WorldWideScience

Sample records for cercla disposal facility

  1. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  2. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  3. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  4. INEEL Subsurface Disposal Area CERCLA-based Decision Analysis for Technology Screening and Remedial Alternative Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, G. S.; Kloeber, Jr. J.; Westphal, D; Fung, V.; Richardson, John Grant

    2000-03-01

    A CERCLA-based decision analysis methodology for alternative evaluation and technology screening has been developed for application at the Idaho National Engineering and Environmental Laboratory WAG 7 OU13/14 Subsurface Disposal Area (SDA). Quantitative value functions derived from CERCLA balancing criteria in cooperation with State and Federal regulators are presented. A weighted criteria hierarchy is also summarized that relates individual value function numerical values to an overall score for a specific technology alternative.

  5. Complying with Land Disposal Restrictions (LDR) for CERCLA remedial actions involving contaminated soil and debris

    International Nuclear Information System (INIS)

    CERCLA Sect. 121(e) requires that remedial actions must comply with at least the minimum standards of all ''applicable or relevant and appropriate requirements'' (ARARs) of federal and state laws. EPA has determined that RCRA land disposal restrictions may be ARAR for certain CERCLA remedial actions involving soil and debris. This means that soil and debris contaminated with prohibited or restricted wastes cannot be land disposed if (1) these wastes have not attained the treatment standards set by EPA for a specified waste or (2) have been the subject of a case-by-case extension, national capacity variance, or successful ''no migration'' petition. RCRA LDR treatment standards are based on ''Best Demonstrated Available Technology'' (BDAT), not on health-based concentrations. Because the treatment of the soil and debris matrix presents technological difficulties not yet addressed by EPA (BDAT standards are generally set for industrial process wastes), compliance options such as obtaining a Treatability Variance, are available and will generally be necessary for soil and debris wastes. In the recently promulgated revisions to the National Contingency Plan (NCP) for CERCLA implementation, EPA provides important information for CERCLA project managers regarding LDR compliance, particularly for obtaining a treatability variance for land disposal of contaminated soil and debris

  6. Integrated Disposal Facility Risk Assessment

    International Nuclear Information System (INIS)

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met

  7. Integrated Disposal Facility Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  8. Successful Opening and Disposal to-Date of Mixed CERCLA Waste at the ORR-EMWMF

    Energy Technology Data Exchange (ETDEWEB)

    Corpstein, P.; Hopper, P.; McNutt, R.

    2003-02-25

    On May 28, 2002, the Environmental Management Waste Management Facility (EMWMF) opened for operations on the Department of Energy's Oak Ridge Reservation (ORR). The EMWMF is the centerpiece in the DOE's strategy for ORR environmental cleanup. The 8+ year planned project is an on-site engineered landfill, which is accepting for disposal radioactive, hazardous, toxic and mixed wastes generated by remedial action subcontractors. The opening of the EMWMF on May 28, 2002 marked the culmination of a long development process that began in mid-1980. In late 1999 the Record of Decision was signed and a full year of design for the initial 400, 000-yd3 disposal cell began. In early 2000 Duratek Federal Services, Inc. (Federal Services) began construction. Since then, Federal Services and Bechtel Jacobs Company, LLC (BJC) have worked cooperatively to complete a required DOE readiness evaluation, develop all the Safety Authorization Basis Documentation (ASA's, SER, and UCD's) and prepare procedures and work controlling documents required to safely accept waste. This paper explains the intricacies and economics of designing and constructing the facility.

  9. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  10. 40 CFR 35.6340 - Disposal of CERCLA-funded property.

    Science.gov (United States)

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal Property Requirements Under A Cooperative Agreement § 35.6340 Disposal of...

  11. Corrective action management unit application for the Environmental Restoration Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G.C.

    1994-06-01

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

  12. Corrective action management unit application for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ''Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.'' The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ''package'' for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package

  13. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  14. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  15. Disposal facility data for the interim performance

    International Nuclear Information System (INIS)

    The purpose of this report is to identify and provide information on the waste package and disposal facility concepts to be used for the low-level waste tank interim performance assessment. Current concepts for the low-level waste form, canister, and the disposal facility will be used for the interim performance assessment. The concept for the waste form consists of vitrified glass cullet in a sulfur polymer cement matrix material. The waste form will be contained in a 2 x 2 x 8 meter carbon steel container. Two disposal facility concepts will be used for the interim performance assessment. These facility concepts are based on a preliminary disposal facility concept developed for estimating costs for a disposal options configuration study. These disposal concepts are based on vault type structures. None of the concepts given in this report have been approved by a Tank Waste Remediation Systems (TWRS) decision board. These concepts will only be used in th interim performance assessment. Future performance assessments will be based on approved designs

  16. Environmental restoration disposal facility applicable or relevant and appropriate requirements study report. Revision 00

    International Nuclear Information System (INIS)

    The Environmental Restoration Disposal Facility (ERDF) will be a landfill authorized under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and will comply with the Resource Conservation and Recovery Act of 1976 (RCRA) substantive requirements. The facility will also comply with applicable or relevant and appropriate requirements (ARAR), including portions of the U.S. Environmental Protection Agency (EPA) regulations, Washington Administrative Code (WAC), and to-be-considered (TBC) elements such as U.S. Department of Energy (DOE) Orders. In considering the requirements of CERCLA, a detailed analysis of various alternatives for ERDF was completed using the nine CERCLA criteria, National Environmental Policy Act of 1969 (NEPA), and public comments. The ERDF record of decision (ROD) selected an alternative that includes a RCRA-compliant double-lined trench for the disposal of radioactive, hazardous, and mixed wastes resulting from the remediation of operable units (OU) within the National Priorities List (NPL) sites in the 100, 200, and 300 Areas. Only wastes resulting from the remediation of Hanford NPL sites will be allowed in the ERDF. Of the various siting and design alternatives proposed for ERDF, the selected alternative provides the best combination of features by balancing the nine CERCLA criteria, ARAR compliance, environmentally protective site, and various stakeholder and public recommendations. The ERDF trench design, compliant with RCRA Subtitle C minimum technical requirements (MTR), will be double lined and equipped with a leachate collection system. This design provides a more reliable system to protect groundwater than other proposed alternatives. The ERDF is located on the Hanford Site Central Plateau, southeast of the 200 West Area

  17. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  18. Design of near surface disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.W.; Bonne, A.A.; Tamborini, J. [International Atomic Energy Agency, Vienna (Austria)

    1995-12-31

    The overall objectives and essential features including technical requirements and processes for the design of near surface disposal facilities are discussed based on a technical document which has been prepared by the IAEA to provide Member States with technical guidance for developing such repositories. Emphasis is on the integrated aspect of the design requirements considering functions and characteristics of waste, engineered barriers and site, and taking into account disposal implementation activities including construction, operation, closure and post-closure control. Also the multi-staged iterative aspect of the design processes in conjunction with siting, waste characterization and performance assessment is explained. The designer may need to consider an overall waste management system, ensure that a clear definition of regulatory and operational requirements is given early in the process, and identify and take into account, as soon as practicably possible, all of the data/parameters required to achieve the final design.

  19. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  20. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  1. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  2. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  3. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility

  4. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-03-13

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  5. Project W-049H disposal facility test report

    Energy Technology Data Exchange (ETDEWEB)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria.

  6. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  7. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  8. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Christine E. Kerschus

    1999-03-31

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites.

  9. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    International Nuclear Information System (INIS)

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites

  10. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  11. Approaches to consider covers and liners in a low-level waste disposal facility performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Suttora, Linda [USDOE, Office of Environmental Management, Germantown, MD (United States)

    2015-03-17

    On-site disposal cells are in use and being considered at several USDOE sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the USEPA in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. One task completed by the working group addressed approaches for considering the performance of covers and liners/leachate collection systems in the context of a performance assessment (PA). A document has been prepared which provides recommendations for a general approach to address covers and liners/leachate collection systems in a PA and how to integrate assessments with defense-in-depth considerations such as design, operations and waste acceptance criteria to address uncertainties. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information is then synthesized into recommendations for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system.

  12. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, L.R.

    1999-01-15

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  13. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  14. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  15. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  16. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  17. Air pollutants emissions from waste treatment and disposal facilities.

    Science.gov (United States)

    Hamoda, Mohamed F

    2006-01-01

    This study examined the atmospheric pollution created by some waste treatment and disposal facilities in the State of Kuwait. Air monitoring was conducted in a municipal wastewater treatment plant, an industrial wastewater treatment plant established in a petroleum refinery, and at a landfill site used for disposal of solid wastes. Such plants were selected as models for waste treatment and disposal facilities in the Arabian Gulf region and elsewhere. Air measurements were made over a period of 6 months and included levels of gaseous emissions as well as concentrations of volatile organic compounds (VOCs). Samples of gas and bioaerosols were collected from ambient air surrounding the treatment facilities. The results obtained from this study have indicated the presence of VOCs and other gaseous pollutants such as methane, ammonia, and hydrogen sulphide in air surrounding the waste treatment and disposal facilities. In some cases the levels exceeded the concentration limits specified by the air quality standards. Offensive odors were also detected. The study revealed that adverse environmental impact of air pollutants is a major concern in the industrial more than in the municipal waste treatment facilities but sitting of municipal waste treatment and disposal facilities nearby the urban areas poses a threat to the public health. PMID:16401572

  18. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  19. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  20. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    The purpose of the facility description is to be a specific summary report of the scope of Posiva's nuclear facilities (encapsulation plant and disposal facility) in Olkiluoto. This facility description is based on the 2012 designs and completing Posiva working reports. The facility description depicts the nuclear facilities and their operation as the disposal of spent nuclear fuel starts in Olkiluoto in about 2020. According to the decisions-in-principle of the government, the spent nuclear fuel from Loviisa and Olkiluoto nuclear power plants in operation and in future cumulative spent nuclear fuel from Loviisa 1 and 2, Olkiluoto 1, 2, 3 and 4 nuclear power plants, is permitted to be disposed of in Olkiluoto bedrock. The design of the disposal facility is based on the KBS-3V concept (vertical disposal). Long-term safety concept is based on the multi-barrier principle i.e. several release barriers, which ensure one another so that insufficiency in the performance of one barrier doesn't jeopardize long-term safety of the disposal. The release barriers are the following: canister, bentonite buffer and deposition tunnel backfill, and the host rock around the repository. The canisters are installed into the deposition holes, which are bored to the floor of the deposition tunnels. The canisters are enveloped with compacted bentonite blocks, which swell after absorbing water. The surrounding bedrock and the central and access tunnel backfill provide additional retardation, retention, and dilution. The nuclear facilities consist of an encapsulation plant and of underground final disposal facility including other aboveground buildings and surface structures serving the facility. The access tunnel and ventilation shafts to the underground disposal facility and some auxiliary rooms are constructed as a part of ONKALO underground rock characterization facility during years 2004-2014. The construction works needed for the repository start after obtaining the construction

  1. Catalog of CERCLA applicable or relevant and appropriate requirements (ARARs) - fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    Section 121(d) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), requires attainment of federal and state applicable or relevant and appropriate requirements (ARARs). Subpart E, Section 300.400(g) {open_quotes}Identification of applicable or relevant and appropriate requirements{close_quotes} of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)(55 FR 8666, March 8, 1990) describes the process for attaining ARARs. The purpose of this catalog is to provide DOE Program Offices and Field Organizations with all of the {open_quotes}Quick Reference Fact Sheets{close_quotes} on attaining ARARS. These fact sheets provide overviews of ARARs for CERCLA cleanup actions pertinent to DOE environmental restoration activities. All of the fact sheets in this catalog were prepared by the Environmental Protection Agency`s Office of Solid Waste and Emergency Response. Fact sheets 1-7 discuss land disposal restrictions (LDRs) and their applicability. LDRs may pertain to a number of CERCLA response actions at DOE facilities. Fact Sheets 8-13 are based on the CERCLA Compliance with Other Laws Manual: Parts I and II and provide an overview of many other CERCLA ARARs. Overview of ARARs-Focus on ARAR Waivers (fact sheet 11), provides a good introduction to ARARS. The last two fact sheets, 14 and 15, are periodic reports that describe additional fact sheets and clarify issues.

  2. Human intrusion scenarios associated with surface disposal facilities

    International Nuclear Information System (INIS)

    After a certain period of time, there should no longer be any need to keep surface disposal facilities under surveillance or impose restrictions on land use. This result may be achieved by limiting the activity level of wastes stored at the facility, which will in turn limit the potential dose to the public during normal decay of the waste and in the event of human intrusion. Analysis of intrusion scenarios, which are uncertain events, requires some modification of dose acceptance criteria in order to take account of the overall probability of events. The paper reviews three recent studies of scenarios involving French surface disposal sites: - construction of a road at an existing site in France; - boring a well in the vicinity of a storage site; - possibility of storing radioactive sources at a surface disposal site. These studies illustrate the need to adopt such an approach and the difficulties involved

  3. Compilation of costs for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Our goal was to provide a complete accounting of costs incurred to date an projected through disposal facility life cycle pursuant to the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). To help achieve this goal, a study was conducted to determine (1) how much the United States has spent and will spend on the development of new low-level radioactive (LLW) disposal capacity; and (2) how much other countries, specifically Finland, France, Spain, and Sweden have spent to develop and operate their LLW disposal facilities. The results are published in an Office of Policy Planning (OPP) document (1)

  4. Standardization of DOE Disposal Facilities Waste Acceptance Process

    Energy Technology Data Exchange (ETDEWEB)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  5. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  6. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  7. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  8. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  9. Identification of Human Intrusion Types into Radwaste Disposal Facility

    International Nuclear Information System (INIS)

    Human intrusion has long been recognized as a potentially important post-closure safety issue for rad waste disposal facility. It is due to the difficulties in predicting future human activities. For the preliminary study of human intrusion, identification of human intrusion types need to be recognized and investigated also the approaching of problem solving must be known to predict the prevention act and accepted risk. (author)

  10. Performance assessment for the class L-II disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  11. Licensing procedures for Low-Level Waste disposal facilities

    International Nuclear Information System (INIS)

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs

  12. Description of work for vadose zone characterization of the 1301-N and 1325-N liquid waste disposal facilities

    International Nuclear Information System (INIS)

    This description of work (DOW) details the field activities associated with a limited field investigation (LFI) of soil contamination beneath the 1301-N and 1325-N Liquid Waste Disposal Facilities (LWDFs), and will serve as a field guide for those performing the work. These activities are undertaken pursuant to the Hanford Federal Facility Agreement and consent Order (Tri-Party Agreement) (Ecology et al. 1994a) Milestone M-16-94-01H-T1 and the June 30, 1994, Milestone Change Request M-16-94-02 (Ecology et al. 1994b). The scope of these activities was defined during a Streamlined Approach for Environmental Restoration (SAFER) workshop and a US Department of Energy, Richland Operations Office (RL) workshop where data quality objectives (DQOs) and technical criteria for the LFI were developed. Results of the SAFER workshop are discussed in Section 1.1. the locations of the 1301-N and 1325-N LWDFs (116-N-1 and 116-N-3) are shown in Figure 1. Both the 1301-N and 1325-N LWDFs consist o a crib and a trench. Both LWDFs were used to receive and dispose of the cooling water originating from the 100-N Reactor and are classified as RCRA treatment, storage, and/or disposal (TSD) units. The LWDFs are no longer receiving waste effluent. Although these facilities are classified as RCRA TSD units, the RL and regulatory agencies have determined that this LFI will be conducted as a past-practice investigation under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), in accordance with the Hanford Site Past-Practice Investigation Strategy (DOE-RL 1991) and the 100-NR-1 Operable Unit RFI/CMS Work Plan (DOE-RL 1994)

  13. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  14. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  15. Integrating NEPA [National Environmental Policy Act] and CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] requirements during remedial responses at DOE facilities

    International Nuclear Information System (INIS)

    US Department of Energy (DOE) Order 5400.4, issued October 6, 1989, calls for integrating the requirements of the National Environmental Policy Act (NEPA) with those of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for DOE remedial actions under CERCLA. CERCLA requires that decisions on site remediation be made through a formal process called a Remedial Investigation/Feasibility Study (RI/FS). According to the DOE order, integration is to be accomplished by conducting the NEPA and CERCLA environmental planning and review procedures concurrently. The primary instrument for integrating the processes is to be the RI/FS process, which will be supplemented as needed to meet the procedural and documentational requirements of NEPA. The final product of the integrated process will be a single, integrated set of documents; namely, an RI report and an FS-EIS that satisfy the requirements of both NEPA and CERCLA. The contents of the report include (1) an overview and comparison of the requirements of the two processes; (2) descriptions of the major tasks included in the integrated RI/FS-EIS process; (3) recommended contents for integrated RI/FS-EIS documents; and (4)a discussion of some potential problems in integrating NEPA and CERCLA that fall outisde the scope of the RI/FS-EIS process, with suggestions for resolving some of these problems. 15 refs

  16. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  17. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  18. Developing operating procedures for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures

  19. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  20. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  1. Integrated Disposal Facility FY 2012 Glass Testing Summary Report, Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-02

    Erratum This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011) The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  2. Integrated Disposal Facility FY2011 Glass Testing Summary Report Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  3. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  4. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)

    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  5. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  6. Integrated Disposal Facility FY 2012 Glass Testing Summary Report, Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.

    2016-09-15

    Erratum This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011) The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  7. Dose apportionment criteria and disposal rate limits for near surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    The dose apportionment for near surface disposal facilities (NSDFs) in India is regulated as 0.05 mSv/y uniformly for all the sites. However, the nuclear power capacity at different sites is different and the generation of low and intermediate level waste (LILW) at these sites depends on the nuclear power capacity. Therefore, the dose apportionment for the NSDFs should be site-specific and there is a need to review the adequacy of the existing dose apportionment. In this paper, an environmental exposure assessment model is used to estimate the spatial and temporal profile of the effective dose rates to members of the public due to the disposal facility through groundwater drinking pathway. The model considers continuous disposal of radioactive waste into the facility for 50 years and leaching of the radionuclides from the waste form into the groundwater flowing in the unconfined aquifer below. Uncertainty analysis of five parameters such as the distribution coefficient, fractional release rate, groundwater velocity, longitudinal dispersivity and thickness of the aquifer is also carried out using the stochastic response surface method to derive a safety factor. The dose apportionment and discharge rate limits for the NSDFs at Trombay, Rawatbhata, Narora, and Kaiga are estimated as an example. It is concluded from the study that the dose apportionment for the NSDFs satisfy the regulation of 0.05 mSv/y for these sites. It is to be noted that the LILW from nuclear power plants (NPPs) and fuel-reprocessing plants (FRPs) under operation are only considered for this review. This study underlines the importance of site-specificity of the dose apportionment for the NSDFs and reiterates the need for its periodic review whenever changes in the inventory of LILW are expected. (author)

  8. Overview of low-level radioactive waste disposal facilities subsidence

    International Nuclear Information System (INIS)

    The result of a case study of the Sheffield, Illinois, waste disposal facility, and literature reviews on problems at waste disposal facilities are presented. The types of problems, causes of the problems, and approaches to mitigate the problems are evaluated. The problems identified were surface subsidence, surface erosion, leachate and gas. Leachate resulted from water entry into trenches where subsidence occurred. Subsidence was attributed to random placement of waste containers into trenches leaving voids. The poorly compacted cover soil initially bridged the voids and subsequently collapsed and siphoned into the voids. Surface potholes and slumps resulted. Extensive potholding occurred during and after precipitation when the Sheffield loess soil piped into the voids. Long-term soil consolidation also resulted in area settlement. Potholes and slumps along the tops of walls between trenches constructed of fill were attributed to collapse of the walls into voids. Long-term subsidence was predicted as waste containers degraded and collapsed causing further slumps and potholes over a 50-year period. Excessive surface erosion resulted from poor vegetation cover and inadequacy of drainage controls. Approaches evaluated to stabilize disposal site trenches by compaction included dynamic consolidation, pile driving, surface surcharging, and surface compaction. Stabilization and leachate control by solidification with compaction grouting and chemical grouting were deemed effective but expensive. Accelerated degradation of the wastes by aerobic decomposition of organics and in-situ incineration were found to be less effective. Impervious trench caps were analyzed as a final moisture infiltration and leachate control method after stabilization was achieved. Recommendations for long-term trench maintenance were developed

  9. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    Energy Technology Data Exchange (ETDEWEB)

    Austad, Stephanie Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  10. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    International Nuclear Information System (INIS)

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  11. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  12. 2005 dossier: clay. Tome: architecture and management of the geologic disposal facility

    International Nuclear Information System (INIS)

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the design of a geologic disposal facility for high-level and long-lived radioactive wastes in argilite formations. Content: 1 - approach of the study: goal, main steps of the design study, iterative approach, content; 2 - general description: high-level and long-lived radioactive wastes, purposes of a reversible disposal, geologic context of the Meuse/Haute-Marne site - the Callovo-Oxfordian formation, design principles of the disposal facility architecture, role of the different disposal components; 3 - high-level and long-lived wastes: production scenarios, description of primary containers, inventory model, hypotheses about receipt fluxes of primary containers; 4- disposal containers: B-type waste containers, C-type waste containers, spent fuel disposal containers; 5 - disposal modules: B-type waste disposal modules, C-type waste disposal modules, spent-fuel disposal modules; 6 - overall underground architecture: main safety questions, overall design, dimensioning factors, construction logic and overall exploitation of the facility, dimensioning of galleries, underground architecture adaptation to different scenarios; 7 - boreholes and galleries: general needs, design principles retained, boreholes description, galleries description, building up of boreholes and galleries, durability of facilities, backfilling and sealing up of boreholes and galleries; 8 - surface facilities: general organization, nuclear area, industrial and administrative area, tailings area; 9 - nuclear exploitation means of the facility: receipt of primary containers and preparation of disposal containers, transfer of disposal containers from the surface to the disposal alveoles, setting up of containers inside alveoles; 10 - reversible management of the disposal: step by step disposal process, mastery of disposal behaviour and action capacity, observation and

  13. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  14. International low level waste disposal practices and facilities

    International Nuclear Information System (INIS)

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  15. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  16. (Low-level waste disposal facility siting and site characterization)

    Energy Technology Data Exchange (ETDEWEB)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.; Van Hoesen, S.D.

