varieties are being developed using SDN technologies and although their regulatory status in the USA is clear there is still a decision pending in the EU. DNA-free genome editing strategies are briefly discussed because they also present a unique regulatory challenge. The potential applications of genome editing in plant breeding and crop improvement are highlighted by drawing examples from the recent literature. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-GMO genetically edited crop plants.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Velasco, Riccardo; Kim, Jin-Soo; Viola, Roberto

    2015-09-01

    Direct delivery of purified Cas9 protein with guide RNA into plant cells, as opposed to plasmid-mediated delivery, displays high efficiency and reduced off-target effects. Following regeneration from edited cells, the ensuing plant is also likely to bypass genetically modified organism (GMO) legislation as the genome editing complex is degraded in the recipient cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops

    Science.gov (United States)

    Li, Dong; Cheng, Tao; Zhou, Kai; Zheng, Hengbiao; Yao, Xia; Tian, Yongchao; Zhu, Yan; Cao, Weixing

    2017-07-01

    Red edge position (REP), defined as the wavelength of the inflexion point in the red edge region (680-760 nm) of the reflectance spectrum, has been widely used to estimate foliar chlorophyll content from reflectance spectra. A number of techniques have been developed for REP extraction in the past three decades, but most of them require data-specific parameterization and the consistence of their performance from leaf to canopy levels remains poorly understood. In this study, we propose a new technique (WREP) to extract REPs based on the application of continuous wavelet transform to reflectance spectra. The REP is determined by the zero-crossing wavelength in the red edge region of a wavelet transformed spectrum for a number of scales of wavelet decomposition. The new technique is simple to implement and requires no parameterization from the user as long as continuous wavelet transforms are applied to reflectance spectra. Its performance was evaluated for estimating leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of cereal crops (i.e. rice and wheat) and compared with traditional techniques including linear interpolation, linear extrapolation, polynomial fitting and inverted Gaussian. Our results demonstrated that WREP obtained the best estimation accuracy for both LCC and CCC as compared to traditional techniques. High scales of wavelet decomposition were favorable for the estimation of CCC and low scales for the estimation of LCC. The difference in optimal scale reveals the underlying mechanism of signature transfer from leaf to canopy levels. In addition, crop-specific models were required for the estimation of CCC over the full range. However, a common model could be built with the REPs extracted with Scale 5 of the WREP technique for wheat and rice crops when CCC was less than 2 g/m2 (R2 = 0.73, RMSE = 0.26 g/m2). This insensitivity of WREP to crop type indicates the potential for aerial mapping of chlorophyll content between growth seasons

  15. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  16. Diversifying cereal-based rotations to improve weed control. Evaluation with the AlomySys model quantifying the effect of cropping systems on a grass weed

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2010-09-01

    Full Text Available Simplified rotations often select weed flora consisting of one or several dominant species. In rotations consisting mainly of winter cereals, one of the most frequent weeds in Atlantic European countries is blackgrass (Alopecurus myosuroides Huds.. In order to reduce environmental impacts and avoid the selection of herbicide-resistant populations, alternative weed management strategies are necessary. The objective of the present study was to develop a methodology for using a weed dynamics model called ALOMYSYS for evaluating prospective diversified crop rotations based on expert opinion. These prospective rotations were developed for a particular region aiming at reducing herbicide use while keeping weed infestation similar to that in current cropping systems. The prospective systems were also evaluated economically by calculating costs and margins for the farmer. The simulations showed that the more diverse the rotation, the better blackgrass was controlled and the less herbicides (rates and frequencies were necessary. Optimal herbicide spraying conditions and mouldboard ploughing were also less essential in diverse rotations. It was though essential to reason herbicide programs over the whole rotation and not simply as function of the preceding crop. The economic evaluation identified the interest of spring or winter pea either replacing or preceding oilseed rape (OSR in OSR/wheat/barley rotations.

  17. Uranium uptake by hydroponically cultivated crop plants.

    Science.gov (United States)

    Soudek, Petr; Petrová, Sárka; Benešová, Dagmar; Dvořáková, Marcela; Vaněk, Tomáš

    2011-06-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC(50) value about 0.1mM. Cucumis sativa represented the most resistant plant to uranium (EC(50)=0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1mM or 0.5mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Plant breeding: Induced mutation technology for crop improvement

    International Nuclear Information System (INIS)

    Novak, F.J.; Brunner, H.

    1992-01-01

    Plant breeding requires genetic variation of useful traits for crop improvement, but the desired variation is often lacking. Mutagenic agents, such as radiation and certain chemicals, can be used to induce mutations and generate genetic variations from which desirable mutants may be selected. After a brief summary of the methods currently employed in plant breeding, especially those inducing genetic engineering, this article describes the activities of the Plant Breeding Unit of the IAEA Laboratories at Seibersdorf, summarizing the research and development areas currently being pursued. The banana plant is chosen to exemplify the Laboratories' research

  19. Genetic Engineering of Cereal Grains with Starch Consisting of More Than 99% Amylase

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Carciofi, Massimiliano; Blennow, Andreas

    2013-01-01

    that is resistant to enzymatic degradation, even when gelatinized by cooking. The barley plants producing the grains had a moderate yield loss of 25% in comparison with other barley plants of the same cultivar. We believe that the method can be applied to produce amylose-only starch in other cereal crops including......Numerous textbooks tell us that plant starches are a mix of two starch types: amylopectin and amylose. We recently succeeded in engineering a cereal crop – a barley line – producing grain starch consisting of more than 99% amylose1. This amylose-only starch contains a high residual fraction...

  20. Folates in plants: research advances and progress in crop biofortification

    Science.gov (United States)

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-03-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today’s knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  1. Using genetically modified tomato crop plants with purple leaves for absolute weed/crop classification.

    Science.gov (United States)

    Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan

    2014-07-01

    Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.

  2. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Børgesen, Christen Duus; Elsgaard, Lars

    2012-01-01

    The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal...... crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing...... increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the period from flowering to maturity. Changes in timing of cereal phenology by 2040 were assessed for two climate model...

  3. Climate change effects on plant growth, crop yield and livestock

    NARCIS (Netherlands)

    Rötter, R.P.; Geijn, van de S.C.

    1999-01-01

    A review is given of the state of knowledge in the field of assessing climate change impacts on agricultural crops and livestock. Starting from the basic processes controlling plant growth and development, the possible impacts and interactions of climatic and other biophysical variables in different

  4. Association of non-heterocystous cyanobacteria with crop plants

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2010-01-01

    Cyanobacteria have the ability to form associations with organisms from all domains of life, notably with plants, which they provide with fixed nitrogen, among other substances. This study was aimed at developing artificial associations between non-heterocystous cyanobacteria and selected crop

  5. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Grass plants crop water consumption model in urban parks located in three different ... The result of calculations, using the climate data of July, value of the province of Antalya were. ETo=7,10464 mm/day, for Ankara .... method is recommended by Food and Agriculture. Organisation (FAO) (Allen et al., ...

  6. Plant species evaluated for new crop potential

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acer ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.

  7. Progress and challenges for abiotic stress proteomics of crop plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Radiation techniques in crop and plant breeding. Multiplying the benefits

    International Nuclear Information System (INIS)

    Ahloowalia, B.S.

    1998-01-01

    World food production is based on growing a wide variety of fruits, vegetables, and crops developed through advances in science. Plant breeders have produced multiple varieties that grow well in various types of soils and under diverse climates in different regions of the world. Conventionally, this is done by sexual hybridization. This involves transferring pollen from one parent plant to another to obtain hybrids. The subsequent generations of these hybrids are grown to select plants which combine the desired characters of the parents. However, another method exists by which the genetic make-up of a given plant variety can be changed without crossing with another variety. With this method, a variety retains all its original attributes but is upgraded in one or two changed characteristics. This method is based on radiation-induced genetic changes, and its referred to as ''induced mutations''. During the past thirty years, more than 1800 mutant varieties of plants have been released, many, of which were induced with radiation. Plant tissue and cell culture (also called in vitro culture) in combination with radiation is a powerful technique to induce mutations, particularly for the improvement of vegetatively propagated crops. These crops include cassava, garlic, potato, sweet potato, yams, sugarcane, ornamentals such as chrysanthemum, carnation, roses, tulips, daffodil, and many fruits (e.g. apple, banana, plantain, citrus, date palm, grape, papaya, passion fruit, and kiwi fruit). In some of these plants, either there is no seed set (e.g. banana) or the seed progeny produces plants which do not have the right combination of the desired characteristics. These techniques are also useful in the improvement of forest trees having a long lifespan before they produce fruit and seed. This article briefly reviews advances in plant breeding techniques, with a view towards improving the transfer of technologies to more countries

  9. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling

    NARCIS (Netherlands)

    Evers, Jochem B.; Bastiaans, Lammert

    2016-01-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed

  10. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling.

    Science.gov (United States)

    Evers, Jochem B; Bastiaans, Lammert

    2016-05-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.

  11. Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing

    Directory of Open Access Journals (Sweden)

    Florian Walder

    2017-11-01

    Full Text Available Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1–D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa acts as a potent alternative host for Fusarium (OTU F.ave/tri showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici

  12. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants.

    Science.gov (United States)

    Peng, Fred Y; Hu, Zhiqiu; Yang, Rong-Cai

    2016-08-08

    cereal species. Our approach to associating the key flowering genes with their potential TFs through prediction of putative TFBSs provides a framework to explore regulatory mechanisms of photoperiod and vernalization responses in flowering plants. The predicted TFBSs in the promoters of the flowering genes provide a basis for molecular characterization of transcription regulation in the large, complex genomes of important crop species, wheat and barley.

  13. Effects of low doses of radiation on crop plants

    International Nuclear Information System (INIS)

    1966-01-01

    Claims for radiation-induced growth stimulations in plants have been made, starting almost from the time of the discovery of X-rays. However, there is general disagreement on this question, since the numerous studies designed to prove or disprove the existence of the phenomenon have produced inconclusively and erratic results. It is obvious that small, but significant, growth increases may be produced at times by ionizing radiations in certain crop plants, but such increases have not always been reproducible from one experiment to another, and marked inconsistencies often occur with regard to the optimal exposures to produce such effects. The purpose of the FAO/IAEA Panel meeting held in Rome on 1 June, 1964, was to review and evaluate the experimental results in this area and applications for increasing crop yields. Refs, figs and tabs

  14. Phytotoxicity and Benzoxazinone Concentration in Field Grown Cereal Rye (Secale cereale L.)

    OpenAIRE

    La Hovary, C.; Danehower, D. A.; Ma, G.; Reberg-Horton, C.; Williamson, J. D.; Baerson, S. R.; Burton, J. D.

    2016-01-01

    Winter rye (Secale cereale L.) is used as a cover crop because of the weed suppression potential of its mulch. To gain insight into the more effective use of rye as a cover crop we assessed changes in benzoxazinone (BX) levels in rye shoot tissue over the growing season. Four rye varieties were planted in the fall and samples harvested at intervals the following spring. Two different measures of phytotoxic compound content were taken. Seed germination bioassays were used as an estimate of tot...

  15. Bound phytophenols from ready-to-eat cereals: comparison with other plant-based foods.

    Science.gov (United States)

    Neacsu, M; McMonagle, J; Fletcher, R J; Scobbie, L; Duncan, G J; Cantlay, L; de Roos, B; Duthie, G G; Russell, W R

    2013-12-01

    Whole-grain diets are linked to reduced risk of several chronic diseases (heart disease, cancer, diabetes, metabolic syndrome) and all-cause mortality. There is increasing evidence that these benefits are associated with the gut microbiota and that release of fibre-related phenolic metabolites in the gut is a contributing factor. Additional sources of these metabolites include fruits and vegetables, but the evidence for their protective effects is less well established. With respect to the availability of bound phytophenols, ready-to-eat cereals are compared with soft fruits (considered rich in antioxidants) and other commonly consumed fruits and vegetables. The results demonstrated that when compared with an equivalent serving of fruits or vegetables, a recommended portion of whole-grain cereals deliver substantially higher amounts of bound phytophenols, which are available for metabolism in the colon. The increased amount of these phenolic metabolites may, in part, explain the evidence for the protective effects of whole-grain cereals. Copyright © 2013. Published by Elsevier Ltd.

  16. Spatial diversity in cereal crops: What do we learn from CAP reforms? A farm-level analysis

    OpenAIRE

    Capitanio, Fabian; Gatto, Elisa; Marino, Alba; Millemaci, Emanuele; Signorino, Guido

    2013-01-01

    On-farm agricultural biodiversity conservation has long been recognized as a fundamental resource to the maintenance of ecologic and economic functions. In this light, planned on-farm biodiversity is represented as an economic asset providing a flow of ecological services to direct use of farmers. In particular, crop-biodiversity, measuring diversity within and among wild and domesticated species, has been found to significantly contribute to the productivity of agricultural production throug...

  17. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants.

    Directory of Open Access Journals (Sweden)

    Jeri D Barak

    Full Text Available BACKGROUND: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease. CONCLUSIONS/SIGNIFICANCE: S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.

  18. Coping mechanisms for crop plants in drought-prone environments.

    Science.gov (United States)

    Neumann, Peter M

    2008-05-01

    Drought is a major limitation to plant productivity. Various options are available for increasing water availability and sustaining growth of crop plants in drought-prone environments. After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought. Investigations of key regulatory mechanisms integrating plant growth responses to water deficits at the whole-organism, cellular and genomic levels continue to provide novel and exiting research findings. For example, recent reports contradict the widespread conception that root-derived abscisic acid is necessarily involved in signalling for stomatal and shoot-growth responses to soil water deficits. The findings bring into question the theoretical basis for alternate-side root-irrigation techniques. Similarly, recent reports indicate that increased ABA production or increased aquaporin expression did not lead to improved drought resistance. Other reports have concerned key genes and proteins involved in regulation of flowering (FT), vegetative growth (DELLA), leaf senescence (IPT) and desiccation tolerance (LEA). Introgression of such genes, with suitable promoters, can greatly impact on whole-plant responses to drought. Further developments could facilitate the introduction by breeders of new crop varieties with growth physiologies tailored to improved field performance under drought. Parallel efforts to encourage the introduction of supplementary irrigation with water made available by improved conservation measures and by sea- or brackish-water desalination, will probably provide comprehensive solutions to coping with drought-prone environments.

  19. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.)

    Science.gov (United States)

    Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with ‘McNeal’ wheat, ‘Otana’ oat, and ‘Harrington’ barley, plants that were mechan...

  20. Assessment of the phytoextraction potential of high biomass crop plants.

    Science.gov (United States)

    Hernández-Allica, Javier; Becerril, José M; Garbisu, Carlos

    2008-03-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg(-1)), Zn (10 916 mg kg(-1)), and Cd (242 mg kg(-1)), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot(-1). We concluded that the phytoextraction performance of cultivars varies depending on the screening method used.

  1. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  2. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops.

    Science.gov (United States)

    Tao, Yongfu; Mace, Emma S; Tai, Shuaishuai; Cruickshank, Alan; Campbell, Bradley C; Zhao, Xianrong; Van Oosterom, Erik J; Godwin, Ian D; Botella, Jose R; Jordan, David R

    2017-01-01

    Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

  3. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

    Directory of Open Access Journals (Sweden)

    Megan C Shelden

    2013-05-01

    Full Text Available Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive, yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt-tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript /metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance.

  4. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals.

    Science.gov (United States)

    Shelden, Megan C; Roessner, Ute

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance.

  5. Dedicated biomass crops can enhance biodiversity in the arable landscape.

    Science.gov (United States)

    Haughton, Alison J; Bohan, David A; Clark, Suzanne J; Mallott, Mark D; Mallott, Victoria; Sage, Rufus; Karp, Angela

    2016-11-01

    Suggestions that novel, non-food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape-scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait-based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.

  6. Cereal grain, rachis and pulse seed amino acid δ15N values as indicators of plant nitrogen metabolism.

    Science.gov (United States)

    Styring, Amy K; Fraser, Rebecca A; Bogaard, Amy; Evershed, Richard P

    2014-01-01

    Natural abundance δ(15)N values of plant tissue amino acids (AAs) reflect the cycling of N into and within plants, providing an opportunity to better understand environmental and anthropogenic effects on plant metabolism. In this study, the AA δ(15)N values of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) grains and rachis and broad bean (Vicia faba) and pea (Pisum sativum) seeds, grown at the experimental farm stations of Rothamsted, UK and Bad Lauchstädt, Germany, were determined by GC-C-IRMS. It was found that the δ(15)N values of cereal grain and rachis AAs could be largely attributed to metabolic pathways involved in their biosynthesis and catabolism. The relative (15)N-enrichment of phenylalanine can be attributed to its involvement in the phenylpropanoid pathway and glutamate has a δ(15)N value which is an average of the other AAs due to its central role in AA-N cycling. The relative AA δ(15)N values of broad bean and pea seeds were very different from one another, providing evidence for differences in the metabolic routing of AAs to the developing seeds in these leguminous plants. This study has shown that AA δ(15)N values relate to known AA biosynthetic pathways in plants and thus have the potential to aid understanding of how various external factors, such as source of assimilated N, influence metabolic cycling of N within plants. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    Science.gov (United States)

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  8. Genome editing and plant transformation of solanaceous food crops.

    Science.gov (United States)

    Van Eck, Joyce

    2018-02-01

    During the past decade, the ability to alter plant genomes in a DNA site-specific manner was realized through availability of sequenced genomes and emergence of editing technologies based on complexes that guide endonucleases. Generation of targeted DNA breaks by ZFNs, TALENs, and CRISPR/Cas9, then mending by repair mechanisms, provides a valuable foundation for studies of gene function and trait modification. Genome editing has been successful in several food crops, including those belonging to the Solanaceae, which contains some of the most widely used, economically important ones such as tomato and potato. Application of new breeding technologies has the potential to not only address deficiencies of current crops, but to also transform underutilized species into viable sources to diversify and strengthen our food supply. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Timing of glyphosate applications to wheat cover crops to reduce onion stunting caused by Rhizoctonia solani

    Science.gov (United States)

    Stunting caused by Rhizoctonia spp. is economically important in irrigated onion bulb crops in the semi-arid Columbia Basin of Oregon and Washington, where cereal winter cover crops commonly are planted the previous fall to prevent wind erosion of soil. The cover crop is killed with herbicide applic...

  10. Comparison of the remotely sensed start of the season and ground phenology observations of the cereal crops

    Science.gov (United States)

    Bohovic, Roman; Hlavinka, Petr; Semerádová, Daniela; Bálek, Jan; Trnka, Mirek

    2015-04-01

    Phenology monitoring such as start of the season of agricultural crops are important characteristics observed on the ground basis by the farmers and authorities already for the long time. Due to costs, coverage, site disparities and time demands of ground observations is remote sensing phenology an interesting option. Satellite observations enable monitoring of the ground vegetation already at sufficient resolution and in country and regional scale at the same time. However, ground and remote sensing phenology differ in nature of its object. First is focused on single species and limited individuals at the observation spot. Remote sensing is from its construction definition able to monitor area-wide vegetation communities. To understand these differences and to set the procedures to overcome it is the aim of this study. Case study area covers Czech Republic in Central Europe with typical four season temperate climate that strongly influence the vegetation. Daily MODIS (Moderate Resolution Imaging Spectroradiometer) remote sensing data in 250 by 250 meters resolution were used to compute NDVI (normalized difference vegetation index). Iterative developed method for the filtering of NDVI time series since 2000 up till now is crucial for overcoming missing periods mainly due to atmospheric conditions. From improved curve of NDVI start of the season is derived as absolute threshold value of 50% NDVI. Comparison of remotely sensed start of the season with observations of emergence of spring barley and beginning of leaf sheath elongation for winter wheat was done. Data were correlated at 90 ground stations across Czech Republic between the years 2000 and 2012. Correlations at original 250x250 meters resolution and aggregations of 5x5 km were investigated. Different land cover classes were considered for aggregated areas. Correlation of start of the season shows lower results for spring barley caused by strong influence of winter signal and crop sowing date by farmers

  11. Genetic engineering of crop plants for fungal resistance: role of antifungal genes.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2012-06-01

    Fungal diseases damage crop plants and affect agricultural production. Transgenic plants have been produced by inserting antifungal genes to confer resistance against fungal pathogens. Genes of fungal cell wall-degrading enzymes, such as chitinase and glucanase, are frequently used to produce fungal-resistant transgenic crop plants. In this review, we summarize the details of various transformation studies to develop fungal resistance in crop plants.

  12. Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example

    Science.gov (United States)

    Heitefuss, Rudolf

    2001-06-01

    Diseases of crop plants may lead to considerable yield losses. To control fungal diseases, fungicides are used extensively in present-day agricultural production. In order to reduce such external inputs, cultivars with natural resistance to important fungal pathogens are recommended in systems of integrated plant protection. Basic research, including genetics and molecular methods, is required to elucidate the mechanisms by which plants react to an attack by fungal pathogens and successfully defend themselves. This review examines our knowledge with respect to the multicomponent systems of resistance in plants, using powdery mildew on barley as an example. In addition, the question is adressed whether systemic acquired resistance and plants with transgenic resistance may be utilized in future plant protection strategies.

  13. Assessment of yield stability in sorghum | Adugna | African Crop ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor L. (Moench)) is the third major cereal crop in Ethiopia in terms of area and production next to tef (Eragrostis tef) and maize (Zea mays). It is the major crop in drought stressed lowland areas that cover 66% of the total arable land in the country. Yield stability is one of the setbacks facing plant ...

  14. Occurrence of different trichothecenes and deoxynivalenol-3-β-D-glucoside in naturally and artificially contaminated Danish cereal grains and whole maize plants

    DEFF Research Database (Denmark)

    Rasmussen, P. H.; Nielsen, Kristian Fog; Ghorbani, F.

    2012-01-01

    ), 3 acetyl-DON, nivalenol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin, and T-2 toxin in naturally (n = 48) and artificially (n = 30) contaminated cereal grains (wheat, barley, oat, rye triticale) is reported. The method has also been applied to whole fresh maize plant intended for production of maize...

  15. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection

    Directory of Open Access Journals (Sweden)

    Carolyn Mitchell

    2016-07-01

    Full Text Available Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

  16. Dehydration survival of crop plants and its measurement.

    Science.gov (United States)

    Blum, Abraham; Tuberosa, Roberto

    2018-01-08

    Dehydration survival under drought stress is defined in this review as the transition from plant activity into a quiescent state of life preservation, which will be terminated by either recovery or death, depending on the stress regime and the plant's resilience. Dehydration survival is a popular phenotype by which functional genomics attempts to test gene function in drought resistance and survival. The available reports on phenotyping and genotyping of dehydration survival in genomic studies indicate that the measurement of this trait is often biased to the extent that misguided interpretations are likely to occur. This review briefly discusses the physiological basis of dehydration survival in resurrection plants and crop plants, and concludes that in phenotyping dehydration survival there is a need to distinguish between dehydration avoidance and dehydration tolerance (also termed desiccation tolerance) in affecting survival and recovery. Without this distinction, functional genomics studies of the trait might be biased. Survival due to dehydration avoidance is expressed by the capacity to maintain a relatively high plant water status as the plant is desiccated. Survival due to dehydration tolerance is expressed by delayed mortality (mortality at a relatively low plant water status) as affected by the resilience of plant metabolism. The common test of dehydration survival, using the relative recovery after a given number of stress days, is therefore insufficient because it is mainly driven by dehydration avoidance and so ignores a possible role for dehydration tolerance. Conceivable methods for more accurate phenotyping of the two components of dehydration survival are proposed and discussed. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Opportunities for improving phosphorus-use efficiency in crop plants.

    Science.gov (United States)

    Veneklaas, Erik J; Lambers, Hans; Bragg, Jason; Finnegan, Patrick M; Lovelock, Catherine E; Plaxton, William C; Price, Charles A; Scheible, Wolf-Rüdiger; Shane, Michael W; White, Philip J; Raven, John A

    2012-07-01

    Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Concentration-dependent RDX uptake and remediation by crop plants.

    Science.gov (United States)

    Chen, Diejun; Liu, Z Lewis; Banwart, Wanye

    2011-07-01

    The potential RDX contamination of food chain from polluted soil is a significant concern in regards to both human health and environment. Using a hydroponic system and selected soils spiked with RDX, this study disclosed that four crop plant species maize (Zea mays), sorghum (Sorghum sudanese), wheat (Triticum aestivum), and soybean (Glycine max) were capable of RDX uptake with more in aerial parts than roots. The accumulation of RDX in the plant tissue is concentration-dependent up to 21 mg RDX/L solution or 100 mg RDX/kg soil but not proportionally at higher RDX levels from 220 to 903 mg/kg soil. While wheat plant tissue harbored the highest RDX concentration of 2,800 μg per gram dry biomass, maize was able to remove a maximum of 3,267 μg RDX from soil per pot by five 4-week plants at 100 mg/kg of soil. Although RDX is toxic to plants, maize, sorghum, and wheat showed reasonable growth in the presence of the chemical, whereas soybeans were more sensitive to RDX. Results of this study facilitate assessment of the potential invasion of food chain by RDX-contaminated soils.

  19. Starch bioengineering affects cereal grain germination and seedling establishment

    OpenAIRE

    Shaik, Shahnoor S.; Carciofi, Massimiliano; Martens, Helle J.; Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphospho...

  20. evaluation of the quality of malted acha-soy breakfast cereal flour

    African Journals Online (AJOL)

    MRS. HELEN O. AGU

    high nutritional value of soybean, affordability to consumers and the yield and availability of white acha. .... local resources, like Acha/Fonio cereal grain, means protecting and promoting the use of local resources against ... contribute much to support farmers in developing countries in planting these indigenous crops.

  1. Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield

    Science.gov (United States)

    Drewniak, B.

    2017-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical

  2. Determination of Soil and Plant Water Balance and Its Critical Stages for Rainfed Wheat Using Crop Water Stress Index (CWSI

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2014-12-01

    Full Text Available In order to determination of water stress threshold and dryland wheat genotypes water status in different nitrogen managements, this experiment was carried out in split split plot RCBD design in three replications in 2010-2011 cropping year. Treatments included: N application time (whole fertilization of N at planting time , and its split fertilization as 2/3 at planting time and 1/3 in early spring, N rates (0, 30, 60 and 90 kg ha-1 and 7 wheat genotypes. Also these genotypes were grown in supplemental irrigation condition for calculation of crop water stress index (CWSI parameters. Canopy temperature (Tc was measured in flowering and early milking stages. Crop water stress index (CWSI was calculated. A non-water stressed baseline (lower baseline were fitted as Tc-Ta=4.523-3.761×VPD; R2=0.92 and non-transpiring baseline (upper baseline determined 6 ºC for rainfed wheat genotypes. Water stress threshold was 0.4 and crossing of that occurred 8 days before heading stage. In water stress threshold boundary, was depleted 60 mm available water from 0 to 50 cm soil depth. There was negative significant relationship (p >0.01 between CWSI and grain yield in all treatments and different nitrogen rates. Nitrogen application reduced water stress and increased grain yield of rainfed wheat genotypes. Ohadi and Rasad genotypes showed highest resistance to water stress and high grain yield production for N30 in split and planting time application, respectively. Cereal4 and Rasad genotypes were suitable for N60 application in split and planting time application, respectively.