    1985-10-25

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de la Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.

  17. Transuranic distribution beneath a retired underground disposal facility, Hanford Site

    International Nuclear Information System (INIS)

    Past liquid waste disposal practices at the Hanford Site included the discharge of solutions containing low-level concentrations of transuranics directly to the ground via structures collectively termed cribs. A study was conducted to determine the present spatial distribution of plutonium and americium beneath the retired 216-Z-1A Crib, which contains one of the highest cumulative plutonium inventories, 57 kilograms. Sixteen shallow wells were drilled in the unsaturated sediments underlying the facility using specialized, totally contained drilling techniques. Samples from each well were analyzed to obtain profiles of both sediment type and plutonium and americium concentrations as a function of depth beneath the facility. The results of the study show that the highest concentration of plutonium (>104 nCi/g of sediment) occurs within the first 3 meters of sediment beneath the central distribution pipe. The high activity at this position is tentatively attributed to the removal of solid particles from the waste stream by sediment filtration. The distributions of plutonium and americium in the sediments are similar. Peak transuranic activity in the sediment profile is generally associated with silt lenses or with major sedimentary unit interfaces (ie, sand to gravel). The maximum vertical extent of transuranic activity found is approximately 30 meters below the bottom of the crib or approximately 25 meters above the regional water table. No contamination greater than the instrumental limit of detection of 10-5 nCi/g of sediment was found from a depth of 30 to 40 meters, the maximum depth of sampling

  18. Progress on the disposal project of LLW generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Low level nuclear wastes (LLW) are generated from the R and D of the nuclear energy, medical and industrial use of radioisotope as well as NPP in Japan. The LLW is stored and accumulated in each facility. The issues will after R and D facility operations because of no organization assigned a role of waste disposal and repository operation. Therefore, Japan Atomic Energy Agency (JAEA) was assigned to the implementing organization for the disposal with the amendment of JAEA Act in 2008. JAEA had started their activity on the promoting of the disposal project of these LLW following to JAEA's 'Executing plan for the disposal project of LLW from research institutes etc.' based on the 'Basic plan of promotion for the disposal project of LLW from research institutes etc. 'decided by government. This report summarizes the conceptual design of the disposal facility and reviewing the procedure and criteria for site selection for the disposal project. (author)

  19. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  20. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  1. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    International Nuclear Information System (INIS)

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers

  2. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BD04 Definition of Solid Waste Disposal Facilities for Tax... published in the Federal Register on Friday, August 19, 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax-exempt bonds issued by State and local...

  3. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BD04 Definition of Solid Waste Disposal Facilities for Tax... the Federal Register on Friday, August 19, 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax-exempt bonds issued by State and local governments....

  4. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  5. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  6. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees.

    Science.gov (United States)

    Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M

    2016-03-01

    Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site.

  7. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  8. Climate change in safety assessment of a surface disposal facility

    Science.gov (United States)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The

  9. Environmental monitoring of low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    This branch technical position (BTP) paper on the environmental monitoring program for a low-level radioactive waste disposal facility provides general guidance on what is required by Section 61.53 of Title 10 of the Code of Federal Regulations (10 CFR) of applicants submitting a license application for such a facility. In general, the environmental monitoring program consists of three phases: preoperational, operational, and postoperational. Each phase of the monitoring program should be designed to fulfill the specific objectives defined in the BTP paper. During the preoperational phase, the objectives of the program are to provide site characterization information, to demonstrate site suitability and acceptability, to obtain background or baseline information, and to provide a record for public information. During the operational phase, the emphasis on measurement shifts. Monitoring data are obtained to provide early warning of releases and to document compliance with regulations, the dose limits of 10 CFR Part 61, or applicable standards of the US Environmental Protection Agency. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational environmental monitoring program emphasizes measurements to demonstrate compliance with the site-closure requirements and continued compliance with the performance objective in regard to the release of radionuclides to the environment. The data are used to support evaluation of long-term effects on the general public and for public information. Guidance is also provided in the BTP paper on the choice of which constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance

  10. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  11. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  12. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  13. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  14. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  15. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  16. CHARACTERIZATION OF CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Duncan, A.

    2010-01-28

    During the month of September 2008, grout core samples were collected from the Saltstone Disposal Facility, Vault 4, cell E. This grout was placed during processing campaigns in December 2007 from Deliquification, Dissolution and Adjustment Batch 2 salt solution. The 4QCY07 Waste Acceptance Criteria sample collected on 11/16/07 represents the salt solution in the core samples. Core samples were retrieved to initiate the historical database of properties of emplaced Saltstone and to demonstrate the correlation between field collected and laboratory prepared samples. Three samples were collected from three different locations. Samples were collected using a two-inch diameter concrete coring bit. In April 2009, the core samples were removed from the evacuated sample container, inspected, transferred to PVC containers, and backfilled with nitrogen. Samples furthest from the wall were the most intact cylindrically shaped cored samples. The shade of the core samples darkened as the depth of coring increased. Based on the visual inspection, sample 3-3 was selected for all subsequent analysis. The density and porosity of the Vault 4 core sample, 1.90 g/cm{sup 3} and 59.90% respectively, were comparable to values achieved for laboratory prepared samples. X-ray diffraction analysis identified phases consistent with the expectations for hydrated Saltstone. Microscopic analysis revealed morphology features characteristic of cementitious materials with fly ash and calcium silicate hydrate gel. When taken together, the results of the density, porosity, x-ray diffraction analysis and microscopic analysis support the conclusion that the Vault 4, Cell E core sample is representative of the expected waste form.

  17. Hydrologic considerations for placement and design of disposal facilities

    International Nuclear Information System (INIS)

    Below ground or earth mounded concrete vaults are a design option being considered for disposal of low-and intermediate-level radioactive wastes at a variety of locations around the world. The overall goal of these facilities is to isolate the waste from the environment for time periods ranging from hundreds to thousands of years depending upon the type of waste and applicable regulatory environment. A number of factors influence the longevity and performance of subsurface concrete vaults including concrete composition and quality, design of the vault, design and maintenance of the cover, geochemical environment, climate, and site hydrology. As an aid to predicting long term performance of concrete barriers, mathematical models of concrete degradation and fluid flow and mass transport through concrete have been developed. The ultimate goal of the modeling exercises is to predict future performance of these systems. In this paper two aspects of concrete vault performance are considered. First the flow of water through a vault located in the unsaturated zone is contrasted with flow through an identical vault located below the water table. The exercise suggests that frequently, the vault located below the water table will have lower flow rates and perhaps represent a superior location. Just as importantly the calculations give several suggestions concerning the design of vaults located in the unsaturated zone. In the second portion of the paper mass transport through cracks in a concrete vault is considered. From a structural perspective, some controlled or limited cracking of concrete is allowable. Frequently structural design and reinforcement placement are based on controlling crack width and spacing. From the perspective of fluid flow and radionuclide transport through the vault, cracking is a much more serious problem

  18. CERCLA site assessment workbook

    International Nuclear Information System (INIS)

    This contains comments for each chapter of exercises (in Vol. 1) which illustrate how to conduct site assessments for CERCLA regulation. A through analysis of the exercises is provided so that work and solutions from Vol 1 can be critiqued and comments are also included on the strategy of site assessment whereas the exercises illustrate the principles involved. Covered exercises include the following: A preliminary assessment of a ground water site; waste characteristics and characterization of sources; documentation of observed releases and actual contamination of targets; the strategy of an SI at a surface water site; the soil exposure pathway; the air pathway

  19. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  20. Disposal facilities on land for low and intermediate level radioactive wastes: guidance on requirements for qauthorisation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document, published by the Environmental Agency, contains guidance on the principles and requirements against which applications for authorisation to build or operate a land-based specialised disposal facility for solid low or intermediate level wastes, will be assessed, with the aim of protecting the public from hazards which may arise from their disposal to the environment. The guide provides information on terms used, the framework governing radioactive waste disposal and the Agencies` expectations of applicants, including radiological and technical requirements. (UK).

  1. Facility arrangements and the environmental performance of disposable and reusable cups

    OpenAIRE

    Potting, José; Harst-Wintraecken, van der, E.J.M.

    2015-01-01

    Purpose: This paper integrates two complementary life cycle assessment (LCA) studies with the aim to advice facility managers on the sustainable use of cups, either disposable or reusable. Study 1 compares three disposable cups, i.e., made from fossil-based polystyrene (PS), biobased and compostable plastic (polylactic acid; PLA) and paper lined with PLA (biopaper). Study 2 compares the disposable PS cup with reusable cups that are handwashed or dishwashed. Methods: Existing LCA studies show ...

  2. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  3. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  4. Facility arrangements and the environmental performance of disposable and reusable cups

    NARCIS (Netherlands)

    Potting, José; Harst-Wintraecken, van der Eugenie

    2015-01-01

    Purpose: This paper integrates two complementary life cycle assessment (LCA) studies with the aim to advice facility managers on the sustainable use of cups, either disposable or reusable. Study 1 compares three disposable cups, i.e., made from fossil-based polystyrene (PS), biobased and composta

  5. Erosion of surface and near surface disposal facilities

    International Nuclear Information System (INIS)

    A literature search was undertaken to identify existing data and analytical procedures regarding the processes of gully erosion. The applicability of the available information to the problems of gully erosion potential at surface and near surface disposal sites is evaluated. It is concluded that the existing knowledge regarding gully erosion is insufficient to develop procedures to ensure the long-term stability of disposal sites. Recommendations for further research are presented. 46 refs

  6. DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY - ITER

    Science.gov (United States)

    In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...

  7. Response to the DECC Consultation of the siting process for a Geological Disposal Facility, 2013

    OpenAIRE

    Johnstone, Philip; Gross, Matthew; Mackerron, Gordon; Kern, Florian; Stirling, Andrew

    2013-01-01

    Several members of SEG (Matt Gross, Phil Johnstone, Florian Kern, Gordon MacKerron, and Andy Stirling) have participated in a written response to the Department of Energy and Climate Change’s (DECC) consultation of the siting process for a Geological Disposal Facility (GDF) for nuclear waste. This consultation follows the rejection by Cumbria County Council earlier this year to hosting a Geological Disposal Facility. The government have therefore gone back to the national level to find a sui...

  8. Engineering for a disposal facility using the in-room emplacement method

    International Nuclear Information System (INIS)

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author)

  9. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  10. Z-Area saltstone disposal facility groundwater monitoring report. First and second quarters 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report presents the results of groundwater sampling during the first and second quarters of 1997 in the Z-Area Saltstone Disposal Facility. This report presents only the data for sampling during the first half of 1997 as required by industrial Solid Waste Permit No. 025500-1603. For a detailed discussion of groundwater monitoring in the Z-Area Saltstone Disposal Facility, consult the 1996 Z-Area Saltstone Disposal Annual Report. Appendix A presents the proposed South Carolina Department of Health and Environmental Control Proposed Groundwater Monitoring Standards. Flagging criteria are described in Appendix B. In May 1997 SCDHEC granted approval for seven hydrocone sampling.

  11. The performance assessment process for DOE low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department's low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis

  12. CERCLA Site Assessment questions and answers (Qs&As)

    Energy Technology Data Exchange (ETDEWEB)

    Traceski, T.T.

    1993-11-09

    This documents contains commonly asked questions and corresponding answers (Qs&As) on the CERCLA Site Assessment process. These questions were derived from DOE element responses to a solicitation calling for the identification of (unresolved) issues associated with the conduct of CERCLA site assessments, and from inquiries received during a series of Site Assessment Workshops provided by the Environmental Protection Agency (EPA) and the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231). Answers to these questions were prepared by EH-231 in cooperation with the EPA Federal Facilities Team in Office of Solid Waste and Emergency Response, Site Assessment Branch, and in coordination with the Office of Environmental Compliance, Facilities Compliance Division (EH-222).

  13. Siting a nuclear fuel waste disposal facility in Canada: a view from the public

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, R.G. [Univ. of Guelph, Dept. of Geography, Guelph, Ontario (Canada)

    1996-07-01

    This paper will focus on public perceptions of the Canadian Nuclear Fuel Waste (NFW) Disposal Concept. An analysis of the 1990 Hearings conducted as part of the Environmental Assessment undertaken by the Canadian federal government, and results from a survey of residents from three northern Ontario communities will be presented. The results are discussed in the context of developing a process for the eventual siting the Canadian NFW disposal facility. (author)

  14. Conceptual design report: below-grade bulk waste disposal facility. Formerly Utilized Sites Remedial Action Program

    International Nuclear Information System (INIS)

    This report presents two conceptual designs for below-grade land disposal facilities in the Northeastern United States for wastes managed under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The wastes are low specific activity radioactive wastes generated by programs of the Manhattan Engineer District/Atomic Energy Commission (MED/AEC). One design presented is for a hypothetical disposal facility for the state of New York and one for the state of New Jersey. Each design is based on the estimated volume of FUSRAP waste in each state. Since no specific sites have been identified for the disposal facilities, the geologic, hydrologic, topographic, and meteorologic conditions chosen for the conceptual design are only representative of conditions in New York and New Jersey. The principal difference in the two sites is the assumed soil permeability which requires an engineered clay liner surrounding the waste for the New York facility, but not for the New Jersey facility. The conceptual designs are intended to be conservative and were developed to be compatible with proposed 10 CFR 61 and proposed 40 CFR 192. The designs are developed in sufficient detail to verify the feasibility of the design concepts and to provide a basis for developing capital cost estimates for below-grade land disposal facilities

  15. Protocol for the E-Area Low Level Waste Facility Disposal Limits Database

    Energy Technology Data Exchange (ETDEWEB)

    Swingle, R

    2006-01-31

    A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclide disposal limits.

  16. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  17. Radiological performance assessment for the E-Area Vaults Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-04-11

    This report is the first revision to ``Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0.

  18. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    This report is the first revision to ''Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0

  19. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  20. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type

  1. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, Antoony; Kim, Changlak [KEPCO International Nuclear Graduate School, Uljin (Korea, Republic of)

    2013-07-01

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa.

  2. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    International Nuclear Information System (INIS)

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa

  3. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  4. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  5. 33 CFR 1.01-70 - CERCLA delegations.

    Science.gov (United States)

    2010-07-01

    ... from a facility, and to secure such relief as may be necessary to abate such danger or threat through the United States attorney of the district in which the threat occurs. (2) Authority, pursuant to.... (3) Authority, pursuant to section 108 of CERCLA, to deny entry to any port or place in the...

  6. Consideration of Criteria for a Conceptual Near Surface Radioactive Waste disposal Facility in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nderitu, Stanley Werugia; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures. This study will present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and illustrate some of its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in a conceptual near surface disposal facility in Kenya. The approach will make use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities. The study will mainly focus on post-closure periods. The study will employ some specific inadvertent human intrusion scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. The specific performance assessments will use modified scenarios and data to establish acceptable disposal concentrations for specific disposal sites and conditions. Safety and environmental impacts assessments is required in the post-closure phase to support particular decisions in development, operation, and closure of a near surface repository.

  7. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  8. Preliminary design of LLRW disposal facility for the state of Texas

    International Nuclear Information System (INIS)

    This paper discusses how the Texas LLW disposal facility is designed to satisfy all applicable performance and design requirements. Low-gamma Class A and mixed waste are to be disposed in modular concrete canisters, while high-gamma Class A, Class B, and Class C waste are to be disposed in below-grade steel-reinforced concrete vaults. In the structural design of disposal units, reasonable assurance of water tightness is provided by satisfying requirements of ACI 224R-80 and ACI 350-80, which are the controlling requirements for the structures. Requirements of ACI 318-83 are satisfied for canisters and those of ACI 349-80 for vaults. In all cases, the capabilities provided to the structure exceed the environments to which the structures will be subjected. Drainage features are designed to accommodate conditions projected to prevail during the hypothetical probable maximum precipitation and probable maximum flood events

  9. Information on commercial disposal facilities that may have received offshore drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  10. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  11. Norwegian work on establishing a combined storage and disposal facility for low and intermediate level waste

    International Nuclear Information System (INIS)

    The IAEA has, through its Waste Management Assessment and Technical Review Programme (WATRP), evaluated policies and facilities related to management of radioactive waste in Norway. It is concluded that the Himdalen site, in combination with the chosen engineering concept, can be suitable for the storage and disposal of the relatively small amounts of Norwegian low and intermediate level waste

  12. Z-Area Saltstone Disposal Facility groundwater monitoring report. First and second quarters 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report contains groundwater monitoring results from the Z-Area Saltstone Disposal Facility at the Savannah River Site. Appendix A contains the South Carolina Department of Health and Environmental Control proposed groundwater monitoring standards and final primary drinking water standards. Appendix B contains the Savannah River Site Environmental Protection Department/Environmental Monitoring Section flagging criteria for groundwater constituents.

  13. Z-Area Saltstone Disposal Facility groundwater monitoring report. 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Z-Area Saltstone Disposal Facility is located in the Separations Area, north of H and S Areas, at the Savannah River Site (SRS). The facility permanently disposes of low-level radioactive waste. The facility blends low-level radioactive salt solution with cement, slag, and flyash to form a nonhazardous cementitious waste that is pumped to aboveground disposal vaults. Z Area began these operations in June 1990. Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). During second quarter 1996, lead was reported above the SCDHEC-proposed groundwater monitoring standard in one well. No other constituents were reported above SCDHEC-proposed groundwater monitoring standards for final Primary Drinking Water Standards during first, second, or third quarters 1996. Antimony was detected above SRS flagging criteria during third quarter 1996. In the past, tritium has been detected sporadically in the ZBG wells at levels similar to those detected before Z Area began radioactive operations.

  14. Estimated Particulate Emissions By Wind Erosion From the Indiana Harbor Confined Disposal Facility

    Science.gov (United States)

    A Confined Disposal Facility (CDF) is being designed for contaminated sediments dredged from the Indiana Harbor Canal at East Chicago, IN. The sediment will be placed in two cells enclosed by earthern berms about 9 m tall and cover about 36 hectares. The purposes of this study were to a) determine...

  15. Risk-based financial assurance for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    The paper presents a risk assessment to characterize the potential for liability costs associated with a facility for disposal of low-level radioactive waste (LLRW). Potential liability costs are grouped into two categories: corrective action costs (e.g., for cleanup of property and the environment) and third-party compensation costs (e.g., for bodily injury and property damage)

  16. Economics of a small-volume low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    This report was prepared by the US Department of Energy National Low-Level Waste Management Program to present the results of a life-cycle cost analysis of a low-level radioactive waste disposal facility, including all support facilities, beginning in the preoperational phase and continuing through post-closure care. The disposal technology selected for this report is earth-covered concrete vaults, which use reinforced concrete vaults constructed above grade and an earth cover constructed at the end of the operational period for permanent closure. The report develops a design, cost estimate, and schedule for the base case and eight alternative scenarios involving changes in total disposal capacity, operating life, annual disposal rate, source of financing and long-term interest rates. The purpose of this analysis of alternatives is to determine the sensitivity of cost to changes in key analytical or technical parameters, thereby evaluating the influence of a broad range of conditions. The total estimated cost of each alternative is estimated and a unit disposal charge is developed

  17. Development of an Environmental Safety Case for a Geological Disposal Facility in the UK

    Science.gov (United States)

    Bailey, L.; Clark, H.; Wellstead, M.

    2012-04-01

    Geological disposal is the UK policy for the long-term management of higher activity radioactive waste. The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal. The implementation process is founded on the principles of voluntarism and partnership and the UK Government has set in place a process that encourages communities to participate in the siting process. Developing an environmental safety case (ESC) that gives confidence that a geological disposal facility (GDF) for higher activity radioactive wastes will remain passively safe for hundreds of thousands of years after the facility has been closed, and is no longer actively maintained, is an important and challenging part of the programme to implement geological disposal. Our approach for building confidence in long-term safety is to use multiple barriers to isolate and contain the wastes and to explain our confidence in the performance of these barriers by developing a multi-factor safety case. We will develop a safety case based on varied and different lines of reasoning, including both quantitative aspects and qualitative arguments. We will use a range of safety arguments to support the ESC, drawing on underpinning science and engineering. We have published a generic ESC (that is not specific to any site or disposal facility design) that considers the long-term safety of illustrative generic disposal facility design examples in stylised geological environments. This generic ESC explains how engineered and natural barriers can work together to isolate and contain the radioactivity in the wastes. The safety arguments in the generic ESC are supported by calculations using a simple model that is illustrative of a broad range of disposal facility designs and geological environments. The generic ESC provides a benchmark enabling us to undertake disposability assessments for waste packages, without

  18. Safety assessment of a borehole type disposal facility using the ISAM methodology

    International Nuclear Information System (INIS)

    As part of the IAEA's Co-ordinated Research Project (CRP) on Improving Long-term of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ISAM), three example cases were developed. The aim was to test the ISAM safety assessment methodology using as realistic as possible data. One of the Test Cases, the Borehole Test Case (BTC), related to a proposed future disposal option for disused sealed radioactive sources. This paper uses the various steps of the ISAM safety assessment methodology to describe the work undertaken by ISAM participants in developing the BTC and provides some general conclusions that can be drawn from the findings of their work. (author)

  19. Negotiated compensation for solid-waste disposal facility siting: An analysis of the Wisconsin experience

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A. (Argonne National Lab., IL (United States)); Himmelberger, J.J.; Ratick, S.J. (Clark Univ., Worcester, MA (United States)); White, A.L. (Clark Univ., Worcester, MA (United States) Tellus Institute, Boston, MA (United States))

    1992-12-01

    Since enacting a unique facility siting law in 1981, Wisconsin has had unusual success in siting solid-waste management facilities. The law mandates a state-level technical review and licensing process and a local-level negotiation/arbitration process that deals with host community impacts and concerns. Data from the negotiated compensation agreements, a survey of facility proposers, and secondary data for the host communities are analyzed in relation to compensation levels. Concerns with community image and health risks and with facility management and equity issues are found to significantly and substantially increase negotiated compensation levels. In contrast, a focus on logistics and transportation concerns is associated with lower levels of compensation. Compensation increases with facility capacity but at a less than proportional rate. Higher levels of compensation are obtained by communities that accept compensation in kind in the form of free or reduced fees for host community waste disposal.

  20. From NIMBY to YIMBY: How generators can support siting LLRW disposal facilities

    International Nuclear Information System (INIS)

    The most frequently head complaint about siting low-level radioactive waste disposal facilities is the NIMBY (Not In My Back Yard) syndrome. The producers or generators of this waste can help move public opinion form NIMBY to YIMBY (YES exclamation point In MY Back Yard exclamation point). Generators of low-level radioactive waste often believe it is the responsibility of other organizations to site disposal facilities for the waste, and that their role is to assure the technical aspects of the facility, such as acceptability criteria for the various waste forms, are clearly defined. In reality, generators, using a properly designed and effectively implemented communications plan, can be the most effective advocates for siting a facility. The communications plan must include the following elements: an objective focusing on the importance of generators becoming vocal and active; clearly defined and crafted key messages; specifically defined and targeted audiences for those messages; and speaker training which includes how to communicate with hostile or concerned audiences about a subject they perceive as very risky. Generators must develop coalitions with other groups and form a grassroots support organization. Finally, opportunities must be developed to deliver these messages using a variety of means. Written materials should be distributed often to keep the need for disposal capability in the public's mind. Can we get from NIMBY to YIMBY? It is difficult, but doable--especially with support from the people who make the waste in the first place

  1. Current status of the demonstration test of underground cavern-type disposal facilities

    International Nuclear Information System (INIS)

    In Japan, the underground cavern-type disposal facilities for low-level waste (LLW) with relatively high radioactivity, mainly generated from power reactor decommissioning, and for certain transuranic (TRU) waste, mainly from spent fuel reprocessing, are designed to be constructed in a cavern 50-100 m underground and to employ an engineered barrier system (EBS) made of bentonite and cement materials. To advance a disposal feasibility study, the Japanese government commissioned the Demonstration Test of Underground Cavern-Type Disposal Facilities in fiscal year (FY) 2005. Construction of a full-scale mock-up test facility in an actual subsurface environment started in FY 2007. The main test objective is to establish the construction methodology and procedures that ensure the required quality of the EBS on-site. A portion of the facility was constructed by 2010, and the test has demonstrated both the practicability of the construction and the achievement of quality standards: low permeability of less than 5x10-13 m/s and low-diffusion of less than 1x10-12 m2/s at the completion of construction. This paper covers the test results from the construction of certain parts using bentonite and cement materials. (author)

  2. Near-Field Hydrology Data Package for the Integrated Disposal Facility 2005 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Saripalli, Prasad; Freedman, Vicky L.

    2004-06-25

    CH2MHill Hanford Group, Inc. (CHG) is designing and assessing the performance of an Integrated Disposal Facility (IDF) to receive immobilized low-activity waste (ILAW), Low-Level and Mixed Low-Level Wastes (LLW/MLLW), and the Waste Treatment Plant (WTP) melters used to vitrify the ILAW. The IDF Performance Assessment (PA) assesses the performance of the disposal facility to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. The PA requires prediction of contaminant migration from the facilities, which is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists CHG in its performance assessment activities. One of PNNL’s tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information were previously presented in a report prepared for the 2001 ILAW PA. This report updates the parameter estimates for the 2005 IDF PA using additional information and data collected since publication of the earlier report.

  3. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  4. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements

  5. Construction and operational experiences of engineered barrier test facility for near surface disposal of LILW

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Beak; Park, Se Moon; Kim, Chang Lak [Korea Hydro and Nuclear Power Co., Taejon (Korea, Republic of)

    2003-07-01

    Engineered barrier test facility is specially designed to demonstrate the performance of engineered barrier system for the near-surface disposal facility under the domestic environmental conditions. Comprehensive measurement systems are installed within each test cell. Long-and short-term monitoring of the multi-layered cover system can be implemented according to different rainfall scenarios with artificial rainfall system. Monitoring data on the water content, temperature, matric potential, lateral drainage and percolation of cover-layer system can be systematically managed by automatic data acquisition system. The periodic measurement data are collected and will be analyzed by a dedicated database management system, and provide a basis for performance verification of the disposal cover design.

  6. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Fowler, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-18

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  7. A low-level radioactive waste disposal facility siting simulation exercise

    Energy Technology Data Exchange (ETDEWEB)

    Rope, R.C.; Roop, R.D.

    1986-01-01

    The DOE Low-Level Waste Management Program has developed the Low-Level Radioactive Waste Siting Simulation, a role playing exercise designed to facilitate the process of siting Low-Level Waste (LLW) disposal facilities. This paper describes the development, content, and usefulness of the siting simulation. The simulation consists of two sessions: in the first, participants negotiate the selection of siting criteria, and in the second, a preferred site is chosen from three suitable candidate sites. Several workshops involving the simulation have been conducted for persons involved in the planning of LLW management activities. The simulation is useful as a training tool, a vehicle to foster communication, and a step toward consensus building and conflict resolution. The siting simulation is now available through the DOE Low-Level Waste Management Program for use by states, regional compacts, and other organizations involved in the development of LLW disposal facilities. 6 refs.

  8. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.L. Jr. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997.

  9. Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities

    OpenAIRE

    Jubileus, Mandy T.; Theron, Pieter D.; Rensburg, Leon van; Maboeta, Mark S.

    2013-01-01

    South Africa is an important platinum mining country which results in environmental impacts due to the construction of tailing disposal facilities (TDFs). It is unclear what the effects of ageing are on the ecotoxicity of TDFs and whether it increases or decreases over time. The aim of this study was to determine the ecotoxicity of differently aged TDFs by investigating earthworm (Eisenia andrei) responses viz. growth, reproduction, neutral red retention times (NRRT) a...

  10. 200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, M.J.

    2000-05-18

    This Sampling and Analysis Plan (SAP) has been developed to comply with effluent monitoring requirements at the 200 Area Treated Effluent Disposal Facility (TEDF), as stated in Washington State Waste Discharge Permit No. ST 4502 (Ecology 2000). This permit, issued by the Washington State Department of Ecology (Ecology) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216, is an April 2000 renewal of the original permit issued on April 1995.

  11. Migration and gamma ray assessment of uranium on a gold tailings disposal facility / Jaco Koch

    OpenAIRE

    Koch, Jaco

    2014-01-01

    This project aims to quantify natural gamma radiation in gold tailings disposal facilities (TDFs) relative to uranium concentration data in order to use natural gamma detection methods as alternative methods for uranium resource estimation modelling in gold tailings. Uranium migration within the New Machavie TDF was also investigated as migration affects both the grade of the TDF as a uranium resource and poses a threat to the environment. In order to determine the most appropr...

  12. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  13. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  14. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    International Nuclear Information System (INIS)

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs

  15. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  16. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  17. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  18. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  19. A geohydrological appraisal of the Vaalputs radioactive waste disposal facility in Namaqualand, South Africa

    International Nuclear Information System (INIS)

    The Vaalputs National Radioactive Waste Disposal Facility is located on the Bushmanland Plateau. The disposal site is situated close to the junction of three river basins. All the parameters neccessary were obtained, and methodology developed, to monitor the moisture content of the clay layers underlying the disposal site. Environmental isotope studies established the percolation only reached 3,5m in depth during the past 50 years. The depth was confirmed by neutron meter measurements. The depth to the piezometric surface below the site is, on average, 55m. Ground water is confined to both vertical and horizontal fractures and weathered joints. The high transmissivity of water-bearing structures below the site and the flat piezometric surface are seen as advantageous. In the event of a serious leak and radionuclides reaching the ground water, sustained pumping may lower the piezometric surface creating a basin effect and preventing contamination from reaching private boreholes. Regional hydrogeochemical studies have confirmed that regional flow away from the disposal site toward the Koa drainage is slow and nearly stagnant. The geochemical environment is favourable for attenuating any radionuclide leakage. 1 map, 93 figs., 47 tabs., 158 refs

  20. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

  1. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions

  2. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  3. Modelling the long-term evolution of geological radwaste disposal facilities

    International Nuclear Information System (INIS)

    The report aims to answer questions such as How much do we know about environmental change, How does it apply to the performance assessment of radioactive waste disposal sites and What methods are available for incorporating considerations of environmental change into performance assessment. The document comprises two parts: Part 1 presents a review of the status of research into the effects of long-term environmental changes on deep land disposal facilities for radioactive waste, and then outlines a general specification for modelling these efforts; Part 2 presents background research on permafrost evolution and its potential effects on groundwater systems. Although much work exists on the growth of ice in soils, at shallow levels, relatively little is known about the growth of deep permafrost. A large appendix is devoted to the theoretical work on permafrost growth and its conclusions

  4. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  5. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  6. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  7. Plans for dealing with loss of access to the Midwest Compact Regional Disposal Facility: Regional Management Plan

    International Nuclear Information System (INIS)

    This report describes events that could lead to the premature closure of a disposal facility and the prospects that the closed facility could eventually be reopened. Possible courses of action leading to disposal outside the Midwest region while the Midwest Compact works to reestablish a regional disposal capability are also discussed. A likely division of responsibilities between the Compact Commission and the individual member states, with emphasis on managing low-level waste after a loss of access when disposal outside the Midwest is not possible is presented. Key elements in an agreement between compacts to accept each other's waste when one compact has experienced an unexpected interruption of its disposal operation are described

  8. The New York State Energy Authority's strategy for meeting the January 1993 deadline for establishing a LLRW disposal facility

    International Nuclear Information System (INIS)

    This paper discusses how the New York State LLRW Management Act provides for the Sate to meet all the milestones established by the 1985 Amendments to the Federal LLRW Policy Act and for New York State low-level radioactive waste disposal facilities to be in operation by January 1, 1993. After a siting commission appointed by the governor has chosen a site and disposal method, the State Energy Research and Development Authority will be responsible for designing, obtaining necessary regulatory approvals, constructing, and operating the disposal facility. The overall effort involves nearly independent performance by several different agencies and organizations with responsibilities related to LLRW disposal, including siting and disposal method criteria and public education

  9. The contractor`s role in low-level waste disposal facility application review and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Serie, P.J.; Dressen, A.L. [Environmental Issues Management, Inc., Seattle, WA (United States)

    1991-12-31

    The California Department of Health Services will soon reach a licensing decision on the proposed Ward Valley low-level radioactive waste disposal facility. As the first regulatory agency in the country to address the 10 CFR Part 61 requirements for a new disposal facility, California`s program has broken new ground in its approach. Throughout the review process, the Department has relied on contractor support to augment its technical and administrative staff. A team consisting of Roy F. Weston, Inc., supported by ERM-Program Management Corp., Environmental Issues Management, Inc., and Rogers and Associates Engineering Corporation, has worked closely with the Department in a staff extension role. The authors have been involved with the project in contractor project management roles since 1987, and continue to support the Department`s program as it proceeds to finalize its licensing process. This paper describes the selection process used to identify a contractor team with the needed skills and experience, and the makeup of team capabilities. It outlines the management, communication, and technical approaches used to assure a smooth agency-contractor function and relationship. It describes the techniques used to ensure that decisions and documents represented the Department credibly in its role as the regulatory and licensing agency under the Nuclear Regulatory Commission (NRC) Agreement State program. The paper outlines the license application review process and activities, through preparation of licensing documentation and responses to public comments. Lessons learned in coordination of an agency-contractor team effort to review and license a low-level waste disposal facility are reviewed and suggestions made for approaching a similar license application review and licensing situation.

  10. Z-Area Saltstone Disposal Facility groundwater monitoring report, Fourth quarter 1995 and 1995 summary

    Energy Technology Data Exchange (ETDEWEB)

    Coward, L.S.

    1996-03-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed quarterly for constituents required by South Carolina Department of Health and Environmental Control Industrial Waster Permit IWP-217 and for other constituents as part of the Savannah River Site Groundwater Monitoring Program. During fourth quarter 1995, no constituents were reported above final Primary Drinking Water Standards or SRS flagging criteria. In the past, tritium has been detected sporadically in the ZBG wells at levels similar to those detected before Z Area began radioactive operations.

  11. A process for establishing a financial assurance plan for LLW disposal facilities

    International Nuclear Information System (INIS)

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided

  12. Application of Bayesian network methodology to the probabilistic risk assessment of nuclear waste disposal facility

    International Nuclear Information System (INIS)

    The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If one takes various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering some stochastic passive systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, it is believed that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this study proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. In this study an approximate probabilistic inference program for the specific Bayesian network developed and verified using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a Monte-Carlo model for uncertainty propagation of relevant parameters, were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, this study could connect the results of probabilistic

  13. A process for establishing a financial assurance plan for LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  14. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  15. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  16. Quality assurance guidance for low-level radioactive waste disposal facility: Final report

    International Nuclear Information System (INIS)

    This document provides guidance to an applicant on meeting the quality control (QC) requirements for a low-level waste (LLW) disposal facility. The QC requirements are the basis for developing of a quality assurance (QA) program and for the guidance provided herein. The criteria are basic to any QA program. The document specifically establishes QA guidance for the design, construction, and operation of those structures, systems, components, as well as, for site characterization activities necessary to meet the performance objectives and to limit exposure to our release of radioactivity. 7 refs

  17. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  18. Procedures and techniques for closure of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    The overall objective of this report is to provide Member States with guidance on planning and implementation of closure of near surface disposal facilities for low and intermediate level radioactive waste. The specific objectives are to review closure concepts, requirements, and components of closure systems; to discuss issues and approaches to closure, including regulatory, economic, and technical aspects; and to present major examples of closure techniques used and/or considered by Member States. Some examples of closure experience from Member States are presented in the Appendix and were indexed separately

  19. Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) System Configuration Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.L. Jr.

    1994-06-01

    The Treated Effluent Disposal Facility Operator Training Station (TEDF OTS) is a computer based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS). It consists of PC compatible computers and a Programmable Logic Controller (PLC) designed to emulate the responses of various plant components connected to or under the control of the CCS. The system trains operators by simulating the normal operation but also has the ability to force failures of different equipment allowing the operator to react and observe the events. The paper describes organization, responsibilities, system configuration management activities, software, and action plans for fully utilizing the simulation program.

  20. Investigation report on the facilities and disposed materials related to the abolished Tokai refinement plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Present situations were surveyed on the slay accumulation site, raw material ore, and demolished facilities. The survey revealed demolished materials buried in a restricted area of the Institute yard, and the result of investigation was published together with further investigation plan. As a result of the investigation, the area of buried slag and ore was pinpointed. At the same time, the situation of disposal of non-radioactive equipment materials and burnt ash generated from the fuel reprocessing plant was investigated. It was confirmed then that the waste storage did not effect the neighboring environment. (H. Baba)

  1. The impact of a final disposal facility for spent nuclear fuel on a municipality's image

    International Nuclear Information System (INIS)

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities' point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality's image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter 'which does not concern me', provided that the facility will not be placed too near one's own home. Among those interviewed the subject seemed not to be of any 'great interest and did not arouse spontaneous feelings for or against'. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  2. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  3. 1301-N and 1325-N liquid waste disposal facilities limited field investigation Report

    International Nuclear Information System (INIS)

    This report summarizes the results of the 1301-N and 1325-N Liquid Waste Disposal Facility limited field investigation (LFI) and qualitative risk assessment to meet the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-15-12A. The purposes of this LFI project were to supplement previous field investigations, verify historical information, and provide the necessary information to the Washington State Department of Ecology, U.S. Environmental Protection Agency, and the U.S. Department of Energy so they can address the following two objectives: Determine if immediate action on soil at 1301-N and/or 1325-N is required to protect groundwater. Determine if, for the long-term, soil remediation is required to protect groundwater from a future potential impact, and, if so, when remediation should be performed

  4. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  5. A summary of the geotechnical and environmental investigations pertaining to the Vaalputs national radioactive waste disposal facility

    International Nuclear Information System (INIS)

    This report describes the geological environmental surveys that lead to the choice and final evaluation of the Vaalputs national facility for the disposal of radioactive waste. This survey looked at the geography, demography, ecology, meteorology, geology, geohydrology and background radiological characteristics of the Vaalputs radioactive waste facility

  6. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  7. Approach to the vadose zone monitoring in hazardous and solid waste disposal facilities

    Science.gov (United States)

    Twardowska, Irena

    2004-03-01

    In the solid waste (SW)disposal sites, in particular at the unlined facilities, at the remediated or newly-constructed units equipped with novel protective/reactive permeable barriers or at lined facilities with leachate collection systems that are prone to failure, the vadose zone monitoring should comprise besides the natural soil layer beneath the landfill, also the anthropogenic vadose zone, i.e. the waste layer and pore solutions in the landfill. The vadose zone screening along the vertical profile of SW facilities with use of direct invasive soil-core and soil-pore liquid techniques shows vertical downward redistribution of inorganic (macroconstituents and heavy metals) and organic (PAHs) contaminant loads in water infiltrating through the waste layer. These loads can make ground water down-gradient of the dump unfit for any use. To avoid damage of protective/reactive permeable barriers and liners, an installation of stationary monitoring systems along the waste layer profile during the construction of a landfill, which are amenable to generate accurate data and information in a near-real time should be considered including:(i) permanent samplers of pore solution, with a periodic pump-induced transport of collected solution to the surface, preferably with instant field measurements;(ii)chemical sensors with continuous registration of critical parameters. These techniques would definitely provide an early alert in case when the chemical composition of pore solution percolating downward the waste profile shows unfavorable transformations, which indicate an excessive contaminant load approaching ground water. The problems concerning invasive and stationary monitoring of the vadose zone in SW disposal facilities will be discussed at the background of results of monitoring data and properties of permeable protective/reactive barriers considered for use.