  3. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  4. Response of photosynthetic characters to CO2 change on C3 and C4 cereal crops grown in Lunar Palace 1

    Science.gov (United States)

    Wang, Minjuan; Liu, Hong; Fu, Yuming; Shao, Lingzhi; Dong, Chen; Liu, Guanghui

    Lunar Palace 1, as an integrative experiment facility for Permanent Astrobase Life-support Artificial Closed Ecosystem (P.A.L.A.C.E.), provides a largely closed environment for crop growth tests for Bioregenerative Life Support System (BLSS). In this study, we evaluated the response of photosynthetic characters of two soybean cultivars (Glycine max (L.) Merr., ‘Zhonghuang13’and ‘Heihe35’) of C _{3} plants and one maize ( Zea mays L.) of C _{4} plants, which were selected as candidates for cultivation in BLSS. Plants were cultivated in stainless steel pots equipped with the porous-tube nutrient delivery system (PTNDS) and grew under controlled environmental conditions of Lunar Palace 1 (12 h photoperiod, light intensity 500 umol m (-2) s (-1) , temperature regime 26/22 (o) C light/dark). Fertigation was performed with a standard Hoagland solution, in which pH was kept at 5.8. A gas exchange/chlorophyII fluorescence analysis was performed to determine their net photosynthesis (Pn), stomatal (g _{s}) and mesophyll (g _{m}) conductances, intercellular CO _{2} concentration (Ci), and transpiration rate (E) under different elevated CO _{2} concentration. In order to partially describe how leaf physiology responds to the elevated CO _{2}, Chl content and the activity and amount of rubisco were analyzed. This study provides a theoretical basis for the crop selection in BLSS.

  5. Tracing Crop Nitrogen Dynamics on the Field-Scale by Combining Multisensoral EO Data with an Integrated Process Model- A Validation Experiment for Cereals in Southern Germany

    Science.gov (United States)

    Hank, Tobias B.; Bach, Heike; Danner, Martin; Hodrius, Martina; Mauser, Wolfram

    2016-08-01

    Nitrogen, being the basic element for the construction of plant proteins and pigments, is one of the most important production factors for agricultural cultivation. High resolution and near real-time information on nitrogen status in the soil thus is of highest interest for economically and ecologically optimized fertilizer planning and application. Unfortunately, nitrogen storage in the soil column cannot be directly observed with Earth Observation (EO) instruments. Advanced EO supported process modelling approaches therefore must be applied that allow tracing the spatiotemporal dynamics of nitrogen transformation, translocation and transport in the soil and in the canopy. Before these models can be applied as decision support tools for smart farming, they must be carefully parameterized and validated. This study applies an advanced land surface process model (PROMET) to selected winter cereal fields in Southern Germany and correlates the model outputs to destructively sampled nitrogen data from the growing season of 2015 (17 sampling dates, 8 sample locations). The spatial parametrization of the process model thereby is supported by assimilating eight satellite images (5 times Landsat 8 OLI and 3 times RapidEye). It was found that the model is capable of realistically tracing the temporal and spatial dynamics of aboveground nitrogen uptake and allocation (R2 = 0.84, RMSE 31.3 kg ha-1).

  6. Competitiveness of organically grown cereals

    Directory of Open Access Journals (Sweden)

    Jaroslav Jánský

    2007-01-01

    Full Text Available The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale. Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.

  7. Critical evaluation of strategies for mineral fortification of staple food crops

    OpenAIRE

    Gómez Galera, Sonia; Rojas, Eduard; Sudhakar, Duraialagaraja; Zhu, Changfu; Pelacho Aja, Ana Mª; Capell Capell, Teresa; Christou, Paul

    2010-01-01

    Staple food crops, in particular cereal grains, are poor sources of key mineral nutrients. As a result, the world’s poorest people, generally those subsisting on a monotonous cereal diet, are also those most vulnerable to mineral deficiency diseases. Various strategies have been proposed to deal with micronutrient deficiencies including the provision of mineral supplements, the fortification of processed food, the biofortification of crop plants at source with miner...

  8. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    Science.gov (United States)

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  9. Accurate inference of shoot biomass from high-throughput images of cereal plants

    Directory of Open Access Journals (Sweden)

    Tester Mark

    2011-02-01

    Full Text Available Abstract With the establishment of advanced technology facilities for high throughput plant phenotyping, the problem of estimating plant biomass of individual plants from their two dimensional images is becoming increasingly important. The approach predominantly cited in literature is to estimate the biomass of a plant as a linear function of the projected shoot area of plants in the images. However, the estimation error from this model, which is solely a function of projected shoot area, is large, prohibiting accurate estimation of the biomass of plants, particularly for the salt-stressed plants. In this paper, we propose a method based on plant specific weight for improving the accuracy of the linear model and reducing the estimation bias (the difference between actual shoot dry weight and the value of the shoot dry weight estimated with a predictive model. For the proposed method in this study, we modeled the plant shoot dry weight as a function of plant area and plant age. The data used for developing our model and comparing the results with the linear model were collected from a completely randomized block design experiment. A total of 320 plants from two bread wheat varieties were grown in a supported hydroponics system in a greenhouse. The plants were exposed to two levels of hydroponic salt treatments (NaCl at 0 and 100 mM for 6 weeks. Five harvests were carried out. Each time 64 randomly selected plants were imaged and then harvested to measure the shoot fresh weight and shoot dry weight. The results of statistical analysis showed that with our proposed method, most of the observed variance can be explained, and moreover only a small difference between actual and estimated shoot dry weight was obtained. The low estimation bias indicates that our proposed method can be used to estimate biomass of individual plants regardless of what variety the plant is and what salt treatment has been applied. We validated this model on an independent

  10. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    Science.gov (United States)

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    International Nuclear Information System (INIS)

    Hassan, Yusuf Munim

    1996-01-01

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N 19 , P 19 , K 19 fertilizers on growth characteristics and nutrient elements contents of leaves of banana suckers was

  12. Cover crops in mixtures do not use water differently than single-species plantings

    Science.gov (United States)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. One of those stated benefits is greatly reduced water use by cover crops grown in mixtures. The objectives of this study were to characterize soil wat...

  13. Influence of Host-Plant Surface Chemicals on the Oviposition of the Cereal Stemborer Busseola Fusca.

    Science.gov (United States)

    Juma, Gerald; Clément, Gilles; Ahuya, Peter; Hassanali, Ahmed; Derridj, Sylvie; Gaertner, Cyrile; Linard, Romain; Le Ru, Bruno; Frérot, Brigitte; Calatayud, Paul-André

    2016-05-01

    The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical

  14. Crop resources. [18 papers

    Energy Technology Data Exchange (ETDEWEB)

    Seigler, D.S. (ed.)

    1977-01-01

    Eighteen papers originally presented as a symposium on Crop Resources at the 17th annual meeting of the Society for Economic Botany in Urbana, Illinois, June 13 to 17, 1976 comprise this book. The papers are: Potential Wealth in New Crops: Research and Development, L. H. Princen; Plant Introductions--A Source of New Crops, George A. White; Nonfood Uses for Commercial Vegetable Oil Crops, E. H. Pryde; New Industrial Potentials for Carbohydrates, F. H. Otey; The Current Importance of Plants as a Source of Drugs, Norman R. Farnsworth; Potentials for Development of Wild Plants as Row Crops for Use by Man, Arnold Krochmal and Connie Krochmal; Recent Evidence in Support of the Tropical Origin of New World Crops, C. Earle Smith, Jr.; Requirements for a Green Revolution, G. F. Sprague; How Green Can a Revolution Be, Jack R. Harlan; Increasing Cereal Yields: Evolution under Domestication, J. M. J. de Wet; Hevea Rubber: Past and Future, Ernest P. Imle; Horseradish--Problems and Research in Illinois, A. M. Rhodes; Dioscorea--The Pill Crop, Norman Applezweig; Plant Derivatives for Insect Control, Robert L. Metcalf; Evolutionary Dynamics of Sorghum Domestication, J. M. J. de Wet and Y. Shecter; The Origin and Future of Wheat, E. R. Sears; Current Thoughts on Origins, Present Status, and Future of Soybeans, T. Hymowitz and C. A. Newell; and The Origin of Corn--Studies of the Last Hundred Years, Garrison Wilkes. (MCW)

  15. Radiation induced mutant crop varieties: accomplishment and societal deployment

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane

  16. Pathways of invasive plant spread to Alaska: III. contaminants in crop and grass seed

    Science.gov (United States)

    Invasive plants disperse to new areas via numerous pathways. Study of these pathways helps to focus limited budgets for prevention and early detection. This study examined seed contaminants in imported crop and grass seed as pathway for plant dispersal to Alaska. Crop and grass seed were purchased f...

  17. Plant communities of the cultivated fields of the Podlaski Przełom Bugu mesoregion. Part 2. Cereal communities

    Directory of Open Access Journals (Sweden)

    Zofia Rzymowska

    2012-12-01

    Full Text Available Presence of communities without species characteristic for cereal associations was observed in the cultivations of the Podlaski Przełom Bugu mesoregion. Community Scleranthus annuus and community with species characteristic for alliance Aperion spica-venti were observed in winter cereals. Phytocoenoses similar in floristic composition to root cultivations were noted in spring cereals of the studied area. Plots of communities with participation of species characteristic for alliance Panico-Setarion were observed on loose soils while on more compact and fertile habitats community with species characteristic for Polygono-Chenopodion was noted.

  18. PLANT PROTECTION PRODUCT RESIDUES IN APPLES, CAULIFLOWER, CEREALS, GRAPE, LETTUCE, PEAS, PEPPERS, POTATOES AND STRAWBERRIES OF THE SLOVENE ORIGIN IN 2006

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2010-02-01

    Full Text Available In the year 2006, 181 apple, cauliflower, cereal, grape, lettuce, pea, pepper, potato and strawberry samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 86 different active compounds using four analytical methods. In nine samples (5.0 % exceeded maximum residue levels (MRLs were determined which is comparable with the results of the monitoring of plant protection product residues in products of plant origin in the European union, Norway, Iceland and Liechtenstein in 2005 (4.9 %.

  19. Energy crops for biogas plants. Bavaria; Energiepflanzen fuer Biogasanlagen. Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, A.; Biertuempel, A.; Conrad, M. (and others)

    2012-08-15

    For agriculturists in Bavaria (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  20. Uptake and distribution of soil-applied labelled heavy metals in cereal plants and products

    International Nuclear Information System (INIS)

    Oberlaender, H.E.; Roth, K.

    1983-01-01

    In the present paper investigations are described on the uptake, distribution and translocation of mercury, cadmium, chromium and zinc by spring and winter varieties of wheat, rye and barley. Pot experiments were carried out at low concentrations of the heavy metals in order to avoid growth interference during the uptake. Using radioisotopes the pathway of the metals was traced through different organs into the milling products. An ion-exchanger was added to the soils and its efficiency of reducing the uptake of the metals by the plants was tested

  1. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.

    Science.gov (United States)

    Kaur, Ranjeet; Kumar Bhunia, Rupam; Ghosh, Ananta Kumar

    2016-01-01

    Global food security is threatened by the severe environmental conditions that have reduced the worldwide crop yield. Plants possess inherent mechanisms to cope with the initial stress phase but to ensure their survival through harsh climate, the intervention of genetic engineering is desirable. We present a comprehensive review on the progress made in the field of developing environmental stress tolerant crops and the prospects that can be undertaken for achieving it. We review the effects of abiotic and biotic stresses on crop plants, and the use of different molecular genetic approaches to cope with these environmental stresses for establishment of sustainable agriculture. The various strategies employed in different crops have also been discussed. We also summarized the major patents in the field of plant stress tolerance that have been granted in the last five years. On the basis of these analyses, we propose that genetic engineering of crops is the preferred approach over the traditional methods for yielding healthier and viable agriculture in response to the different stressful environments. The wild progenitors of cultivated crop species can prove to be highly potential genetic resources in this regard and can be exploited to produce better crops that are relatively tolerant towards various environmental stresses. Thus, elucidation of genetic loci and deciphering the underlying mechanisms that confer tolerance to plants against stressful conditions followed by its successful introgression into elite, high-yielding crop varieties can be an effective way to engineer the crops for sustainable agriculture.

  2. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    Silicon (Si) is known to be a beneficial element for plants. However, when plant residues are to be used as feedstock for second generation bioenergy, Si may reduce the suitability of the biomass for biochemical or thermal conversion technologies. The objective of this PhD study was to investigate...... how Si influences cell wall composition in cereal straw and, consequently, the enzymatic saccharification efficiency. Considering the importance of Nitrogen (N) fertilization in cereal production, an additional objective was to elucidate the effect of N supply on Si concentration and cell wall...... composition. The Si concentration in wheat straw differed significantly among genotypes and growth locations. Wheat straw with high Si concentration released less xylose during enzymatic saccharification suggesting inhibition by Si deposited in hemicelluloses. N supply had a distinct effect on Si...

  3. Energy crops for biogas plants. Brandenburg; Energiepflanzen fuer Biogasanlagen. Brandenburg

    Energy Technology Data Exchange (ETDEWEB)

    Adam, L.; Barthelmes, G.; Biertuempfel, A. (and others)

    2012-06-15

    In the brochure under consideration, the Agency for Renewable Resources (Guelzen-Pruezen, Federal Republic of Germany) reported on recommendations on alternative cropping systems for energy crop rotations in order to achieve high yields in combination with high diversity, risk spreading and sustainability. In particular, the natural site conditions in the Federal State of Brandenburg (Federal Republic of Germany) are determined.

  4. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants

    Directory of Open Access Journals (Sweden)

    Anna Milewska-Hendel

    2016-12-01

    Full Text Available The article describes the current knowledge about the impact of nanoparticles on plant development with a particular emphasis on crop plants. Nanotechnology is an intensively developing field of science. This is due to the enormous hopes that have been placed on the achievements of nanotechnology in various areas of life. Increasingly, it has been noted that apart from the future benefits of nanotechnology in our everyday life, nanoparticles (NPs may also have adverse effects that have not been sufficiently explored and understood. Most analyses to date have been focused on the influence of nanomaterials on the physiological processes primarily in animals, humans and bacteria. Although our knowledge about the influence of NPs on the development of plants is considerably smaller, the current views are presented below. Such knowledge is extremely important since NPs can enter the food chain, which may have an influence on human health.

  5. Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales.

    Science.gov (United States)

    Kovács-Hostyánszki, Anikó; Haenke, Sebastian; Batáry, Péter; Jauker, Birgit; Báldi, András; Tscharntke, Teja; Holzschuh, Andrea

    2013-12-01

    Landscape-wide mass-flowering of oilseed rape (canola Brassica napus) can considerably affect wild bee communities and pollination success of wild plants. We aimed to assess the impact of oilseed rape on the pollination of wild plants and bee abundance during and after oilseed-rape bloom, including effects on crop-noncrop spillover at landscape and adjacent-field scales. We focused on two shrub species (hawthorn Crataegus spp., dog rose Rosa canina) and adjacent herb flowering in forest edges, connected hedges, and isolated hedges in Lower Saxony, Germany. We selected 35 landscape circles of 1 km radius, differing in the amount of oilseed rape; 18 were adjacent to oilseed rape and 17 to cereal fields, and we quantified bee density via pan traps at all sites. Adjacent oilseed rape positively affected fruit mass and seed number per fruit of simultaneously flowering hawthorn (no effect on dog rose, which flowers after the oilseed rape bloom). At the landscape scale, oilseed rape had a negative effect on bumble bee density in the hedges during flowering due to dilution of pollinators per unit area and the consequently intensified competition between oilseed rape and wild shrubs, but a positive effect after flowering when bees moved to the hedges, which still provided resources. In contrast, positive landscape-scale effects of oilseed rape were found throughout the season in forest edges, suggesting that edges support nesting activity and enhanced food resources. Our results show that oilseed rape effects on bee abundances and pollination success in seminatural habitats depend on the spatial and temporal scale considered and on the habitat type, the wild plant species, and the time of crop flowering. These scale-dependent positive and negative effects should be considered in evaluations of landscape-scale configuration and composition of crops. Food resources provided by mass-flowering crops should be most beneficial for landscape-wide enhancement of wild bee

  6. The effect of date of aerial pollution of agricultural plants on 89 Sr content in crops

    International Nuclear Information System (INIS)

    Arkhipov, N.P.; Tevraleva, L.T.

    1979-01-01

    On the basis of the experimental data obtained in different soil-climatic zones of the USSR it is shown that for tentative calculations of the radiostrontium content in farm crop with the aerial source of nuclide delivery the period of time from plant contamination to harvesting can be used. Given are the regression equations relating 89 Sr concentration in corn, wheat and potato crops with the time of crop contamination for six native zones and the characteristics of their accuracy

  7. Quantification of SO2 effects on physiological processes, plant growth and crop production

    NARCIS (Netherlands)

    Kropff, M.

    1989-01-01

    SO 2 may cause damage on crops and vegetation. This thesis aimes to explain the impact of SO 2 on plant growth and crop production on basis of a quantitative analysis of SO

  8. Impact of crop residues on seed germination of native desert plants ...

    African Journals Online (AJOL)

    Crop residues produce allelochemicals that may inhibit seed germination of many weeds. In this study, I assessed the effect of aqueous extracts of three crop residues (radish, rocket and rhodes) on final germination percentage and germination rate of four desert plants recorded as weeds in the United Arab Emirates farms ...

  9. The importance, biology and management of cereal cyst nematodes (Heterodera spp.

    Directory of Open Access Journals (Sweden)

    F. Mokrini

    2018-01-01

    Full Text Available Cereals are exposed to biotic and abiotic stresses. Among the biotic stresses, plant-parasitic nematodes play an important role in decreasing crop yield. Cereal cyst nematodes (CCNs are known to be a major constraint to wheat production in several parts of the world. Significant economic losses due to CCNs have been reported. Recognition and identification of CCNs are the first steps in nematode management. This paper reviews the current distribution of CCNs in different parts of the world and the recent advances in nematode identification. The different approaches for managing CCNs are also discussed.

  10. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  11. Energy crops for biogas plants. Lower Saxony; Energiepflanzen fuer Biogasanlagen. Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Benke, M.; Formowitz, B. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Lower Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  12. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  13. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    Science.gov (United States)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    crops were 0.11 and 0.01 correspondingly. But the most dramatic difference between the investigated crops was connected with peculiarities of Cs-137 distribution within above- and belowground parts of biomass. While TF in aboveground fraction of galega (0.02) was slightly higher than in belowground fraction (0.01), the bulk of Cs-137 in bromegrass was detected not in shoots but in roots (TFs 0.05 and 0.11 correspondingly). More extensive examination of Cs-137 behavior in "soil-plant" systems of agricultural crops in the area of Plavsky radioactive hotspot has revealed that all investigated dicotyledonous plants with taproot system (potatoes, soya, amaranth, rape) accumulated 71±14% of Cs-137 inventories in aboveground biomass, whereas monocotyledonous plants with fibrous root system (wheat, barley, maize, cereal pasture species) deposited 94±5% of Cs-137 supplies in their belowground biomass. Thus, the first had effective biological root barrier protecting vegetation from general Cs-137 incorporation into biomass, but relatively active radionuclide translocation into shoots, while the second were characterized by slight rhizofiltration property and occurrence an additional barrier between roots and shoots determining only moderate radionuclide translocation into aboveground biomass. Such biological features should be taken into account in deciding on rehabilitation strategy of radioactively contaminated lands. The study was conducted with the support from the Russian Foundation for Basic Research (project no. 14-05-00903).

  14. Migration and Enrichment of Arsenic in the Rock-Soil-Crop Plant System in Areas Covered with Black Shale, Korea

    Directory of Open Access Journals (Sweden)

    Ji-Min Yi

    2003-01-01

    Full Text Available The Okchon black shale, which is part of the Guryongsan Formation or the Changri Formation of Cambro-Ordovician age in Korea provides a typical example of natural geological materials enriched with potentially toxic elements such as U, V, Mo, As, Se, Cd, and Zn. In this study, the Dukpyung and the Chubu areas were selected to investigate the migration and enrichment of As and other toxic elements in soils and crop plants in areas covered with black shale. Rock and soil samples digested in 4-acid solution (HCl+HNO3+HF+HClO4 were analyzed for As and other heavy metals by ICP-AES and ICP-MS, and plant samples by INAA. Mean concentration of As in Okchon black shale is higher than those of both world average values of shale and black shale. Especially high concentration of 23.2 mg As kg-1 is found in black shale from the Dukpyung area. Mean concentration of As is highly elevated in agricultural soils from the Dukpyung (28.2 mg kg-1 and the Chubu areas (32.6 mg kg-1. As is highly elevated in rice leaves from the Dukpyung (1.14 mg kg-1 and the Chubu areas (1.35 mg kg-1. The biological absorption coefficient (BAC of As in plant species decreases in the order of rice leaves > corn leaves > red pepper = soybean leaves = sesame leaves > corn stalks > corn grains. This indicates that leafy plants tend to accumulate As from soil to a greater degree than cereal products such as grains.

  15. Utilization of ionizing radiations and radioisotopes in plant breeding and crop improvement in Arab countries

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1983-01-01

    A review for research work in the field of utilizing ionizing radiations and radioisotopes in plant breeding and crop improvement conducted in Arab countries has been summerized and discussed in the light of some economic features of the crop or the plant on national or regional (arab) level. Among the 241 articles in the above mentioned fields reviewed, around 230 articles were conducted in Egypt, 6 in Iraq, 2 in Algeria and 2 in Sudan. Some of the articles dealing with more than one crop and/or more than one type of radiation or radioisotope

  16. Biogas from ley crops

    International Nuclear Information System (INIS)

    Dalemo, M.; Edstroem, M.; Thyselius, L.; Brolin, L.

    1993-01-01

    This report describes the cost of producing biogas from energy crops. Five process systems, sized 0.25-8 MW are studied. The cultivation of biogas-crops is made in three regions in Sweden. Also valued are the positive cultivation effects obtained when cereal dominated crop rotation is broken by biogas crops. 8 refs, 40 figs, 10 tabs

  17. Ukrainian cereals and oilseeds trade

    Directory of Open Access Journals (Sweden)

    Б. В. Духницький

    2016-07-01

    Full Text Available Purpose. To analyze peculiarities of Ukrainian cereals and oilseeds trade, the situation on the world market, and determine future prospects of its development. Methods. Analysis and synthesis, comparative evaluation, graphic procedure. Results. The role and place of Ukraine in a total grain supply to the world market was determined. Ukraine is a world’s top ten grain producer. Among domestic agricultural products, cereals, oilseeds and sunflower oil are in the highest demand in the world. In recent years, our state has reinforced its status as one of the leading exporters of cereals. The commodity pattern of cereals and oilseeds export was analyzed with specifying most in-demand positions and the main countries purchasing these pro­ducts. According to the results of 2015, Ukraine obtained the highest foreign currency revenue from export of corn, wheat and barley (in grain structure including soybeans and rapeseed (among oil crops. Key domestic and multinational operators are the main exporters of cereals and oilseeds in Ukraine and still hold their leading position. It was found a significant excess of import price of seeds as compared with export price of crops grown in Ukraine. Assortment of maize and sunflower seeds offered by major companies-producers in Ukraine was studied. Main trends of the world grain market development are considered. Conclusions. It was established that Ukraine is one of the major exporters of cereals and oilseeds. However, volatility of their prices significantly affects the export revenue that was decreasing even with increasing export quantities in kind. The dependence of domestic grain industry development on high-quality imported seed of maize and sunflower hybrids was recorded. It is expected that in the years to come Ukraine will maintain its strong positions in the world’s grain market.

  18. Potential use of rhizobial bacteria as promoters of plant growth for ...

    African Journals Online (AJOL)

    Rhizobia form root nodules that fix nitrogen (N2) in symbiotic legumes. Extending the ability of these bacteria to fix N2 in non-legumes such as cereals would be a useful technology for increased crop yields among resource-poor farmers. Although some inoculation attempts have resulted in nodule formation in cereal plants, ...

  19. Allelopathic relations of selected cereal and vegetable species during seed germination and seedling growth

    Directory of Open Access Journals (Sweden)

    Bojović Biljana M.

    2015-01-01

    Full Text Available Allelopathy is the direct or indirect harmful effect which one plant produces on another through the production of chemical compounds that escape into the environment. In the presence paper allelopathic relationships were determined in three cereals - wheat (Triticum aestivum L., barley (Hordeum vulgare L., oat (Avena sativa L. and vegetable crops - spinach (Spinacia oleracea L., radish (Raphanus sativus L., pepper (Capsicum annum L.. In addition to the percentage of germination, allelopathic potential was tested measuring root and stem length of tested plant species germinated either alone or in combination with others. The obtained results showed that seed germination and plant growth of cereals and vegetables are depended on the presence of other plants in all tested combinations. In this study has proven largely inhibitory allelopathic effect on germination and plant growth.

  20. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected....... The proportion of root length infected decreased markedly below 40 cm soil depth. Root density varied greatly between crops, whereas the absolute length of infected roots was similar in all crops. This indicates that susceptibility to infection was independent of host species. The results are discussed...

  1. Public Acceptance of Plant Biotechnology and GM Crops.

    Science.gov (United States)

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  2. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Directory of Open Access Journals (Sweden)

    Dieter Treutter

    2010-03-01

    Full Text Available Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  3. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  4. Models and tests of optimal density and maximal yield for crop plants.

    Science.gov (United States)

    Deng, Jianming; Ran, Jinzhi; Wang, Zhiqiang; Fan, Zhexuan; Wang, Genxuan; Ji, Mingfei; Liu, Jing; Wang, Yun; Liu, Jianquan; Brown, James H

    2012-09-25

    We introduce a theoretical framework that predicts the optimum planting density and maximal yield for an annual crop plant. Two critical parameters determine the trajectory of plant growth and the optimal density, N(opt), where canopies of growing plants just come into contact, and competition: (i) maximal size at maturity, M(max), which differs among varieties due to artificial selection for different usable products; and (ii) intrinsic growth rate, g, which may vary with variety and environmental conditions. The model predicts (i) when planting density is less than N(opt), all plants of a crop mature at the same maximal size, M(max), and biomass yield per area increases linearly with density; and (ii) when planting density is greater than N(opt), size at maturity and yield decrease with -4/3 and -1/3 powers of density, respectively. Field data from China show that most annual crops, regardless of variety and life form, exhibit similar scaling relations, with maximal size at maturity, M(max), accounting for most of the variation in optimal density, maximal yield, and energy use per area. Crops provide elegantly simple empirical model systems to study basic processes that determine the performance of plants in agricultural and less managed ecosystems.

  5. Leaf epidermal changes in three common crop plants found in a gas ...

    African Journals Online (AJOL)

    The study investigated the impact of gas flaring on soil and air quality, as well as quantitative and qualitative anatomical characters of three selected plants Musa paradisiaca, Carica papaya and Talinum triangulare in and around Oben Flow Station. Most of these test crop plants located around the gas flare site showed ...

  6. Plant domestication and the development of sea starwort (Aster tripolium L.) as a new vegetable crop.

    NARCIS (Netherlands)

    Wagenvoort, W.A.; Vooren, J.G.; Brandenburg, W.A.

    1989-01-01

    The germination, growth and quality of Aster tripolium L. was analysed to study cultivation of the wild leafy plant into a commercial vegetable crop. Soil type and soil condition (non-saline, brackish and saline)were basically proved in relation to germination capacity, yield and plant behaviour

  7. Evolution of crop production under a pseudo-space environment using model plants, Lotus japonicus

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Motohashi, Kyohei; Omi, Naomi; Sato, Seigo; Aoki, Toshio; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation in outer space is one of our challenges. We have been studying space agriculture and/or spacecraft agriculture to provide food and oxygen for the habitation area in the space environment. However, careful investigation should be made concerning the results of exotic environmental effects on the endogenous production of biologically active substances in indi-vidual cultivated plants in a space environment. We have already reported that the production of functional substances in cultivated plants as crops are affected by gravity. The amounts of the main physiological substances in these plants grown under terrestrial control were different from that grown in a pseudo-microgravity. These results suggested that the nutrition would be changed in the plants/crops grown in the space environment when human beings eat in space. This estimation required us to investigate each of the useful components produced by each plant grown in the space environment. These estimations involved several study fields, includ-ing nutrition, plant physiology, etc. On the other hand, the analysis of model plant genomes has recently been remarkably advanced. Lotus japonicus, a leguminous plant, is also one of the model plant. The leguminosae is a large family in the plant vegetable kingdom and almost the entire genome sequence of Lotus japonicus has been determined. Nitrogen fixation would be possible even in a space environment. We are trying to determine the best conditions and evolution for crop production using the model plants.