  8. LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach

    Energy Technology Data Exchange (ETDEWEB)

    Forcella, D.; Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States); Holeman, G.R. [Yale Univ., New Haven, CT (United States)

    1994-12-31

    The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer process is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.

  9. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  10. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    This document Volume 2 in a two-volume series that comprise the site characterization report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; and preoperational baseline chemical data and aquifer test data. This does not represent the entire body of data available. Other types of information are archived at BHI Document Control. Five ground water monitoring wells were drilled at the Environmental Restoration Disposal Facility site to directly investigate site- specific hydrogeologic conditions. Well and borehole activity summaries are presented in Volume 1. Field borehole logs and geophysical data from the drilling are presented in this document. Well development and pump installation sheets are presented for the groundwater monitoring wells. Other data presented in this document include borehole geophysical logs from existing wells; chemical data from the sampling of soil, vegetation, and mammals from the ERDF to support the preoperational baseline; ERDF surface radiation surveys;a nd aquifer testing data for well 699-32-72B

  11. Risk assessment associated to possible concrete degradation of a near surface disposal facility

    Directory of Open Access Journals (Sweden)

    Wacquier W.

    2013-07-01

    Full Text Available This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste – short-lived low and intermediate level waste – in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years, which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.

  12. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    Energy Technology Data Exchange (ETDEWEB)

    Batandjieva, B.; Metcalf, P.

    2003-02-25

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years.

  13. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  14. A Bakken two-step : Rotex combines fresh water supply with produced water disposal at a single facility

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-02-15

    Rotex Energy Ltd. processes and disposes of oilfield waste and provides source water to producers. The company is now undertaking waste disposal projects in conjunction with the Acho Dene Koe and its company, Beaver Enterprises. The company's new oilfield waste management facility in Willmar, Saskatchewan offers a supply of consistent fracturing-compatible water for well completion as well as a disposal site for produced water. Producers in Saskatchewan require massive amounts of water for multi-stage horizontal fracs. Rotex offers fracturing water that is of a consistent quality and temperature in order to provide cost-effective stability for producing while reducing pressure on the surface watershed. Water from the plant site is delivered fully heated to the fracturing site. Customers that buy the frac water use the same Willmar facility for the subsequent disposal of the produced water. Rotex also pays producers for the crude oil recovered from their waste streams. 2 figs.

  15. Evaluation of using synthetic zeolite as a backfill material in radioactive waste disposal facility

    International Nuclear Information System (INIS)

    The fundamental safety concept for the disposal of radioactive wastes is to isolate the waste from the accessible environment for a period sufficiently long to allow substantial decay of the radionuclides and to limit release of residual radionuclides into the accessible environment. The underground disposal of radioactive waste is based upon a multi barrier concept. Backfill material is an important component of a multi-barrier disposal facility for low and intermediate level radioactive wastes. For long-term performance assessment of radioactive repositories, knowledge concerning the migration of radionuclides in the backfill material is required. Radionuclide migration through porous media (backfill materials) is governed by diffusion, advection, dispersion, retardation, and radionuclide decay. The work presented in this thesis is an examination of the feasibility of using synthetic zeolite NaA-X blend prepared from fly ash (FA) as backfill material in the proposed radioactive waste disposal facility in Egypt. The migration behavior of cesium and strontium ions, as two of the most important radionuclides commonly encountered in the Egyptian waste streams, through the proposed backfill material is studied using mathematical models. This approach considers the advective and dispersive transport of solutes dissolved in groundwater, which may undergo linear sorption (i.e retardation) and simple first order decay. To achieve these goals, the following investigations were carried out:1- Review of the materials most commonly used as engineered backfill to identify the important features to be considered in the examination of the proposed backfill material (zeolite Na A-X blend).2- Sorption experimental investigation aimed to study the sorption properties of the candidate backfill material towards the concerned radionuclides, cesium and strontium. Such studies are performed to establish clear understanding of the principle factors that control the sorption process, i

  16. Proposed Plan for an amendment to the Environmental Restoration Disposal Facility Record of Decision, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    The U.S. Environmental Protection Agency, the Washington State Department of Ecology, and the U.S. Department of Energy (Tri- Parties) are proposing an amendment to the Environmental Restoration Disposal Facility Record of Decision (ERDF ROD). EPA is the lead regulatory agency for the ERDF Project. This Proposed Plan includes two elements intended to promote Hanford Site cleanup activities by broadening utilization and operation of ERDF as follows: (1) Construct the planned Phase II of ERDF using the current disposal cell design and (2) enable centralized treatment of remediation waste at ERDF prior to disposal, as appropriate

  17. Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes

    International Nuclear Information System (INIS)

    Groundwater flow simulations were performed to obtain data of groundwater flow used in a safety assessment for a hypothetical geological disposal facility assumed to be located in the KURT (KAERI Underground Research Tunnel) site. A regional scale modeling of the groundwater flow system was carried out to make boundary conditions for a local scale modeling. And, fracture zones identified at the study site were involved in the local scale groundwater flow model. From the results of the local scale modeling, a hydraulic head distribution was indicated and it was used in a particle tracking simulation for searching pathway of groundwater from the location of the hypothetical disposal facility to the surface where the groundwater reached. The flow distance and discharge rate of the groundwater in the KURT site were calculated. It was thought that the modeling methods used in this study was available to prepare the data of groundwater flow in a safety assessment for a geological disposal facility of radioactive wastes.

  18. The effects of the final disposal facility for spent nuclear fuel on regional economy

    International Nuclear Information System (INIS)

    The study deals with the economic effects of the final disposal facility for spent nuclear fuel on the alternative location municipalities - Eurajoki, Kuhmo, Loviisa and Aeaenekoski - and their neighbouring areas (in Finland). The economic influence of the facility on industrials, employment, population, property markets, community structure and local public economics are analysed applying the approach of regional economics. The evaluation of the facility's effects on employment is based on the input-output analysis. Both the direct and indirect effects of the construction and the functioning of the facility are taken into account in the analysis. According to the results the total increase in employment caused by the construction of the facility is about 350 persons annually, at national level. Some 150 persons of this are estimated to live in the wider region and 100-150 persons in the facility's influence area consisting of the location municipality and neighbouring municipalities. This amount is reached at the top stage of construction (around the year 2018). At the production stage - after the year 2020 - the facility's effects on employment will be concentrated significantly more on the location municipality and the rest of the influence area than on the rest of the country, compared with the construction stage. The estimated employment growth in the production stage is approximately 160 persons at national level of which 100-120 persons live in the candidate municipality and in the rest of the influence area. There is a direct link between local employment and population development. The growth of jobs attracts immigrants affecting the development of both the number and the structure of population. The facility's effects on population development in the alternative location municipalities are analysed using comparative population forecasts based on demographic population projection methods. According to the results the job growth caused by the facility will

  19. Study on mechanical influence of gas generation and migration on engineered barrier system in radioactive waste disposal facility

    International Nuclear Information System (INIS)

    In Japan, some radioactive waste with a relatively higher radioactivity concentration from nuclear facilities is to be packaged in rectangle steel containers and disposed of in subsurface disposal facilities, where normal human intrusion rarely occurs. After the closure of a facility, its pore is saturated with groundwater. If the dissolved oxygen of the pore water is consumed by steel corrosion, hydrogen gas will be generated from the metallic waste, steel containers, and reinforcing bars of concrete mainly by anaerobic corrosion. If the generated gas accumulates and the gas pressure increases excessively in the facility, the facility's barrier performance might be degraded by mechanical influences such as crack formation in cementitious material or deformation of bentonite material. Firstly, in this study, we assessed the time evolution of the gas pressure and the water saturation in a sub-surface disposal facility by using a multi-phase flow numerical analysis code, GETFLOWS, in which a pathway dilation model is introduced and modified in order to reproduce the gas migration mechanism through the highly compacted bentonite. Next, we calculated the stress applied to the engineered barriers of the facility from the results of the time evolution of the pressure and the saturation. Then, we conducted a mechanical stability analysis of the engineered barriers by using a nonlinear finite element code, ABAQUS, in order to evaluate their performances after the closure of the facility. (author)

  20. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Avolahti, J.; Vira, J. [Posiva Oy, Helsinki (Finland)

    1999-12-01

    Preparations for the final disposal of spent nuclear fuel in Finland started about twenty years ago. At present the work is carried out by Posiva Oy, which in 1996 took over the programme managed earlier by Teollisuuden Voima Oy, one of the country's nuclear power companies. From 1996 on the preparations have been made for all the spent fuel from Finnish nuclear power stations. The site for the final disposal facility will be selected among four alternatives by the end of 2000 and - assuming that the technical approach proposed by Posiva is accepted by the Government and the Parliament - the construction of the repository will start in the 2010s. The disposal operations are planned to be started in 2020. The alternative four sites have gone through a systematic site selection process based on geologic siting criteria and on environmental and cultural considerations. One of the objectives of the process was to avoid inhabited areas, agricultural fields, valuable groundwater or preservation areas as well as areas which might draw interest as regards the potential for ore deposits. The idea was that the field investigations and later the possible disposal facility should not cause any harm to local people. Two of the candidate sites are at present nuclear power plant sites situated at the coast, the two other candidates are inland sites with no nuclear activities. The geologic siting investigations were started in 1987. Interim assessments of the results so far have been made in 1992 and 1996 and a final report of all the investigations will be published before the end of 2000. The present view is that all four candidates are geologically suitable for siting the repository. Posiva's EIA for the final disposal of spent fuel in Finland is nearing completion. A considerable effort was made to involve local groups and individuals in the assessment process. Yet the participation remained limited and consisted mainly of active opponents of the project and of those

  1. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  2. An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

    2011-03-01

    Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose

  3. Geochemical Data Package for the 2005 Hanford Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M.; Serne, R JEFFREY.; Kaplan, D I.

    2004-09-30

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is designing and assessing the performance of an integrated disposal facility (IDF) to receive low-level waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and failed or decommissioned melters. The CH2M HILL project to assess the performance of this disposal facility is the Hanford IDF Performance Assessment (PA) activity. The goal of the Hanford IDF PA activity is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the vadose zone to groundwater where contaminants may be re-introduced to receptors via drinking water wells or mixing in the Columbia River. Pacific Northwest National Laboratory (PNNL) assists CH2M HILL in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the IDF, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (Kd) and the thermodynamic solubility product (Ksp), respectively. In this data package, we approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. The Kd values and

  4. Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists. 1.2 This standard guide is based on the “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites,” (1) from ...

  5. Unsaturated flow modeling for performance assessment of a radioactive waste disposal facility in Andrews County, Texas

    Science.gov (United States)

    Martinez Baquero, G. F.; Singh, A.; Holt, R. M.; grisak, G. E.

    2011-12-01

    Quantitifying infiltration rates is a key component of the performance assessment for radioactive waste disposal facilities. In arid regions with scarce infiltration data, this is a challenging problem because of the computational limitations of available numerical implementations to solve water flow and transport equations. This work summarizes methodology and analysis performed to overcome some of these challenges and to generate infiltration scenarios for a low level waste disposal site in Andrews County, Texas. The work presented here includes preparation of a two dimensional finite element model in HYDRUS that includes the cover system and adjacent geologic units, calibration of hydraulic properties and root water uptake parameters based on soft information, preparation of atmospheric forcings based on current and hypothesized future climatic conditions, evaluation of impacts related to temporal and spatial discretization of forcings and model domain, and definition of scenarios for cover degradation and wetter climate conditions. Results of this work include a sensitivity analysis of infiltration rates to changes in boundary conditions under quasi-steady state, evaluation of the impact of temporal discretization of the atmospheric forcings in terms of water balance error and computational efficiency, and the estimation of infiltration rates under different scenarios. Infiltration rates from this work are being incorporated into a transport model to estimate potential radiological doses based on performance assessment modeling analyses. Findings from this work seek to contribute towards robust approaches to estimate infiltration in arid regions.

  6. Comparative approaches to siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection

  7. Effluent variability study for the 200 area treated effluent disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.J., Westinghouse Hanford

    1996-07-12

    The variability of permitted constituents in grab samples and 24-hr composites of liquid effluent discharged to the Treated Effluent Disposal Facility (TEDF) in the 200 East Area of the Hanford Site was evaluated for the period July 1995 through April 1996. The variability study was required as a condition of the wastewater discharge permit issued by the State of Washington Department of Ecology. Results of the statistical evaluation indicated that (1) except for iron, and possibly chloride, there is a very low probability of exceeding existing permit limits, (2) seasonal effects related to intake water quality account for the variability in several chemical constituents and (3) sample type (grab vs 24-hr composite) have little if any effect on monthly mean constituent concentrations.

  8. Comparative approaches to siting low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  9. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation

  10. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

  11. Operational safety analysis of the Olkiluoto encapsulation plant and disposal facility; Olkiluodon kapselointi- ja loppusijoituslaitoksen kaeyttoeturvallisuusanalyysi

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, J.; Suolanen, V. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-11-15

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facilities to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. In addition the results for unfiltered releases are also presented. This research is limited to the deterministic analysis. During about 30 operation years of our four nuclear power plant units there have been found 58 broken fuel pins. Roughly estimating there has been one fuel leakage per year in a facility (includes two units). Based on this and adopting a conservative approach, it is estimated that one fuel pin per year could leak in normal operation during encapsulation process. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The most exposed group of inhabitants is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and it will receive the largest doses in most dispersion conditions. The dose value to a member of the most exposed group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the most exposed group is less than 0.001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety

  12. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hae-Woon [Organization for Atomic Energy Awareness, Seoul (Korea, Republic of); Oh, Chang-Taeg [Kwangwoon Univ., Seoul (Korea, Republic of)

    1996-12-31

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents` reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor`s authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication.

  13. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  14. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  15. Performance-assessment progress for the Rozan low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smietanski, L.; Mitrega, J.; Frankowski, Z. [Polish Geological Institute, Warsaw (Poland)] [and others

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangered unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.

  16. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    CJ Chou; VG Johnson

    2000-04-04

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time.

  17. Use of engineered soils beneath low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A. [Univ. of Maine, Orono, ME (United States). Dept. of Civil Engineering

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  18. Ecological survey for the siting of the Mixed and Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoskinson, R.L.

    1994-05-01

    This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Lab. (INEL) at two candidate locations for the siting of the Mixed and Low-Level Waste Disposal Facility (MLLWDF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate locations were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning in System (GPS) measurements of the marker stakes were made, and input to the Arc/Info geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data were overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Two species of rare vascular plants have previously been reported to occur in the vicinity of the candidate locations. Two C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. No significant ecological impact is anticipated if the MLLWDF were constructed on either candidate location. However, both candidate locations are in the central area of the INEL where there is minimal disturbance to the ecosystem by facilities or humans.

  19. Radiohygienic aspects of the safety analysis of the Puespoekszilagy radioactive waste disposal and treatment facility, Hungary

    International Nuclear Information System (INIS)

    A temporary disposal was established for low level radioactive waste (LLW) at Solymar close to Budapest in 1960. Approx. 900 m3 LLW was disposed in concrete ring bells on the site until 1975. A new disposal (Radwaste Treatment and Disposal Facility, RWTDF) for low and intermediate radioactive waste (L/ILW) was put into operation at Puespoekszilagy, about 40 km to Budapest in 1976. The site was operated by the Metropolitan Institute of National Public Health and Medical Officer Service until 1997, when according to the new Hungarian Act on Atomic Energy the Public Agency for Radioactive Waste Management was established to perform the tasks connected to radwaste management and decommissioning of nuclear installations. The Solymar facility was dismantled and the radioactive waste transported to Puespoekszilagy. The RWTDF is situated on the ridge of a hill in a clay formation with conductivity from 10-8 to 10-6 cm.s-1; the groundwater depth is 17-20 m from the bottom of the disposal units. The waste is deposited in near surface disposal units (trenches, cells, and wells) with engineered barriers. Up to now about 4900 m3 of solid and solidified waste has been emplaced and 2 trenches of about 3000 m3 has been temporary sealed. More than 80% of the disposed waste is of low level. Approx. 700 TBq is the total activity of the radwaste including long-lived and alpha emitting radionuclides with the activity of the order of magnitude of 10 TBq. As the safety analysis was performed in a simple way in 1970's during the commissioning of the facility a comprehensive safety analysis was prescribed to get the license for the operation of the storage units extended at the end of 1980's. ETV-EROETERV Ltd. has won the tender for the safety analysis and the NRIRR was involved in the biosphere characterisation of the region and in the dose estimations for different accidental scenarios as well. The biosphere characterisation included the following categories: meteorology, geography, land

  20. Evaluation and use of geosphere flow and migration computer programs for near surface trench type disposal facilities

    International Nuclear Information System (INIS)

    This report describes calculations of groundwater flow and radionuclide migration for near surface trench type radioactive waste disposal facilities. Aspects covered are verification of computer programs, detailed groundwater flow calculations for the Elstow site, radionuclide migration for the Elstow site and the effects of using non-linear sorption models. The Elstow groundwater flows are for both the current situation and for projected developments to the site. The Elstow migration calculations serve to demonstrate a methodology for predicting radionuclide transport from near surface trench type disposal facilities. The majority of the work was carried out at the request of and in close collaboration with ANS, the coordinators for the preliminary assessment of a proposed radioactive waste disposal site at Elstow. Hence a large part of the report contains results which were generated for ANS to use in their assessment. (author)

  1. Safety assessment on the human intrusion scenarios of near surface disposal facility for low and very low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Wook; Park, Jin Baek [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sang Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2016-03-15

    The second-stage near surface disposal facility for low and very low level radioactive waste's permanent disposal is to be built. During the institutional control period, the inadvertent intrusion of the general public is limited. But after the institutional control period, the access to the general public is not restricted. Therefore human who has purpose of residence and resource exploration can intrude the disposal facility. In this case, radioactive effects to the intruder should be limited within regulatory dose limits. This study conducted the safety assessment of human intrusion on the second-stage surface disposal facility through drilling and post drilling scenario. Results of drilling and post drilling scenario were satisfied with regulatory dose limits. The result showed that post-drilling scenario was more significant than drilling scenario. According to the human intrusion time and behavior after the closure of the facility, dominant radionuclide contributing to the intruder was different. Sensitivity analyses on the parameters about the human behavior were also satisfied with regulatory dose limits. Especially, manual redistribution factor was the most sensitive parameter on exposure dose. A loading plan of spent filter waste and dry active waste was more effective than a loading plan of spent filter waste and other wastes for the radiological point of view. These results can be expected to provide both robustness and defense in depth for the development of safety case further.

  2. Wastewater disposal from unconventional oil and gas development degrades stream quality at a West Virginia injection facility

    Science.gov (United States)

    Akob, Denise M.; Mumford, Adam; Orem, William H.; Engle, Mark A.; Klinges, Julia (Grace); Kent, Douglas B.; Cozzarelli, Isabelle M.

    2016-01-01

    The development of unconventional oil and gas (UOG) resources has rapidly increased in recent years; however, the environmental impacts and risks are poorly understood. A single well can generate millions of liters of wastewater, representing a mixture of formation brine and injected hydraulic fracturing fluids. One of the most common methods for wastewater disposal is underground injection; we are assessing potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in West Virginia. In June 2014, waters collected downstream from the site had elevated specific conductance (416 μS/cm) and Na, Cl, Ba, Br, Sr, and Li concentrations, compared to upstream, background waters (conductivity, 74 μS/cm). Elevated TDS, a marker of UOG wastewater, provided an early indication of impacts in the stream. Wastewater inputs are also evident by changes in 87Sr/86Sr in streamwater adjacent to the disposal facility. Sediments downstream from the facility were enriched in Ra and had high bioavailable Fe(III) concentrations relative to upstream sediments. Microbial communities in downstream sediments had lower diversity and shifts in composition. Although the hydrologic pathways were not able to be assessed, these data provide evidence demonstrating that activities at the disposal facility are impacting a nearby stream and altering the biogeochemistry of nearby ecosystems.

  3. Wastewater Disposal from Unconventional Oil and Gas Development Degrades Stream Quality at a West Virginia Injection Facility.

    Science.gov (United States)

    Akob, Denise M; Mumford, Adam C; Orem, William; Engle, Mark A; Klinges, J Grace; Kent, Douglas B; Cozzarelli, Isabelle M

    2016-06-01

    The development of unconventional oil and gas (UOG) resources has rapidly increased in recent years; however, the environmental impacts and risks are poorly understood. A single well can generate millions of liters of wastewater, representing a mixture of formation brine and injected hydraulic fracturing fluids. One of the most common methods for wastewater disposal is underground injection; we are assessing potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in West Virginia. In June 2014, waters collected downstream from the site had elevated specific conductance (416 μS/cm) and Na, Cl, Ba, Br, Sr, and Li concentrations, compared to upstream, background waters (conductivity, 74 μS/cm). Elevated TDS, a marker of UOG wastewater, provided an early indication of impacts in the stream. Wastewater inputs are also evident by changes in (87)Sr/(86)Sr in streamwater adjacent to the disposal facility. Sediments downstream from the facility were enriched in Ra and had high bioavailable Fe(III) concentrations relative to upstream sediments. Microbial communities in downstream sediments had lower diversity and shifts in composition. Although the hydrologic pathways were not able to be assessed, these data provide evidence demonstrating that activities at the disposal facility are impacting a nearby stream and altering the biogeochemistry of nearby ecosystems. PMID:27158829

  4. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  5. Current status of radiation safety of disposal facility in the Republic of Moldova and measures of its improvement

    International Nuclear Information System (INIS)

    The infrastructure and waste management safety in the Republic of Moldova is presented. The current situation in the waste disposal facility is described. The radioactive waste inventory shows a total activity of 16.4 TBq. The radiological survey of soils at the CRWDF show a significant increase of the contamination by 226Ra and 90Sr at depths 3 - 5.5 m, considered as an accidental situation provoked by the disintegration of the facility protective walls. Measures for the prevention of further contamination and ground water are discussed. Construction of a new radioactive waste shallow land disposal facility on the site combined with some engineering improvements of the site is considered the best solution. Some problems of the waste management in the country are presented

  6. United Kingdom. Development plan for the eventual closure of the UK Drigg nuclear surface low level waste disposal facility

    International Nuclear Information System (INIS)

    The Drigg site, owned and operated by BNFL, is the UK's principal site for the disposal of low level radioactive waste. The site has operated since 1959 and receives wastes from a wide range of sources including nuclear power stations, nuclear fuel cycle facilities, isotope manufacturing sites, universities, general industry and cleanup of historically contaminated sites. Disposals until the late 1980s were solely by tipping essentially loose wastes into excavated trenches. More recently, trench disposals have been phased out in preference to emplacement of containerised, conditioned wastes in concrete vaults. The standardised wasteform consists of high force compacted (or non-compactable) waste immobilised within 20 m3 steel overpack containers by the addition of cementitious grout. Larger items of wastes are grouted directly, in situ in the vault. The disposal trenches have been completed with an interim cap, as will the vaults when filled. It is currently estimated that sufficient capacity remains at Drigg for disposals to continue until at least 2050. Post-operations it is planned that the site will enter a phase including shut down of operational facilities, emplacement of long term site closure features including a final closure cap and then to an institutional management phase. Planning has therefore been carried out as to the strategy for eventual closure of the site. This closure strategy is also underpinned by an engineering evaluation studies programme to develop and evaluate appropriate closure measures including assessment of the long term performance of such measures. This appendix summarizes some of this work

  7. North Carolina Geological Survey's role in siting a low-level radioactive (LLRW) waste disposal facility in North Carolina

    International Nuclear Information System (INIS)

    The Southeast Compact Commission in 1986 selected North Carolina to host the Southeast's LLRW disposal facility for the next twenty years. The North Carolina Geological Survey (NCGS) for six years has played a major role in the State's efforts by contributing to legislation and administrative code, policy, technical oversight and surveillance and regulation as a member of the State's regulatory team. Future activities include recommendation of the adequacy of characterization and site performance pursuant to federal code, state general statutes and administrative code, and review of a license application. Staff must be prepared to present testimony and professional conclusions in court. The NCGS provides technical advice to the Division of Radiation Protection (DRP), the regulatory agency which will grant or deny a LLRW license. The NCGS has not participated in screening the state for potential sites to minimize bias. The LLRW Management Authority, a separate state agency siting the LLRW facility, hired a contractor to characterize potential sites and to write a license application. Organizational relationships enable the NCGS to assist the DRP in its regulatory role without conflict of interest. Disposal facilities must be sited to ensure safe disposal of LLRW. By law, the siting of a LLRW disposal facility is primarily a geological, rather than an engineering, effort. Federal and State statutes indicate a site must be licensable on its own merits. Engineered barriers cannot make a site licensable. The project is 3 years behind schedule and millions of dollars over budget. This indicates the uncertainty and complexity inherent in siting such as facility, the outcome of which cannot be predicted until site characterization is complete, the license application reviewed and the performance assessment evaluated. State geological surveys are uniquely qualified to overview siting of LLRW facilities because of technical expertise and experience in the state's geology

  8. Long-Term Performance of Silo Concrete in Low- and Intermediate-Level Waste (LILW) Disposal Facility

    International Nuclear Information System (INIS)

    Concrete has been considered one of the engineered barriers in the geological disposal facility for low- and intermediate-level wastes (LILW). The concrete plays major role as structural support, groundwater infiltration barrier, and transport barrier of radionuclides dissolved from radioactive wastes. It also works as a chemical barrier due to its high pH condition. However, the performance of the concrete structure decrease over a period of time because of several physical and chemical processes. After a long period of time in the future, the concrete would lose its effectiveness as a barrier against groundwater inflow and the release of radionuclides. An subsurface environment below the frost depth should be favorable for concrete longevity as temperature and moisture variation should be minimal, significantly reducing the potential of cracking due to drying shrinkage and thermal expansion and contraction. Therefore, the concrete structures of LILW disposal facilities below groundwater table are expected to have relatively longer service life than those of near-surface or surface concrete structures. LILW in Korea is considered to be disposed of in the Wolsong LILW Disposal Center which is under construction in geological formation. 100,000 waste packages are expected to be disposed in the 6 concrete silos below EL -80m in the Wolsong LILW Disposal Center as first stage. The concrete silo has been considered the main engineered barrier which plays a role to inhibit water inflow and the release of radionuclides to the environments. Although a number of processes are responsible for the degradation of the silo concrete, it is concluded that a reinforcing steel corrosion cause the failure of the silo concrete. Therefore, a concrete silo failure time is calculated based on a corrosion initiation time which takes for chloride ions to penetrate through the concrete cover, and a corrosion propagation time. This paper aims to analyze the concrete failure time in the

  9. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    International Nuclear Information System (INIS)

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr+ ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10−2 g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred

  10. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    Science.gov (United States)

    Setiawan, Budi; Mila, Oktri; Safni

    2014-03-01

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr+ ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10-2 g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  11. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  12. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    International Nuclear Information System (INIS)

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  13. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    Energy Technology Data Exchange (ETDEWEB)

    Biurrun, E.; Haverkamp, B. [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany); Lazaro, A.; Miralles, A. [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain); Stefanova, I. [SERAW, 52 A Dimitrov Blvd, 6 Fl., 1797 Sofia (Bulgaria)

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  14. Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities.

    Science.gov (United States)

    Jubileus, Mandy T; Theron, Pieter D; van Rensburg, Leon; Maboeta, Mark S

    2013-03-01

    South Africa is an important platinum mining country which results in environmental impacts due to the construction of tailing disposal facilities (TDFs). It is unclear what the effects of ageing are on the ecotoxicity of TDFs and whether it increases or decreases over time. The aim of this study was to determine the ecotoxicity of differently aged TDFs by investigating earthworm (Eisenia andrei) responses viz. growth, reproduction, neutral red retention times (NRRT) and tissue metal concentrations. Further, to evaluate the status of these in terms of a geoaccumulation index (I(geo)), pollution index and integrated pollution index. Results indicated that earthworms showed reduced reproductive success (hatchlings per cocoon) and decreased NRRT in all the sites. Juveniles per cocoon between all of the different treatment groups were; control (2.83 ± 0.54) > site 2 (20 years old; 1.83 ± 0.27) > sites 1 and 3 (40 years old; 1.06 ± 0.15 and 6 years old; 0.88 ± 0.39). This might be ascribed to the elevated levels of Cr (±200 to 1,166 μg g(-1)) and Ni (±100 to 316 μg g(-1)) in all of the sites. Earthworms did not bioaccumulate metals with bioconcentration factors for all the different treatments <0.01. Studies like these could be useful when establishing a ranking of TDFs in the future to provide legislative institutions with an indication of the environmental liabilities of platinum mines. PMID:23229136

  15. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

    2004-09-01

    This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

  16. Information on the confinement capability of the facility disposal area at West Valley, New York

    International Nuclear Information System (INIS)

    This report summarizes the previous NRC research studies, NRC licensee source term data and recent DOE site investigations that deal with assessment of the radioactive waste inventory and confinement capability of the Facility Disposal Area (FDA) at West Valley, New York. The radioactive waste inventory for the FDA has a total radioactivity of about 135,000 curies (Ci) and is comprised of H-3 (9,500 Ci), Co-60 (64,000 Ci), SR-90/Y-90 (24,300 Ci), Cs-137/Ba-137m (24,400 Ci), and Pu-241 (13,300 Ci). These wastes are buried in the Lavery Till, a glacial till unit comprised of a clayey silt with very low hydraulic conductivity properties. Recent studies of a tributylphosphate-kerosene plume moving through the shallow ground-water flow system in the FDA indicate a need to better assess the fracture flow components of this system particularly the weathered and fractured Lavery Till unit. The analysis of the deeper ground-water flow system studied by the USGS and NYSGS staffs indicated relatively long pathways and travel times to the accessible environment. Mass wasting, endemic to the glacial-filled valley, contributed to the active slumping in the ravines surrounding the FDA and also need attention. 31 refs., 8 figs., 8 tabs

  17. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 1, Revision 2

    International Nuclear Information System (INIS)

    This document is the first in a two-volume series that comprise the site characterization report. Volume 1 contains data interpretation and information supporting the conclusions in the text (Appendices A through G). Volume 2 provides raw data. A site located between 200 East and 200 West Areas, in the central portion of the Hanford Site, was selected as the prime location for the ERDF. Modifications to the facility design minimize the footprint and have resulted in a significant reduction in the areal size. This change was initiated in part as a response to recommendations of the Hanford Future Site Uses Working Group to limit waste management activities to an exclusive zone within the squared-off boundary of the 200 Areas. Additionally, the reduction in size of the footprint was initiated to minimize impacts to ecology. The ERDF is designed for disposal of remediation wastes generated during the cleanup of Hanford Site and could be expanded to hold as much as 28 million yd3 (21.4 million m3) of solid waste

  18. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    International Nuclear Information System (INIS)

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

  19. An overview of international siting programmes for radioactive waste disposal facilities: Possible lessons for Sweden

    International Nuclear Information System (INIS)

    The purpose of this short report is to examine methodologies used in countries other than Sweden which are following a process of site selection for nuclear waste management and disposal facilities. It is planned here to identify possible countries and methodologies which may offer the authorities in Sweden suggestions for the future, and it is hoped that further work, possibly involving in-country visits and detailed reviews will follow. The end result of this exercise is to learn from the efforts (successes and/or mistakes) of other countries, thereby enabling Sweden to pursue a siting policy which involves as many stakeholders as possible, resulting in a programme which Swedish citizens can feel they truly own. First, the classification of siting methodologies is reviewed, both those of the past and those currently in use. Examples from programmes around the world are given. The distinction between Public Involvement and Public Participation in the siting process is discussed, in light of the programmes reviewed. Methodologies worthy of further study for adaptation to the Swedish situation are then highlighted in the context of a general discussion of the issues raised. Finally, a series of recommendations as to further investigations are given, which could be carried out as a part of this project. Particular methodologies in particular countries and their relevance to the Swedish situation are discussed. 66 refs

  20. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, R.L.; Hansen, W.R.; Kennedy, W.E. Jr.; Layton, D.W.; Lee, D.W.; Maheras, S.T.; Neuder, S.M.; Wilhite, E.L.; Curl, R.U.; Grahn, K.F.; Heath, B.A.; Turner, K.H. [Dames and Moore, Denver, CO (United States)

    1991-10-01

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel`s expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel`s reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel`s review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, ``Radioactive Waste Management.``

  1. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel's expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel's reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel's review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, ''Radioactive Waste Management.''

  2. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, R.L.; Hansen, W.R.; Kennedy, W.E. Jr.; Layton, D.W.; Lee, D.W.; Maheras, S.T.; Neuder, S.M.; Wilhite, E.L.; Curl, R.U.; Grahn, K.F.; Heath, B.A.; Turner, K.H. (Dames and Moore, Denver, CO (United States))

    1991-10-01

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel's expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel's reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel's review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, Radioactive Waste Management.''

  3. Radionuclide migration pathways analysis for the Oak Ridge Central Waste Disposal Facility on the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    A dose-to-man pathways analysis is performed for disposal of low-level radioactive waste at the Central Waste Disposal Facility on the West Chestnut Ridge Site. Both shallow land burial (trench) and aboveground (tumulus) disposal methods are considered. The waste volumes, characteristics, and radionuclide concentrations are those of waste streams anticipated from the Oak Ridge National Laboratory, the Y-12 Plant, and the Oak Ridge Gaseous Diffusion Plant. The site capacity for the waste streams is determined on the basis of the pathways analysis. The exposure pathways examined include (1) migration and transport of leachate from the waste disposal units to the Clinch River (via the groundwater medium for trench disposal and Ish Creek for tumulus disposal) and (2) those potentially associated with inadvertent intrusion following a 100-year period of institutional control: an individual resides on the site, inhales suspended particles of contaminated dust, ingests vegetables grown on the plot, consumes contaminated water from either an on-site well or from a nearby surface stream, and receives direct exposure from the contaminated soil. It is found that either disposal method would provide effective containment and isolation for the anticipated waste inventory. However, the proposed trench disposal method would provide more effective containment than tumuli because of sorption of some radionuclides in the soil. Persons outside the site boundary would receive radiation doses well below regulatory limits if they were to ingest water from the Clinch River. An inadvertent intruder could receive doses that approach regulatory limits; however, the likelihood of such intrusions and subsequent exposures is remote. 33 references, 31 figures, 28 tables

  4. Conceptual design criteria for facilities for geologic disposal of radioactive wastes in salt formations

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The facility design requirements and criteria discussed are: general codes, standards, specifications, and regulations; site criteria; land improvements criteria, low-level waste facility criteria; canistered waste facility criteria; support facilities criteria; and utilities and services criteria. (LK)

  5. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  6. Lessons Learned From a Decade of Design, Construction, and Operations of the Environmental Management Waste Management Facility in Oak Ridge, Tennessee - 12062

    International Nuclear Information System (INIS)

    The Environmental Management Waste Management Facility (EMWMF) is the Department of Energy's on-site disposal facility for radioactive and hazardous waste generated by the CERCLA cleanup of the Oak Ridge Reservation (ORR). EMWMF recently completed building out to its maximum site capacity and is approaching a decade of operating experience. In meeting the challenges of design, construction, and operation of a mixed waste and low-level radioactive waste disposal facility within the framework of CERCLA, the Bechtel Jacobs Company LLC (BJC) project team learned valuable lessons that may be beneficial to other disposal facilities. Since project inception in 1998, the scope of the effort includes five regulator-approved designs, four phases of construction, and utilization of half of EMWMF's 1.63 M m3 of airspace during disposal of waste streams from across the ORR. Funding came from the broadest possible range of sources - privatization, American Recovery and Reinvestment Act, and two funding appropriation accounts. In the process of becoming the cost effective disposal outlet for the majority of the ORR cleanup waste, EMWMF overcame numerous challenges. Lessons learned were a key factor in achieving that success. Many of EMWMF's challenges are common to other disposal facilities. Sharing the successes and lessons learned will help other facilities optimize design, construction, and operations. (author)

  7. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities

    International Nuclear Information System (INIS)

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  8. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  9. Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

    2003-02-27

    The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

  10. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  11. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  12. The lessons learned from Andra's Experiences on the Leachate Collection System of the Surface Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keunpack; Na, Hanjeong; Lee, Joonho; Lee, Dongjae [KEPCO Engineering and Construction Company. Inc., Yongin (Korea, Republic of)

    2014-05-15

    This paper is based on the lessons learned from Andra's experiences especially on the drainage system which are given in the references. This paper also presents key items which need to be looked into for the local design which might be adopted at the second phase of LILW disposal facility at Wolsong. It is widely known that Andra has demonstrated that low and intermediate level of waste can be managed in a safe and efficient manner and disposed of surface level of ground. This paper has reviewed upgraded. EBSs evolved by Andra's many years of experiences, especially the measures to deal with drainage system which is available information online published to the public. Andra's Centre de I'Aube has been used as a reference model for the surface disposal of radioactive waste by many countries worldwide. But, the detail design of this type of facility needs to be improved and developed suitably for local characteristics taking into account the radioactive waste properties, local site environment and regulatory requirements in each country. The main design scenario to handle radioactive material in surface or near-surface radioactive nuclides are leached from waste by dissolving into rainwater passed through the disposal cover and concrete slab, and the infiltrated rainwater with radioactive nuclides flows to the aquifer through the concrete slab, and the infiltrated rainwater with radioactive nuclides flows to the aquifer through the concrete mat and the vadose zone, finally they are reached east sea through the aquifer or fault zone according to the hydro-geological characteristics of the site. The design concept to tackle this scenario and to deal with infiltrated and rain water in the surface disposal facility is described herein.

  13. Assessment and management of socioeconomic issues and public involvement practices for the development of Inshas near surface LILW disposal facility

    International Nuclear Information System (INIS)

    There are many issues and practices that could impact the development of Inshas near surface low and intermediate level radioactive waste disposal facility (Inshas-LILW-Facility), beside the radiological factors. These issues may be social, economic, public involvement practices, built environment, land use and natural environment. In addition to these issues, there are other impacts resulting from the widespread use of independent and opposition newspapers and open sky media (satellites) in Egypt. Social issues include the indicators such as demographics, social structure, character and community health. Economic issues comprise employment and labour supply and local economy. Trust building of public and their involvement in different stages of development of a near surface disposal facility could facilitate the development process. The development of Inshas-LILW-Facility involves a number of sequential steps, occurring over a time frame of several decades. These steps include planning and siting, construction, operation, closure and post-closure institutional control. For many of these steps, explicit approvals are required from national authorities, including regulators, before proceeding to the next step. Selection of a preferred site for development is normally subject to consent by the authorities responsible for land use planning. For the Inshas-LILW-Facility, the licensing process is divided into three stages; the first is site selection and construction, the second is operation, and the third is closure and post closure. The regulatory body approved both the site selected in the Inshas area and the construction of the facility. Now, the Inshas-LILW-Facility is in the operational licensing process. To establish public trust during the development stages of the Inshas- LILW-Facility, visitor programmes are prepared periodically for school students, university students, the local community, press people and other visitors to the Inshas-LILW-Facility. In this

  14. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    Energy Technology Data Exchange (ETDEWEB)

    Toran, L.E.; Hopper, C.M.; Naney, M.T. [and others

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  15. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to 235U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices

  16. Performance assessment and licensing issues for United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    The final objective of performance assessment for a near-surface LLW disposal facility is to demonstrate that potential radiological impacts for each of the human exposure pathways will not violate applicable standards. This involves determining potential pathways and specific receptor locations for human exposure to radionuclides; developing appropriate scenarios for each of the institutional phases of a disposal facility; and maintaining quality assurance and control of all data, computer codes, and documentation. The results of a performance assessment should be used to demonstrate that the expected impacts are expected to be less than the applicable standards. The results should not be used to try to predict the actual impact. This is an important distinction that results from the uncertainties inherent in performance assessment calculations. The paper discusses performance objectives; performance assessment phases; scenario selection; mathematical modeling and computer programs; final results of performance assessments submitted for license application; institutional control period; licensing issues; and related research and development activities

  17. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  18. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  19. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    International Nuclear Information System (INIS)

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base

  20. Safety assessment and investigations for a shallow land disposal facility in Hungary

    International Nuclear Information System (INIS)

    A detailed site investigation programme for a nuclear power plant waste disposal facility in Hungary has been in progress since 1984. The main objectives of this programme are: geological and hydrogeological mapping, seismic evaluation, surface hydrology and lysimeter studies, water balance determination, and water chemistry and groundwater age determinations. The main results of the site investigations, such as those concerning the geological environment, field and laboratory hydrological measurements, lysimeter results and the overall water balance of the site, are described together with the results of the migration calculations, showing how the measured or derived data were used for the calculations. Information is presented about the groundwater age and the observed tritium profile for validation of the calculated results. The contribution of missions under the International Atomic Energy Agency's Waste Management Advisory Programme to the solution of safety related questions is discussed. A medium time-scale laboratory investigation programme was approved for the determination of sorption and retardation characteristics of cement and concrete in 1984. The purpose of the investigations was to better evaluate environmental safety and to determine necessary input values for migration models. In particular, static and dynamic leaching studies of evaporator concentrates and spent ion exchange resins embedded in cement were planned. As a comparison basis for spent resins an identical leach test was conducted using pure (not embedded) resins. Diffusion measurements of Co, Sr, I, Cs, and HTO were carried out on concrete with various degrees of water saturation to study the transport velocities as a function of the remaining water content in the backfill between the waste packages. The problem of HTO transport in concrete is discussed separately. Finally, further investigations are described. (author). 4 figs, 5 tabs

  1. Facility arrangements, food safety, and the environmental performance of disposable and reusable cups

    NARCIS (Netherlands)

    Potting, J.; Harst, van der E.J.M.