  8. The effect of perennials as green manure on cereal productivity and disease incidence

    Energy Technology Data Exchange (ETDEWEB)

    Skuodiene, R.; Nekrosiene, R.

    2012-11-01

    Field experiments were conducted at the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry during the period 2002-2007. They were designed to ascertain the effects of phytomass of different perennial pre-crops used for green manure on the productivity and on the occurrence of foliar fungal diseases of cereal agrocenoses. Plant residues and phytomass ploughed down as green manures positively affected cereal indices of crop productivity not only for the first but for the second year as well. It influenced the productivity of cereal segments. The largest amount of metabolizable energy was in the yield of cereal sequence under white clover (Trifolium repens L.) 83.23-84.76% GJ ha{sup 1}. The potential accumulated by perennials of the second year of development was more efficiently utilised by winter triticale (Triticosecale Wittm.) cv. Tevo, and that of perennials of the third year of development was more efficiently utilised by spring barley (Hordeum vulgare L.) cv. Ula. Perennials had a significant effect on the spread of foliar diseases in winter triticale (Triticosecale Wittm.) and spring barley (Hordeum vulgare L.) agrocenoses. The severity of the disease was 1.1-1.3 times higher in the winter triticale (Triticosecale Wittm.) treatments with white clover (Trifolium repens L.) pre-crops. Foliar disease incidence and severity was 1.1-1.2 times higher in the agrocenoses of spring barley (Hordeum vulgare L.) after legumes of the third year of development, especially after lucerne (Medicago sativa L.). (Author) 28 refs.

  9. Artificial mutagenesis as an aid in overcoming genetic vulnerability of crop plants.

    Science.gov (United States)

    Konzak, C F; Nilan, R A; Kleinhofs, A

    Artificially induced genetic variation is being used effectively to supplement or complement sources of natural origin for practical plant breeding. Thus, creating genetic variation uill become increasingly important as crop genetic resources become more difficult to obtain via plant exploration. The aritificial induction of useful genetic variation offers important elements that can be used for overcoming genetic vulnerability: (1) new, previously unknown alleles can be induced in crop plant species to broaden the base of variation; (2) useful genetic variation can be induced in modern cultivars helping to shorten breeding time or to extend production "life"; (3) characteristics of existing genetic resource stocks can be improved to make them more useful in breeding; and (4) recombination in crosses may be enhanced. The performance of induced mutant crop cultivars and the successful uses of induced genetic variation in cross breeding indicate that artificial mutagenesis will play an increasingly greater role in plant breeding.

  10. Determination of optimal doses of radiation for the plant breeding of pseudo cereals; Determinacion de dosis optimas de radiacion para el mejoramiento de seudocereales

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez J, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Gomez P, L. [Universidad Nacional Agraria La Molina, Lima (Peru)]. e-mail: jgj@nuclear.inin.mx

    2005-07-01

    With the purpose of promoting the use of the radiations for the plant breeding of pseudo cereals, it was determined a simple and economic method that allows the quick selection of radiation dose that induce in the vegetable organisms the changes wanted. For it it was work with quinua seeds (Chenopodium quinoa Willd.) an Andean pseudo cereal that, due to their nutritious and physiologic characteristics it is considered by the FAO like one of the foods of the future and for the NASA like an organism that is good to remove the carbon dioxide from the atmosphere and at the same time, to generate food, oxygen and water for the crew during the space missions of long duration and that it has already improved by means of the radiation application. The proposed method consists on the evaluation, of the embryonic structures (radicule, hypocotyl and cotyledons) in the irradiated seeds as well as of the development of root, primary shaft and true leaves in the plants. The changes in the growth, form, number and color of the structures as well as the time of appearance of each one, allow to predict the morphological changes and inclusive some physiologic ones that will have the mature organisms, so that in only three weeks it is possible to select the doses more appropriate. (Author)

  11. Comparative genetics of crop plant domestication and evolution

    OpenAIRE

    Frary, Anne; Doğanlar, Sami

    2003-01-01

    Domesticated species differ from their wild ancestors and relatives for a set of traits that is known as the domestication syndrome. The most important syndrome traits include growth habit, flowering time, seed dispersal, gigantism and morphological diversity. This paper reviews what is known about the genetic control of domestication traits with an emphasis on comparative analyses that examine this control in two or more crop species. Such analyses indicate that although most domestication t...

  12. Comparative Genetics of Crop Plant Domestication and Evolution

    OpenAIRE

    FRARY, Anne; DOĞANLAR, Sami

    2003-01-01

    Domesticated species differ from their wild ancestors and relatives for a set of traits that is known as the domestication syndrome. The most important syndrome traits include growth habit, flowering time, seed dispersal, gigantism and morphological diversity. This paper reviews what is known about the genetic control of domestication traits with an emphasis on comparative analyses that examine this control in two or more crop species. Such analyses indicate that although most domestication t...

  13. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system

    OpenAIRE

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2013-01-01

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA b...

  14. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  15. Public Acceptance of Plant Biotechnology and GM Crops

    Directory of Open Access Journals (Sweden)

    Jan M. Lucht

    2015-07-01

    Full Text Available A wide gap exists between the rapid acceptance of genetically modified (GM crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  16. Public Acceptance of Plant Biotechnology and GM Crops

    Science.gov (United States)

    Lucht, Jan M.

    2015-01-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values. PMID:26264020

  17. Application of Biophysics Methods in Crop Production and Plant Protection

    OpenAIRE

    Vasilevski, Goce; Bosev, D; Mitrev, Sasa; Mihajlov, Ljupco; Vasilevski, N

    2004-01-01

    The plants have perfect and various synthetic possibilities. These possibilities led to development of complex organic matters, full of energy, from the simple inorganic organisms. That is why the plants have distictive and specific place among the life forms on our planet. Generally they are highly organized and dynamic organizams, who are moving and transfom1ing the organic mater in their potential chemical energy. Today it is well known that photosynthesis at plants is a unique bioenerg...

  18. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    OpenAIRE

    Dwivedi,Sangam; Sahrawat,Kanwar; Puppala,Naveen; Ortiz,Rodomiro

    2014-01-01

    Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates 19 that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of 20 Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the pre...

  19. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus.

    Science.gov (United States)

    Piesik, Dariusz; Lemńczyk, Grzegorz; Skoczek, Agata; Lamparski, Robert; Bocianowski, Jan; Kotwica, Karol; Delaney, Kevin J

    2011-09-01

    Fusarium infection of maize leaves and/or roots through the soil can stimulate the emission of volatile organic compounds (VOCs). It is also well known that VOC emission from maize plants can repel or attract pests. In our experiments, we studied VOC induction responses of Zea mays L. ssp. mays cv. 'Prosna' having Fusarium infection (mix of four species) in leaves or roots, then tested for VOC induction of uninfected neighboring plants, and finally examined wind-tunnel behavioral responses of the adult cereal leaf beetle, Oulema melanopus L. (Chrysomelidae: Coleoptera) behavior to four induced VOCs. In the first part of our experiment, we confirmed that several green leaf volatiles (GLVs; (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexen-1-yl acetate, 1-hexyl acetate), terpenes (β-pinene, β-myrcene, Z-ocimene, linalool, β-caryophyllene), and shikimic acid pathway derivatives (benzyl acetate, methyl salicylate, indole) were positively induced from maize plants infected by Fusarium spp. The quantities of induced VOCs were higher at 7d than 3d post-infection and greater when plants were infected with Fusarium on leaves rather than through soil. In the second part of our experiment, uninfected maize plants also showed significantly positive induction of several VOCs when neighboring an infected plant where the degree of induction was negatively related to the distance from the infected plant. In the third part of our experiment, a Y-tube bioassay was used to evaluate upwind orientation of adult cereal leaf beetles to four individual VOCs. Female and male O. melanopus were significantly attracted to the GLVs (Z)-3-hexenal and (Z)-3-hexenyl acetate, and the terpenes linalool and β-caryophyllene. Our results indicate that a pathogen can induce several VOCs in maize plants that also induce VOCs in neighboring uninfected plants, though VOC induction could increase the range at which an insect pest species is attracted to VOC inducing plants

  20. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    Directory of Open Access Journals (Sweden)

    Sangam Dwivedi

    2014-09-01

    Full Text Available Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat. Some prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, yacon, and Jerusalem artichoke. A few major quantitative trait loci and gene-based markers associated with high fructan are known in wheat. More targeted search in genebanks using reduced subsets (representing diversity in germplasm is needed to identify accessions with prebiotic carbohydrates. Transgenic maize, potato and sugarcane with high fructan, with no adverse effects on plant development, have been bred, which suggests that it is feasible to introduce fructan biosynthesis pathways in crops to produce health-imparting prebiotics. Developing prebiotic-rich and super nutritious crops will alleviate the widespread malnutrition and promote human health. A paradigm shift in breeding program is needed to achieve this goal and to ensure that newly-bred crop cultivars are nutritious, safe and health promoting.

  1. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  2. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  3. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  4. Editorial: Plant organ abscission: from models to crops

    Science.gov (United States)

    The shedding of plant organs is a highly coordinated process essential for both vegetative and reproductive development (Addicott, 1982; Sexton and Roberts, 1982; Roberts et al., 2002; Leslie et al., 2007; Roberts and Gonzalez-Carranza, 2007; Estornell et al., 2013). Research with model plants, name...

  5. Crops in silico: A community wide multi-scale computational modeling framework of plant canopies

    Science.gov (United States)

    Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.

    2016-12-01

    Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem

  6. Effect Of Bird Manure On Cotton Plants Grown On Soils Sampled ...

    African Journals Online (AJOL)

    Cotton plant had a better development and growth when bird manure was only applied to soil or combined with mineral fertilizer and when cotton was grown on a soil where the previous crops were cereals (maize or sorghum). Planting cotton on a soil where the previous crop grown was maize or sorghum had no significant ...

  7. Parameters on the radionuclide transfer in crop plants for Korean food chain dose assessment

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lim, K. M.; Cho, Y. H.

    2001-12-01

    For more realistic assessment of Korean food chain radiation doses due to the operation of nuclear facilities, it is required to use domestically produced data for radionuclide transfer parameters in crop plants. In this report, results of last about 15 years' studies on radionuclide transfer parameters in major crop plants by the Korea Atomic Energy Research Institute, were summarized and put together. Soil-to-plant transfer factors, parameters quantifying the root uptake of radionuclides, were measured through greenhouse experiments and field studies. In addition to traditional transfer factors, which are based on the activity in unit weight of soil, those based on the activity applied to unit area of soil surface were also investigated. Interception factors, translocation factors and weathering half lives, parameters in relation to direct plant contamination, were investigated through greenhouse experiments. The levels of initial plant contamination with HTO and I2 vapor were described with absorption factors. Especially for HTO vapor, 3H levels in crop plants at harvest were expressed with TFWT (tissue free water tritium) reduction factors and OBT (organically bound tritium) production factors. The above-mentioned parameters generally showed great variations with soils, crops and radionuclide species and application times. On the basis of summarized results, the points to be amended or improved in food chain dose assessment models were discussed both for normal operation and for accidental release

  8. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops

    Directory of Open Access Journals (Sweden)

    Ophilia I. L. Mawphlang

    2017-07-01

    Full Text Available Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes, blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2, and UV-B light (UVR8. While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.

  9. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  10. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    NARCIS (Netherlands)

    Gao, B.; Ju, X.T.; Su, F.; Meng, Q.F.; Oenema, O.; Christie, P.; Chen, X.P.; Zhang, F.S.

    2014-01-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple

  11. On streamlining the Ukrainian names of plants. Information 5. Species names for pome fruit crops

    Directory of Open Access Journals (Sweden)

    В. М. Меженський

    2015-12-01

    Full Text Available To analyse the modern classification and nomenclature of species of pome fruit crops which varieties are listed in the State Register of Plants Varieties Suitable for Dissemination in Ukraine, and improve terminological system of the Ukrainian names of both species and garden crops. Results. Fruit cultivars and most apple clonal rootstocks belong to Malus pumila, and ornamental cultivars belong to Malus gloriosa. The most common scientific name of the cultivated apple, especially among horticulturists, is Malus domestica, although according to the principle of priority the name Malus pumila should have the advantage. As far as Nomenclature Committee for Vascular Plants has rejected the proposal to conserve the name Malus domestica, Malus pumila is correct name for the cultivated apple. The use of synonymic name Malus domestica should be avoided in both scientific and scientific-popular papers for stability of nomenclature. Pear cultivars listed in the State Register of Plants Varieties Suitable for Dissemination in Ukraine are presented by Pyrus communis, and pear rootstocks – by Cydonia oblonga. Fruit cultivars of the latter belong to separate fruit crop named quince. An apple-quince hybrid was registered as universal clonal rootstock for pome fruit crops. The State Register of Plants Varieties Suitable for Dissemination in Ukraine also contains nonconventional fruit crops such as Chaenomeles and hawthorn that consist of some species and nothospecies. Conclusions. In scientific publications one should stop the use of synonymic name Malus domestica in favour of the correct name for cultivated apple Malus pumila. Apple, pears and Chaenomeles cultivars listed in the State Register of Plants Varieties Suitable for Dissemination in Ukraine have a complex multispecies origin whereas quince, hawthorn and pear roostock cultivars systematically are monospecies. A universal roootstock of pome fruit crops is Cydolus, or apple-quince, that resulted

  12. Plant-Herbivore and Plant-Pollinator Interactions of the Developing Perennial Oilseed Crop, Silphium integrifolium.

    Science.gov (United States)

    Prasifka, J R; Mallinger, R E; Hulke, B S; Larson, S R; Van Tassel, D

    2017-12-08

    Sampling in Kansas and North Dakota documented the plant-herbivore and plant-pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium Michx. The larva of the tortricid moth, Eucosma giganteana (Riley), was the most damaging floret- and seed-feeding pest in Kansas, with infested heads producing ≈85% (2015) or ≈45% (2016) fewer seeds than apparently undamaged heads. Necrosis of apical meristems caused stunting and delayed bloom in Kansas; though the source of the necrosis is not known, observations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois; Hemiptera: Miridae), in S. integrifolium terminals suggest a possible cause. In North Dakota, E. giganteana larvae were not found, but pupae of Neotephritis finalis (Loew; Diptera: Tephritidae), a minor pest of cultivated sunflower, were common in the heads of S. integrifolium. Bees appeared highly attracted to S. integrifolium, and in all but one observation, bees were seen actively collecting pollen. The most common bees included large apids (Apis mellifera L., Svastra obliqua [Say], Melissodes spp.) and small-bodied halictids (Lasioglossum [Dialictus] spp.). Controlled pollination experiments demonstrated that S. integrifolium is pollinator dependent, due to both mechanical barriers (imperfect florets and protogyny) and genetic self-incompatibility. Subsequent greenhouse tests and AFLP confirmation of putative self-progeny show that a low (<1%) level of self-pollination is possible. If genetic self-incompatibility is eventually reduced through breeding, mechanical barriers would maintain a reliance on bees to move pollen between male and female florets. Collectively, observations on S. integrifolium show that both herbivore and pollinator management are important to maximize seed production. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Seed shattering: from models to crops

    OpenAIRE

    Yang eDong; Yin-Zheng eWang

    2015-01-01

    Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission layer in the pedicle is required for the seed shattering process. In the past decade, great advances have been made in characterizing the gen...

  14. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  15. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    Science.gov (United States)

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  16. Occurence of plant parasitic nematodes and factors that enhance ...

    African Journals Online (AJOL)

    Plant parasitic nematodes remain a major challenge to crop production that has hitherto received minmum research attention in sub-Saharan Africa. This paper gives the diversity of nematode genera and species associated with cereal crops and indicates the possibility of nemadode population build up due to production ...

  17. occurrence of plant parasitic nematodes and factors that enhance ...

    African Journals Online (AJOL)

    Administrator

    Plant parasitic nematodes remain a major challenge to crop production that has hitherto received minmum research attention in sub-Saharan Africa. This paper gives the diversity of nematode genera and species associ- ated with cereal crops and indicates the possibility of nemadode population build up due to production ...

  18. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  19. Relationships between phenological and yield traits of the plant crop ...

    African Journals Online (AJOL)

    ABB) and dessert bananas (AAA). In all the genomic groups plant height of RC at harvest of the PC was significantly correlated with days to flowering and yield of the RC. In the hybrid genotypes, the black sigatoka disease score of the PC ...

  20. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to ...

  1. Safeguarding crop plant production with the aid of nuclear techniques

    International Nuclear Information System (INIS)

    1977-01-01

    The international symposium on induced mutations was organized jointly by IAEA, FAO and the Swedish International Development Authority (SIDA). The participants discussed primarily the methodology and problems related to the use of radiation and tracer techniques for breeding crop varieties with improved disease resistance. Scientists from 41 countries and international organizations participated. But not only were problems, methodology and various approaches discussed, some scientists were able to report positive and practically useful results. Rice mutants with better resistance against blast, leaf blight and sclerotic disease were reported (India, Japan, Korea, France). Improved tolerance to septoria in wheat and to crown rust in oats has been found (Switzerland, USA) and convincing evidence was given that non-specific, medium-level resistance to mildew can be induced in barley (FRG). A potato mutant resistant to wart disease was found in the USSR, and a wheat mutant with improved resistance to stem and stripe rust has been released to farmers in Greece. Among the economically important positive results is the selection of spearmint resistant to Verticillium wilt. (USA). This success follows a similar one in peppermint achieved several years ago, which now represents a gain of about one million dollars per year to growers in the USA

  2. Antidiabetic II drug metformin in plants: uptake and translocation to edible parts of cereals, oily seeds, beans, tomato, squash, carrots, and potatoes.

    Science.gov (United States)

    Eggen, Trine; Lillo, Cathrine

    2012-07-18

    Residues of pharmaceuticals present in wastewater and sewage sludge are of concern due to their transfer to aquatic and terrestrial food chains and possible adverse effects on nontargeted organisms. In the present work, uptake and translocation of metformin, an antidiabetic II medicine, by edible plant species cultivated in agricultural soil have been investigated in greenhouse experiment. Metformin demonstrated a high uptake and translocation to oily seeds of rape ( Brassica napus cv. Sheik and Brassica rapa cv. Valo); expressed as an average bioconcentration factor (BCF, plant concentration over initial concentration in soil, both in dry weight), BCF values as high as 21.72 were measured. In comparison, BCFs for grains of the cereals wheat, barley, and oat were in the range of 0.29-1.35. Uptake and translocation to fruits and vegetables of tomato (BCFs 0.02-0.06), squash (BCFs 0.12-0.18), and bean (BCF 0.88) were also low compared to rape. BCFs for carrot, potato, and leaf forage B. napus cv. Sola were similar (BCF 1-4). Guanylurea, a known degradation product of metformin by microorganisms in activated sludge, was found in barley grains, bean pods, potato peel, and small potatoes. The mechanisms for transport of metformin and guanidine in plants are still unknown, whereas organic cation transporters (OCTs) in mammals are known to actively transport such compounds and may guide the way for further understanding of mechanisms also in plants.

  3. Local crop planting systems enhance insecticide-mediated displacement of two invasive leafminer fly.

    Directory of Open Access Journals (Sweden)

    Yulin Gao

    Full Text Available Liriomyza sativae and L. trifolii are highly invasive leafminer pests of vegetable crops that have invaded southern China in recent years. Liriomyza sativae was the first of these species to invade China, but it is now being displaced by L. trifolii. The rate and extent of this displacement vary across southern China. In Hainan, monocultures of highly valuable cowpea are planted and treated extensively with insecticides in attempts to control leafminer damage. In Guangdong, cowpea fields are interspersed with other less valuable crops, such as towel gourd (Luffa cylindrica, which receive significantly fewer insecticide applications than cowpea. To determine how differences in cropping systems influence the Liriomyza species composition, we conducted field trials in 2011 and 2012 in Guangdong where both species were present. We replicated conditions in Hainan by planting cowpea monocultures that were isolated from other agricultural fields, and we replicated conditions in Guangdong by planting cowpea in a mixed crop environment with towel gourd planted in neighboring plots. We then compared leafminer populations in cowpea treated with the insecticide avermectin and untreated cowpea. We also monitored leafminer populations in the untreated towel gourd. Untreated cowpea and towel gourd had comparatively low proportions of L. trifolii, which remained relatively stable over the course of each season. Avermectin applications led to increases in the proportions of L. trifolii, and after three weekly applications populations were >95% L. trifolii in both crop systems. However, the rate of change and persistence of L. trifolii in the mixed crop system were less than in the monocrop. These results indicate that L. trifolii is much less susceptible to avermectin than is L. sativae. Further, L. sativae was able to persist in the untreated towel gourd, which probably enabled it to recolonize treated cowpea.

  4. Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants?

    NARCIS (Netherlands)

    Putten, van der W.H.; Cook, R.; Costa, S.; Davies, K.G.; Fargette, M.; Freitas, H.; Hol, W.H.G.; Kerry, B.R.; Maher, N.; Mateille, T.; Moens, M.; Peña, de la E.; Piskiewicz, A.M.; Raeymaekers, A.D.W.; Rodriquez-Echeverria, S.; Wurff, van der A.W.G.

    2006-01-01

    Plant-parasitic nematodes are major crop pests in agro-ecosystems while in nature their impact may range from substantial to no significant growth reduction. The aim of this review is to determine if nematode population control in natural ecosystems may provide us with a model for enhancing

  5. Nematode interactions in nature: models for sustainable control of nematode pests of crop plants?

    NARCIS (Netherlands)

    Van der Putten, W.H.; Cook, R.; Costa, S.R.; Davies, K.G.; Fargette, M.; Freitas, H.; Hol, W.H.G.; Kerry, B.R.; Maher, N.; Mateille, T.; Moens, M.; De la Peña, E.; Piskiewicz, A.; Raeymaekers, A.; Rodríguez-Echeverría, S.; Van der Wurff, A.W.G.

    2006-01-01

    Plant-parasitic nematodes are major crop pests in agro-ecosystems while in nature their impact may range from substantial to no significant growth reduction. The aim of this review is to determine if nematode population control in natural ecosystems may provide us with a model for enhancing

  6. Accurate measurement of transgene copy number in crop plants using droplet digital PCR

    Science.gov (United States)

    Technical abstract: Genetic transformation is a powerful means for the improvement of crop plants, but requires labor and resource intensive methods. An efficient method for identifying single copy transgene insertion events from a population of independent transgenic lines is desirable. Currently ...

  7. Accurate measure of transgene copy number in crop plants using droplet digital PCR

    Science.gov (United States)

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...

  8. Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants.

    Science.gov (United States)

    Conner, Joann A; Ozias-Akins, Peggy

    2017-01-01

    Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.

  9. EFFECTS OF ATMOSPHERIC H2S ON THIOL COMPOSITION OF CROP PLANTS

    NARCIS (Netherlands)

    BUWALDA, F; DE KOK, LJ; Stulen, I.

    Exposure of crop plants to H2S resulted in an increase in thiol level and a change in the composition of the thiol pool. Non-leguminous species accumulated cysteine and glutathione in the light, whereas in the dark, substantial amounts of gamma-glutamyl-cysteine were also detected. In leguminous

  10. In-Vitro Whole-Seedling Assay For Evaluating Non-Host Crop Plant ...

    African Journals Online (AJOL)

    In-Vitro Whole-Seedling Assay For Evaluating Non-Host Crop Plant Induction Of Germination Of Witch Weed Seeds. ... soybean (Glycine max), and three groundnut (Arachis hypogea ), in addition to maize (Zea mays L.) hybrids 8338-1 and 9022-13 (used as checks) were screened against three S. hermonthica populations.

  11. Plant Productivity and Characterization of Zeoponic Substrates after Three Successive Crops of Radish (Raphanus sativus L.)

    Science.gov (United States)

    Gruener, J. E.; Ming, Douglas W.; Galindo, C., Jr.; Henderson, K. E.; Golden, D. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has developed a zeolite-based synthetic substrate, termed zeoponics. The zeoponic substrate (consisting of NH4(-) and K-exchanged clinoptilolite, synthetic apatite, and dolomite) provides all of the plant-essential nutrients through mineral dissolution and ion exchange, with only the addition of water. Previous studies have shown high productivity of wheat in zeoponic substrates; however, no experiments have been conducted on other crops. The objective of this study was to determine the productivity and nutrient uptake of radish (Raphanus sativus L.) grown in zeoponic substrates with three successive crops in the same substrate. Radish was chosen because of its sensitivities to NH4(+). Average fresh weights of edible roots were similar for radish grown in zeoponic substrates watered with deionized H2O (10.97 g/plant) and in potting mix control substrate irrigated with nutrient solution (10.92 g/plant). Average fresh weight production of edible roots for radish grown in same zeoponic substrate increased in yield over time with the lowest yield in the first crop (7.10 g/plant) and highest in the third crop (13.90 g/plant). The Ca plant tissue levels in radishes (1.8-2.9 wt. %) grown in zeoponic substrates are lower than the suggested sufficient range of 3.0-4.5 wt. % Ca; however, the Ca level is highest (2.9 wt. %) in radishes grown in the third crop in the same zeoponic substrates. The higher radish yield in the third crop was attributed to a reduction in an NH4(-) induced Ca deficiency that has been previously described for wheat grown in zeoponic substrates. The P levels in plant tissues of radish grown in the zeoponic substrates ranged from 0.94-1.15 wt. %; which is slightly higher than the sufficient levels of 0.3-0.7 wt. %. With the exception of Ca and P, other macronutrient and micronutrient levels in radish grown in zeoponic substrates were well within the recommended sufficient ranges. After three

  12. Classifying Cereal Data

    Science.gov (United States)

    The DSQ includes questions about cereal intake and allows respondents up to two responses on which cereals they consume. We classified each cereal reported first by hot or cold, and then along four dimensions: density of added sugars, whole grains, fiber, and calcium.

  13. CerealsDB 3.0: expansion of resources and data integration.

    Science.gov (United States)

    Wilkinson, Paul A; Winfield, Mark O; Barker, Gary L A; Tyrrell, Simon; Bian, Xingdong; Allen, Alexandra M; Burridge, Amanda; Coghill, Jane A; Waterfall, Christy; Caccamo, Mario; Davey, Robert P; Edwards, Keith J

    2016-06-24

    The increase in human populations around the world has put pressure on resources, and as a consequence food security has become an important challenge for the 21st century. Wheat (Triticum aestivum) is one of the most important crops in human and livestock diets, and the development of wheat varieties that produce higher yields, combined with increased resistance to pests and resilience to changes in climate, has meant that wheat breeding has become an important focus of scientific research. In an attempt to facilitate these improvements in wheat, plant breeders have employed molecular tools to help them identify genes for important agronomic traits that can be bred into new varieties. Modern molecular techniques have ensured that the rapid and inexpensive characterisation of SNP markers and their validation with modern genotyping methods has produced a valuable resource that can be used in marker assisted selection. CerealsDB was created as a means of quickly disseminating this information to breeders and researchers around the globe. CerealsDB version 3.0 is an online resource that contains a wide range of genomic datasets for wheat that will assist plant breeders and scientists to select the most appropriate markers for use in marker assisted selection. CerealsDB includes a database which currently contains in excess of a million putative varietal SNPs, of which several hundreds of thousands have been experimentally validated. In addition, CerealsDB also contains new data on functional SNPs predicted to have a major effect on protein function and we have constructed a web service to encourage data integration and high-throughput programmatic access. CerealsDB is an open access website that hosts information on SNPs that are considered useful for both plant breeders and research scientists. The recent inclusion of web services designed to federate genomic data resources allows the information on CerealsDB to be more fully integrated with the WheatIS network and

  14. Narrowing the harvest: Increasing sickle investment and the rise of domesticated cereal agriculture in the Fertile Crescent

    Science.gov (United States)

    Maeda, Osamu; Lucas, Leilani; Silva, Fabio; Tanno, Ken-Ichi; Fuller, Dorian Q.

    2016-08-01

    For the first time we integrate quantitative data on lithic sickles and archaeobotanical evidence for domestication and the evolution of plant economies from sites dated to the terminal Pleistocene and Early Holocene (ca. 12000-5000 cal. BCE) from throughout the Fertile Crescent region of Southwest Asia. We find a strong correlation in some regions, throughout the Levant, for increasing investment in sickles that tracks the evidence for increasing reliance on cereal crops, while evidence for morphological domestication in wheats (Triticum monococcum and Triticum dicoccum) and barley (Hordeum vulgare) was delayed in comparison to sickle use. These data indicate that while the co-increase of sickle blades and cereal crops support the protracted development of agricultural practice, sickles did not drive the initial stages of the domestication process but rather were a cultural adaptation to increasing reliance on cereals that were still undergoing selection for morphological change. For other regions, such as the Eastern Fertile Crescent and Cyprus such correlations are weaker or non-existent suggesting diverse cultural trajectories to cereal domestication. We conclude that sickles were an exaptation transferred to cereal harvesting and important in signalling a new cultural identity of "farmers". Furthermore, the protracted process of technological and agricultural evolution calls into question hypotheses that the transition to agriculture was caused by any particular climatic event.

  15. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    Science.gov (United States)

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  16. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  17. Legumes increase rhizosphere carbon and nitrogen relative to cereals in California agricultural plots

    Science.gov (United States)

    Bergman, R.; Maltais-landry, G.

    2013-12-01

    Nitrogen (N) is an essential nutrient to plant growth, therefore a sufficient supply is needed for high yields. By using N-fixing plants like legumes in crop rotation, we can increase soil N and yields of following crops. Furthermore, legumes also affect soil carbon (C) and C:N ratios, which impacts nutrient cycling in soils. We assessed the effects of two legumes (vetch, fava bean) and a cereal mixture (oats and wheat) on soil N and C by comparing both rhizosphere and bulk soils. We studied the impacts of these plants with different management types (organic, low-input conventional, unfertilized) to see if plant effects on soil C and N changed across management. We used plots from the Long-Term Research on Agricultural Systems (LTRAS) experiment (Davis, CA) to conduct this experiment, where three plots were under each management type. Within each of these plots, we sampled three micro-plots, where we collected rhizosphere soil from fava bean, vetch, and cereals as well as bulk soil, i.e. non-rhizosphere soil. We collected 108 samples, each of which were dried and ball-milled into a fine, uniform powder. Tin capsules with 15-30mg of soil were then analyzed with a Carlo Erba Elemental analyzer to measure how much N and C was present in each of the samples. The different management types didn't affect the relationship among plants, but soil C and N were highest in organic and lowest in unfertilized plots. We found that N was significantly higher in legume rhizosphere than cereal rhizosphere and bulk soils. Soil C was also higher in legumes vs. cereals and bulk soils, but the only significant difference was with the bulk soils. This ultimately resulted in lower C:N ratios in the rhizosphere of legumes, only vetch, however, had significantly lower soil C:N than cereals. Vetch had higher N, and lower C and C:N than fava bean, but the difference between the two legumes was never significant. Similarly, cereals had higher C and N and lower C:N than bulk soils, although

  18. Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat.

    Science.gov (United States)

    Royer, T A; Giles, K L; Nyamanzi, T; Hunger, R M; Krenzer, E G; Elliot, N C; Kindler, S D; Payton, M

    2005-02-01

    The effects of planting date and application rate of imidacloprid for control of Schizaphis graminum Rondani, Rhopalosiphum padi L. (Homoptera: Aphididae), and barley yellow dwarf virus (BYDV) in hard red winter wheat were studied. The first experiment was conducted from 1997 to 1999 at two locations and consisted of three planting dates and four rates of imidacloprid-treated seed. The second experiment was conducted from 2001 to 2002 in Stillwater, OK, and consisted of two varieties of hard red winter wheat seed and four rates of imidacloprid. Aphid densities, occurrence of BYDV, yield components, and final grain yield were measured, and yield differences were used to estimate the economic return obtained from using imidacloprid. In the first study, aphid populations responded to insecticide rate in the early and middle plantings, but the response was reduced in the late planting. Yields increased as insecticide rate increased but did not always result in a positive economic return. In the second study, imidacloprid seed treatments reduced aphid numbers and BYD occurrence, protected yield, and resulted in a positive economic return. The presence of aphids and BYDV lowered yield by reducing fertile head density, total kernel weight, and test weight. Whereas the application of imidacloprid seed treatments often provided positive yield protection, it did not did not consistently provide a positive economic return. A positive economic return was consistently obtained if the cereal aphid was carrying and transmitting BYDV and was more likely to occur if wheat was treated with a low rate if imidacloprid and planted in a "dual purpose" planting date window.

  19. Weed-crop competition effects on growth and yield of sugarcane planted using two methods

    International Nuclear Information System (INIS)

    Zafar, M.; Tanveer, A.; Cheema, Z.A.; Ashraf, M.

    2010-01-01

    Effect of planting techniques and weed-crop competition periods on yield potential of spring planted sugarcane variety HSF-240 was studied at the Ayub Agricultural Research Institute, Faisalabad, Pakistan. The experiment was laid out in RCBD with a split-plot arrangement, with four replications and net plot size of 3.6m x 10m. In the experiment, two planting techniques viz., 60 cm apart rows in flat sowing technique and 120 cm apart rows in trench sowing technique were randomized in main plots. Seven weed-crop competition periods viz., Zero (weed free), weed-crop competition for 45, 60, 75, 90, 105 days after sowing (DAS) and weedy check (full season weed-crop competition) were randomized in sub-plots. Sugarcane sown by trench method exhibited more leaf area index (LAI), average crop growth rate (ACGR) and yield contributing attributes. Trench sowing by yielding 72.22 and 75.08 t ha/sup -1/ stripped cane yields, significantly showed superiority over the flat sowing, which gave 64.13 and 66.04 t ha/sup -1/ stripped cane yields in 2005-06 and 2006- 07, respectively. Generally, there was an increase in weed population and biomass but decrease in leaf area index, crop growth rate and yield components with an increase in weed-crop competition period. A decrease of 10.06, 17.90, 22.42, 28.65, 37.64 and 56.89% in stripped cane yield was observed for weed-crop competition periods of 45, 60, 75, 90, 105 DAS and weedy check as compared with zero competition in 2005-06, respectively. In 2006-07, the respective decrease in stripped cane yield was 9.84, 18.76, 22.92, 27.98, 38.75, and 54.98%. Trench sowing at 1.2 m row spacing proved better sowing technique and 45 DAS was the critical period of weed-crop competition. (author)

  20. Transposable elements and genetic instabilities in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  1. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops.

    Science.gov (United States)

    Guo, Qigao; Liu, Qing; Smith, Neil A; Liang, Guolu; Wang, Ming-Bo

    2016-12-01

    Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.

  2. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    Science.gov (United States)

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  3. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies

    DEFF Research Database (Denmark)

    Doltra, Jordi; Muñoz, P; Antón, A

    2010-01-01

    . The model was calibrated using data from a previous experiment. No differences between treatments were observed with respect to yield or N content in marketable fruits. The amount of N left in the field at the end of the cropping period was significantly lower in TO than in TC and TM. Simulated plant growth......A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO...... (TM) kg N ha-1. The N contents of plants sampled on three occasions during the growing period and those of marketable fruits were also analyzed. Total marketable yield was determined at the end of the harvest period. The EU-Rotate_N model was used to predict the effects of the applied treatments...

  4. [The application of genome editing in identification of plant gene function and crop breeding].

    Science.gov (United States)

    Zhou, Xiang-chun; Xing, Yong-zhong

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  5. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  6. Crop water productivity for sunflower under different irrigation regimes and plant spacing in Gezira Scheme, Sudan

    Directory of Open Access Journals (Sweden)

    Eman Rahamtalla Ahmed Elsheikh

    2015-12-01

    Full Text Available Two field experiments with Sunflower on deep cracking soil with heavy clay (vertisol were conducted at Gezira Research Station Farm during two executive winter seasons, in WadMedani, Sudan. The crop was sown in the third week of November and in the first week of December for seasons 2012 and 2013 respectively. The experimental design was split plot design with three replicates. The Sunflower hybrid tested in the study was Hysun 33. The objective of this study was to determine the effect of three different irrigation intervals of 10, 15 and 20 days and two intra-row plant spacings of 30 cm and 40 cm on yield and yield components of Sunflower. The seed yields obtained from the different treatments were in the ranges of 1890-3300 kg/ha and 1590-3290 kg/ha for the first and second season respectively. The corresponding computed on average crop water productivity was in the range of 0.31-0.43 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm plant spacing and irrigated every 10 days. The highest crop water productivity was achieved from irrigation every15 days in both planting spacings

  7. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.

    Science.gov (United States)

    Wally, Owen; Punja, Zamir K

    2010-01-01

    We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available. With an improved understanding of plant signaling pathways in response to a range of other pathogens, such as fungi, additional candidate genes for achieving resistance are being investigated. The potential for engineering plants for resistance against individual devastating diseases or for plants with resistance towards multiple pathogens is discussed in detail.

  8. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  9. DNA damage and repair in plants – from models to crops

    Directory of Open Access Journals (Sweden)

    Vasilissa eManova

    2015-10-01

    Full Text Available The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes- particularly in the genomes of crops plants- is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to peak by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted

  10. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    Science.gov (United States)

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-01-29

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  11. Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants.

    Science.gov (United States)

    Hamada, A M; Fatehi, J; Jonsson, L M V

    2018-02-01

    Thiamine is a vitamin that has been shown to act as a trigger to activate plant defence and reduce pathogen and nematode infection as well as aphid settling and reproduction. We have here investigated whether thiamine treatments of seeds (i.e. seed dressing) would increase plant resistance against aphids and whether this would have different effects on a generalist than on specialist aphids. Seeds of wheat, barley, oat and pea were treated with thiamine alone or in combination with the biocontrol bacteria Pseudomonas chlororaphis MA 342 (MA 342). Plants were grown in climate chambers. The effects of seed treatment on fecundity, host acceptance and life span were studied on specialist aphids bird cherry-oat aphid (Rhopalosiphum padi L.) and pea aphid (Acyrthosiphon pisum Harris) and on the generalist green peach aphid (Myzus persicae, Sulzer). Thiamine seed treatments reduced reproduction and host acceptance of all three aphid species. The number of days to reproduction, the length of the reproductive life, the fecundity and the intrinsic rate of increase were found reduced for bird cherry-oat aphid after thiamine treatment of the cereal seeds. MA 342 did not have any effect in any of the plant-aphid combinations, except a weak decrease of pea aphid reproduction on pea. The results show that there are no differential effects of either thiamine or MA 342 seed treatments on specialist and generalist aphids and suggest that seed treatments with thiamine has a potential in aphid pest management.

  12. Phytotoxicity and Benzoxazinone Concentration in Field Grown Cereal Rye (Secale cereale L.

    Directory of Open Access Journals (Sweden)

    C. La Hovary

    2016-01-01

    Full Text Available Winter rye (Secale cereale L. is used as a cover crop because of the weed suppression potential of its mulch. To gain insight into the more effective use of rye as a cover crop we assessed changes in benzoxazinone (BX levels in rye shoot tissue over the growing season. Four rye varieties were planted in the fall and samples harvested at intervals the following spring. Two different measures of phytotoxic compound content were taken. Seed germination bioassays were used as an estimate of total phytotoxic potential. Dilutions of shoot extracts were tested using two indicator species to compare the relative toxicity of tissue. In addition, BX (DIBOA, DIBOA-glycoside, and BOA levels were directly determined using gas chromatography. Results showed that rye tissue harvested in March was the most toxic to indicator species, with toxicity decreasing thereafter. Likewise the BX concentration in rye shoot tissue increased early in the season and then decreased over time. Thus, phytotoxicity measured by bioassay and BX levels measured by GC have a similar but not identical temporal profile. The observed decrease in phytotoxic potential and plant BX levels in rye later in the season appears to correlate with the transition from vegetative to reproductive growth.

  13. "Founder crops" v. wild plants: Assessing the plant-based diet of the last hunter-gatherers in southwest Asia

    Science.gov (United States)

    Arranz-Otaegui, Amaia; González Carretero, Lara; Roe, Joe; Richter, Tobias

    2018-04-01

    The Natufian culture (c. 14.6-11.5 ka cal. BP) represents the last hunter-gatherer society that inhabited southwest Asia before the development of plant food production. It has long been suggested that Natufians based their economy on the exploitation of the wild ancestors of the Neolithic "founder crops", and that these hunter-gatherers were therefore on the "threshold to agriculture". In this work we review the available data on Natufian plant exploitation and we report new archaeobotanical evidence from Shubayqa 1, a Natufian site located in northeastern Jordan (14.6-11.5 ka cal. BP). Shubayqa 1 has produced an exceptionally large plant assemblage, including direct evidence for the continuous exploitation of club-rush tubers (often regarded as "missing foods") and other wild plants, which were probably used as food, fuel and building materials. Taking together this data we evaluate the composition of archaeobotanical assemblages (plant macroremains) from the Natufian to the Early Pre-Pottery Neolithic B (EPPNB). Natufian assemblages comprise large proportions of non-founder plant species (>90% on average), amongst which sedges, small-seeded grasses and legumes, and fruits and nuts predominate. During the Pre-Pottery Neolithic, in particular the EPPNB, the presence of "founder crops" increases dramatically and constitute up to c. 42% of the archaeobotanical assemblages on average. Our results suggest that plant exploitation strategies during the Natufian were very different from those attested during subsequent Neolithic periods. We argue that historically driven interpretations of the archaeological record have over-emphasized the role of the wild ancestors of domesticated crops previous to the emergence of agriculture.

  14. Genes of Microorganisms: Paving Way to Tailor Next Generation Fungal Disease Resistant Crop Plants

    Directory of Open Access Journals (Sweden)

    Prem L. KASHYAP

    2011-11-01

    Full Text Available The automation of sequencing technologies, flooding in the knowledge of plant-pathogen interactions and advancements in bioinformatics provide tools leading to better knowledge not only of the genome of plant pathogens or microorganism beneficial to plants but also of ways of incorporating genes from microbes into plants as microbial-derived resistance. The identification of various microorganism genes playing key role during pathogensis and the dissection of the signal transduction components of the hypersensitive response and systemic acquired resistance pathways have greatly increased the diversity of options available for tailoring fungus resistant crops. The genetically engineered plants carrying these genes showed spontaneous activation of different defense mechanisms, leading the plant in an elevated state of defense. This defense mode greatly enhances the plants ability to quickly react to a pathogen invasion and more successfully overcome the infection. The aim of this review is to highlight the dynamic use of genes of microorganisms in enhancing crop tolernace towards fungal intruders by examining the most relevant research in this field.

  15. Potential of in vitro mutation breeding for the improvement of vegetatively propagated crop plants

    International Nuclear Information System (INIS)

    Constantin, M.J.

    1984-01-01

    Significant progress has been realized in a number of technologies (e.g., protoplast cultures), collectively referred to as plant cell and tissue culture, within the last decade. In vitro culture technologies offer great potentials for the improvement of crop plants, both sexually and asexually propagated; however, to realize these potentials plant regeneration from selected cells must be achieved for the species of interest. Where whole plants have been regenerated from selected cells, the mutant trait was expressed in some but not in all cases, and the inheritance patterns included maternal, recessive, semi-dominant and dominant (epigenetic events have also been reported). Improved cultivars of sugarcane have been developed from in vitro culture selections. In vitro mutation breeding can be done using an array of physical and chemical mutagens that has been found to be effective in the treatment of seeds, pollen, vegetative plant parts and growing plants. Selection at the cell level for a range of mutant traits has been demonstrated; however, innovative selection schemes will have to be developed to select for agriculturally important traits such as date of maturity, resistance to lodging, height etc. An interdisciplinary team approach involving the combined use of in vitro culture technology, mutagenesis, and plant breeding/genetics offers the greatest probability for success in crop improvement. (author)

  16. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    The rotation crops, mucuna (Mucuna aterrima Piper&Tracy), cajanus (Cajanus cajan (L.) Millsp, rye (Secale cereale L)., oat (Avena sativa L.), pisum (Pisum sativum L.), wheat (Triticum aestivum L.), crotolaria (Crotolaria juncea L.), and black oats (Avena strigosa Scheib), were planted in winter whereas maize and soybean ...

  17. Benefits of Vetch and Rye Cover Crops to Sweet Corn under No-Tillage

    NARCIS (Netherlands)

    Zotarelli, L.; Avila, L.; Scholberg, J.M.S.; Alves, B.J.R.

    2009-01-01

    Leguminous cover crops (CCs) may reduce N fertilizer requirements by fixing N biologically and storing leftover N-fertilizer applied in the previous year. The objective of this study was to determine the contribution of CCs [rye (Secale cereal L.) and hairy vetch (Vicia villosa Roth)] on plant N

  18. Original Paper Weeds control through tree-crop associations in a ...

    African Journals Online (AJOL)

    2012; Ludwig et al., 2004). In sum, trees in parklands agroforestry systems seem to increase weeds problem which is known as the most pest in West. African savannah agriculture. Indeed, the major cereal crops (C4 plants) are less competitive than C3 weeds species under tree. (Bayala et al., 2015). In addition, due to the.

  19. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity

    Directory of Open Access Journals (Sweden)

    Iago Lowe Hale

    2014-09-01

    Full Text Available Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an extended genotype, an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhanci

  20. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  1. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  2. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant

  3. Small RNAs in plants: Recent development and application for crop improvement

    Directory of Open Access Journals (Sweden)

    Ayushi eKamthan

    2015-04-01

    Full Text Available The phenomenon of RNA interference (RNAi which involves sequence specific gene regulation by small non-coding RNAs i.e small interfering RNA (siRNA and micro RNA (miRNA has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits & vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects and abiotic stresses (drought, salinity, cold etc.. Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. Micro RNAs are key regulators of important plant processes like growth, development and response to various stresses. In spite of similarity in size (20-24nt, miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. Micro RNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA based transgenics are much safer for consumption than those over expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of small RNAs and its application for crop improvement.

  4. Small RNAs in plants: recent development and application for crop improvement.

    Science.gov (United States)

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.

  5. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  6. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Directory of Open Access Journals (Sweden)

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  7. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health.

    Science.gov (United States)

    French, Katherine E

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to

  8. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Science.gov (United States)

    French, Katherine E.

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to

  9. Response of sunflower to different planting dates in cotton based cropping system

    International Nuclear Information System (INIS)

    Yousaf, M.; Shakoor, A.; Rana, M.A.

    2007-01-01

    A field study on sunflower (Helianthus annuus L) was conducted for three. years (1991-1993) on different planting dates. Two hybrids (Hysun-33 and PI-6480) were sown on five different dates with 15 days interval from January 15 to March 15 at Cotton Research Station, Multan. Significant higher seed yield of 1880 and 2097 kg ha-1 was obtained when the crop was planted on February 1 and 15 than other treatments. The yield significantly decreased when sunflower was planted on January 15 (1264 kg ha-l), March 1 (1382 kg ha-l) and March 15 (927 kg hall. Maturity period was longest (128 days) of early sown (January 15) and shortest of late sown (March 15) sunflower hybrids. Therefore, it can be concluded that sunflower planted on February 1 to 15 gave higher seed yield as well as allowed enough time for land preparation and thereby, planting of cotton crop in the same field during its regular planting time. (author)

  10. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    Science.gov (United States)

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. © 2015 SETAC.

  11. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  12. Phytotoxicity and benzoxazinone concentration in field grown cereal rye (Secale cereale L.)

    Science.gov (United States)

    Rye (Secale cereale L.) synthesizes benxoxazinone allelochemicals that contribute to its ability to suppress weeds. The developmental stages and physiological conditions under which rye plants synthesizes maximal levels of allelochemicals are not well defined. Knowledge of the conditions under whi...

  13. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  14. Insights into plant size-density relationships from models and agricultural crops.

    Science.gov (United States)

    Deng, Jianming; Zuo, Wenyun; Wang, Zhiqiang; Fan, Zhexuan; Ji, Mingfei; Wang, Genxuan; Ran, Jinzhi; Zhao, Changming; Liu, Jianquan; Niklas, Karl J; Hammond, Sean T; Brown, James H

    2012-05-29

    There is general agreement that competition for resources results in a tradeoff between plant mass, M, and density, but the mathematical form of the resulting thinning relationship and the mechanisms that generate it are debated. Here, we evaluate two complementary models, one based on the space-filling properties of canopy geometry and the other on the metabolic basis of resource use. For densely packed stands, both models predict that density scales as M(-3/4), energy use as M(0), and total biomass as M(1/4). Compilation and analysis of data from 183 populations of herbaceous crop species, 473 stands of managed tree plantations, and 13 populations of bamboo gave four major results: (i) At low initial planting densities, crops grew at similar rates, did not come into contact, and attained similar mature sizes; (ii) at higher initial densities, crops grew until neighboring plants came into contact, growth ceased as a result of competition for limited resources, and a tradeoff between density and size resulted in critical density scaling as M(-0.78), total resource use as M(-0.02), and total biomass as M(0.22); (iii) these scaling exponents are very close to the predicted values of M(-3/4), M(0), and M(1/4), respectively, and significantly different from the exponents suggested by some earlier studies; and (iv) our data extend previously documented scaling relationships for trees in natural forests to small herbaceous annual crops. These results provide a quantitative, predictive framework with important implications for the basic and applied plant sciences.

  15. Introduced sap-feeding insect pests of crop plants in the Maltese Islands

    OpenAIRE

    Mifsud, David; Watson, Gillian W.

    1999-01-01

    Sap-feeding insects within Hemiptera and Thysanoptera are some of the most important crop pests world-wide. Apart from the loss of yield they cause by sap depletion, saliva toxicity and soiling of the leaves, some species transmit serious plant virus diseases. Important sap-feeding species that have been introduced to the Maltese Islands include the whitefly Bemisia tabaci; the scale insects Pseudo coccus !ongispinus, Planococcus citri and lcerya purchasi; the aphids Aphis gossypii, Aphis spi...

  16. Insights into plant size-density relationships from models and agricultural crops

    Science.gov (United States)

    Deng, Jianming; Zuo, Wenyun; Wang, Zhiqiang; Fan, Zhexuan; Ji, Mingfei; Wang, Genxuan; Ran, Jinzhi; Zhao, Changming; Liu, Jianquan; Niklas, Karl J.; Hammond, Sean T.; Brown, James H.

    2012-01-01

    There is general agreement that competition for resources results in a tradeoff between plant mass, M, and density, but the mathematical form of the resulting thinning relationship and the mechanisms that generate it are debated. Here, we evaluate two complementary models, one based on the space-filling properties of canopy geometry and the other on the metabolic basis of resource use. For densely packed stands, both models predict that density scales as M−3/4, energy use as M0, and total biomass as M1/4. Compilation and analysis of data from 183 populations of herbaceous crop species, 473 stands of managed tree plantations, and 13 populations of bamboo gave four major results: (i) At low initial planting densities, crops grew at similar rates, did not come into contact, and attained similar mature sizes; (ii) at higher initial densities, crops grew until neighboring plants came into contact, growth ceased as a result of competition for limited resources, and a tradeoff between density and size resulted in critical density scaling as M−0.78, total resource use as M−0.02, and total biomass as M0.22; (iii) these scaling exponents are very close to the predicted values of M−3/4, M0, and M1/4, respectively, and significantly different from the exponents suggested by some earlier studies; and (iv) our data extend previously documented scaling relationships for trees in natural forests to small herbaceous annual crops. These results provide a quantitative, predictive framework with important implications for the basic and applied plant sciences. PMID:22586097

  17. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system.

    Science.gov (United States)

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2013-10-11

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

  18. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    Science.gov (United States)

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  19. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pilet-Nayel

    2017-10-01

    Full Text Available Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  20. Blue light requirements for crop plants used in bioregenerative life support systems.

    Science.gov (United States)

    Yorio, N C; Wheeler, R M; Goins, G D; Sanwo-Lewandowski, M M; Mackowiak, C L; Brown, C S; Sager, J C; Stutte, G W

    1998-01-01

    As part of NASA's Advanced Life Support Program, the Breadboard Project at Kennedy Space Center is investigating the feasibility of using crop plants in bioregenerative life support systems (BLSS) for long-duration space missions. Several types of electric lamps have been tested to provide radiant energy for plants in a BLSS. These lamps vary greatly in terms of spectral quality resulting in differences in growth and morphology of the plants tested. Broad spectrum or "white" light sources (e.g., metal halide and fluorescent lamps) provide an adequate spectrum for normal growth and morphology; however, they are not as electrically efficient as are low-pressure sodium (LPS) or high-pressure sodium (HPS) lamps. Although LPS and HPS, as well as the newly tested red light-emitting diodes (LEDs), have good photosynthetically active radiation (PAR) efficiencies, they are deficient in blue light. Results with several of the crops tested for BLSS (wheat, potato, soybean, lettuce, and radish) have shown a minimum amount of blue light (approximately 30 micromoles m-2 s-1) is necessary for normal growth and development. For example, the lack of sufficient blue light in these lamps has resulted in increased stem elongation and significant reductions in photosynthesis and yield. To avoid problems with blue-deficient lamps and maximize yield, sufficient intensity of HPS or blue light supplementation with red LEDs or LPS lamps is required to meet spectral requirements of crops for BLSS.

  1. Contrasting Patterns in Crop Domestication and Domestication Rates: Recent Archaeobotanical Insights from the Old World

    OpenAIRE

    Fuller, Dorian Q.

    2007-01-01

    Background Archaeobotany, the study of plant remains from sites of ancient human activity, provides data for studying the initial evolution of domesticated plants. An important background to this is defining the domestication syndrome, those traits by which domesticated plants differ from wild relatives. These traits include features that have been selected under the conditions of cultivation. From archaeological remains the easiest traits to study are seed size and in cereal crops the loss o...

  2. Improvement of pulse crops through induced mutations: Reconstruction of plant type

    International Nuclear Information System (INIS)

    Rao, C.H.; Tickoo, J.L.; Ram, H.; Jain, H.K.

    1975-01-01

    Many species of grain legumes, because of their cultivation under marginal conditions for centuries, have retained a number of semi-wild characteristics, such as a bushy and spreading growth, which contribute to their adaptability but reduce their yields. The observations presented here indicate that induced mutations may prove effective in generating new plant-types in these crops, which are marked by an improvement in the harvest index and which will show a response to increased plant densities. The present report describes observations on the M 2 progenies of pigeon pea and mung bean on which work has been initiated. (author)

  3. Potential for increased use of cereal grain forages on dairy operations

    Science.gov (United States)

    Farmers are increasingly using cereal grain cover crops, which allows them to take advantage of additional growing days in early spring and late fall. The use of cereal grain forages, such as rye, wheat, or triticale as cover crops helps to reduce soil and nutrient losses, and also allows for addit...

  4. Plant productivity and characterization of zeoponic substrates after three successive crops of radish

    Science.gov (United States)

    Gruener, J. E.; Ming, Doug; Galindo, C., Jr.; Henderson, K. E.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops.

  5. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  6. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands.