    2014-01-01

    Conventional disposable cups, made of fossil-based plastic or paper with inner lining of fossil-based plastic, are typically associated with an unnecessary use of scarce resources and a superfluous production of waste. An alternative has become available in disposable cups from bio-based and biodegr

  2. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  3. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  4. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  5. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R.D.; Chau, N. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States); Breeds, C.D. [SubTerra, Inc., Redmond, WA (United States)

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  6. Guidance for performing site inspections under CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This guidance presents EPA`s site inspection (SI) strategy. The strategy discusses procedural guidelines to investigate potential Superfund (CERCLA) sites for evaluation pursuant to the Hazard Ranking System (HRS), revised in accordance with the Superfund Amendments and Reauthorization Act of 1986. The HRS is the primary means by which EPA evaluates sites for superfund`s National Priorities List (NPL).

  7. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds

  8. CERCLA {section}103 and EPCRA {section}304 Release Notification Requirements update

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This guidance document updates and clarifies information provided in an earlier guidance document published by the US Environmental Protection Agency (EPA) entitled Guidance for Federal Facilities on Release Notification Requirements under CERCLA and SARA Title III (EPA 9360.7-06; November 1990). Since publication of that earlier guidance document, several significant events have occurred that affect the reporting obligations of facilities owned or operated by the Department of Energy (DOE), including the publication of Executive Order 12856--Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements--and a rejection by the US Court of Appeals of EPA`s interpretation of the term release into the environment. In preparing this guidance document, the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), has documented responses to queries from DOE field elements on CERCLA and EPCRA release reporting requirements, as well as incorporating those Questions and Answers from the previous document that remain germane to DOE`s reporting obligations under CERCLA and EPCRA.

  9. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study

    International Nuclear Information System (INIS)

    Highlights: ► Effects of closing MSW facilities on perception of odour and pollution studied. ► Residents’ perception of odour nuisance considerably diminished post closure. ► Odour perception showed an association with distance from MSW facilities. ► Media coverage increased knowledge about MSW facilities and how they operate. ► Economic compensation possibly affected residents’ views and concerns. - Abstract: If residents’ perceptions, concerns and attitudes towards waste management facilities are either not well understood or underestimated, people can produce strong opposition that may include protest demonstrations and violent conflicts such as those experienced in the Campania Region of Italy. The aim of this study was to verify the effects of the closure of solid waste treatment and disposal facilities (two landfills and one RDF production plant) on public perception of odour and environmental pollution. The study took place in four villages in Southern Italy. Identical questionnaires were administered to residents during 2003 and after the closure of the facilities occurred in 2008. The residents’ perception of odour nuisance considerably diminished between 2003 and 2009 for the nearest villages, with odour perception showing an association with distance from the facilities. Post closure, residents had difficulty in identifying the type of smell due to the decrease in odour level. During both surveys, older residents reported most concern about the potentially adverse health impacts of long-term exposure to odours from MSW facilities. However, although awareness of MSW facilities and concern about potentially adverse health impacts varied according to the characteristics of residents in 2003, substantial media coverage produced an equalisation effect and increased knowledge about the type of facilities and how they operated. It is possible that residents of the village nearest to the facilities reported lower awareness of and concern about

  10. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.)

  11. Application of radiation safety principles and criteria in safety reassessment of radioactive waste disposed in near-surface facilities of the radon state corporation

    International Nuclear Information System (INIS)

    The paper analyses regulatory requirements applied in the design and construction of radioactive waste disposal facilities at sites of the Radon State Corporation and considers approaches on use of radiation safety principles and criteria in their safety reassessment

  12. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P.; Kaplan, D.

    2011-04-25

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd values from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen and

  13. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the

  14. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  15. Interpretation and Modelling of Data from Site Investigations for a Geological Disposal facility located in the UK

    Science.gov (United States)

    Clark, H.; Bailey, L.; Parkes, A.

    2012-04-01

    The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal in the United Kingdom. The implementation process envisaged is that once a candidate site or sites for a geological disposal facility have been identified, NDA-RWMD will undertake surface-based investigations at the site or sites. The information acquired through these investigations would be used as an input to the development of the safety case, for engineering design of the disposal facility and to demonstrate confidence to the key stakeholders that the potential disposal facility site is adequately understood. NDA-RWMD proposes to develop and present the information derived from site characterisation activities in the form of a single integrated Site Descriptive Model, i.e. a description of the geometry, properties of the bedrock and water, and the associated interacting processes and mechanisms, which will be used to address the information requirements of all the end users (including the safety case). It is anticipated that, in a similar way to the approach adopted by international radioactive waste programmes led by SKB (Sweden) and Posiva (Finland), the integrated Site Descriptive Model will be divided into parts comprising clearly defined disciplines which may form either chapters or discipline-based models such as: • Geology; • Hydrogeology; • Hydrochemistry; • Geotechnical; • Radionuclide Transport Properties; • Thermal Properties; and • Biosphere. The integrated Site Descriptive Model will evolve as understanding of the particular site advances and will describe the current understanding of a specific site and, where relevant, the historical development of conditions at the site where this supports the conceptual understanding. The Site Descriptive Model will not include prediction of the future evolution of the conditions at the site: this will be an important component

  16. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  17. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  18. Assessment of the properties of disused sealed radioactive sources for disposal in a borehole facility

    International Nuclear Information System (INIS)

    Radioactive wastes arise from applications in which radioactive materials are used. Medicine, industries and agriculture are examples of areas where radioactive materials are used. Most of the radioactive materials used in nuclear applications are in the form of sealed radioactive sources (SRS). After a number of usages, the SRS may no longer be useful enough for its original purpose and will be considered as a disused sealed radioactive source (DSRS). DSRS are potentially dangerous to human health and the environment, and therefore important to manage them safely. Currently in Ghana, DSRS are collected and stored awaiting a final disposal option. There are ongoing plans to implement the Borehole Disposal of Disused Sealed Sources (BOSS) system in Ghana as a final disposal option. There are, however, concerns about the number of DSRS disposal packages that can safely be disposed in a narrow borehole underground in a long term without posing any harm to people and the environment. It is therefore necessary to assess the properties of DSRS that need to be placed into the borehole to determine the safety of this disposal option. For this study, 160 DSRS were selected from the DSRS inventory. The present activity, volume, A/D ratio and thermal output of all the DSRS were determined. The SIMBOD database tool was used to determine the number of capsules and disposal packages that will be required with respect to the DSRS registered into it. Also, verification measurements to confirm the DSRS inventory data were conducted. The assessment have shown that DSRS used in this study would require a total of seven (7) capsules. The estimated total activity of the disposal packages were below the waste acceptance criteria and the thermal output for each disposal package were also below the 50W limit. One borehole with an estimated length of 57 m will be safe to dispose the DSRS used in this study. The verification measurements confirmed the confirmed the DSRS inventory data. It

  19. Technical feasibility of a concept radioactive waste disposal facility in Boom clay in the Netherlands

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The current management strategy in the Netherlands for radioactive waste is interim storage for approximately 100 years, followed by final deep geological disposal. At present, both Boom Clay and Salt formations are being considered and investigated via the OPERA (Onderzoeks Programma Eindberging Radioactief Afval) and CORA (Commissie Opberging Radioactief Afval) research programmes respectively, instigated by COVRA (Centrale Organisatie Voor Radioactief Afval). This paper outlines the on-going investigation into the initial technical feasibility of a high-level radioactive waste disposal facility, located within a stratum of Boom Clay, as part of the OPERA research programme. The feasibility study is based on the current Belgian Super-container concept, incorporating specific features relevant to the Netherlands, including the waste inventory and possible future glaciation. The repository is designed to be situated at approximately 500 m depth in a Boom Clay stratum of approximately 100 m thickness, and will co-host vitrified High Level Waste (HLW), spent fuel from research reactors, non-heat generating HLW, Low and Intermediate Level Waste (LILW) and depleted uranium. The total footprint is designed to be 3050 m by 1300 m, and will be segregated by waste type. The waste will be stored in drifts drilled perpendicular to the main galleries and will vary in length and diameter depending upon waste type. The repository life-cycle can be considered in three phases: (i) the pre-operation phase, including the conceptual development, site investigation and selection, design and construction; (ii) the operational phase, including waste emplacement and any period of time prior to closure; and (iii) the post-operational phase. The research on the technical feasibility of the repository will investigate whether the repository can be constructed and whether it is able to perform the appropriate safety functions and meet

  20. Selection of a Site for a Near-Surface Disposal Facility: A Joint Report on Characterization of Sites

    International Nuclear Information System (INIS)

    Report describes general and safety-relevant environmental conditions of investigated sites and provides an overview of information concerning wastes to be disposed of. Safety relevant design aspects are given in the Project Report on Reference Design for a Near-Surface Disposal Facility for Low-and Intermediate-Level Short-Lived Radioactive Waste in Lithuania. This Report summarizes results of investigations performed during 2003-2005 by a number of researchers and evaluated by RATA. The work was performed by the Institute of Geology and Geography, the Lithuanian Energy Institute, Vilnius University, the Institute of Chemistry, UAB Grota, the Lithuanian Geological Survey, Swedish consultants from Geodevelopment, SKB and SKI-ICP, and generalized by RATA

  1. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    Directory of Open Access Journals (Sweden)

    Schulz F.M.

    2013-07-01

    Full Text Available The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  2. Performance assessment for future low-level waste disposal facilities at ORNL

    International Nuclear Information System (INIS)

    This paper discusses the strategy for waste management on the Oak Ridge Reservation (ORR) and the approach to preparing future performance assessments that has evolved from previous performance assessment studies of low-level radioactive waste disposal on the ORR. The strategy for waste management is based on the concept that waste classification should be determined by performance assessment other than the sources of waste. This dose-based strategy for waste classification and management places special importance on the preparation and interpretation of waste disposal performance assessments for selecting appropriate disposal technologies and developing waste acceptance criteria. Additionally, the challenges to be overcome in the preparation of performance assessments are discussed. 7 refs

  3. Planning and operation of low level waste disposal facilities. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    The symposium was attended by 114 experts from 46 countries. There were 48 oral papers, including a keynote address, and 10 poster papers covering the principal issues concerning the disposal of low level radioactive waste. These proceedings contain the texts of all oral and poster presentations and a summary of the open discussions. The oral presentations were grouped in six sessions: Regulation and Licensing (4 papers), Infrastructure and Planning (10 papers), Siting (8 papers), Disposal Systems and Operation (10 papers), Safety Assessment (10 papers) and Post-Operation (5 papers). A separate abstract was prepared for each paper. Refs, figs, tabs

  4. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    Energy Technology Data Exchange (ETDEWEB)

    B. C. Culp

    2007-05-01

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  5. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  6. Safety Analysis (SA) of the Hazardous Waste Disposal Facilities (Buildings 514, 612, and 614) at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    This safety analysis was performed for the Manager of Plant Operations at LLL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the quantities of materials handled do not pose undue risks on- or off-site, even in postulated severe accidents. Risks from the various hazards at these facilities vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for additional management and technical support of waste disposal operations

  7. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    International Nuclear Information System (INIS)

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel

  8. A mathematical model for the performance assessment of engineering barriers of a typical near surface radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Raphaela N.; Rotunno Filho, Otto C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Hidrologia e Estudos do Meio Ambiente]. E-mail: otto@hidro.ufrj.br; Ruperti Junior, Nerbe J.; Lavalle Filho, Paulo F. Heilbron [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: nruperti@cnen.gov.br

    2005-07-01

    This work proposes a mathematical model for the performance assessment of a typical radioactive waste disposal facility based on the consideration of a multiple barrier concept. The Generalized Integral Transform Technique is employed to solve the Advection-Dispersion mass transfer equation under the assumption of saturated one-dimensional flow, to obtain solute concentrations at given times and locations within the medium. A test-case is chosen in order to illustrate the performance assessment of several configurations of a multi barrier system adopted for the containment of sand contaminated with Ra-226 within a trench. (author)

  9. Disposal facilities on land for low and intermediate-level radioactive wastes: draft principles for the protection of the human environment

    International Nuclear Information System (INIS)

    This document gives the views of the authorising [United Kingdom] Departments under the Radioactive Substances Act 1960 about the principles which those Departments should follow in assessing proposals for land disposal facilities for low and intermediate-level radioactive wastes. It is based on relevant research findings and reports by international bodies; but has been prepared at this stage as a draft on which outside comments are sought, and is subject to revision in the light of those comments. That process of review will lead to the preparation and publication of a definitive statement of principles, which will be an important background document for public inquiries into proposals to develop sites for land disposal facilities. Headings are: authorisation of disposal; other legislation governing new disposal facilities; basic radiological requirements; general principles; information requirements. (author)

  10. Issues in the review of a license application for an above grade low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Ringenberg, J.D. [Nebraska Dept. of Environmental Quality, NE (United States)

    1993-03-01

    In December 1987, Nebraska was selected by the Central Interstate Compact (CIC) Commission as the host state for the construction of a low-level radioactive waste disposal facility. After spending a year in the site screening process, the Compact`s developer, US Ecology, selected three sites for detailed site characterization. These sites were located in Nemaha, Nuckolls and Boyd Counties. One year later the Boyd County site was selected as the preferred site and additional site characterization studies were undertaken. On July 29, 1990, US Ecology submitted a license application to the Nebraska Department of Environmental Control (now Department of Environmental Quality-NDEQ). This paper will present issues that the NDEQ has dealt with since Nebraska`s selection as the host state for the CIC facility.

  11. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders.

  12. The Site Investigation Of Low-Level Radioactive Waste For Sub-Surface Disposal Facility In Japan

    Science.gov (United States)

    Hosoya, S.; Sasaki, T.

    2006-12-01

    [1.Concept of the sub-surface disposal facility] In Japan, the facilities of Low-Level Radioactive West (LLW) for near-surface disposal have already been in operation. Japan Nuclear Fuel Limited (JNFL) has a plan of a new facility of LLW for sub-surface disposal with engineered barrier, for short "the sub-surface disposal facility".This facility can accept the relatively higher low-level waste from unclear power plant operation and in core materials from the decommissioning, estimated about 20 thousands cubic meter in total.In addition, this will accept transuranim (TRU) slightly contaminated waste from reprocessing plant operation and decommissioning. It shall be located at a sufficient depth enough to avoid normal human activities in future. [2.Site investigation] From 2001 to 2006,the site investigation on geology and hydrogeology has been performed in order to acquire the basic data for the design and the safety assessment for the sub-surface disposal facility.The candidate area is located at the site of JNFL, where Rokkasho-mura, Aomori Prefecture in the northern area of the Mainland of Japan.To confirm geology hydraulic conditions and geo-chemistry, 22 boring survey including 6 holes in swamp and marsh have been performed. The 1km long access tunnel (the entrance level EL 8.0m, incline of 1/10) to the altitude of EL -86m underground, around 100m depth from surface, has excavated. During excavating the tunnel, observation of geology, permeability tests, pore water pressure measurements and so on has been performed in situ.And the large size test cavern of 18m diameters was constructed at the end of the tunnel to demonstrate stability of the tunnel. Prior to the excavation, 3 measuring tunnels were excavated surrounding the test cavern to examine the excavation. [3.Geological features] The sedimentary rock called Takahoko formation at the Neogene period is distributed upper than EL-500m in the candidate area.The quaternary stratum about 10m in thickness is

  13. Preservation of Records, Knowledge and Memory across Generations (RK and M). Monitoring of Geological Disposal Facilities - Technical and Societal Aspects

    International Nuclear Information System (INIS)

    The OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee (RWMC) Project on 'Preservation of Records, Knowledge and Memory across generations (RK and M)' (2011-2014) explores and aims to develop guidance on regulatory, policy, managerial, and technical aspects of long-term preservation of records, knowledge and memory of deep geological disposal facilities. While official responsibility for the preservation of records, knowledge and memory must remain with institutions, it is likely that local communities do or will have an important pragmatic role in maintaining the memory of a repository, e.g., by engaging at some level in its continued oversight. Monitoring - by collecting, interpreting and keeping data on a continuous basis - would serve the purpose of preserving records, knowledge and memory and continuous oversight. In order to tackle the subject it is important, on the one hand, to describe the role of monitoring in a technical perspective and, on the other, to understand the expectations of local stakeholders regarding monitoring. The present study report should therefore meet three objectives: - To present in a comprehensive way the general monitoring information, practices and approaches used in the various national geological disposal programmes and elaborated in a number of international projects; - To explore the role, needs and expectations of local communities regarding monitoring and RK and M preservation of deep geological repositories; - Based on the above review, to identify lessons learned and the rationale for monitoring geological disposal projects throughout their life-cycle stages. This report is based on two studies: an NEA internal report entitled 'Monitoring of Geological Disposal Facilities (August 2013)' which provides an overview on technical aspects of monitoring and an NEA public report entitled 'Local Communities' Expectations and Demands on Monitoring and the Preservation of Records, Knowledge and Memory of a Deep

  14. Development of an engineering design process and associated systems and procedures for a UK geological disposal facility - 59160

    International Nuclear Information System (INIS)

    In the United Kingdom the Nuclear Decommissioning Authority (NDA) has been charged with implementing Government policy for the long-term management of higher activity radioactive waste. The UK Government is leading a site selection process based on voluntarism and partnership with local communities interested in hosting such a facility and as set out in the 'Managing Radioactive Waste Safely' White Paper (2008). The NDA has set up the Radioactive Waste Management Directorate (RWMD) as the body responsible for planning, building and operating a geological disposal facility (GDF). RWMD will develop into a separately regulated Site Licence Company (SLC) responsible for the construction, operation and closure of the facility. RWMD will be the Design Authority for the GDF; requiring a formal process to ensure that the knowledge and integrity of the design is maintained. In 2010 RWMD published 'Geological Disposal - Steps towards implementation' which described the preparatory work that it is undertaking in planning the future work programme, and the phases of work needed to deliver the programme. RWMD has now developed a process for the design of the GDF to support this work. The engineering design process follows a staged approach, encompassing options development, requirements definition, and conceptual and detailed designs. Each stage finishes with a 'stage gate' comprising a technical review and a specific set of engineering deliverables. The process is intended to facilitate the development of the most appropriate design of GDF, and to support the higher level needs of both the project and the community engagement programmes. The process incorporates elements of good practices derived from other work programmes; including process mapping, issues and requirements management, and progressive design assurance. A set of design principles have been established, and supporting design guidance notes are being produced. In addition a requirements management system is being

  15. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  16. Safety assessment for the transportation of NECSA's LILW to the Vaalputs waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Maphoto, K.P.; Raubenheimer, E.; Swart, H. [Nuclear Liabilities Management, NECSA, P O Box 582, Pretoria, 0001 (South Africa)

    2008-07-01

    The transport safety assessment was carried out with a view to assess the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the radioactive materials. It provides estimates of radiological risks associated with the envisaged transport scenarios for the road transport mode. This is done by calculating the human health impact and radiological risk from transportation of LILW along the R563 route, N14 and eventually to the Vaalputs National Waste Disposal Facility. Various parameters are needed by the RADTRAN code in calculating the human health impact and risk. These include: numbers of population densities following the routes undertaken, number of stops made, and the speed at which the transport will be traversing at towards the final destination. The human health impact with regard to the dose to the public, LCF and risk associated with transportation of Necsa's LILW to the Vaalputs Waste Disposal Facility by road have been calculated using RADTRAN 5 code. The results for both accident and incident free scenarios have shown that the overall risks are insignificant and can be associated with any non-radiological transportation. (authors)

  17. Potential impacts of 40 CFR 193 on the development of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, R.A. [Texas Low-Level Radioactive Waste Disposal Authority, Austin, TX (United States)

    1989-11-01

    Since the publication of the Advanced Notice of Proposed Rulemaking in August, 1983, the proposed environmental regulations regarding low-level radioactive waste have become a serious uncertainty in the development of new low-level radioactive waste disposal facilities. The proposed rule has been discussed on several occasions by the Technical Coordinating Committee and the purpose of this paper is to present the results of the Committee`s discussions regarding the proposed rule. The proposed standard has several closely related elements. The rule would prescribe limits on radiation exposure to individuals during processing, management and storage of low-level radioactive waste. It would set BRC levels and also set dose standards for the period following site closure. An important portion of the standard, as far as developing new facilities, is the ground water protection standard. The comments received during developing of 40 CFR 193 has also led the Environmental Protection Agency to propose 40 CFR 764 governing the disposal of naturally occurring radioactive material or NORM.