    Science.gov (United States)

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R; Brix, Hans

    2014-10-01

    Pharmaceuticals are commonly found both in the aquatic and the agricultural environments as a consequence of the human activities and associated discharge of wastewater effluents to the environment. The utilization of treated effluent for crop irrigation, along with land application of manure and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them 'pseudo-persistent'. Several reviews have been published regarding the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results. This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation purposes.

  7. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Resistance to cereal rusts at the plant cell wall - what can we learn from other host-pathogen systems?

    NARCIS (Netherlands)

    Collins, N.C.; Niks, R.E.; Schulze-Lefert, P.

    2007-01-01

    The ability of plant cells to resist invasion by pathogenic fungi at the cell periphery (pre-invasion resistance) differs from other types of resistance that are generally triggered after parasite entry and during differentiation of specialised intracellular feeding structures. Genetic sources of

  9. Induced plant resistance as a pest management tactic on piercing sucking insects of sesame crop

    Directory of Open Access Journals (Sweden)

    M. F. Mahmoud

    2013-09-01

    Full Text Available Sesame, Sesamum indicum L. is the most oil seed crop of the world and also a major oil seed crop of Egypt. One of the major constraints in its production the damage caused by insect pests, particularly sucking insects which suck the cell sap from leaves, flowers and capsules. Impact of three levels of potassin-F, salicylic acid and combination between them on reduction infestation of Stink bug Nezara viridula L., Mirid bug Creontiades sp., Green peach aphid Myzus persicae (Sulzer, Leafhopper Empoasca lybica de Berg and Whitefly Bemisia tabaci (Gennadius of sesame crop cultivar Shandawil 3 was carried out during 2010-2011 crop season at Experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Also, the impacts of potassin-F and salicylic acid on yield production of sesame were studied. Results indicated that percent of reduction of infestation by N. viridula, M. persicae, Creontiades sp., E. lybicae, B. tabaci and phyllody disease were significantly higher at Level 2 (Potassin-F= 2.5 cm/l, Salicylic acid= 0.001 M and Potassin + Salicylic= 2.5 cm/l + 0.001 M and consequently higher seed yield per plant were obtained.

  10. Plant biotechnology for deeper understanding, wider use and further development of agricultural and horticultural crops

    Directory of Open Access Journals (Sweden)

    P. ELOMAA

    2008-12-01

    Full Text Available Plants bind solar energy to organic matter via photosynthesis and assimilation of carbon dioxide from the atmosphere and comprise the major source of nutrition and bioenergy. Plant biotechnology contributes to solution of important constraints in food and feed production and creates new technologies and applications for the sustainable use of plant resources. Genome-wide approaches such as massive parallel sequencing and microarrays to study gene expression, molecular markers for selection of important traits in breeding, characterization of genetic diversity with the aforementioned approaches, and somatic hybridization and genetic transformation are important tools in plant biotechnology. In this paper, studies carried out on enhanced resistance to viruses and tolerance of cold stress in potato, genetic modification of flower pigmentation and morphology in gerbera, production of edible vaccines in transgenic barley seeds, and expression of heterologous proteins for pharmaceutical purposes from vector viruses were chosen to exemplify the general utility of biotechnological approaches and also how plant biotechnology research has developed on cultivated plants at University of Helsinki. The studies reveal cellular and genetic mechanisms and provide scientific information that can be used for widening the uses of crop plants. They can also be used to detect any putative risks associated with the use of the biotechnological application in agriculture and horticulture and to develop practises which reduce any inadvertent negative consequences that plant production may have to the environment.;

  11. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gleice A. de Assis

    2014-11-01

    Full Text Available Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.

  12. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT: The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental

  13. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, M.E., E-mail: marney.isaac@utoronto.ca [CIRAD, UMR Eco and Sols, 34060 Montpellier (France); University of Toronto, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Canada M1C 1A4 (Canada); Hinsinger, P. [INRA, UMR Eco and Sols, 34060 Montpellier (France); Harmand, J.M. [CIRAD, UMR Eco and Sols, 34060 Montpellier (France)

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N{sub 2}-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N{sub 2}-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature ({delta}{sup 15}N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems

  14. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions

    International Nuclear Information System (INIS)

    Isaac, M.E.; Hinsinger, P.; Harmand, J.M.

    2012-01-01

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N 2 -fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N 2 -fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ 15 N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. -- Highlights

  15. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China

    OpenAIRE

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigatio...

  16. Azolla planting reduces methane emission and nitrogen fertilizer application in double rice cropping system in southern China

    DEFF Research Database (Denmark)

    Xu, Heshui; Zhu, Bo; Liu, Jingna

    2017-01-01

    agronomic benefits. However, the effects of the dual cropping of Azolla on methane emissions of double rice cropping paddies have not yet been reported. Here, we conducted a 3-year field experiment to evaluate the impacts of rice + Azolla on methane emission and rice yield in a double rice cropping system...... with that of the conventional rice cropping with common N fertilizer. Moreover, the rice + Azolla with moderate N fertilizer had the lowest yield-scaled methane (25.2 kg Mg−1 grain yield). Here, we showed for the first time that Azolla planting allows sustainable rice production coupled with methane mitigation in double rice...

  17. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    Science.gov (United States)

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Transgenerational Defense Priming for Crop Protection against Plant Pathogens: A Hypothesis.

    Science.gov (United States)

    Ramírez-Carrasco, Gabriela; Martínez-Aguilar, Keren; Alvarez-Venegas, Raúl

    2017-01-01

    Throughout evolution, plants have developed diverse mechanisms of defense that "prime" their innate immune system for more robust and active induction of defense responses against different types of stress. Nowadays there are numerous reports concerning the molecular bases of priming, as well as the generational priming mechanisms. Information concerning transgenerational priming, however, remains deficient. Some reports have indicated, nonetheless, that the priming status of a plant can be inherited to its offspring. Here, we show that the priming agent β-aminobutyric acid induced resistance to Pseudomonas syringae pv. phaseolicola infection in the common bean ( Phaseolus vulgaris L.) We have analyzed the transgenerational patterns of gene expression of the PvPR1 gene ( Phaseolus vulgaris PR1 ), a highly responsive gene to priming, and show that a transgenerational priming response against pathogen attack can last for at least two generations. We hypothesize that a defense-resistant phenotype and easily identifiable, generational and transgenerational, "primed patterns" of gene expression are excellent indicators of the priming response in crop plants. Furthermore, we propose here that modern plant breeding methods and crop improvement efforts must include the use of elicitors to prime induced resistance in the field and, above all, to select for induced heritable states in progeny that is primed for defense.

  19. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    Science.gov (United States)

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions.

  20. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    how Si influences cell wall composition in cereal straw and, consequently, the enzymatic saccharification efficiency. Considering the importance of Nitrogen (N) fertilization in cereal production, an additional objective was to elucidate the effect of N supply on Si concentration and cell wall...

  1. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae in Four Crop Plants.

    Directory of Open Access Journals (Sweden)

    John W Gordy

    Full Text Available Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA, benzothiadiazole (BTH, gibberellic acid (GA, harpin, and jasmonic acid (JA are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith (FAW (Lepidoptera: Noctuidae larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  2. Principle and application of plant mutagenesis in crop improvement: a review

    Directory of Open Access Journals (Sweden)

    Yusuff Oladosu

    2016-01-01

    Full Text Available The first step in plant breeding is to identify suitable genotypes containing the desired genes among existing varieties, or to create one if it is not found in nature. In nature, variation occurs mainly as a result of mutations and without it, plant breeding would be impossible. In this context, the major aim in mutation-based breeding is to develop and improve well-adapted plant varieties by modifying one or two major traits to increase their productivity or quality. Both physical and chemical mutagenesis is used in inducing mutations in seeds and other planting materials. Then, selection for agronomic traits is done in the first generation, whereby most mutant lines may be discarded. The agronomic traits are confirmed in the second and third generations through evident phenotypic stability, while other evaluations are carried out in the subsequent generations. Finally, only the mutant lines with desirable traits are selected as a new variety or as a parent line for cross breeding. New varieties derived by induced mutatgenesis are used worldwide: rice in Vietnam, Thailand, China and the United States; durum wheat in Italy and Bulgaria; barley in Peru and European nations; soybean in Vietnam and China; wheat in China; as well as leguminous food crops in Pakistan and India. This paper integrates available data about the impact of mutation breeding-derived crop varieties around the world and highlights the potential of mutation breeding as a flexible and practicable approach applicable to any crop provided that appropriate objectives and selection methods are used.

  3. Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants.

    Directory of Open Access Journals (Sweden)

    Adrianna Szczepaniec

    Full Text Available Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae, in multiple, distantly related crop plants.Using cotton (Gossypium hirsutum, corn (Zea mays and tomato (Solanum lycopersicum plants, we show that transcription of phenylalanine ammonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment.Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated.

  4. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    Science.gov (United States)

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  5. Review article Biology, ecology and management of cereal ...

    African Journals Online (AJOL)

    Grains of gramineous crops are of paramount importance in the world for feeding humans and livestock, and generating income. Moreover, the stalks of thick stemmed gramineous crops such as maize and sorghum are used for fuel, construction and livestock feed. The contribution of cereals like maize and sorghum ...

  6. Radiation technology for the development of improved crop varieties

    International Nuclear Information System (INIS)

    D'Souza, Stanislaus F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane. The desirable traits which have been bred through induced mutations include higher yield, grain quality, early maturity, disease and pest resistance, improved plant type and abiotic stress resistance

  7. Soil moisture estimation in cereal fields using multipolarized SAR data

    Science.gov (United States)

    Alvarez-Mozos, J.; Izagirre, A.; Larrañaga, A.

    2012-04-01

    The retrieval of soil moisture from remote sensing data is an extremely active research topic with applications on a wide range of disciplines. Microwave observations represent the most viable approach due to the influence of soils' dielectric constant (and thus soil moisture) on both the emission and backscatter of waves in this region of the spectrum. Passive observations provide higher temporal resolutions, whereas active (SAR) observations have a higher spatial detail. Even if operational moisture products, based on passive data, exist, retrieval algorithms using active observations still face several problems. Surface roughness and vegetation cover are probably the disturbing factors most affecting the accuracy of soil moisture retrievals. In this communication the influence of vegetation cover is investigated and a retrieval technique based on multipolarized C band SAR observations is proposed. With this aim a dedicated field campaign was carried out in La Tejería watershed (north of Spain) from January to August 2010. Eight RADARSAT-2 Fine-Quadpol scenes were acquired in order to investigate the role of vegetation cover on the retrieval of soil moisture, as well as the sensitivity of different polarimetric parameters to vegetation cover condition. Coinciding with image acquisitions soil moisture, plant density and crop height measurements were acquired in eight control fields (cultivated with barley and wheat crops). The sensitivity of backscatter coefficients (in HH, HV and VV polarizations) and backscatter ratios (p=HH/VV and q=HV/VV) to soil moisture and crop condition were evaluated and the semi-empirical Water Cloud Model was fitted to the observations. The results obtained showed that the contribution of the cereal vegetation cover was minimal in HH and HV polarizations, whereas the VV channel appeared to be significantly attenuated by the cereal cover, so its value decreased as the crops grew. As a result, the ratios p and q showed a very good

  8. Role of Alternate Hosts in Epidemiology and Pathogen Variation of Cereal Rusts.

    Science.gov (United States)

    Zhao, Jie; Wang, Meinan; Chen, Xianming; Kang, Zhensheng

    2016-08-04

    Cereal rusts, caused by obligate and biotrophic fungi in the genus Puccinia, are important diseases that threaten world food security. With the recent discovery of alternate hosts for the stripe rust fungus (Puccinia striiformis), all cereal rust fungi are now known to be heteroecious, requiring two distinct plant species serving as primary or alternate hosts to complete their sexual life cycle. The roles of the alternate hosts in disease epidemiology and pathogen variation vary greatly from species to species and from region to region because of different climatic and cropping conditions. We focus this review on rust fungi of small grains, mainly stripe rust, stem rust, leaf rust, and crown rust of wheat, barley, oat, rye, and triticale, with emphases on the contributions of alternate hosts to the development and management of rust diseases.

  9. Critical evaluation of strategies for mineral fortification of staple food crops.

    Science.gov (United States)

    Gómez-Galera, Sonia; Rojas, Eduard; Sudhakar, Duraialagaraja; Zhu, Changfu; Pelacho, Ana M; Capell, Teresa; Christou, Paul

    2010-04-01

    Staple food crops, in particular cereal grains, are poor sources of key mineral nutrients. As a result, the world's poorest people, generally those subsisting on a monotonous cereal diet, are also those most vulnerable to mineral deficiency diseases. Various strategies have been proposed to deal with micronutrient deficiencies including the provision of mineral supplements, the fortification of processed food, the biofortification of crop plants at source with mineral-rich fertilizers and the implementation of breeding programs and genetic engineering approaches to generate mineral-rich varieties of staple crops. This review provides a critical comparison of the strategies that have been developed to address deficiencies in five key mineral nutrients-iodine, iron, zinc, calcium and selenium-and discusses the most recent advances in genetic engineering to increase mineral levels and bioavailability in our most important staple food crops.

  10. The plant characters and corm production of taro as catch crop under the young rubber stands

    Directory of Open Access Journals (Sweden)

    DJUKRI

    2006-07-01

    Full Text Available The research was aimed at revealing the chlorophyll content, leaf area (the plant characters, and the corm production of taro as catch crop under the young rubber stand. This research was conducted by means of Nested Design with nine replication. The intercropping planting used independent variables i.e. N0 (open condition, N1 (under the two-year-old young rubber, and N2 (under the three-year-old young rubber. The dependent variables were the chlorophyll content, leaf area, and production of the taro corm. The parameters investigated were the leaves area, the chlorophyll a and b content, the weight of fresh corm, the weight of dry corm, and the corm production per plots. The research result showed that the leaves area, and the chlorophyll a and b content significantly increased, while the weight of fresh corm, and the weight of dry corm significantly decreased (P<0.05. The fresh corm production per plots under the young rubber two- and three-year-old were significantly decreased compared the control (P<0.05. The intercropping planting or catch crop showed that the taro corm production per plot decreased both of under two- and three-year-old young rubber shades, although the reduction of each clone was significant or not significant, so that tolerant clones could be conserved.

  11. Investigations on the emission of air pollutants from small-scale firing plants during the combustion of cereals, straw and similar plant materials; Untersuchungen zur Emission von Luftschadstoffen aus Kleinfeuerungsanlagen bei der Verbrennung von Getreide, Stroh und aehnlichen pflanzlichen Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kalkoff, Wolf-Dieter; Maiwald, Birk; Wolf, Stephan

    2013-05-15

    The purpose of the present field study by the State Environmental Protection Office and the State Institution for Agriculture, Forestry and Horticulture of Saxony Anhalt was to measure emissions of relevant pollutants during the combustion of biogenic fuels such as cereals, straw and similar plant materials in exemplary firing installations. In spite of considerable development efforts on the part of manufacturers there are still problems to be solved with some fuels in meeting the tightened limit values of the First Emission Control Ordinance while ensuring user-friendly equipment operability. Based on these insights, as well as the experiences gained in the course of the trial programme, the recommendation for problem fuels such as straw and similar materials is to operate the boiler at full load and provide robust, amply dimensioned ash removal equipment.

  12. Cereals for the semi-arid tropics

    International Nuclear Information System (INIS)

    De Wet, J.M.J.

    1989-01-01

    The region of semi-arid tropics is the most famine prone area of the world. This region with nearly one billion people extends across some 20 million square kilometres. Major domesticated cereals adapted to semi-arid regions are sorghum (Sorghum bicolor (L.) Moench), foxtail millet (Setaria italica (L.) P. Beauv.) and pearl millet (Pennisetum glaucum (L.) R. Br.). Several minor cereals are grown as speciality crops, or harvested in the wild in times of severe drought and scarcity. Important in the African Sahel are the fonios Digitaria iburua Stapf, D. exilis (Kapist) Stapf and Brachiaria deflexa (Schumach). C.E. Hubbard. These species are aggressive colonizers and are commonly encouraged as weeds in cultivated fields. Sown genotypes differ from their close wild relatives primarily in the lack of efficient natural seed dispersal. The fonios lend themselves to rapid domestication. Several wild cereals extend well beyond the limits of agriculture into the Sahara. Commonly harvested are the perennial Stipagrostis pungens and Panicum turgidum, and the annual Cenchrus biflorus (kram-kram). Kram-kram yields well under extreme heat and drought stress, and holds promise as a domesticated cereal. Sauwi millet (Panicum sonorum) is promising cereal in arid northwestern Mexico. (author). 31 refs

  13. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland

    Directory of Open Access Journals (Sweden)

    A. NUKARI

    2008-12-01

    Full Text Available Cryopreservation protocols have been introduced as techniques for germplasm preservation of vegetatively propagated horticultural and staple food crops. In Finland, cryopreservation has been studied since 1990’s, beginning with cryopreservation of forest tree breeding material and since 2004 on cryopreservation of genetic resources of horticultural plants and potato. Priority was given to cryopreservation of raspberry (Rubus ideaus L., strawberry (Fragaria x ananassa Duch. and potato (Solanum tuberosum L. and the possibility to use cryotherapy in eradication of raspberry bushy dwarf virus (RBDV from in vitro cultures were studied on raspberry. Modified droplet vitrification cryopreservation protocols were designed for raspberry and strawberry and cryotherapy combined with thermotherapy was proven to be a successful application to eliminate RBDV from infected raspberries. Cryotherapy method can be applied for a large scale elimination of viruses from plant germplasm and from candidate nuclear stock in a certified plant production scheme. Routine use of cryotechniques in germplasm preservation of vegetatively propagated horticultural plants was started. Besides for long term germplasm preservation, cryopreservation techniques can be applied also for maintenance of mother stocks in certified plant production schemes and in commercial plant production. Cryopreservation of potato shoot tips needs additional detailed research to obtain sufficient recovery and regrowth rates.;

  14. Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants.

    Science.gov (United States)

    Zhou, Yanhong; Xia, Xiaojian; Yu, Gaobo; Wang, Jitao; Wu, Jingxue; Wang, Mengmeng; Yang, Youxin; Shi, Kai; Yu, Yunlong; Chen, Zhixiang; Gan, Jay; Yu, Jingquan

    2015-03-12

    Pesticide residues in agricultural produce pose a threat to human health worldwide. Although the detoxification mechanisms for xenobiotics have been extensively studied in mammalian cells, information about the regulation network in plants remains elusive. Here we show that brassinosteroids (BRs), a class of natural plant hormones, decreased residues of common organophosphorus, organochlorine and carbamate pesticides by 30-70% on tomato, rice, tea, broccoli, cucumber, strawberry, and other plants when treated externally. Genome-wide microarray analysis showed that fungicide chlorothalonil (CHT) and BR co-upregulated 301 genes, including a set of detoxifying genes encoding cytochrome P450, oxidoreductase, hydrolase and transferase in tomato plants. The level of BRs was closely related to the respiratory burst oxidase 1 (RBOH1)-encoded NADPH oxides-dependent H2O2 production, glutathione biosynthesis and the redox homeostasis, and the activity of glutathione S-transferase (GST). Gene silencing treatments showed that BRs decreased pesticide residues in plants likely by promoting their metabolism through a signaling pathway involving BRs-induced H2O2 production and cellular redox change. Our study provided a novel approach for minimizing pesticide residues in crops by exploiting plants' own detoxification mechanisms.

  15. Small RNAs in plants: Recent development and application for crop improvement

    OpenAIRE

    Ayushi eKamthan; Abira eChaudhuri; Mohan eKamthan; Asis eDatta

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RN...

  16. Alelopatia de cultivos de cobertura vegetal sobre plantas infestantes = Allelopathy of cover crop on weed plants

    Directory of Open Access Journals (Sweden)

    Luciene Kazue Tokura

    2006-07-01

    Full Text Available O presente trabalho avaliou o potencial alelopático de cultivos de cobertura vegetal de trigo, aveia preta, milheto, nabo forrageiro e colza sobre o desenvolvimento de plantas infestantes e verificou qual das coberturas vegetais exerce maior controle sobre as mesmas. Os cultivos de cobertura vegetal foram implantados sob preparo convencional (uma aração e uma gradagem no Núcleo Experimental de Engenharia Agrícola (NEEA, da Universidade Estadual do Oeste do Paraná (Unioeste, Cascavel, Estado do Paraná. Mensalmente, realizou-se o acompanhamento e identificação das plantas infestantes emersas nas áreas de cobertura vegetal no período de agosto de 2000 a agosto de 2001. Os resultados obtidos permitiram concluir que das espécies encontradas, o capim marmelada foi o que apresentou maior potencial alelopático e a erva-de-santa-maria o menor. As coberturasvegetais que apresentaram melhor controle do total de plantas infestantes presentes na área experimental, incluindo àquelas com reconhecido potencial alelopático, foram aveia preta, colza, nabo forrageiro e milheto.This work evaluated the cover crop allelopathic potential of wheat, black oat, pearl millet, turnip and rape on the development of weed plants. It also verified which cover crop has larger control on the weed plants. The cover crop was implanted under conventional tillage (one disk plowing plus one disk harrowing in the Experimental Nucleus of Agricultural Engineering (NEEA, of the State University of the West of Paraná (Unioeste, Cascavel, Paraná State. Monthly (from August 2000 to August 2001, weed plants identification in the cover crop area was made. Results showed that from the found species, the alexander grass was the one that presented larger allelopathic potential, and, the mexican-tea was the one that presented smaller control. The vegetable coverings that presented larger control of the total of weed plants in the experimental area, including those with

  17. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  18. Effect of annually repeated undersowing on cereal grain yields

    Directory of Open Access Journals (Sweden)

    H. KÄNKÄNEN

    2008-12-01

    Full Text Available Cover crops can be used to reduce leaching and erosion, introduce variability into crop rotation and fix nitrogen (N for use by the main crops. In Finland, undersowing is a suitable method for establishing cover crops in cereal cropping. The effect of annual undersowing on cereal grain yield and soil mineral N content in spring was studied at two sites. Red clover (Trifolium pratense L., white clover (Trifolium repens L., a mixture of red clover and meadow fescue (Festuca pratensis Huds., and westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum were undersown in spring cereals in the same plots in six successive seasons, and their effects on cereal yield were estimated. Annual undersowing with clovers increased, and undersowing with westerwold ryegrass decreased cereal grain yields. The grain yield was only slightly lower with a mixture of red clover and meadow fescue than with red clover alone. Westerwold ryegrass did not affect soil mineral N content in spring and the increase attributable to clovers was small. The mixture of red clover and meadow fescue affected similarly to pure red clover. Soil fertility was not notably improved during six years of undersowing according to grain yield two years later.

  19. Purification and characterization of a thiol amylase over produced by a non-cereal non-leguminous plant, Tinospora cordifolia.

    Science.gov (United States)

    Mukherjee, Abhishek; Ghosh, Anil K; Sengupta, Subhabrata

    2010-12-10

    A 43kDa α-amylase was purified from Tinospora cordifolia by glycogen precipitation, ammonium sulfate precipitation, gel filtration chromatography, and HPGPLC. The enzyme was optimally active in pH 6.0 at 60°C and had specific activity of 546.2U/mg of protein. Activity was stable in the pH range of 4-7 and at temperatures up to 60°C. PCMB, iodoacetic acid, iodoacetamide, DTNB, and heavy metal ions Hg(2+)>Ag(+)>Cd(2+) inhibited enzyme activity while Ca(2+) improved both activity and thermostability. The enzyme was a thiol amylase (3 SH group/mole) and DTNB inhibition of activity was released by cysteine. N-terminal sequence of the enzyme had poor similarity (12-24%) with those of plant and microbial amylases. The enzyme was equally active on soluble starch and amylopectin and released maltose as the major end product. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Cucumber plants (cucumis sativus l.) growth and crop yield of chicken manure fertilized with plant spacing

    Science.gov (United States)

    Pratiwi Aritonang, Sri; Panjaitan, Ernitha; Parsaulian Tondang, Fetrus

    2018-03-01

    The research was conducted in Tanjung Sari, Kecamatan Medan Selayang Kotamadya Medan ± 32 meters above sea level. It started since July 2016 to September 2016. It was designed with randomization block design with two factorial experiments which are chicken manure and plant spacing. First factor was 4 doses of chicken manure, symbolized by K; K0 = 1.5 kg/plot, K1 = 2 kg/plot, K2 = 2.5 kg/plot and K3 = 3 kg/plot. Second was 4 different plant spacing, symbolized by J; J0 = 30 cm x 60 cm, J1 =: 35 cm x 60 cm, J2 = 40 cm x 60 cm and J3 = 45 cm x 60 cm. The result shows that giving 3kg/plot of chicken manure increases plant height to 162.15 cm with 22.44 number of leaves. Fresh fruits per sample was weight 1121.88 g and per plot is 4.52 kg with 9.17 and 36.67 units of fruits per sample and plot respectively. With 45 cm x 60 cm (J3) for plant spacing gives a plant with the height of 160.51 cm and 22.85 number of leaves. Fresh fruits obtained is 1216.67 g and 9.33 units per sample while per plot gives 4.90 kg and 7.33 units of fresh fruits. This plant spacing leads to a better output for the yield compared to narrower spacing. There are no interaction between chicken manure dosage and plant spacing towards plant height, number of leaves, fresh fruits weight and units per sample and plot.

  1. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  2. Nitrogen release from differently aged Raphanus sativus L. nitrate catch crops during mineralization at autumn temperatures

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Elsgaard, Lars; Olesen, Jørgen Eivind

    2016-01-01

    pool at both temperatures. The N mineralization and nitrification potential at these low soil temperatures suggest that a considerable fraction of the N captured by nitrate catch crops may be remineralized, nitrified and thus available for plant uptake but also for loss by leaching and denitrification.......In temperate climates with surplus precipitation and low temperatures during autumn and winter, nitrate catch crops have become crucial in reducing nitrate leaching losses. Preferably, the N retained by the catch crop should remain in the soil and become available to the next main crop. Fodder...... radish (Raphanus sativus, L.) has emerged as a promising nitrate catch crop in cereal cropping, although the course of remineralization of residue N following termination of this frost-sensitive crucifer remains obscured. We incubated radish residues of different age (different planting and harvest dates...

  3. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants

    Directory of Open Access Journals (Sweden)

    Sheshshayee M. Sreeman

    2018-04-01

    Full Text Available Burgeoning population growth, industrial demand, and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favor the adoption of a “trait based” crop improvement approach for increasing water productivity. Traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation are regarded as most relevant to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological, and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration are crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarize the available information in literature on classifying various drought adaptive traits. We provide evidences that Water-Use Efficiency when introgressed with moderately higher transpiration, would

  4. Long term growth of crop plants on experimental plots created among slag heaps.

    Science.gov (United States)

    Halecki, Wiktor; Klatka, Sławomir

    2018-01-01

    Suppression of plant growth is a common problem in post-mining reclaimed areas, as coarse texture of soils may increase nitrate leaching. Assessing feasibility of using solid waste (precipitated solid matter) produced by water and sewage treatment processes in field conditions is very important in mine soil reclamation. Our work investigated the possibility of plant growth in a degraded site covered with sewage-derived sludge material. A test area (21m × 18m) was established on a mine soil heap. Experimental plant species included Camelina sativa, Helianthus annuus, Festuca rubra, Miscanthus giganteus, Amaranthus cruentus, Brassica napus, Melilotus albus, Beta vulgaris, and Zea mays. ANOVA showed sufficient water content and acceptable physical properties of the soil in each year and layer in a multi-year period, indicating that these species were suitable for phytoremediation purposes. Results of trace elements assays indicated low degree of contamination caused by Carbocrash waste material and low potential ecological risk for all plant species. Detrended correspondence analysis revealed that total porosity and capillary porosity were the most important variables for the biosolids among all water content related properties. Overall, crop plants were found useful on heavily degraded land and the soil benefited from their presence. An addition of Carbocrash substrate to mine soil improved the initial stage of soil reclamation and accelerated plant growth. The use of this substrate in phytoremediation helped to balance the content of nutrients, promoted plant growth, and increased plant tolerance to salinity. Sewage sludge-amended biosolids may be applied directly to agricultural soil, not only in experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity.

    Science.gov (United States)

    Balestrazzi, Alma; Confalonieri, Massimo; Macovei, Anca; Donà, Mattia; Carbonera, Daniela

    2011-03-01

    Crop productivity is strictly related to genome stability, an essential requisite for optimal plant growth/development. Genotoxic agents (e.g., chemical agents, radiations) can cause both chemical and structural damage to DNA. In some cases, they severely affect the integrity of plant genome by inducing base oxidation, which interferes with the basal processes of replication and transcription, eventually leading to cell death. The cell response to oxidative stress includes several DNA repair pathways, which are activated to remove the damaged bases and other lesions. Information concerning DNA repair in plants is still limited, although results from gene profiling and mutant analysis suggest possible differences in repair mechanisms between plants and other eukaryotes. The present review focuses on the base- and nucleotide excision repair (BER, NER) pathways, which operate according to the most common DNA repair rule (excision of damaged bases and replacement by the correct nucleotide), highlighting the most recent findings in plants. An update on DNA repair in organelles, chloroplasts and mitochondria is also provided. Finally, it is generally acknowledged that DNA repair plays a critical role during seed imbibition, preserving seed vigor. Despite this, only a limited number of studies, described here, dedicated to seeds are currently available.

  6. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    Science.gov (United States)

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.

  7. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption.

  8. Use of crop water stress index for monitoring water stress in some sinanthropic plant species

    Directory of Open Access Journals (Sweden)

    Marinela Roxana ROŞESCU

    2010-11-01

    Full Text Available The water stress indicator (crop water stress index, CWSI is a measure of the transpiration rate of a plant, influenced by the leaf and air temperature difference from the plant’s vicinity and the air pressure deficit of the water vapors from the atmosphere. The experiments were realized in July-August 2008 and 2009 for six species in the cities Pitesti, Mioveni and Maracineni: Cichorium intybus L., Conyza canadensis (L. Cronq., Erigeron annuus L. (Pers., Lactuca serriola Torn., Polygonum aviculare L. and Echinochloa crus-galli (L. Beauv. For those species we calculated the CWSI to estimate the water stress on the selected plants in the urban environment conditions. The analyzed species were exposed to a less accentuated water stress while vegetating in the soil and to a more intense one they were grown in the asphalt cracks. Cichorium intybus had the smallest CWSI value (0.26 while Lactuca serriola the highest one (0.44.

  9. Dusan burkutu (burkutu filtration residue) and Dusan sirfe (cereal ...

    African Journals Online (AJOL)

    Dusan burkutu (burkutu filtration residue) and Dusan sirfe (cereal bran): two promising cereals by-products for the feeding of sheep and goats. ... nutritional requirement of ruminant animals. Keywords: Dusan burkutu, Dusan sirfe, proximate composition, animal feed. Plant Products Research Journal Vol. 8(1) 2004: 30-34 ...

  10. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Science.gov (United States)

    2011-01-01

    Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully. PMID:21812981

  11. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Maghuly Fatemeh

    2011-08-01

    Full Text Available Abstract Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV, Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.

  12. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).

    Science.gov (United States)

    Dohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; Zakrzewski, Falk; Tafer, Hakim; Rupp, Oliver; Sörensen, Thomas Rosleff; Stracke, Ralf; Reinhardt, Richard; Goesmann, Alexander; Kraft, Thomas; Schulz, Britta; Stadler, Peter F; Schmidt, Thomas; Gabaldón, Toni; Lehrach, Hans; Weisshaar, Bernd; Himmelbauer, Heinz

    2014-01-23

    Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant

  13. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    Science.gov (United States)

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2018-01-01

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    Directory of Open Access Journals (Sweden)

    Gauri A. Achari

    2014-01-01

    Full Text Available Eggplant (Solanum melongena L. is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA grouped these xylem residing bacteria (XRB into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  15. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Kantar, Michael B; Sosa, Chrystian C; Khoury, Colin K; Castañeda-Álvarez, Nora P; Achicanoy, Harold A; Bernau, Vivian; Kane, Nolan C; Marek, Laura; Seiler, Gerald; Rieseberg, Loren H

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation.

  16. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Michael Benjamin Kantar

    2015-10-01

    Full Text Available Crop wild relatives (CWR are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.. Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap and asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L. were identified as targets for traits of interest, particularly for abiotic stress tolerance and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups, geographic isolation may not be necessary for speciation.

  17. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Kantar, Michael B.; Sosa, Chrystian C.; Khoury, Colin K.; Castañeda-Álvarez, Nora P.; Achicanoy, Harold A.; Bernau, Vivian; Kane, Nolan C.; Marek, Laura; Seiler, Gerald; Rieseberg, Loren H.

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation. PMID:26500675

  18. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    Full Text Available Modelling crop evapotranspiration (ET response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1 and summer maize (scenario 2 by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  19. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Science.gov (United States)

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  20. Linking the planting of cover crops to soil and water nutrient dynamics in Shatto Ditch Watershed, IN

    Science.gov (United States)

    Christopher, S. F.; Tank, J. L.; Hanrahan, B. R.; Mahl, U. H.; Huang, K.

    2013-12-01

    Tile drainage systems are common in the Midwest, and facilitate the transfer of excess inorganic nitrogen (N) and phosphorus (P) from agricultural soils to adjacent streams. These non-point sources contribute to elevated nutrient loads to tributaries in the Mississippi River Basin, which have been linked to widespread hypoxia and associated ecological and economic problems in the Gulf of Mexico. In agricultural areas dominated by row-crops, the planting of cover crops after the cash crop has been harvested offers a potential mechanism to reduce nutrient leaching from fields to tile drains in the off-season. In general, cover crops retain nutrients on fields and increase soil organic matter (SOM) content after they are harvested. The planting of cover crops also promotes immobilization of soil N and reduction in losses of dissolved P from soils due to reduced erosion, resulting in significantly less leaching to surface waters through tile drains. As part of a demonstration project in the Shatto Ditch Watershed, located in the Tippecanoe River Basin, IN, we are testing whether the planting of cover crops will influence soil nutrient and organic matter, and how cover crops alter the dynamics of nutrient leaching from tile drains. We have been sampling tile drain outflows on a twice-monthly sampling regime and have been measuring dissolved inorganic N and P concentrations in tile water since November 2012. During Spring 2013, tile drain nitrate concentrations sampled synoptically throughout the watershed ranged from 2.6 - 38.9 mg NO3- L -1 (mean = 17.2 +/- 1.6 mg NO3- L -1) with the lowest concentrations coming from fields planted in cover crops (range = 2.6 - 19.0 mg NO3- L -1, mean = 9.7 +/- 1.5 mg NO3- L -1). In contrast, soluble reactive phosphorus (SRP) concentrations were much lower in tile drain water and ranged from 7.5 - 182.7 μg L-1 (mean = 24.5 +/- 5.0 μg L-1 SRP) and preliminary data suggest that there were no differences between fields with and without

  1. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  3. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  4. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt M.; Enkerli, Jürg; Widmer, Franco

    2015-01-01

    revealed a comparable community composition as previously reported from the same agroecosystem when insect baiting of soil samples was used as isolating technique. No specific MLG association with a certain crop was found. This study highlights the diversity of Metarhizium spp. found in the rhizosphere...... of different crops within a single agroecosystem and suggests that plants either recruit fungal associates from the surrounding soil environment or even govern the composition of Metarhizium populations....

  5. Soil-to-Plant Transfer Factors of {sup 99}Tc for Korean Major Upland Crops

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Keum, Dong Kwon [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2011-12-15

    In order to investigate the soil-to-plant transfer factor (TF) of {sup 99}Tc for Korean major upland crops (soybean, radish and Chinese cabbage), pot experiments were performed in a greenhouse. Soils were collected from four upland fields (two for soybean and two for radish and Chinese cabbage) around Gyeongju radioactive-waste disposal site. Three to four weeks before sowing, dried soils were mixed with a {sup 99}Tc solution and the mixtures were put into pots and irrigated. TF values were expressed as the ratios of the {sup 99}Tc concentrations in plants (Bq kg{sup -1}-dry or fresh) to those in soils (Bq kg{sup -1}-dry). There was no great difference in the TF value between soils. The TF values for soybean seeds were extremely lower than those for the straws, indicating a very low mobility of {sup 99}Tc to seeds. As representative TF values of{sup 99}Tc,1.8 X 10{sup -1}, 1.2 X 10{sup 1}, 3.2 X 10{sup 2} and 1.3 X 10{sup 2} (for dry plants), arithmetic means for two soils, were proposed for soybean seeds, radish roots, radish leaves and Chinese cabbage leaves, respectively. In the case of the vegetables, proposals for fresh plants were also made. The proposed values are not sufficiently representative so successive updates are needed.

  6. Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals.

    Science.gov (United States)

    Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M

    2010-09-01

    Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants' individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the 'Tragedy of the Commons', providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of 'shade avoidance', but a collective, offensive 'shading' strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision.

  7. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.

    Science.gov (United States)

    Ricroch, Agnès E; Hénard-Damave, Marie-Cécile

    2016-08-01

    Most of the genetically modified (GM) plants currently commercialized encompass a handful of crop species (soybean, corn, cotton and canola) with agronomic characters (traits) directed against some biotic stresses (pest resistance, herbicide tolerance or both) and created by multinational companies. The same crops with agronomic traits already on the market today will continue to be commercialized, but there will be also a wider range of species with combined traits. The timeframe anticipated for market release of the next biotech plants will not only depend on science progress in research and development (R&D) in laboratories and fields, but also primarily on how demanding regulatory requirements are in countries where marketing approvals are pending. Regulatory constraints, including environmental and health impact assessments, have increased significantly in the past decades, delaying approvals and increasing their costs. This has sometimes discouraged public research entities and small and medium size plant breeding companies from using biotechnology and given preference to other technologies, not as stringently regulated. Nevertheless, R&D programs are flourishing in developing countries, boosted by the necessity to meet the global challenges that are food security of a booming world population while mitigating climate change impacts. Biotechnology is an instrument at the service of these imperatives and a wide variety of plants are currently tested for their high yield despite biotic and abiotic stresses. Many plants with higher water or nitrogen use efficiency, tolerant to cold, salinity or water submergence are being developed. Food security is not only a question of quantity but also of quality of agricultural and food products, to be available and accessible for the ones who need it the most. Many biotech plants (especially staple food) are therefore being developed with nutritional traits, such as biofortification in vitamins and metals. The main

  8. Plants + microbes: Innovative food crop systems that also clean air and water

    Science.gov (United States)

    Nelson, Mark; Wolverton, B. C.

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. It is known that most biogeochemical cycles have a microbial link, and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, have long been established. Wetland plants and soil/media also been extensively researched for their ability to purify wastewaters of all kinds of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and root microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an extraordinary adaptive capacity as long as the starting populations are sufficiently diverse. It is known that tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and machines enclosed. Human waste products carry a plethora of microbes can are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors which operate without the need for human direction. We will

  9. Plants + soil/wetland microbes: Food crop systems that also clean air and water

    Science.gov (United States)

    Nelson, Mark; Wolverton, B. C.

    2011-02-01

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. Biogeochemical cycles have microbial links and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, has long been established. Wetland plants and the rootzone microbes of wetland soils/media also been extensively researched for their ability to purify wastewaters of a great number of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and rootzone microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an adaptive capacity as long as the starting populations are sufficiently diverse. Tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and equipment enclosed. Human waste products carry a plethora of microbes which are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors as these systems operate without the need for human intervention. We review

  10. The role of natural enemy foraging guilds in controlling cereal aphids in Michigan wheat.

    Science.gov (United States)

    Safarzoda, Shahlo; Bahlai, Christine A; Fox, Aaron F; Landis, Douglas A

    2014-01-01

    Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.

  11. The role of natural enemy foraging guilds in controlling cereal aphids in Michigan wheat.

    Directory of Open Access Journals (Sweden)

    Shahlo Safarzoda

    Full Text Available Insect natural enemies (predators and parasitoids provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L. is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L. and Sitobion avenae (F. (Hemiptera: Aphidae. Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.

  12. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants

    Science.gov (United States)

    Sreeman, Sheshshayee M.; Vijayaraghavareddy, Preethi; Sreevathsa, Rohini; Rajendrareddy, Sowmya; Arakesh, Smitharani; Bharti, Pooja; Dharmappa, Prathibha; Soolanayakanahally, Raju

    2018-04-01

    Burgeoning population growth, industrial demand and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favour the adoption of a “trait based” approach for increasing water productivity especially the traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation as the most relevant traits to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration is crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is equally important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarized the available information in literature on classifying various drought adaptive traits. We provide evidences that water-use efficiency when introgressed with moderately higher transpiration, would significantly enhance

  13. Arsenic accumulation in maize crop (Zea mays): a review.

    Science.gov (United States)

    Rosas-Castor, J M; Guzmán-Mar, J L; Hernández-Ramírez, A; Garza-González, M T; Hinojosa-Reyes, L

    2014-08-01

    Arsenic (As) is a metalloid that may represent a serious environmental threat, due to its wide abundance and the high toxicity particularly of its inorganic forms. The use of arsenic-contaminated groundwater for irrigation purposes in crop fields elevates the arsenic concentration in topsoil and its phytoavailability for crops. The transfer of arsenic through the crops-soil-water system is one of the more important pathways of human exposure. According to the Food and Agriculture Organization of the United Nations, maize (Zea mays L.) is the most cultivated cereal in the world. This cereal constitutes a staple food for humans in the most of the developing countries in Latin America, Africa, and Asia. Thus, this review summarizes the existing literature concerning the conditions involved in agricultural soil that leads to As influx into maize crops and the uptake mechanisms, metabolism and phytotoxicity of As in corn plants. Additionally, the studies of the As accumulation in raw corn grain and corn food are summarized, and the As biotransfer into the human diet is highlighted. Due to high As levels found in editable plant part for livestock and humans, the As uptake by corn crop through water-soil-maize system may represent an important pathway of As exposure in countries with high maize consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture.

    Science.gov (United States)

    Cassman, K G

    1999-05-25

    Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.

  15. Plant probiotic bacteria enhance the quality of fruit and horticultural crops

    Directory of Open Access Journals (Sweden)

    Alejandro Jiménez-Gómez

    2017-06-01

    Full Text Available The negative effects on the environment and human health caused by the current farming systems based on the overuse of chemical fertilizers have been reported in many studies. By contrast, bacterial inoculations produce positive effects on yields without causing this type of harm. Hence, during recent years, the commercialization of biofertilizers has been on the increase, and the number of companies and products available are expanding worldwide every year. In addition to the notable enhancement of crop production, many studies have shown how the application of bacteria has positive effects on food quality such as improved vitamin, flavonoid and antioxidant content, among other benefits. This advantage is interesting with respect to food that is consumed raw, such as fruits and many vegetables, as these bioactive molecules are maintained up until the moment the food is consumed. As regards this review focuses on the collection of studies that demonstrate that microorganisms can act as plant probiotics of fruit and horticultural crops, essential types of food that form part of a healthy diet.

  16. Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements.

    Science.gov (United States)

    Hämmerle, Martin; Höfle, Bernhard

    2016-01-01

    In agriculture, information about the spatial distribution of crop height is valuable for applications such as biomass and yield estimation, or increasing field work efficiency in terms of fertilizing, applying pesticides, irrigation, etc. Established methods for capturing crop height often comprise restrictions in terms of cost and time efficiency, flexibility, and temporal and spatial resolution of measurements. Furthermore, crop height is mostly derived from a measurement of the bare terrain prior to plant growth and measurements of the crop surface when plants are growing, resulting in the need of multiple field campaigns. In our study, we examine a method to derive crop heights directly from data of a plot of full grown maize plants captured in a single field campaign. We assess continuous raster crop height models (CHMs) and individual plant heights derived from data collected with the low-cost 3D camera Microsoft ® Kinect ® for Xbox One™ based on a comprehensive comparison to terrestrial laser scanning (TLS) reference data. We examine single measurements captured with the 3D camera and a combination of the single measurements, i.e. a combination of multiple perspectives. The quality of both CHMs, and individual plant heights is improved by combining the measurements. R 2 of CHMs derived from single measurements range from 0.48 to 0.88, combining all measurements leads to an R 2 of 0.89. In case of individual plant heights, an R 2 of 0.98 is achieved for the combined measures (with R 2  = 0.44 for the single measurements). The crop heights derived from the 3D camera measurements comprise an average underestimation of 0.06 m compared to TLS reference values. We recommend the combination of multiple low-cost 3D camera measurements, removal of measurement artefacts, and the inclusion of correction functions to improve the quality of crop height measurements. Operating low-cost 3D cameras under field conditions on agricultural machines or on autonomous

  17. Mite Pests in Plant Crops – Current Issues, Inovative Approaches and Possibilities for Controlling Them (1

    Directory of Open Access Journals (Sweden)

    Radmila Petanović

    2010-01-01

    Full Text Available In the middle of the last century, mites moved into the focus of attention as pests relevantto agriculture, forestry and landscape horticulture, presumably in direct reactionto the “green revolution” that involved plant cultivation in large-plot monocropping systems,improved methods of cultivation, selection of high-yielding cultivars and intensifieduse of pesticides and mineral fertilizers. Agroecosystems in which phytophagous miteshave become harmful organisms are primarily orchards, vineyards, greenhouses, urbangreeneries, plant nurseries and stored plant products, as well as annual field crops to asomewhat lesser degree. Phytophagous mite species belong to a variety of spider mites(Tetranychidae, false spider mites (Tenuipalpidae, gall and rust mites (Eriophyoidae, tarsonemidmites (Tarsonemidae and acarid mites (Acaridae. Most of these harmful speciesare widespread, some of them having more economic impact than others and being moredetrimental as depending on various specificities of each outdoor agroecosystem in anyparticular climatic region.The first segment of this overview focuses on the most significant mite pests ofagroecosystemsand urban horticultural areas in European countries, our own region andin Serbia today, primarily on species that have caused problems in recent years regardingplant production, and it also discusses various molecular methods available for investigatingdifferent aspects of the biology of phytophagous mites. Also, acaricides are discussedas a method of controlling mite pests in the light of the current situation and trends on pesticidemarkets in Serbia and the European Union member-countries

  18. Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant

    Science.gov (United States)

    Larue, Camille; Castillo-Michel, Hiram; Stein, Ricardo J.; Fayard, Barbara; Pouyet, Emeline; Villanova, Julie; Magnin, Valérie; Pradas del Real, Ana-Elena; Trcera, Nicolas; Legros, Samuel; Sorieul, Stéphanie; Sarret, Géraldine

    2016-05-01

    Nanotechnology is the new industrial revolution of our century. Its development leads to an increasing use of nanoparticles and thus to their dissemination. Their fate in the environment is of great concern and especially their possible transfer in trophic chains might be an issue for food safety. However, so far our knowledge on this topic has been restricted by the lack of appropriate techniques to characterize their behavior in complex matrices. Here, we present in detail the use of cutting-edge beam-based techniques for nanoparticle in situ localization, quantification and speciation in a crop plant species (Lactuca sativa). Lettuce seedlings have been exposed to TiO2 and Ag nanoparticles and analyzed by inductively coupled plasma spectrometry, micro-particle induced X-ray emission coupled to Rutherford backscattering spectroscopy on nuclear microprobe, micro-X-ray fluorescence spectroscopy and X-ray absorption near edge structure spectroscopy. The benefits and drawbacks of each technique are discussed, and the types of information that can be drawn, for example on the translocation to edible parts, change of speciation within the plant, detoxification mechanisms, or impact on the plant ionome, are highlighted. Such type of coupled approach would be an asset for nanoparticle risk assessment.

  19. Location of Bioelectricity Plants in the Madrid Community Based on Triticale Crop: A Multicriteria Methodology

    Directory of Open Access Journals (Sweden)

    L. Romero

    2015-01-01

    Full Text Available This paper presents a work whose objective is, first, to quantify the potential of the triticale biomass existing in each of the agricultural regions in the Madrid Community through a crop simulation model based on regression techniques and multiple correlation. Second, a methodology for defining which area has the best conditions for the installation of electricity plants from biomass has been described and applied. The study used a methodology based on compromise programming in a discrete multicriteria decision method (MDM context. To make a ranking, the following criteria were taken into account: biomass potential, electric power infrastructure, road networks, protected spaces, and urban nuclei surfaces. The results indicate that, in the case of the Madrid Community, the Campiña region is the most suitable for setting up plants powered by biomass. A minimum of 17,339.9 tons of triticale will be needed to satisfy the requirements of a 2.2 MW power plant. The minimum range of action for obtaining the biomass necessary in Campiña region would be 6.6 km around the municipality of Algete, based on Geographic Information Systems. The total biomass which could be made available in considering this range in this region would be 18,430.68 t.

  20. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    Science.gov (United States)

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions. © 2015 Institute of Botany, Chinese Academy of Sciences.

  1. Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA Agricultural Research Service, Washington DC (United States); Chuck, George [USDA Agricultural Research Service, Washington DC (United States)

    2015-10-29

    The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1 and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.

  2. [Biodiversity of phosphate-dissolving and plant growth--promoting endophytic bacteria of two crops].

    Science.gov (United States)

    Huang, Jing; Sheng, Xiafang; He, Linyan

    2010-06-01

    We isolated and characterized phosphate-dissolving endophytic bacteria from two commonly cultivated crops. Phosphate-dissolving endophytic bacteria were isolated by plating and screening from interior tissues of rape and maize plants on NBRIP medium with tricalcium phosphate as sole phosphate source. Bacteria were characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-indoleacetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase production,and further classified by restriction analysis of 16S rDNA. Eleven typical strains were identified by 16S rDNA sequence analysis. Thirty-two phosphate-dissolving endophytic bacteria were isolated from maize and rape plants and classified by restriction analysis of 16S rDNA in 8 different taxonomic groups at the similarity level of 76%. All the isolates could release phosphate from tricalcium phosphate and decrease the pH of the medium. The maximum phosphate content (537.6 mg/L) in the solution was obtained with strain M1L5. Thirteen isolates isolated from rape produced indoleacetic acid and siderophore, 68.4% and 63.2% of the strains isolated from maize produced indoleacetic acid and siderophore,respectively. 63.2% of the strains isolated from maize were able to grow on 1-aminocyclopropane-1-carboxylic acid as the sole nitrogen source. The eleven strains belonged to five different genera including Pantoea, Pseudomonas, Burkholderia, Acinetobacter and Ralstonia. Phosphate-dissolving endophytic bacteria isolated from rape and maize plants have abundant characteristics relative to promoting plant growth and genetic diversity.

  3. Ecological management of cereal stemborers in African smallholder agriculture through behavioural manipulation.

    Science.gov (United States)

    Midega, Charles A O; Bruce, Toby J A; Pickett, John A; Khan, Zeyaur R

    2015-09-01

    1. Africa faces serious challenges in feeding its rapidly growing human population owing to the poor productivity of maize and sorghum, the most important staple crops for millions of smallholder farmers in the continent, with yields being among the lowest in the world. 2. A complex of lepidopterous stemborers attack cereals in Africa. However, their effective control is difficult, largely as a result of the cryptic and nocturnal habits of moths, and protection provided by host stem for immature pest stages. Moreover, current control measures are uneconomical and impractical for resource-poor farmers. 3. An ecological approach, based on companion planting, known as 'push-pull', provides effective management of these pests, and involves combined use of inter- and trap cropping systems where stemborers are attracted and trapped on trap plants with added economic value ('pull'), and are driven away from the cereal crop by antagonistic intercrops ('push'). 4. Novel defence strategies inducible by stemborer oviposition have recently been discovered, leading to the attraction of egg and larval parasitoids, in locally adapted maize lines but not in elite hybrids. We also established that landscape complexity did not improve the ecosystem service of biological control, but rather provided a disservice by acting as a 'source' of stemborer pests colonising the crop. 5. Here we review and provide new data on the direct and indirect effects of the push-pull approach on stemborers and their natural enemies, including the mechanisms involved, and highlight opportunities for exploiting intrinsic plant defences and natural ecosystem services in pest management in smallholder farming systems in Africa.

  4. Using remote sensing to calculate plant available nitrogen needed by crops on swine factory farm sprayfields in North Carolina

    Science.gov (United States)

    Christenson, Elizabeth; Serre, Marc

    2015-10-01

    North Carolina (NC) is the second largest producer of hogs in the United States with Duplin county, NC having the densest population of hogs in the world. In NC, liquid swine manure is generally stored in open-air lagoons and sprayed onto sprayfields with sprinkler systems to be used as fertilizer for crops. Swine factory farms, termed concentrated animal feeding operations (CAFOs), are regulated by the Department of Environment and Natural Resources (DENR) based on nutrient management plans (NMPs) having balanced plant available nitrogen (PAN). The estimated PAN in liquid manure being sprayed must be less than the estimated PAN needed crops during irrigation. Estimates for PAN needed by crops are dependent on crop and soil types. Objectives of this research were to develop a new, time-efficient method to identify PAN needed by crops on Duplin county sprayfields for years 2010-2014. Using remote sensing data instead of NMP data to identify PAN needed by crops allowed calendar year identification of which crops were grown on sprayfields instead of a five-year range of values. Although permitted data have more detailed crop information than remotely sensed data, identification of PAN needed by crops using remotely sensed data is more time efficient, internally consistent, easily publically accessible, and has the ability to identify annual changes in PAN on sprayfields. Once PAN needed by crops is known, remote sensing can be used to quantify PAN at other spatial scales, such as sub-watershed levels, and can be used to inform targeted water quality monitoring of swine CAFOs.

  5. Viruses and their significance in agricultural and horticultural crops in Finland

    Directory of Open Access Journals (Sweden)

    E. TAPIO

    2008-12-01

    Full Text Available This paper reviews the plant viruses and virus vectors that have been detected in agricultural and horticultural crop plants and some weeds in Finland. The historical and current importance of virus diseases and the methods used for controlling them in cereals, potato, berry plants, fruit trees, ornamental plants and vegetables are discussed. Plant viruses have been intensely studied in Finland over 40 years. Up to date, 44 plant virus species have been detected, and many tentatively identified virus-es are also reported. Control of many virus diseases has been significantly improved. This has been achieved mainly through changes in cropping systems, production of healthy seed potatoes and healthy stocks of berry plants, fruit trees and ornamental plants in the institutes set up for such production, and improved hygiene. At the present, barley yellow dwarf luteovirus, potato Y potyvirus and potato mop-top furovirus are considred to be economically the most harmful plant viruses in Finland.

  6. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1984-01-01

    In Part 1 of a planned series of articles on preservation of foods of plant origin by gamma irradiation, the current state of research on the technological, nutritional, and biochemical aspects of sprout inhibition of potatoes and other tuber crops are reviewed. These include varietal responses, dose effects, time of irradiation, pre- and postirradiation storage, and handling requirements; postirradiation changes in carbohydrates, ascorbic acid, amino acids, and other nutrients; respiration; biochemical mechanisms involved in sprout inhibition; wound healing and microbial infection during storage; formation of wound and light-induced glycoalkaloids and identification of irradiated potatoes. The culinary and processing qualities with particular reference to darkening of boiled and processed potatoes are discussed. The prospects of irradiation on an industrial scale as an alternative to chemical sprout inhibitors or mechanical refrigeration are considered

  7. Application of gamma-irradiation to cereals and cereals products

    International Nuclear Information System (INIS)

    Wootton, M.