  18. The social and special effects of siting a low-level radioactive waste disposal facility in rural Texas

    International Nuclear Information System (INIS)

    As part of its assessment of the impacts of a low-level radioactive waste disposal facility in Hudspeth County, the Texas Low-Level Radioactive Waste Disposal Authority (TLLRWDA) sponsored an independent study of the social and special impacts of the facility. These impacts include ''standard'' social impacts (such as impacts on social structures and attitudes, values and perceptions and ''special'' social impacts (such as fear, anxiety, concerns related to equity, the health of future generations, etc.). This paper reports the results of this study. Personal interviews with 71 community leaders and 96 randomly selected county residents were conducted during the summer of 1986. The results suggest that the major concern relates to the contamination of ground water, but that suspicion about the equity of the siting process and about the safe management of wastes is extensive, even among the most knowledgeable respondents. Mitigation concerns center on health and safety issues for residents and on potential forms of mitigation for governmental jurisdictions for leaders. Responses were similar for leaders and residents and for persons in different parts of the county

  19. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    Science.gov (United States)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  20. Not in my back forty: the search for a low-level waste disposal facility

    International Nuclear Information System (INIS)

    The Texas Low-Level Radioactive Waste Disposal Authority (TLLRWDA) has sought a number of sites, but failed to find a final resting place. Unless a site is found soon, state taxpayers will face an added financial burden as the amount of waste volume increases and federal penalties take effect. Federal law gives states the choice of entering a regional compact to handle the wastes, but Texas elected to go it alone. Texas must have a disposal site by 1989, although the state emergency plan will allow storage at hospitals, universities, or commercial warehouses in three cities. The search for a site has been hampered by local opposition to potential sites and a court injunction

  1. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    Science.gov (United States)

    Tehrani, Farshad; Bavarian, Behzad

    2016-01-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706

  2. Safety considerations of disposal of disused sealed sources in near surface facilities

    International Nuclear Information System (INIS)

    The report presents European commission studies on sealed radioactive sources - Management of Spent Radiation Sources in the European Union: Quantities, Storage, Recycling and Disposal. EUR 16960 EN. EC 1996; Management of sealed radioactive sources produced and sold in the Russian Federation. EUR 18191 EN. EC, 1999; Management and Disposal of Disused Sealed Radioactive Sources in the European Union. EUR 18186 EN. EC, 2000; Management of Spent Sealed Radioactive Sources in Central and Eastern Europe. EUR 19842 EN. EC, April 2001; Management of Spent Sealed Radioactive Sources in Bulgaria, Latvia, Lithuania, Romania and Slovakia. EUR 20654 EN. EC, January 2003. The conclusions and recommendations in them are given. The International catalogue of sealed radioactive sources and devices is described

  3. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    Science.gov (United States)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM-4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  4. The effects of the final disposal facility for spent nuclear fuel on regional economy; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen aluetaloudelliset vaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, S. [Seppo Laakso Urban Research (Finland)

    1999-03-01

    The study deals with the economic effects of the final disposal facility for spent nuclear fuel on the alternative location municipalities - Eurajoki, Kuhmo, Loviisa and Aeaenekoski - and their neighbouring areas (in Finland). The economic influence of the facility on industrials, employment, population, property markets, community structure and local public economics are analysed applying the approach of regional economics. The evaluation of the facility`s effects on employment is based on the input-output analysis. Both the direct and indirect effects of the construction and the functioning of the facility are taken into account in the analysis. According to the results the total increase in employment caused by the construction of the facility is about 350 persons annually, at national level. Some 150 persons of this are estimated to live in the wider region and 100-150 persons in the facility`s influence area consisting of the location municipality and neighbouring municipalities. This amount is reached at the top stage of construction (around the year 2018). At the production stage - after the year 2020 - the facility`s effects on employment will be concentrated significantly more on the location municipality and the rest of the influence area than on the rest of the country, compared with the construction stage. The estimated employment growth in the production stage is approximately 160 persons at national level of which 100-120 persons live in the candidate municipality and in the rest of the influence area. There is a direct link between local employment and population development. The growth of jobs attracts immigrants affecting the development of both the number and the structure of population. The facility`s effects on population development in the alternative location municipalities are analysed using comparative population forecasts based on demographic population projection methods. According to the results the job growth caused by the facility will

  5. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  6. Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1994-04-15

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)

  7. Application of Safety Assessment Methodology for Near Surface Waste Disposal Facilities (ASAM) - Regulatory Review Working Group Safety Case

    International Nuclear Information System (INIS)

    Vincent Nys (AVN, Belgium) presented the IAEA international projects ISAM/ASAM. ASAM (application of methodology developed under ISAM) began in 2002 as a follow-up of ISAM (project to develop methodology for near-surface disposals e.g. scenarios). One of the objectives of the working group of the ISAM project was to provide definitions, to look at the integration of the safety assessment and at the review procedure. The NEA international FEP's database was used and adapted to the near-surface context. The so-called 'design scenario' might be defined as the expected scenario according to functions. Building confidence in each stage is related to the confidence in the system, the scenarios process, and the assessment context. With regards to the on-going ASAM project, participants acknowledged that the safety case contains both a safety assessment and a confidence statement. Additionally, traceability and transparency are of importance. The management framework, e.g. clear regulatory framework and clear regulatory process (review procedure), is a key element for the success of a safety case. The use of what-if scenarios could be helpful for testing the robustness of the design. It was also noted that at each stage of a safety case, the implementers should always give alternatives and should argue the choice of the reference (reversibility of the process). IGSC members noted that the safety case of near-surface disposal facilities has much in common with the safety case for deep disposal facilities. Discussion suggested that the definition and achievement of 'optimization' are open issues in the post-closure safety context. Optimisation has a generally accepted meaning in the context of achieving safety in the operational phase

  8. CERCLA site assessment workbook, Volume 1

    International Nuclear Information System (INIS)

    This workbook provides instructions for planning, implementing, and reporting site assessments under CERCLA, commonly referred to as Superfund. Site assessment consists of two information-gathering steps: the remedial preliminary assessment (PA) and the site inspection (SI). The information obtained is then used to estimate, or score, a site's relative risk to public health and the environment. The score is derived via the hazard ranking system (HRS). Although the workbook and its exercises can be adapted to group study, it is designed primarily for use by an individual

  9. Applicability of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) to releases of radioactive substances

    International Nuclear Information System (INIS)

    The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), commonly called Superfund, provided a $1.6 billion fund (financed by a tax on petrochemical feedstocks and crude oil and by general revenues) for the cleanup of releases of hazardous substances, including source, special nuclear or byproduct material, and other radioactive substances, from mostly inactive facilities. The US Environmental Protection Agency (EPA) is authorized to require private responsible parties to clean up releases of hazardous substances, or EPA, at its option, may undertake the cleanup with monies from the Fund and recover the monies through civil actions brought against responsible parties. CERCLA imposes criminal penalties for noncompliance with its reporting requirements. This paper will overview the key provisions of CERCLA which apply to the cleanup of radioactive materials

  10. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    The HAW-project plants the testwise emplacement of 30 vitrified highly radioactive canisters containing Cs-137 and Sr-90 at the 800 m level of the Asse salt mine for a testing period of approximately five years. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste (HAW) in geological salt formations. During the years 1985 to 1989 the underground test field was excavated, the measuring equipment installed, and two preceedings inactive electrical tests taken into operation. Furthermore, the components of a system for transportation and emplacement of highly radioactive canisters was fabricated, installed, and preliminarily tested. After some delays in the licensing procedure the emplacement of the 30 radioactive canisters is now envisaged for early 1991. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed and will be tested. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  11. An Updated Performance Assessment For A New Low-Level Radioactive Waste Disposal Facility In West Texas - 12192

    International Nuclear Information System (INIS)

    This Performance Assessment (PA) submittal is an update to the original PA that was developed to support the licensing of the Waste Control Specialists LLC Low-Level Radioactive Waste (LLRW) disposal facility. This update includes both the Compact Waste Facility (CWF) and the Federal Waste Facility (FWF), in accordance with Radioactive Material License (RML) No. R04100, License Condition (LC) 87. While many of the baseline assumptions supporting the initial license application PA were incorporated in this update, a new transport code, GoldSim, and new deterministic groundwater flow codes, including HYDRUS and MODFLOWSURFACTTM, were employed to demonstrate compliance with the performance objectives codified in the regulations and RML No. R04100, LC 87. A revised source term, provided by the Texas Commission on Environmental Quality staff, was used to match the initial 15 year license term. This updated PA clearly confirms and demonstrates the robustness of the characteristics of the site's geology and the advanced engineering design of the disposal units. Based on the simulations from fate and transport models, the radiation doses to members of the general public and site workers predicted in the initial and updated PA were a small fraction of the criterion doses of 0.25 mSv and 50 mSv, respectively. In a comparison between the results of the updated PA against the one developed in support of the initial license, both clearly demonstrated the robustness of the characteristics of the site's geology and engineering design of the disposal units. Based on the simulations from fate and transport models, the radiation doses to members of the general public predicted in the initial and updated PA were a fraction of the allowable 25 mrem/yr (0.25 m sievert/yr) dose standard for tens-of-thousands of years into the future. Draft Texas guidance on performance assessment (TCEQ, 2004) recommends a period of analysis equal to 1,000 years or until peak doses from the more mobile

  12. Performance of engineered barrier materials in near surface disposal facilities for radioactive waste. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    The primary objectives of the CRP were to: promote the sharing of experiences of the Member States in their application of engineered barrier materials for near surface disposal facilities; help enhance their use of engineered barriers by improving techniques and methods for selecting, planning and testing performance of various types of barrier materials for near surface disposal facilities. The objective of this publication is to provide and overview of technical issues related to the engineered barrier systems and a summary of the major findings of each individual research project that was carried out within the framework of the CRP. This publication deals with a general overview of engineered barriers in near surface disposal facilities, key technical information obtained within the CRP and overall conclusions and recommendations for future research and development activities. Appendices presenting individual research accomplishments are also provided. Each of the 13 appendices was indexed separately

  13. Incremental Risks of Transporting NARM to the LLW Disposal Facility at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, R.F.

    1999-02-23

    This study models the incremental radiological risk of transporting NARM to the Hanford commercial LLW facility, both for incident-free transportation and for possible transportation accidents, compared with the radiological risk of transporting LLW to that facility. Transportation routes are modeled using HIGHWAY 3.1 and risks are modeled using RADTRAN 4. Both annual population doses and risks, and annual average individual doses and risks are reported. Three routes to the Hanford site were modeled from Albany, OR, from Coeur d'Alene, ID (called the Spokane route), and from Seattle, WA. Conservative estimates are used in the RADTRAN inputs, and RADTRAN itself is conservative.

  14. Investigation of an Accidental Radiological Release in an Underground Disposal Facility.

    Science.gov (United States)

    Poppiti, James; Sheffield, Ryan

    2016-02-01

    A radioactive release took place at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, on 14 February 2014. An alarm from a Continuous Air Monitor caused a switch from unfiltered to filtered air exiting the facility through High-Efficiency Particulate Arrestance filters. The activity measured on the filters demonstrated first order decay, indicating that the release was a single release. The facility was reentered in April 2014 and photographic evidence pointed to a single breached 55-gallon drum that originated at Los Alamos as the source of the release. Data were collected and analyzed to verify the source and cause of the release.

  15. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  16. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  17. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  18. Reversing nuclear opposition: evolving public acceptance of a permanent nuclear waste disposal facility.

    Science.gov (United States)

    Jenkins-Smith, Hank C; Silva, Carol L; Nowlin, Matthew C; deLozier, Grant

    2011-04-01

    Nuclear facilities have long been seen as the top of the list of locally unwanted land uses (LULUs), with nuclear waste repositories generating the greatest opposition. Focusing on the case of the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, we test competing hypotheses concerning the sources of opposition and support for siting the facility, including demographics, proximity, political ideology, and partisanship, and the unfolding policy process over time. This study tracks the changes of risk perception and acceptance of WIPP over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning an 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those whose residences are closest to the WIPP facility. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval, and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to gaining public acceptance, the most significant being the opening of the WIPP facility itself.

  19. Opening and operating a nuclear disposal facility: lessons learned in public outreach

    International Nuclear Information System (INIS)

    Addressing the issue of nuclear waste is no small task for professional communicators. Communications need to strike the right balance between presenting scientific facts and responding to public issues, describing risks without creating unnecessary anxiety, and listening and addressing public concerns. The U.S. Department of Energy's (DOE) Carlsbad Field Office (CBFO), which operates the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, has more than 25 years of experience in communicating about deep geologic (2 150 feet) disposal of nuclear waste. While a single formula for success is unrealistic, the CBFO has identified 14 steps in its stakeholder outreach program that together provide a model for similar projects dealing with controversial issues. Bottom line, the lesson is to listen, learn and adapt. (author)

  20. The HAW project: demonstration facility for the disposal of high-level waste in salt

    Energy Technology Data Exchange (ETDEWEB)

    Rothfuchs, T. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Remlingen (DE). Inst. fuer Tieflagerung; Duijves, K.A. [Netherlands Energy Research Foundation, Petten (NL)

    1991-12-31

    This publication is the interim report 1988-89 of the international HAW project performed in the 800 m level of the Asse salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radiactivos S.A. (ENRESA) and the Netherlands Energy Research Foundation (ECN). After some delays in the licensing procedure the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 20 refs.; 92 figs.; 14 tabs.

  1. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    To satisfy the test objectives thirty highly radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./DG)

  2. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    This report is the so-called Synthesis report 1985-1989 of the international HAW project performed in the 800 m level of the ASSE salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt-deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radioactivos S.A (ENRESA) and the Netherlands Energy Research Foundation (ECN). During the years 1985 to 1989 the underground test field was excavated and after some delays in the licensing procedure, the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 32 refs; 76 figs., 11 tabs

  3. Risks assessment associated with the possibility of intrusion into the low and intermediate level waste disposal facility

    International Nuclear Information System (INIS)

    In post-closure performance assessment of low and intermediate level waste disposal facilities it is necessary to assess the individual risks associated with the possibility of intrusion into repository. Intruder induced disruptive events can potentially compromise the integrity of the disposal unit and result in exhumation of the waste and radionuclides migration into environment. In this way, the main routes of exposure are: -inhalation of radioactive materials by the intruder; - external gamma irradiation of the intruder, - long-term pathways resulting from the transfer of radioactive materials to the surface of the site. This paper describes the evaluation of conditional and absolute risks associated with each route of exposure as a function of time. To evaluate the risks, it is necessary to calculate the time-dependent activities of each nuclide considered. This is achieved by employing an analytic solution to the Bateman equation at specified times of evaluation. Conditional risks by inhalation, external exposure and long-term pathways and different modes of intrusion are evaluated on the basis of an annual probability of intrusion of unity. Absolute risks are calculated by scaling the user-supplied probabilities of intrusion at various times of evaluation. The evaluation of absolute risks by long-term exposure pathways involves an interpolation procedure in time. The calculations have been performed for the most important radionuclides present in low and intermediate wastes. (authors)

  4. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff's review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission's regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements

  5. Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, M.W.; Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-02-01

    In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

  6. Monitoring in a pilot repository. Controlled disposal of nuclear wastes in the concept of a Swiss underground facility

    International Nuclear Information System (INIS)

    The final disposal of radioactive wastes in deep geologic formations is a highly complex challenge- not only due to the long planning and implementation periods and the large number of involved actors. Monitoring og a final repository with technical means during a long period is supposed to yield information on the possible developments and reduce uncertainties. The presented hypothesis is based on the opinion that that the technical monitoring information has to be imbedded into an institutional control and decision procedure with participation of governmental organizations, independent experts and the public. The related challenge and the consequences are discussed using the example of the Swiss model of a pilot repository facility that is part of the Swiss nuclear deep repository concept.

  7. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    International Nuclear Information System (INIS)

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling

  8. Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2

    International Nuclear Information System (INIS)

    In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success

  9. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area

    International Nuclear Information System (INIS)

    A New York State Energy and Research Development Authority (the Authority) funded treatability study identified biotreatment as the best technology to reduce the hazardous constituent concentrations below discharge criteria. Ion exchange resins were shown to reduce strontium-90 and cesium-137 concentrations of a low-level radioactive waste disposal trench leachate below release limits. Based on the results of this treatability study, the Authority has funded the design of a leachate treatment system. An activated sludge bioreactor and ion exchange resin columns will be components of the treatment train. A discussion of the design and the design criteria for the treatment facility will be provided. Particular emphasis will be placed on the availability of the off-the-shelf equipment and the modifications that will be required. Other issues which will be discussed are: Tritium concentration concerns, secondary waste generation and processing, design codes, site layout and schedule

  10. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  11. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    International Nuclear Information System (INIS)

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  12. Regulatory review and confidence building in post-closure safety assessments and safety cases for near surface disposal facilities-IAEA ASAM coordinated research programme

    International Nuclear Information System (INIS)

    Some years ago, the IAEA successfully concluded a Coordinated Research Program (CRP) called Islam, which focussed on the development of an Improved Safety Assessment Methodology for near-surface radioactive waste disposal facilities. In November 2002, and as an extension of ISAM, the IAEA launched a new CRP called ASAM, designed to test the Application of the Safety Assessment Methodology by considering a range of near-surface disposal facilities. The ASAM work programme is being implemented by three application working groups and two cross-cutting working groups. The application working groups are testing the applicability of the ISAM methodology by assessing an existing disposal facility in Hungary, a copper mine in South Africa, and a hypothetical facility containing heterogenous wastes, such as disused sealed sources. The first cross-cutting working group is addressing a number of technical issues that are common to all near-surface disposal facilities, while the second group, the Regulatory Review Working Group (RRWG) is developing guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides a brief overview of the work being conducted by the Regulatory Review Working Group. (author)

  13. Regulatory review and confidence building in post-closure safety assessments and safety cases for near surface disposal facilities, IAEA ASAM coordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    Belfadhel, M.B. [Canadian Nuclear Safety Commission, Waste and Geosciences Div., Ottawa, Ontario (Canada)]. E-mail: Benbelfadhelm@cnsc-ccsn.gc.ca; Bennett, D.G. [Galson Science Limited, Oakham (United Kingdom); Gonzales, A. [Iberdrola Ingeniera y Consultoria, Madrid (Spain); Metcalf, P. [International Atomic Energy Agency, Vienna (Austria); Nys, V. [Association Vincotte Nucleaire, Brussels (Belgium); Simeonov, G. [Nuclear Regulatory Agency, Sofia (Bulgaria); Zeleznik, N. [ARAO-Agency of Radwaste Management, Ljubljana (Slovenia)

    2006-07-01

    The IAEA successfully concluded a Coordinated Research Program (CRP) called ISAM, which focused on the development of an Improved Safety Assessment Methodology for near-surface radioactive waste disposal facilities (1997-2002). In November 2002, and as an extension of ISAM, the IAEA launched a new CRP called ASAM, designed to test the Application of the Safety Assessment Methodology by considering a range of near surface disposal facilities. The ASAM work programme is being implemented by three application working groups and two cross-cutting working groups. The application working groups are testing the applicability of the ISAM methodology by assessing an existing disposal facility in Hungary, a copper mine in South Africa, and a hypothetical facility containing heterogenous wastes, such as disused sealed sources. The first cross-cutting working group is addressing a number of technical issues that are common to all near-surface disposal facilities, while the second group, the Regulatory Review Working Group (RRWG) is developing guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides a brief overview of the work being conducted by the Regulatory Review Working Group. (author)

  14. An integrated facility for municipal solid waste disposal, electrical generation, and desalination.

    OpenAIRE

    Hanby, Gregory.