    1985-01-01

    Gamma-irradiation may be used on cereals and cereal products to control insect infestation and microbiological problems. Such problems include mould growth, mycotoxin production, pathogens, spore-forming organisms and total microbial load. Deleterious effects of gamma-irradiation arise only at relatively high dose levels with consequences on germination rate, wheat flour dough properties, and cake and noodle quality. Radiation-induced changes to starch have greater impact on behaviour of cereal products than such changes to other cereal components

  8. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles.

    Science.gov (United States)

    Pokhrel, Lok R; Dubey, Brajesh

    2013-05-01

    The increasing applications of different nanomaterials in the myriad of nano-enabled products and their potential for leaching have raised considerable environmental, health and safety (EHS) concerns. As systematic studies investigating potential anomalies in the morphology and anatomy of crop plants are scarce, herein we report on the developmental responses of two agriculturally significant crop plants, maize (Zea mays L.) and cabbage (Brassica oleracea var. capitata L.), upon in vitro exposure to nanoparticles of citrate-coated silver (Citrate-nAg) and zinc oxide (nZnO). Analyses involve histology of the primary root morphology and anatomy using light microscopy, metal biouptake, moisture content, rate of germination, and root elongation. Comparative toxicity profiles of the ionic salts (AgNO3 and ZnSO4) are developed. Notably, we uncover structural changes in maize primary root cells upon exposure to Citrate-nAg, nZnO, AgNO3, and ZnSO4, possibly due to metal biouptake, suggesting potential for functional impairments in the plant growth and development. Citrate-nAg exposure results in lower Ag biouptake compared to AgNO3 treatment in maize. Microscopic evidence reveals 'tunneling-like effect' with nZnO treatment, while exposure to AgNO3 leads to cell erosion in maize root apical meristem. In maize, a significant change in metaxylem count is evident with Citrate-nAg, AgNO3, and ZnSO4 treatment, but not with nZnO treatment (p>0.1). In both maize and cabbage, measures of germination and root elongation reveal lower nanoparticle toxicity compared to free ions. As moisture data do not support osmotically-induced water stress hypothesis for explaining toxicity, we discuss other proximate mechanisms including the potential role of growth hormones and transcription factors. These findings highlight previously overlooked, anatomically significant effects of metal nanoparticles, and recommend considering detailed anatomical investigations in tandem with the standard

  9. Cereal Production Ratio and NDVI in Spain

    Science.gov (United States)

    Saa-Requejo, Antonio; Recuero, Laura; Palacios, Alicia; Díaz-Ambrona, Carlos G. H.; Tarquis, Ana M.

    2014-05-01

    Droughts are long-term phenomena affecting large regions causing significant damages both in human lives and economic losses. The use of remote sensing has proved to be very important in monitoring the growth of agricultural crops and trying to asses weather impact on crop loss. Several indices has been developed based in remote sensing data being one of them the normalized difference vegetation index (NDVI). In this study we have focus to know the correlation between NDVI data and the looses of rain fed cereal in the Spanish area where this crop is majority. For this propose data from drought damage in cereal come from the pool of agricultural insurance in Spain (AGROSEGURO) including 2007/2008 to 2011/2012 (five agricultural campaigns). This data is given as a ratio between drought party claims against the insured value of production aggregated at the agrarian region level. Medium resolution (500x500 m2) MODIS images were used during the same campaigns to estimate the eight-day composites NDVI at these locations. The NDVI values are accumulated following the normal cycle of the cereal taking in account the sowing date at different sites. At the same time, CORINE Land Cover (2006) was used to classify the pixels belonging to rain fed cereal use including a set of conditions such as pixels showing dry during summer, area in which there has been no change of use. Fallow presence is studied with particular attention as it imposes an inter annual variation between crop and bare soil and causes decreases in greenness in a pixel and mix both situations. This is more complex in the situation in which the avoid fallow and a continuous monoculture is performed. The results shown that around 40% of the area is subject to the regime of fallow while 60% have growing every year. In addition, another variation is detected if the year is humid (decrease of fallow) or dry (increase of fallow). The level of correlation between the drought damage ratios and cumulative NDVI for the

  10. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  11. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo.

    Science.gov (United States)

    Smillie, R M; Nott, R

    1982-10-01

    The potential of measurements of chlorophyll fluorescence in vivo to detect cellular responses to salinity and degrees of salt stress in leaves was investigated for three crop plants. Sugar beet (Beta vulgaris L.) (salt tolerant), sunflower (Helianthus annuus L.) (moderately salt tolerant), and bean (Phaseolus Vulgaris L. cv Canadian Wonder) (salt intolerant) were grown in pots and watered with mineral nutrient solution containing 100 millimolar NaCl. The fast rise in variable chlorophyll fluorescence yield that is correlated with photoreduction of photosystem II acceptors increased in leaves of sugar beet plants treated with salt suggesting stimulation of photosystem II activity relative to photosystem I. In sunflower, this fast rise was depressed by approximately 25% and the subsequent slow rate of quenching of the chlorophyll fluorescence was stimulated. These differences were more marked in the older mature leaves indicating an increasing gradient of salt response down the plant. The salt effect in vivo was reversible since chloroplasts isolated from mature leaves of salt-treated and control sunflower plants gave similar photosystem II activities. Unlike in sugar beet and sunflower, leaves of salt-treated bean progressively lost chlorophyll. The rate of slow quenching of chlorophyll fluorescence decreased indicating development of a partial block after photosystem II and possible initial stimulation of photosystem II activity. With further loss of chlorophyll photosystem II activity declined. It was concluded that measurements of chlorophyll fluorescence in vivo can provide a rapid means of detecting salt stress in leaves, including instances where photosynthesis is reduced in the absence of visible symptoms. The possible application to screening for salt tolerance is discussed.

  12. Integrated plant nutrient management on diversified cropping system in aqua-terrestrial ecosystem for yield potentiality, quality and rural sustainability

    OpenAIRE

    PUSTE, ANANDAMOY DR.; DE, PRALAY ER.; MAITY, TAPAN KUMAR DR.

    2009-01-01

    Balanced and integrated plant nutrient management is imperative in agricultural production system including its quality - more applicable to those of developing country in the world. Like arable land in wetland ecosystem, nitrogen and other essential key plant elements and its management is also an integral part for so many beneficial aquatic crops (food, non-food etc.). With this significant importance of IPNM, number of case studies were undertaken through TOT, TDET based integrated aquacul...

  13. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  14. Effect of some detergents, humate, and composition of seedbed on crop of tomato plants in a hydroponic culture

    Science.gov (United States)

    Guminka, A. Z.; Gracz-Nalepka, M.; Lukasiewicz, B.; Sobolewicz, E.; Turkiewicz, I. T.

    1978-01-01

    It is established that single detergent doses distinctly stimulate vegetative development of plants in the initial stage when humates are available. When detergents are applied every four weeks in a hydroponic culture, in which the seedbed does not contain active humates, the crop is reduced by 50%. This adverse effect does not occur when the seedbed is a mixture of brown coal and peat.

  15. Wheat Nitrogen Fertilisation Effects on the Performance of the Cereal Aphid Metopolophium dirhodum

    Directory of Open Access Journals (Sweden)

    Alan F. J. Gash

    2012-02-01

    Full Text Available The effects of five rates of nitrogen fertiliser applications on the performance of the cereal aphid Metopolophium dirhodum on winter wheat, within the range of rates recommended for UK crops, were investigated over two seasons in field-grown crops and also on plants grown in the glasshouse. Longevity was unaffected by the level of fertilisation, but aphid intrinsic rate of increase and fecundity increased with each level applied. In the second field season, when a higher upper limit was used, many of these increases were significant. A previously unreported finding for this species was that there was a significant decrease in fecundity for the highest rate of fertilisation. Results for the glasshouse-reared aphids followed a similar pattern to those in the field, and overall they underline recent reports in the literature of the negative effects of high nutrient concentrations on the performance of herbivorous insects. The underlying reasons for these are discussed.

  16. Host genotype is an important determinant of the cereal phyllosphere mycobiome

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2015-01-01

    The phyllosphere mycobiome in cereals is an important determinant of crop health. However, an understanding of the factors shaping this community is lacking. Fungal diversity in leaves from a range of cultivars of winter wheat (Triticum aestivum), winter and spring barley (Hordeum vulgare...... treatment (13%) and location (4%). Indicator species, including plant pathogens, responding to factors such as crop species, location and treatment were identified. Host genotype at both the species and cultivar level is important in shaping phyllosphere fungal communities, whereas fungicide treatment...... and location have minor effects. We found many host-specific fungal pathogens, but also a large diversity of fungi that were relatively insensitive to host genetic background, indicating that host-specific pathogens live in a 'sea' of nonspecific fungi....

  17. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    Energy Technology Data Exchange (ETDEWEB)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la [The Connecticut Agricultural Experiment Station (United States); Hamdi, Helmi [University of Carthage, Water Research and Technology Center (Tunisia); White, Jason C., E-mail: jason.white@ct.gov [The Connecticut Agricultural Experiment Station (United States); Bindraban, Prem; Dimkpa, Christian [Virtual Fertilizer Research Center (United States)

    2015-02-15

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications.

  18. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    Science.gov (United States)

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  20. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    International Nuclear Information System (INIS)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la; Hamdi, Helmi; White, Jason C.; Bindraban, Prem; Dimkpa, Christian

    2015-01-01

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications

  1. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    Science.gov (United States)

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Classifying Cereal Data (Earlier Methods)

    Science.gov (United States)

    The DSQ includes questions about cereal intake and allows respondents up to two responses on which cereals they consume. We classified each cereal reported first by hot or cold, and then along four dimensions: density of added sugars, whole grains, fiber, and calcium.

  3. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    Science.gov (United States)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  4. Silo para cereales. Bandholm

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1960-09-01

    Full Text Available El silo de Bandholm, para cereales, construido en la isla de Lolland, tiene una capacidad de 13 a 14.000 toneladas. Esta estructura se ha subdividido en células individuales de unas 400 toneladas de capacidad cada una. La obra ha sido proyectada y construida por Christiani & Nielsen.

  5. EVIDENCE FROM CEREALS MARKET

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... liberalization of the cereals markets in order to stimulate agricultural production and reduce reliance on ... consumption survey undertaken in Bamako to estimate nutrient-income and price elasticities by season ..... either be one of smoothing consumption in the face of variable income and/or one of meeting ...

  6. Combinable protein crop production

    OpenAIRE

    Wright, Isobel

    2008-01-01

    This research topic review aims to summarise research knowledge and observational experience of combinable protein crop production in organic farming systems for the UK. European research on peas, faba beans and lupins is included; considering their role in the rotation, nitrogen fixation, varieties, establishment, weed control, yields, problems experienced and intercropping with cereals.

  7. Mutation breeding in crop improvement - achievements and prospects

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    2004-01-01

    Crop improvement programmes through induced mutations were initiated about seven decades ago. Majority of the mutant varieties have been released during the last two decades. In terms of the development and release of mutant varieties, China (605), India (309), Russia (204), the Netherlands (176), USA (125) and Japan (120) are the leading countries. Radiation, especially gamma radiation was the most frequently used mutagen for inducing mutations in crop plants. Out of 1072 mutant varieties of cereals, rice alone accounts for 434 varieties followed by barley (269). Mutation breeding has made significant contribution in increasing the production of rice, ground nut, castor, chickpea, mungbean and urd bean in the Indian subcontinent. The future mutation breeding programmes should be aimed at improving the root characters, nodulation in legumes, alteration of fatty acid composition in oil seeds, host pathogen interactions, photo- insensitivity and apomixix in crop plants

  8. The Effect of Plant Cultivar, Growth Media, Harvest Method and Post Harvest Treatment on the Microbiology of Edible Crops

    Science.gov (United States)

    Hummerick, Mary P.; Gates, Justin R.; Nguyen, Bao-Thang; Massa, Gioia D.; Wheeler, Raymond M.

    2011-01-01

    Systems for the growth of crops in closed environments are being developed and tested for potential use in space applications to provide a source of fresh food. Plant growth conditions, growth media composition and harvest methods can have an effect on the microbial population of the plant, and therefore should be considered along with the optimization of plant growth and harvest yields to ensure a safe and palatable food crop. This work examines the effect of plant cultivar, growth media, and harvest method on plant microbial populations. Twelve varieties of leafy greens and herbs were grown on a mixture of Fafard #2 and Arcillite in the pillow root containment system currently being considered for the VEGGIE plant growth unit developed by Orbitec. In addition, ,Sierra and Outredgeous lettuce varieties were grown in three different mixtures (Fafard #2, Ardllite, and Perlite/Vermiculite). The plants were analyzed for microbial density. Two harvest methods, "cut and come again" (CACA) and terminal harvest were also compared. In one set ofexpe'riments red leaf lettuce and mizuna were grown in pots in a Biomass Production System for education. Plants were harvested every two weeks by either method. Another set of experiments was performed using the rooting pillows to grow 5 varieties of leafy greens and cut harvesting at different intervals. Radishes were harvested and replanted at two-week intervals. Results indicate up to a 3 IOglO difference in microbial counts between some varieties of plants. Rooting medium resulted in an approximately 2 IOglO lower count in the lettuce grown in arscillite then those grown in the other mixtures. Harvest method and frequency had less impact on microbial counts only showing a significant increase in one variety of plant. Post harvest methods to decrease the bacterial counts on edible crops were investigated in these and other experiments. The effectiveness of PRO-SAN and UV-C radiation is compared.

  9. Mulching as a countermeasure for crop contamination within the 30 km zone of Chernobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yera, T.S.; Vallejo, R.; Tent, J.; Rauret, G.; Omelyanenko, N.; Ivanov, Y.

    1999-01-01

    The effect of mulch soil cover on crop contamination by 137 Cs was studied within the 30 km zone of Chernobyl Nuclear Power Plant. Experiments were performed with oats (Avena sativa) over a three year period. In 1992 soil surface was covered by a plastic net. In 1993 two straw mulch treatments were applied at a dose rate of 200 g m -2 using 137 Cs contaminated and clean straw, respectively. A similar mulch treatment was applied in 1994, and two mulch doses of clean straw were tested. Protection of the soil with a plastic net significantly increased crop yield and reduced crop contamination. When clean straw was used as a mulch layer, a significant decrease of about 30--40% in 137 Cs activity concentration was observed. Mulching with 137 Cs contaminated straw did not reduce crop contamination, probably due to an increase in soil available 137 Cs released from the contaminated mulch. Mulching has been shown to be an effective treatment both for reducing 137 Cs plant contamination and improving crop yield. Therefore, it can be considered as a potential countermeasure in a post-accident situation

  10. Distribution of nitrogen ammonium sulfate (15N) soil-plant system in a no-tillage crop succession

    International Nuclear Information System (INIS)

    Fernandes, Flavia Carvalho da Silva; Libardi, Paulo Leonel

    2012-01-01

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on 15 N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha -1 in the form of labeled 15 N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha -1 N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha -1 N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha -1 N. (author)

  11. Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores.

    Science.gov (United States)

    Ferrandino, F J

    2008-05-01

    Most mathematical models of plant disease epidemics ignore the growth and phenology of the host crop. Unfortunately, reports of disease development are often not accompanied by a simultaneous and commensurate evaluation of crop development. However, the time scale for increases in the leaf area of field crops is comparable to the time scale of epidemics. This simultaneous development of host and pathogen has many ramifications on the resulting plant disease epidemic. First, there is a simple dilution effect resulting from the introduction of new healthy leaf area with time. Often, measurements of disease levels are made pro rata (per unit of host leaf area or total root length or mass). Thus, host growth will reduce the apparent infection rate. A second, related effect, has to do with the so-called "correction factor," which accounts for inoculum falling on already infected tissue. This factor accounts for multiple infection and is given by the fraction of the host tissue that is susceptible to disease. As an epidemic develops, less and less tissue is open to infection and the initial exponential growth slows. Crop growth delays the impact of this limiting effect and, therefore, tends to increase the rate of disease progress. A third and often neglected effect arises when an increase in the density of susceptible host tissue results in a corresponding increase in the basic reproduction ratio, R(0), defined as the ratio of the total number of daughter lesions produced to the number of original mother lesions. This occurs when the transport efficiency of inoculum from infected to susceptible host is strongly dependent on the spatial density of plant tissue. Thus, crop growth may have a major impact on the development of plant disease epidemics occurring during the vegetative phase of crop growth. The effects that these crop growth-related factors have on plant disease epidemics spread by airborne spores are evaluated using mathematical models and their importance is

  12. Energy crops for biogas plants. Baden-Wuerttemberg; Energiepflanzen fuer Biogasanlagen. Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Butz, A.; Heiermann, M.; Herrmann, C. [and others

    2013-05-01

    For agriculturists in Baden-Wuerttemberg (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  13. Energy crops for biogas plants. Mecklenburg-Western Pomerania; Energiepflanzen fuer Biogasanlagen. Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Bull, I.; Formowitz, B. (and others)

    2012-06-15

    For agriculturists in Mecklenburg-Western Pomerania (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  14. Energy crops for biogas plants. Saxony-Anhalt; Energiepflanzen fuer Biogasanlagen. Sachsen-Anhalt

    Energy Technology Data Exchange (ETDEWEB)

    Boese, L.; Buttlar, C. von; Boettcher, K. (and others)

    2012-07-15

    For agriculturists in Saxony-Anhalt (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  15. Guiding deployment of resistance in cereals using evolutionary principles.

    Science.gov (United States)

    Burdon, Jeremy J; Barrett, Luke G; Rebetzke, Greg; Thrall, Peter H

    2014-06-01

    Genetically controlled resistance provides plant breeders with an efficient means of controlling plant disease, but this approach has been constrained by practical difficulties associated with combining many resistance genes together and strong evolutionary responses from pathogen populations leading to subsequent resistance breakdown. However, continuing advances in molecular marker technologies are revolutionizing the ability to rapidly and reliably manipulate resistances of all types - major gene, adult plant and quantitative resistance loci singly or multiply into individual host lines. Here, we argue that these advances provide major opportunities to deliberately design deployment strategies in cereals that can take advantage of the evolutionary pressures faced by target pathogens. Different combinations of genes deployed either within single host individuals or between different individuals within or among crops, can be used to reduce the size of pathogen populations and generate patterns of disruptive selection. This will simultaneously limit immediate epidemic development and reduce the probability of subsequent evolutionary change in the pathogen for broader infectivity or increased aggressiveness. The same general principles are relevant to the control of noncereal diseases, but the most efficacious controls will vary reflecting the range of genetic options available and their fit with specific ecology and life-history combinations.

  16. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

    OpenAIRE

    Megan C Shelden; Ute eRoessner

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-toleran...

  17. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614–1700 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada)

    2013-05-01

    The increasing applications of different nanomaterials in the myriad of nano-enabled products and their potential for leaching have raised considerable environmental, health and safety (EHS) concerns. As systematic studies investigating potential anomalies in the morphology and anatomy of crop plants are scarce, herein we report on the developmental responses of two agriculturally significant crop plants, maize (Zea mays L.) and cabbage (Brassica oleracea var. capitata L.), upon in vitro exposure to nanoparticles of citrate-coated silver (Citrate–nAg) and zinc oxide (nZnO). Analyses involve histology of the primary root morphology and anatomy using light microscopy, metal biouptake, moisture content, rate of germination, and root elongation. Comparative toxicity profiles of the ionic salts (AgNO{sub 3} and ZnSO{sub 4}) are developed. Notably, we uncover structural changes in maize primary root cells upon exposure to Citrate–nAg, nZnO, AgNO{sub 3}, and ZnSO{sub 4}, possibly due to metal biouptake, suggesting potential for functional impairments in the plant growth and development. Citrate–nAg exposure results in lower Ag biouptake compared to AgNO{sub 3} treatment in maize. Microscopic evidence reveals ‘tunneling-like effect’ with nZnO treatment, while exposure to AgNO{sub 3} leads to cell erosion in maize root apical meristem. In maize, a significant change in metaxylem count is evident with Citrate–nAg, AgNO{sub 3}, and ZnSO{sub 4} treatment, but not with nZnO treatment (p > 0.1). In both maize and cabbage, measures of germination and root elongation reveal lower nanoparticle toxicity compared to free ions. As moisture data do not support osmotically-induced water stress hypothesis for explaining toxicity, we discuss other proximate mechanisms including the potential role of growth hormones and transcription factors. These findings highlight previously overlooked, anatomically significant effects of metal nanoparticles, and recommend considering

  18. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    Science.gov (United States)

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  19. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    Science.gov (United States)

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  20. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  1. Manipulating legume/cereal mixtures to optimize the above and ...

    African Journals Online (AJOL)

    The purpose of mixing legume and cereals in the cropping systems is to optimise the use of spatial, temporal, and physical resources both above- and below ground, by maximising positive interactions (facilitation) and minimising negative ones (competition) among the components. The complex interactions in ...

  2. CEREAL PRODUCTIVITY IN ETHIOPIA: AN ANALYSIS BASED ON ...

    African Journals Online (AJOL)

    Rahel

    application is still low and only about 36.5 percent of total cereal acreage benefit from chemical fertilizer ... outpace other East African countries and even Green Revolution India, especially taking into account .... restrict the matching to plots that did not intercrop nor had multiple crops on, and only those used in one season ...

  3. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  4. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  5. Changes in bird community composition in response to growth changes in short-rotation woody crop planting

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Hanowski, J.; Schiller, A.; Hoffman, W.; Christian, D.; Lindberg, J.

    1997-01-01

    Hybrid poplar established as intensively managed short-rotation woody crops (SRWC) on former agricultural lands can provide habitat for wildlife. Studies of bird use of SRWC for nesting and during fall migration have shown that the numbers and kinds of breeding birds using mature plantings of hybrid poplar are similar to natural forested lands. In Minnesota, the number of species of breeding birds using habitat provided by clonal-trial plantings and young larger-scale plantings (12-64 ha) of hybrid poplar were initially most similar to those using grasslands and row-crops. As the plantings approached canopy closure, successional species became predominant. In the Pacific Northwest, breeding bird composition and density were very similar for mature plantings and forested areas; however, fall migrants were found primarily in forested areas. In the Southeast, preliminary comparisons of breeding bird use of plantings of sweetgum and sycamore with naturally regenerating forests of different ages and sizes and vegetation structure are showing no size effect on use. As with hybrid poplar, species use of the more mature plantings of sweetgum and sycamore was most similar to that of natural forests. (author)

  6. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition.

    Science.gov (United States)

    Hirsch, Penny R; Mauchline, Tim H

    2015-01-01

    Nitrogen is crucial for living cells, and prior to the introduction of mineral N fertilizer, fixation of atmospheric N2 by diverse prokaryotes was the primary source of N in all ecosystems. Microorganisms drive the N cycle starting with N2 fixation to ammonia, through nitrification in which ammonia is oxidized to nitrate and denitrification where nitrate is reduced to N2 to complete the cycle, or partially reduced to generate the greenhouse gas nitrous oxide. Traditionally, agriculture has relied on rotations that exploited N fixed by symbiotic rhizobia in leguminous plants, and recycled wastes and manures that microbial activity mineralized to release ammonia or nitrate. Mineral N fertilizer provided by the Haber-Bosch process has become essential for modern agriculture to increase crop yields and replace N removed from the system at harvest. However, with the increasing global population and problems caused by unintended N wastage and pollution, more sustainable ways of managing the N cycle in soil and utilizing biological N2 fixation have become imperative. This review describes the biological N cycle and details the steps and organisms involved. The effects of various agricultural practices that exploit fixation, retard nitrification, and reduce denitrification are presented, together with strategies that minimize inorganic fertilizer applications and curtail losses. The development and implementation of new technologies together with rediscovering traditional practices are discussed to speculate how the grand challenge of feeding the world sustainably can be met. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding

    Directory of Open Access Journals (Sweden)

    Guijun Yan

    2017-10-01

    Full Text Available Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH lines, recombinant inbred lines (RILs, and near isogenic lines (NILs. DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.

  9. Estimating water and nitrate leaching in tree crops using inverse modelled plant and soil hydraulic properties

    Science.gov (United States)

    Couvreur, Valentin; Kandelous, Maziar; Mairesse, Harmony; Baram, Shahar; Moradi, Ahmad; Pope, Katrin; Hopmans, Jan

    2015-04-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other (semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, root nitrate and water uptake interact with soil and root properties in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modelling studies are required to allow for unravelling of the relevant complexities that result from typical variations of crop properties, soil texture and layering across farmer-managed fields. A combined field monitoring and modelling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content within the root zone, soil matric potential below the root zone, and nitrate concentration in the soil solution. Plant and soil properties of incremented complexity are optimized with the software HYDRUS in an inverse modelling scheme, which allows estimating leaching under constraint of hydraulic principles. Questions of optimal irrigation and fertilization timing can then be addressed using predictive results and global optimization algorithms.

  10. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops

    Directory of Open Access Journals (Sweden)

    Craita eBita

    2013-07-01

    Full Text Available Global warming is predicted to have a general negative effect on plant growth due to the negative effect of high temperatures on plant development. The increasing threat of climatological extremes, including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review we assess the impact of global climate change on the production of agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that have will be likely to show the most extreme reductions in yield as a result of warming in general and the expected fluctuations in temperature. High temperature stress has a wide range of effects on plants both in terms of physiology, biochemistry and gene regulation pathways. In this review we present the recent advances of research on all these level of investigation focusing on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally we review possible mechanisms and methods which can lead to the generation of new varieties that will allow sustainable yield production in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.

  11. The effect of S-(ferrocenylmethyl-thiosalicylic acid sodium salt on the germination and growth of cereal grains and seedlings and on the development of pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Jan Michalczyk

    2014-01-01

    Full Text Available The sodium salt of S-(ferrocenylmethyl-thiosalicylic acid was studied in the context of its possible use as a systemic fungicide and, concurrently, as a source of physiologically active iron fur crop plants. It was found that this metallocene was taken up by maize seedlings growing in liquid mediums, and used for chlorophyll synthesis, in a concentration range as low as 0.05-0.08 mM dm-3. In the concentration range of 0.05-1.5 mM dm-3, it inhibited germination, seedling growth and Y-amylase activity while it stimulated the activities of proteinases, catalase and peroxidase. When sprayed on cereal leaves at a concentration of 1.0-2.0 mM dm-3, it exhibited fungicidal properties: inhibition of fungus development without harming cereal plant leaves and stimulated chlorophyll synthesis.

  12. A trial burn of rape straw and whole crops harvested for energy use to assess efficiency implications

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    Increased biomass utilisation and alternatives to cereal straw such as oil seed rape (OSR) straw will be necessary to achieve the Government's renewable energy targets. This report describes the results of a study to investigate the technical and economic feasibility of burning OSR straw and whole crops in an existing biomass power plant operated by EPR Ely Ltd in comparison with conventional cereal straw. Suitable quantities of bales of each fuel were provided for the combustion trials by Anglian Straw Ltd. Three trials were conducted: one using wheat-based cereal straw; one using 92% OSR; and one using 65% whole crop fuel. The availability of OSR straw and whole crop in Eastern England for use as fuel was also determined. Plant performance and stack emissions were evaluated and samples of delivered crop samples, bottom ash and fly ash from each trial were analysed. The parameters against which performance was assessed included: ease of handling and conveying; ease of chopping; ease of entry into the combustion chamber; furnace temperature profile; steam and electricity production rate; plant chimney emissions; ash collection and removal; operating stability; sustainability; and fuel availability.

  13. Anatomical features of leaves of three cultivars of winter wheat (Triticum aestivum L. and settling the plants by cereal leaf beetles, Oulema spp. (Coleoptera, Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Elżbieta Weryszko-Chmielewska

    2013-12-01

    Full Text Available Investigations of flag leaves anatomy of three winter wheat cultivars: Almari, Gama and Weneda were carried out as it was state that there are great differences in the intensity of cereal leaf beetle feeding on the leaves. In order to determine the features conditioning the differentiated resistance of these cultivars following parameters were measured: the thickness of leaf blade, the length of trichomes and their density in the adaxial epidermis, the number of silicon cells in 1 mm2 epidermis and the thickness of the external cell walls of epidermis. The observations of cross section of the leaves were made in a light microscope and that of surface of the adaxial epidermis in a scanning electron microscope. In this study it was shown that Gama cv. distinguishes of the shortest trichomes with poor density, the lowest number of the silicon cells in 1 mm2 and epidermis cells with the thinest walls. This features indicate a poor resistance of Gama cv. against feeding of the pests and give reasons for the presence a much higher number of the cereal leaf beetle larvae (about 100% than at the extant two cultivars. Dependence between the thickness of leaf blades and the number of larvae of the infesting pests has not been stated.

  14. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    Science.gov (United States)

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  15. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver.

    Science.gov (United States)

    Rich, Sarah M; Watt, Michelle

    2013-03-01

    Charles Darwin founded root system architecture research in 1880 when he described a root bending with gravity. Curving, elongating, and branching are the three cellular processes in roots that underlie root architecture. Together they determine the distribution of roots through soil and time, and hence the plants' access to water and nutrients, and anchorage. Most knowledge of these cellular processes comes from seedlings of the model dicotyledon, Arabidopsis, grown in soil-less conditions with single treatments. Root systems in the field, however, face multiple stimuli that interact with the plant genetics to result in the root system architecture. Here we review how soil conditions influence root system architecture; focusing on cereals. Cereals provide half of human calories, and their root systems differ from those of dicotyledons. We find that few controlled-environment studies combine more than one soil stimulus and, those that do, highlight the complexity of responses. Most studies are conducted on seedling roots; those on adult roots generally show low correlations to seedling studies. Few field studies report root and soil conditions. Until technologies are available to track root architecture in the field, soil analyses combined with knowledge of the effects of factors on elongation and gravitropism could be ranked to better predict the interaction between genetics and environment (G×E) for a given crop. Understanding how soil conditions regulate root architecture can be effectively used to design soil management and plant genetics that best exploit synergies from G×E of roots.

  16. Manganese, iron and copper contents in leaves of maize plants (Zea ...

    African Journals Online (AJOL)

    Yomi

    2012-01-12

    0, 8, 16 and 24 kg ha−1. Zn added to the soil and Zn ... volume among all cereal grain crops, such as wheat and rice, which are widely planted in .... associated with excessive irrigation, prolonged wet soil conditions or poor ...

  17. Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics

    Science.gov (United States)

    2008-03-01

    19) ............................................................................................ 47 Table 2. Equilibrium Metal Speciation for Media ...major oxygen consumption in the agar medium occurred at the oxic/anoxic interface. (Christensen et al., 1994: 847-851) Armstrong et al. measured...clear that plants exudates a significant amount of carbon sources. Studies from vegetative and cereal crops show that carbon is transported from leaves

  18. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds

    NARCIS (Netherlands)

    Flohre, A.; Fischer, C.; Aavik, T.; Bengtson, J.; Berendse, F.; Geiger, F.

    2011-01-01

    Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop

  19. Decreasing Fertilizer use by Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops

    Science.gov (United States)

    Schicklberger, M. F.; Huang, J.; Felix, P.; Pettenato, A.; Chakraborty, R.

    2013-12-01

    Nitrogen (N) is an essential component of DNA and proteins and consequently a key element of life. N often is limited in plants, affecting plant growth and productivity. To alleviate this problem, tremendous amounts of N-fertilizer is used, which comes at a high economic price and heavy energy demand. In addition, N-fertilizer also significantly contributes to rising atmospheric greenhouse gas concentrations. Therefore, the addition of fertilizer to overcome N limitation is highly undesirable. To explore reduction in fertilizer use our research focuses on optimizing the interaction between plants and diazotrophic bacteria, which could provide adequate amounts of N to the host-plant. Therefore we investigated the diversity of microbes associated with Tobacco (Nicotiana tabacum) and Switchgrass (Panicum virgatum), considered as potential energy crop for bioenergy production. Several bacterial isolates with representatives from Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes and Bacilli were obtained from the roots, leaves, rhizoplane and rhizosphere of these plants. Majority of these isolates grew best with simple sugars and small organic acids. As shown by PCR amplification of nifH, several of these isolates are potential N2-fixing bacteria. We investigated diazotrophs for their response to elevated temperature and salinity (two common climate change induced stresses found on marginal lands), their N2-fixing ability, and their response to root exudates (which drive microbial colonization of the plant). Together this understanding is necessary for the development of eco-friendly, economically sustainable energy crops by decreasing their dependency on fertilizer.

  20. Effect of rooting depth, plant density and planting date on maize (Zea Mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2014-01-01

    Under low and poorly distributed rainfall higher food production can be achieved by increasing crop water use efficiency (WUE) through optimum soil fertility management and selection of deep-rooting cultivars, appropriate plant density and planting dates. We explored AquaCrop's applicability in

  1. ArylexTM active – new herbicide active and base for new cereals herbicides: ZyparTM and Pixxaro™ EC to control wide range of broadleaf weeds in cereals in Europe

    Directory of Open Access Journals (Sweden)

    Dzikowski, Marcin

    2016-02-01

    Full Text Available Arylex™ active is a new auxinic herbicide for postemergence control of a range of important broadleaf weeds in cereals. It has been discovered and developed by Dow AgroSciences globally as a first member of the new ‘arylpicolinate‘ structural class. Arylex applied together with safener brings excellent crop safety and due to the rapid degradation in soil and plant tissue it does not limit the following crop choice. In Europe the first two herbicides containing this active are Zypar™ and Pixxaro™ EC. Zypar is a premix of Arylex and florasulam, delivering at the 1 L/ha maximum use rate 6 g ae/ha of Arylex and 5 g/ha of florasulam. It can be applied to all cereals, apart from oats, in autumn and spring. Spring application is allowed from BBCH 13 till BBCH 45, however the best performance is reached up to BBCH 32. Zypar’s spectrum of controlled weeds is very wide. Pixxaro EC is a combination of Arylex and fluroxypyr and at 0.5 l/ha dose rate delivers 6 g ae/ha of Arylex and 140 g ae/ha of fluroxypyr. It can be applied in all cereals, apart from oats, in spring from BBCH 13 till BBCH 45, while the best performance is observed between BBCH 30 and 45. Pixxaro EC shows excellent efficacy against key weeds, especially Galium aparine and at all growth stages. This herbicide brings a novel non-ALS solution and will be a key component of anti-resistance strategies for broadleaf weeds in cereals.

  2. A rapid and efficient method to study the function of crop plant transporters in Arabidopsis

    Science.gov (United States)

    Iron (Fe) is an essential micronutrient for humans. Fe deficiency disease is wide-spread and has lead to extensive studies on the mechanisms of Fe uptake and storage, especially in staple food crops such as rice. However, studies of functionally related genes in rice and other crops are often time a...

  3. Simulating the partitioning of biomass and nitrogen between roots and shoot in crop and grass plants

    NARCIS (Netherlands)

    Yin, X.; Schapendonk, A.H.C.M.

    2004-01-01

    Quantification of the assimilate partitioning between roots and shoot has been one of the components that need improvement in crop growth models. In this study we derived two equations for root-shoot partitioning of biomass and nitrogen (N) that hold for crops grown under steady-state conditions.

  4. Plant/soil concentration ratios for paired field and garden crops, with emphasis on iodine and the role of soil adhesion

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Long, J.M.; Sanipelli, B.

    2010-01-01

    In the effort to predict the risks associated with contaminated soils, considerable reliance is placed on plant/soil concentration ratio (CR) values measured at sites other than the contaminated site. This inevitably results in the need to extrapolate among the many soil and plant types. There are few studies that compare CR among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity to the gardens. Special emphasis was placed on iodine (I) because data for this element are sparse. For many elements, there were consistent trends among CRs for the various crop types, with leafy crops > root crops ≥ fruit crops ∼ seed crops. Exceptions included CR values for As, K, Se and Zn which were highest in the seed crops. The correlation of CRs from one plant type to another was evident only when there was a wide range in soil concentrations. In comparing CRs between crop types, it became apparent that the relationships differed for the rare earth elements (REE), which also had very low CR values. The CRs for root and leafy crops of REE converged to a minimum value. This was attributed to soil adhesion, despite the samples being washed, and the average soil adhesion for root crops was 500 mg soil kg -1 dry plant and for leafy crops was 5 g kg -1 . Across elements, the log CR was negatively correlated with log Kd (the soil solid/liquid partition coefficient), as expected. Although, this correlation is expected, measures of correlation coefficients suitable for stochastic risk assessment are not frequently reported. The results suggest that r ∼ -0.7 would be appropriate for risk assessment. -- Research highlights: →There are few studies that compare CRs among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity

  5. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-01-01

    Full Text Available Introduction Saffron as a winter active plant with low water requirement is the most strategic medicinal plant in arid and semi-arid parts of Iran. This slow-growing plant has narrow leaves and no aerial stem, hence weeds can be overcome it. Moreover, because of its root and canopy structure an important part of different resources is not used by this low input crop. Therefore, the use of associated crops could be an effective way for increasing resources use efficiencies (Koocheki et al., 2016. Appropriate corm planting date is another important factor that affects saffron growth and yield. Results of some studies show that late spring is the best time for corm planting (Ghasemi-Rooshnavand, 2009; Koocheki et al., 2016. In addition, irrigation management has been evaluated in some studies, but irrigation immediately after corm planting has not been investigated previously. Therefore, the aim of this study was to investigate the effect of irrigation management, planting date and the use of some companion crops on flowering of saffron during two growth cycles. Materials and methods This experiment was carried out as a split-split plot experiment based on a Randomized Complete Block Design with three replications at Research Station, Ferdowsi University of Mashhad, Iran in 2009-2011. Experimental factors included: planting date of saffron as main factor (first of June, first of August and first of October, 2009, the irrigation management as sub factor (irrigation and no irrigation after each planting date and the companion crops as sub-sub factor [Persian clover (Trifolium resupinatum, Bitter vetch (Lathyrus sativus and control. Corm planting was done in 10×25 cm distances with 12 cm depth. In the second year irrigation was done again in the plots which were irrigated after planting in the first year at the same previous dates. Companion crops were sown after first flower picking (November, 2009, then their residue were returned to the soil in

  6. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P temperature. Higher residue coverage caused lower soil temperature; the effect was greater for maize than soybean residue. Residue type had significant effect on soil temperature in 9 of 15 weekly periods with 0-1.9 °C lower soil temperature under maize than soybean residue. Both tillage and residue had small but inconsistent effect on soil temperature following planting in Northeast China representative of a cool to temperate zone.

  7. Crop quality control system: a tool to control the visual quality of pot plants

    NARCIS (Netherlands)

    Dijkshoorn-Dekker, M.W.C.

    2002-01-01

    Key words: quality, growth, model, leaf unfolding rate, internode, plant height, plant width, leaf area, temperature, plant spacing, season, light, development, image processing, grading, neural network, pot plant, Ficus benjamina

  8. How did the domestication of Fertile Crescent grain crops increase their yields?

    Science.gov (United States)

    Preece, Catherine; Livarda, Alexandra; Christin, Pascal-Antoine; Wallace, Michael; Martin, Gemma; Charles, Michael; Jones, Glynis; Rees, Mark; Osborne, Colin P

    2017-02-01

    The origins of agriculture, 10 000 years ago, led to profound changes in the biology of plants exploited as grain crops, through the process of domestication. This special case of evolution under cultivation led to domesticated cereals and pulses requiring humans for their dispersal, but the accompanying mechanisms causing higher productivity in these plants remain unknown. The classical view of crop domestication is narrow, focusing on reproductive and seed traits including the dispersal, dormancy and size of seeds, without considering whole-plant characteristics. However, the effects of initial domestication events can be inferred from consistent differences between traditional landraces and their wild progenitors.We studied how domestication increased the yields of Fertile Crescent cereals and pulses using a greenhouse experiment to compare landraces with wild progenitors. We grew eight crops: barley, einkorn and emmer wheat, oat, rye, chickpea, lentil and pea. In each case, comparison of multiple landraces with their wild progenitors enabled us to quantify the effects of domestication rather than subsequent crop diversification. To reveal the mechanisms underpinning domestication-linked yield increases, we measured traits beyond those classically associated with domestication, including the rate and duration of growth, reproductive allocation, plant size and also seed mass and number.Cereal and pulse crops had on average 50% higher yields than their wild progenitors, resulting from a 40% greater final plant size, 90% greater individual seed mass and 38% less chaff or pod material, although this varied between species. Cereal crops also had a higher seed number per spike compared with their wild ancestors. However, there were no differences in growth rate, total seed number, proportion of reproductive biomass or the duration of growth.The domestication of Fertile Crescent crops resulted in larger seed size leading to a larger plant size, and also a reduction

  9. Determination of Soil and Plant Water Balance and Its Critical Stages for Rainfed Wheat Using Crop Water Stress Index (CWSI)

    OpenAIRE

    V. Feiziasl; A. Fotovat; A. Astaraei; A. Lakzian; M.A. Mousavi Shalmani

    2014-01-01

    In order to determination of water stress threshold and dryland wheat genotypes water status in different nitrogen managements, this experiment was carried out in split split plot RCBD design in three replications in 2010-2011 cropping year. Treatments included: N application time (whole fertilization of N at planting time , and its split fertilization as 2/3 at planting time and 1/3 in early spring), N rates (0, 30, 60 and 90 kg ha-1) and 7 wheat genotypes. Also these genotypes were grown in...

  10. Effect of planting date and crop density of autumn wheat (Triticum aestivum L. on density and biomass of weeds

    Directory of Open Access Journals (Sweden)

    R. Ghorbani

    2016-05-01

    Full Text Available Weeds in wheat (Triticum aestivum L. fields have always been a big problem in Iran and worldwide and must be managed by non-chemical especially cultural methods. A field experiment as factorial based on a randomized complete block design with four replications in a 1000 m2 field in Research Farm of Shirvan College of Agriculture was conducted during 2007-2008. Treatments included wheat densities of 400, 600 and 800 plants.m-2and planting dates of 1st of Nov., 20th of Nov., and 1st of Dec 2007. The results represented that the presence of Rapistrum rogusum, Phalaris spp., Descurainia sophia, Alopecurus myosurides and Hordeum murinum dominance. Delay in planting of wheat increased relative density of weeds. The lowest relative frequency of weeds was observed in planting date of 1st of November. Increase in crop density significantly decreased weed biomass, while it showed little effect on weed density trend. Effect of planting date was also significant on weed biomass. The highest weed biomass occurred in the planting date of Dec. the 1st. In conclusion, delay in planting of wheat create more chance and space for weed establishment, and therefore planting dense (600 plants.m-2 and early in season of wheat is recommended for lower weed damage.

  11. RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations.

    Science.gov (United States)

    Majumdar, Rajtilak; Rajasekaran, Kanniah; Cary, Jeffrey W

    2017-01-01

    Mycotoxin contamination in food and feed crops is a major concern worldwide. Fungal pathogens of the genera Aspergillus. Fusarium , and Penicillium are a major threat to food and feed crops due to production of mycotoxins such as aflatoxins, 4-deoxynivalenol, patulin, and numerous other toxic secondary metabolites that substantially reduce the value of the crop. While host resistance genes are frequently used to introgress disease resistance into elite germplasm, either through traditional breeding or transgenic approaches, such resistance is often compromised by the evolving pathogen over time. RNAi-based host-induced gene silencing of key genes required by the pathogen for optimal growth, virulence and/or toxin production, can serve as an alternative, pre-harvest approach for disease control. RNAi represents a robust and efficient tool that can be used in a highly targeted, tissue specific manner to combat mycotoxigenic fungi infecting crop plants. Successful transgenic RNAi implementation depends on several factors including (1) designing vectors to produce double-stranded RNAs (dsRNAs) that will generate small interfering RNA (siRNA) species for optimal gene silencing and reduced potential for off-target effects; (2) availability of ample target siRNAs at the infection site; (3) efficient uptake of siRNAs by the fungus; (4) siRNA half-life and (5) amplification of the silencing effect. This review provides a critical and comprehensive evaluation of the published literature on the use of RNAi-based approaches to control mycotoxin contamination in crop plants. It also examines experimental strategies used to better understand the mode of action of RNAi with the aim of eliminating mycotoxin contamination, thereby improving food and feed safety.

  12. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    in combination to further functionalize or stabilize the starch polymers. Importantly, such products can be multifunctional in the sense of combined food/material or food/pharma purposes, for example, edible plastics, shape memory materials, and cycloamylose carriers and stabilizers for diverse bioactives......The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...

  13. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping

    Science.gov (United States)

    Santhanam, Rakesh; Luu, Van Thi; Weinhold, Arne; Goldberg, Jay; Oh, Youngjoo; Baldwin, Ian T.

    2015-01-01

    Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant’s native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium–Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems. PMID:26305938

  14. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    Science.gov (United States)

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato.

  15. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    National Research Council Canada - National Science Library

    2005-01-01

    .... Renewable materials from home-grown crops trees and agricultural wastes can provide many of the same chemical building blocks-plus others that petrochemicals cannot Despite the expertise and ingenuity of U.S...

  16. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  17. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.).

    Science.gov (United States)

    Sedbrook, John C; Phippen, Winthrop B; Marks, M David

    2014-10-01

    Oilseed crops are sources of oils and seed meal having a multitude of uses. While the domestication of soybean and rapeseed took extended periods of time, new genome-based techniques have ushered in an era where crop domestication can occur rapidly. One attractive target for rapid domestication is the winter annual plant Field Pennycress (Thlaspi arvense L.; pennycress; Brassicaceae). Pennycress grows widespread throughout temperate regions of the world and could serve as a winter oilseed-producing cover crop. If grown throughout the USA Midwest Corn Belt, for example, pennycress could produce as much as 840L/ha oils and 1470kg/ha press-cake annually on 16 million hectares of farmland currently left fallow during the fall through spring months. However, wild pennycress strains have inconsistent germination and stand establishment, un-optimized maturity for a given growth zone, suboptimal oils and meal quality for biofuels and food production, and significant harvest loss due to pod shatter. In this review, we describe the virtues and current shortcomings of pennycress and discuss how knowledge from studying Arabidopsis thaliana and other Brassicas, in combination with the advent of affordable next generation sequencing, can bring about the rapid domestication and improvement of pennycress and other crops. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Palaeogenomics in cereals: modeling of ancestors for modern species improvement.

    Science.gov (United States)

    Salse, Jérôme; Feuillet, Catherine

    2011-03-01

    During the last decade, technological improvements led to the development of large sets of plant genomic resources permitting the emergence of high-resolution comparative genomic studies. Synteny-based identification of seven shared duplications in cereals led to the modeling of a common ancestral genome structure of 33.6 Mb structured in five protochromosomes containing 9138 protogenes and provided new insights into the evolution of cereal genomes from their extinct ancestors. Recent palaeogenomic data indicate that whole genome duplications were a driving force in the evolutionary success of cereals over the last 50 to 70 millions years. Finally, detailed synteny and duplication relationships led to an improved representation of cereal genomes in concentric circles, thus providing a new reference tool for improved gene annotation and cross-genome markers development. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Biotechnological approaches to control the crop pathogen Fusarium and development of nanotechnology-based diagnostic methods for detection of plant diseases.

    OpenAIRE

    Botella, José Ramón

    2014-01-01

    The plant fungal pathogen Fusarium is the causal agent of ‘Fusarium wilt’ and results in large losses on a wide range of crops including vegetables, flowers, trees and field crops. Control methods for Fusarium wilt are very limited. Crop rotations are ineffective because F. oxysporum has such a large host range and is able to survive in the soil for long periods of time and genetic resistance is very scarce or on-existent in many crops. I will describe the development of two biotechnological ...

  20. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism.

    Science.gov (United States)

    Andriotis, Vasilios M E; Rejzek, Martin; Rugen, Michael D; Svensson, Birte; Smith, Alison M; Field, Robert A

    2016-02-01

    Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se. © 2016 Authors.

  1. Forage Yield and Quality Performance of Rabi Cereals Sown Alone and In Blended Population of Variable Seed Ratios

    International Nuclear Information System (INIS)

    Tahir, M.; Zafar, N.

    2016-01-01

    Fodder crops are the main source of animal feed in Pakistan. However, the yield per acre is still far below than optimum production level of the livestock. From this perspective, a field trial was conducted using seeds of three cereal crops wheat, oat and barley sown alone and blended together at different seed proportions (100 percent: 0 percent, 75 percent + 25 percent, 50 percent + 50 percent and 25 percent + 75 percent) at the Agronomic Research Area, Department of Agronomy, University of Agriculture, Faisalabad, during 2013-14. The results showed that the crop mixtures and their variable seed ratios showed significant effects on fodder yield and quality traits. The maximum number of tillers, number of leaves plant/sup -1/, leaf area, crop growth rate, fresh weight plant/sup -1/, dry weight plant/sup -1/, green forage yield and dry matter yield were obtained in plots where barley was sown alone at 100 percent seed ratio. The highest crude fiber and total ash percentage was observed in plots where oat was sown alone at 100 percent seed ratio and crude protein percentage was highest when oat was blended together with barley at 75 percent + 25 percent seed ratios. (author)

  2. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  3. Using cereal rye (catch crop) and dehydrogenase activity as indicators of the residual fertility effects of anaerobic soil disinfestation and other biological soil management practices following field tomato production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) and other biological soil management practices employing carbon-rich and/or biologically-active ingredients help contribute to overall soil suppressiveness in crop disease management. However, their roles in soil fertility tended to be overshadowed by disease cont...

  4. A review of the potential for competitive cereal cultivars as a tool in integrated weed management.

    Science.gov (United States)

    Andrew, I K S; Storkey, J; Sparkes, D L

    2015-06-01

    Competitive crop cultivars offer a potentially cheap option to include in integrated weed management strategies (IWM). Although cultivars with high competitive potential have been identified amongst cereal crops, competitiveness has not traditionally been considered a priority for breeding or farmer cultivar choice. The challenge of managing herbicide-resistant weed populations has, however, renewed interest in cultural weed control options, including competitive cultivars. We evaluated the current understanding of the traits that explain variability in competitive ability between cultivars, the relationship between suppression of weed neighbours and tolerance of their presence and the existence of trade-offs between competitive ability and yield in weed-free scenarios. A large number of relationships between competitive ability and plant traits have been reported in the literature, including plant height, speed of development, canopy architecture and partitioning of resources. There is uncertainty over the relationship between suppressive ability and tolerance, although tolerance is a less stable trait over seasons and locations. To realise the potential of competitive crop cultivars as a tool in IWM, a quick and simple-to-use protocol for assessing the competitive potential of new cultivars is required; it is likely that this will not be based on a single trait, but will need to capture the combined effect of multiple traits. A way needs to be found to make this information accessible to farmers, so that competitive cultivars can be better integrated into their weed control programmes.

  5. Soil nitrogen availability and bradyrhizobium spp. inoculation influence the utilization of nitrogen resources in legume-cereal systems

    International Nuclear Information System (INIS)

    Ababio, R.C.; Kessel, C. van; Ennin, S. A.

    2001-01-01

    Mixed farming systems are practiced in low latitude localities where the land tenure is inflexible and the soil is usually marginal. Two experiments were designed to evaluate Nitrogen (N) resource utilization in such systems as practiced in moist savanna and forest-savanna transitional agroecologies of West Africa. Two cowpea (Vigna unguiculata) and two maize (Zea mays) cultivars of peanut (Arachis hypogea) and Sorghum sp. were used in the other as monocropped and mixed cropped treatments. Plants were provided with fertilizer N treatment at the rates of 0, 5, 10 and 35 mg N kg 1 of soil as 15 N-labeled ammonium sulphate. Legume components of inoculated treatments received a mixture of three serologically-distinct strains of Bradyrhizobium sp. recommended for each legume species. Results showed that mixed cropped legumes responded to Bradyrhizobium inoculation and utilized significantly (P<0.05) higher amounts of nitrogen from the atmosphere when compared with monocropped legumes. The inoculation response was influenced by legume-cereal combination, plant cultivars, and soil available nitrogen. The results indicate that in soils of given N availability status, selection of appropriate legume-cereal cultivar combinations will be a useful management practice for enhancing BNF for the benefit of resource poor farmers (author)

  6. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  7. Formation of the texture of fermented milk and cereal product by varying the particle size distribution of cereal compositions

    Directory of Open Access Journals (Sweden)

    Pas'ko O. V.

    2016-09-01

    Full Text Available Combining animal and plant components is a promising direction of creating specialized foods of high biological and nutritional value. In this regard, research aimed at developing a fermented product technology based on combination of raw milk and grain products is relevant. In researches a set of generally accepted standard methods including physical-chemical, microbiological, biochemical, rheological, and mathematical methods of statistical processing of research results and development of mathematical models has been applied. The paper presents the results of research aimed at developing the technology of fermented milk – cereal product. In the first phase of research to substantiate product composition the systematic approach has been applied considering components of the product, changes of their status and properties as the current biotechnological systems (BPS. Selection of the grains' optimum ratio in the composition has been carried out on the basis of a set of indicators: the chemical composition and energy value, the content of B vitamins and dietary fibers, the indicator of biological value, organoleptic characteristics. Analysis of the combined results allows choose cereal flakes composition ratio of 1 : 1 : 1 (Oatmeal : Barley : Rye for further studies. As the main source of carbohydrate honey is used, it also improves the organoleptic properties of the product. Nutritional supplement glycine is used as a modifier of taste and smell. It has been found that introduction of glycine at 0.1 % in the BPS "milk – cereal composition" naturally decreases the intensity of taste and smell of cereal composition. The effect of particle size distribution of cereal composition on properties of the biotechnological system of milky cereal product has been established as well. For technology of the developed product the fraction selected cereal composition (Oatmeal : Barley : Rye as a 1 : 1 : 1 with a particle size of 670–1 000 microns has

  8. Gibberellin Deficiency Confers Both Lodging and Drought Tolerance in Small Cereals

    Directory of Open Access Journals (Sweden)

    Sonia ePlaza-Wüthrich

    2016-05-01

    Full Text Available Tef [Eragrostis tef (Zucc. Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA inhibitors particularly paclobutrazol (PBZ on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.. The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.

  9. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany.

    Science.gov (United States)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-06-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Changing techniques in crop plant classification: molecularization at the National Institute of Agricultural Botany during the 1980s.

    Science.gov (United States)

    Holmes, Matthew

    2017-04-01

    Modern methods of analysing biological materials, including protein and DNA sequencing, are increasingly the objects of historical study. Yet twentieth-century taxonomic techniques have been overlooked in one of their most important contexts: agricultural botany. This paper addresses this omission by harnessing unexamined archival material from the National Institute of Agricultural Botany (NIAB), a British plant science organization. During the 1980s the NIAB carried out three overlapping research programmes in crop identification and analysis: electrophoresis, near infrared spectroscopy (NIRS) and machine vision systems. For each of these three programmes, contemporary economic, statutory and scientific factors behind their uptake by the NIAB are discussed. This approach reveals significant links between taxonomic practice at the NIAB and historical questions around agricultural research, intellectual property and scientific values. Such links are of further importance given that the techniques developed by researchers at the NIAB during the 1980s remain part of crop classification guidelines issued by international bodies today.

  11. Growth and Diversification of Horticulture Crops in Karnataka

    OpenAIRE

    Komol Singha; Rohi Choudhary; Kedar Vishnu

    2014-01-01

    With the growth of technology, modernization, and changes in food habits, agricultural cropping pattern of the country has undergone a major shift in the recent past, moving away from the cereal to non-cereal crops cultivation, especially toward the horticulture crops. Horticulture has been one of the fastest growing sectors within the larger agriculture activities in India, and the State of Karnataka is at the forefro...