    1995-01-01

    A preliminary design was completed for a facility that uses municipal solid waste as file for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works. Th...

  15. Coping with a community stressor: a proposed hazardous waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, K.M.

    1983-01-01

    This study examined a number of factors believed to influence community involvement. Residents of a rural community near Phoenix, Arizona, where a hazardous waste facility had been proposed to built, were interviewed at home in August 1982. Most residents were chosen at random (n = 70) while a smaller number (n = 29) were selected because of known involvement in activities regarding the hazardous waste facility. Residents who perceived the facility as a threat to their health, safety, and general well-being employed a number of coping strategies. Strategies to change or alter the source of stress, problem-focused coping, were associated with greater community involvement. Strategies to regulate one's emotional response to stress, emotion-focused coping, were associated with less community involvement. Increased self-efficacy and sense of community led to increased community involvement. Both measures indirectly influenced community involvement through different modes of coping. Self-efficacy was negatively related to emotion-focused coping while sense of community was positively related to problem-focused coping. Increased demoralization was associated with decreased self-efficacy, increased emotion-focused coping, and decreased community involvement. The results suggest that the psychologically most fragile residents are underrepresented in community activities, and that the use of high levels of emotion-focused coping may have been maladaptive.

  16. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  17. Performance Confirmation Strategies for the Waste Isolation Pilot Plant - A Historical Perspective from an Operating Disposal Facility - 12248

    International Nuclear Information System (INIS)

    Performance confirmation is an important element of the Waste Isolation Pilot Plant (WIPP) program. Performance confirmation was first used during the early WIPP site characterization phase to focus experimental activities that address the development of probabilistic repository performance models and to address stakeholder assurance needs. The program is currently used to analyze the conditions of the repository and its surroundings to ensure that the basis for the repository's long-term radioactive waste containment predictions is valid. This basis is related to the parameters, assumptions, conceptual and numerical models that are used to predict or validate the potential radioactive waste containment performance of the system. The concept of performance confirmation for the WIPP is one that has evolved since the first repository work was initiated decades ago and plays an important role in assuring adequate repository performance both now and in the long-term. The WIPP mission has progressed from a pilot project to an operational disposal facility and will progress to eventual site closure when disposal operations are completed. Performance confirmation is an important part of each of these progressions. The concept of disposing radioactive waste in a geologic repository today involves a complete understanding of many technical, political, regulatory, societal and economic elements. Many of these elements overlap and solving all relevant issues necessary to site, operate and decommission a disposal facility should be done with knowledge of each element's requirements and impacts. Performance confirmation is one tool that can help to coordinate many of these elements into a program that actively investigates what is thought to be adequately understood about the system and what information is lacking. A performance confirmation program is used to determine ways to challenge and verify those areas that are thought to be understood and to find ways to understand

  18. Performance Confirmation Strategies for the Waste Isolation Pilot Plant - A Historical Perspective from an Operating Disposal Facility - 12248

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Steve [John Hart and Associate for Sandia National Laboratories, Carlsbad, New Mexico 88220 (United States)

    2012-07-01

    Performance confirmation is an important element of the Waste Isolation Pilot Plant (WIPP) program. Performance confirmation was first used during the early WIPP site characterization phase to focus experimental activities that address the development of probabilistic repository performance models and to address stakeholder assurance needs. The program is currently used to analyze the conditions of the repository and its surroundings to ensure that the basis for the repository's long-term radioactive waste containment predictions is valid. This basis is related to the parameters, assumptions, conceptual and numerical models that are used to predict or validate the potential radioactive waste containment performance of the system. The concept of performance confirmation for the WIPP is one that has evolved since the first repository work was initiated decades ago and plays an important role in assuring adequate repository performance both now and in the long-term. The WIPP mission has progressed from a pilot project to an operational disposal facility and will progress to eventual site closure when disposal operations are completed. Performance confirmation is an important part of each of these progressions. The concept of disposing radioactive waste in a geologic repository today involves a complete understanding of many technical, political, regulatory, societal and economic elements. Many of these elements overlap and solving all relevant issues necessary to site, operate and decommission a disposal facility should be done with knowledge of each element's requirements and impacts. Performance confirmation is one tool that can help to coordinate many of these elements into a program that actively investigates what is thought to be adequately understood about the system and what information is lacking. A performance confirmation program is used to determine ways to challenge and verify those areas that are thought to be understood and to find ways to

  19. Safety of laboratories, plants, facilities being dismantled, waste processing, interim storage and disposal facilities. Lessons learned from events reported in 2009 and 2010

    International Nuclear Information System (INIS)

    This report presents the cross-disciplinary analysis performed by IRSN relating to significant events reported to the French Nuclear Safety Authority (ASN) during 2009 - 2010 for LUDD-type facilities (laboratories, plants, facilities being dismantled, and waste processing, interim storage and disposal facilities). It constitutes a follow-up to DSU Report 215 published in December 2009, relating to events reported to ASN during 2005 to 2008. The main developments observed since the analysis presented in that report have been underlined here, in order to highlight improvements, opportunities for progress and the main areas requiring careful attention. The present report is a continuation of DSU Report 215. Without claiming to be exhaustive, it presents lessons from IRSN's cross-disciplinary analysis of events reported to ASN during 2009 and 2010 at LUDD facilities while highlighting major changes from the previous analysis in order to underline improvements, areas where progress has been made, and main points for monitoring. The report has four sections: - the first gives a brief introduction to the various kinds of LUDD facilities and highlights changes with DSU Report 215; - the second provides a summary of major trends involving events reported to ASN during 2007-2010 as well as overall results of consequences of events reported during 2009 and 2010 for workers, the general public and the environment; - the third section gives a cross-disciplinary analysis of significant events reported during 2009 and 2010, performed from two complementary angles (analysis of main types of events grouped by type of risk and analysis of generic causes). Main changes from the analysis given in DSU Report 215 are considered in detail; - the last section describes selected significant events that occurred in 2009 and 2010 in order to illustrate the cross-disciplinary analysis with concrete examples. IRSN will publish this type of report periodically in coming years in order to

  20. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    Directory of Open Access Journals (Sweden)

    Andrade C.

    2011-04-01

    Full Text Available The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW, which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  1. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  2. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Ruokola, E. [ed.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  3. The public's role in transportation decisions as related to waste disposal facility siting

    International Nuclear Information System (INIS)

    Transportation issues, as they relate to facility siting, have for many years taken a back seat to other elements considered by those making siting decisions. This was true early in the characterization studies of Yucca Mountain. Transportation was just another matter in the milieu of issues facing U.S. Department of Energy (DOE) scientists and researchers trying to conduct studies while simultaneously working to earn the publics trust. Involving the public is perhaps the biggest challenge to the transportation team working for the Yucca Mountain Site Characterization Project Office (YMSCPO). Recognizing the critical importance of transportation to the Yucca Mountain Project, the YMSCPO has developed an innovative program that involves the public in the development of transportation plans related to siting decisions at Yucca Mountain

  4. The public's role in transportation decisions as related to waste disposal facility siting

    Energy Technology Data Exchange (ETDEWEB)

    Robison, A.C. (Dept. of Energy, Las Vegas, NV (United States)); Seidler, P.; Dale, R.; Binzer, C. (Science Applications International Corp., Idaho Falls, ID (United States))

    1992-01-01

    Transportation issues, as they relate to facility siting, have for many years taken a back seat to other elements considered by those making siting decisions. This was true early in the characterization studies of Yucca Mountain. Transportation was just another matter in the milieu of issues facing U.S. Department of Energy (DOE) scientists and researchers trying to conduct studies while simultaneously working to earn the publics trust. Involving the public is perhaps the biggest challenge to the transportation team working for the Yucca Mountain Site Characterization Project Office (YMSCPO). Recognizing the critical importance of transportation to the Yucca Mountain Project, the YMSCPO has developed an innovative program that involves the public in the development of transportation plans related to siting decisions at Yucca Mountain.

  5. Geochemical information for the West Chestnut Ridge Central Waste Disposal Facility for low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; Kelmers, A.D.

    1984-06-01

    Geochemical support activities for the Central Waste Disposal Facility (CWDF) project included characterization of site materials, as well as measurement of radionuclide sorption and desorption isotherms and apparent concentration limit values under site-relevant laboratory test conditions. The radionuclide sorption and solubility information is needed as input data for the pathways analysis calculations to model expected radioactivity releases from emplaced waste to the accessible environment under various release scenarios. Batch contact methodology was used to construct sorption and desorption isotherms for a number of radionuclides likely to be present in waste to be disposed of at the site. The sorption rates for uranium and europium were rapid (> 99.8% of the total radionuclide present was adsorbed in approx. 30 min). With a constant-pH isotherm technique, uranium, strontium, cesium, and curium exhibited maximum Rs values of 4800 to > 30,000 L/kg throughout the pH range 5 to 7. Sorption ratios were generally lower at higher or lower pH levels. Retardation factors for uranium, strontium, and cesium, explored by column chromatographic tests, were consistent with the high sorption ratios measured in batch tests for these radionuclides. The addition of as little as 0.01 M organic reagent capable of forming strong soluble complexes with metals (e.g., ethylenediaminetetraacetic acid (EDTA) or citric acid) was found to reduce the sorption ratio for uranium by as much as two orders of magnitude. Substitution of an actual low-level waste site trench water for groundwater in these tests was found to give a similar reduction in the sorption ratio.

  6. Geochemical information for the West Chestnut Ridge Central Waste Disposal Facility for low-level radioactive waste

    International Nuclear Information System (INIS)

    Geochemical support activities for the Central Waste Disposal Facility (CWDF) project included characterization of site materials, as well as measurement of radionuclide sorption and desorption isotherms and apparent concentration limit values under site-relevant laboratory test conditions. The radionuclide sorption and solubility information is needed as input data for the pathways analysis calculations to model expected radioactivity releases from emplaced waste to the accessible environment under various release scenarios. Batch contact methodology was used to construct sorption and desorption isotherms for a number of radionuclides likely to be present in waste to be disposed of at the site. The sorption rates for uranium and europium were rapid (> 99.8% of the total radionuclide present was adsorbed in approx. 30 min). With a constant-pH isotherm technique, uranium, strontium, cesium, and curium exhibited maximum Rs values of 4800 to > 30,000 L/kg throughout the pH range 5 to 7. Sorption ratios were generally lower at higher or lower pH levels. Retardation factors for uranium, strontium, and cesium, explored by column chromatographic tests, were consistent with the high sorption ratios measured in batch tests for these radionuclides. The addition of as little as 0.01 M organic reagent capable of forming strong soluble complexes with metals [e.g., ethylenediaminetetraacetic acid (EDTA) or citric acid] was found to reduce the sorption ratio for uranium by as much as two orders of magnitude. Substitution of an actual low-level waste site trench water for groundwater in these tests was found to give a similar reduction in the sorption ratio

  7. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    International Nuclear Information System (INIS)

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns

  8. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-01

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  9. Mastery of risks: we build the memory of radioactive waste disposal facilities; Maitrise des risques: nous construisons la memoire des centres de stockage des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Lacourcelle, C.

    2011-07-01

    The ANDRA, the French national agency of radioactive wastes, is organizing today the information needs of tomorrow. The aim is to allow the future generations to have access to the knowledge of the existence of subsurface radioactive waste facilities and to understand the context and technologies of such facilities. The storage of this information is made on 'permanent paper', a high resistant paper with a lifetime of 600 to 1000 years. An updating of these data is made every 5 years for each waste disposal center. Another project, still in progress, concerns the memory management of deep geologic waste disposal facilities for which the time scale to be considered is of the order of millennia. (J.S.)

  10. Status report and approaches for siting a low level waste disposal facility in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    On July 24, 1991, Michigan was expelled from the Midwest Interstate Low Level Radioactive Waste Compact. This action resulted in Ohio becoming the primary host state based on actions taken by the commission in 1987 when Ohio was designated as first alternate host state. Ohio recognized early on that the existing Midwest Compact needed to be amended and negotiations on a compact document that met the concerns of Ohio were initially completed in June 1993. A region-wide review and comment period was provided and meetings or hearings on the amended and restated compact were completed in all party states with the unamimous adoption of the document by the Commission on November 29, 1993. The document will now be forwarded to the party state for action by their state legislatures. Ohio is expected to enact the compact amendments first with each of the other states following in short order. On October 30, 1992 the governor of Ohio appointed a 13 member blue ribbon committee on siting criteria. In September 1993, the Blue Ribbon Commission on Siting Criteria and Ohio`s Low-Level Radioactive Waste Advisory Committee each issued their reports to the Governor, the leadership of the Ohio General Assembly, and the general public. The Blue Ribbon Commission Report focused on concerns relative to siting while the advisory committee concentrated on the overall administrative structural process associated with developing, licensing and operating a low-level waste facility in Ohio. Legislation is currently being drafted based on these reports. Ohio leadership will consider the package in the session which begins in January 1995.

  11. North Carolina Geological Survey's role in siting a low-level radioactive (LLRW) waste disposal facility in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.C.; Wooten, R.M.; Farrell, K.M. (North Carolina Geological Survey, Raleigh, NC (United States))

    1993-03-01

    The Southeast Compact Commission in 1986 selected North Carolina to host the Southeast's LLRW disposal facility for the next twenty years. The North Carolina Geological Survey (NCGS) for six years has played a major role in the State's efforts by contributing to legislation and administrative code, policy, technical oversight and surveillance and regulation as a member of the State's regulatory team. Future activities include recommendation of the adequacy of characterization and site performance pursuant to federal code, state general statutes and administrative code, and review of a license application. Staff must be prepared to present testimony and professional conclusions in court. The NCGS provides technical advice to the Division of Radiation Protection (DRP), the regulatory agency which will grant or deny a LLRW license. The NCGS has not participated in screening the state for potential sites to minimize bias. The LLRW Management Authority, a separate state agency siting the LLRW facility, hired a contractor to characterize potential sites and to write a license application. Organizational relationships enable the NCGS to assist the DRP in its regulatory role without conflict of interest. Disposal facilities must be sited to ensure safe disposal of LLRW. By law, the siting of a LLRW disposal facility is primarily a geological, rather than an engineering, effort. Federal and State statutes indicate a site must be licensable on its own merits. Engineered barriers cannot make a site licensable. The project is 3 years behind schedule and millions of dollars over budget. This indicates the uncertainty and complexity inherent in siting such as facility, the outcome of which cannot be predicted until site characterization is complete, the license application reviewed and the performance assessment evaluated. State geological surveys are uniquely qualified to overview siting of LLRW facilities because of technical expertise and experience in the

  12. Disposal facility building also is mining engineering. Germany can tap into this expertise and planning potential; Endlagerbergbau ist auch Bergbau. Erfahrungs- und Planungspotential in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Hucke, Andreas; Kohl, Nadine; Scior, Carsten; Gutberlet, Daniela [DMT GmbH und Co.KG, Essen (Germany)

    2015-07-01

    The conventional mining industry has a rich tradition and as mining is practised all over the world under a whole range of different conditions the industry has witnessed all kinds of technical developments aimed at controlling strata behaviour and winning the target mineral as efficiently as possible. The proposed use of deep geological deposits as disposal facilities for nuclear waste has transformed the role of the mining Industry and instead of extracting material from the ground mining engineers are now focussing more on how to store waste material safely deep below the earth's surface. Nevertheless, this new remit retains many of the key aspects of conventional mining and the experience that the industry has built up over the years Is still of vital importance when it comes to selecting a suitable disposal site and planning a final waste disposal facility in deep geological formations. These processes benefit from the support of specialists with a mining engineering background, as this can help to avoid unnecessary delays, additional costs and potential damage to public image. The following paper describes some of the expertises and methods developed by the conventional extraction industry that are also of relevance for the construction of disposal facilities.

  13. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    Science.gov (United States)

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  14. [Composting facilities. 1. Microbiological quality of compost with special regard to disposable diapers].

    Science.gov (United States)

    Jager, E; Rüden, H; Zeschmar-Lahl, B

    1994-10-01

    At three different composting facilities, co-composting of used panty diapers with an addition of 10% (weight) to the usual plant input was investigated for various hygienic and microbiological parameters. In nearly any case, a sufficient degree of germ reduction above 99.9% could be observed by determination of reduction rates of B. subtilis spores. The concentrations of "total microorganisms" ranged from 3.9 x 10(5) to 3.3 x 10(11) colony forming units per gram compost (CFU/g) in composts without and from 3.3 x 10(5) to 4.7 x 10(9) CFU/g in composts with panty diapers in the input. The concentrations of "gram-negative bacteria" ranged from 3.3 x 10(4) to 1.3 x 10(9) CFU/g (without panty diapers) resp. from 3.3 x 10(5) to 3.5 x 10(8) CFU/g (with panty diapers), the concentrations of "fecal streptococci" from 1.7 x 10(3) to 7.7 x 10(7) CFU/g (without panty diapers) resp. from 1.4 x 10(4) to 1.4 x 10(8) CFU/g (with panty diapers). Facultatively pathogenic microorganisms showed a broad variety, but no common trend in composts with and without panty diapers in the input. Statistical validity of the determination of contents of microorganisms in compost samples was guaranteed by the collection and analysis of 20 parallel samples with an average sample mass of 10 to 15 kg. From the analyzed quantitative and qualitative hygienic-microbiological parameters, it can be concluded that no negative hygienic-microbiological effects, caused by the addition of 10% (weight) of used panty diapers in the input, have to be expected. Under the aspects of epidemiologic hygiene, composting of used panty diapers together with usual input materials seems to cause no increased risks under the tested conditions. Under the aspect of consumer protection, there is no increase in the risk of infection when using compost produced with addition of panty diapers, compared to compost produced without panty diaper addition to the input. PMID:7848500

  15. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report calculations are presented of buoyancy driven groundwater flow caused by the emission of residual heat from spent nuclear fuel deposited in deep boreholes from the ground surface in combination with the natural geothermal gradient. This work has been conducted within SKB's programme for evaluation of alternative methods for final disposal of spent nuclear fuel. The basic safety feature of disposal of spent nuclear fuel in deep boreholes is that the groundwater at great depth has a higher salinity, and hence a higher density, than more superficial groundwater. The result of this is that the deep groundwater becomes virtually stagnant. The study comprises analyses of the effects of different inter-borehole distances as well as the effect of different permeabilities in the backfill and sealing materials in the borehole and of different shapes of the interface between fresh and saline groundwater. The study is an update of a previous study published in 2006. In the present study, the facility design proposed by Sandia National Laboratories has been studied. In this design, steel canisters containing two BWR elements or one PWR element are stacked on top of each other between 3 and 5 kilometres depth. In order to host all spent fuel from the current Swedish nuclear programme, about 80 such holes are needed. The model used in this study comprises nine boreholes spaced 100 metres alternatively 50 metres apart in a 3{Chi}3 matrix. In one set of calculations the salinity in the groundwater was assumed to increase from zero above 700 metres depth to 10% by weight at 1500 metres depth and below. In another set, a sharper salinity gradient was applied in which the salinity increased from 0 to 10% between 1400 and 1500 metres depth. A geothermal gradient of 16 deg C/km was applied. The heat output from the spent fuel was assumed to decrease by time in manner consistent with the radioactive decay in the fuel. When the inter-borehole distance decreased from

  16. How to treat climate evolution in the assessment of the long-term safety of disposal facilities for radioactive waste: examples from Belgium

    Directory of Open Access Journals (Sweden)

    M. Van Geet

    2009-02-01

    Full Text Available In order to protect man and the environment, long-lasting, passive solutions are needed for the different categories of radioactive waste. In Belgium, three main categories of conditioned radioactive waste (termed A, B and C are defined by radiological and thermal power criteria. It is expected that Category A waste – low and intermediate level short-lived waste – will be disposed in a near-surface facility, whereas Category B and C wastes – high-level and other long-lived radioactive waste – will be disposed in a deep geological repository. In both cases, the long-term safety of a given disposal facility is evaluated. Different scenarios and assessment cases are developed illustrating the range of possibilities for the evolution and performance of a disposal system without trying to predict its precise behaviour. Within these scenarios, the evolution of the climate will play a major role as the time scales of the evaluation and long term climate evolution overlap. In case of a near-surface facility (Category A waste, ONDRAF/NIRAS is considering the conclusions of the IPCC, demonstrating that a global warming is nearly unavoidable. The consequences of such a global warming and the longer term evolutions on the evolution of the near-surface facility are considered. In case of a geological repository, in which much longer time frames are considered, even larger uncertainties exist in the various climate models. Therefore, the robustness of the geological disposal system towards the possible results of a spectrum of potential climate changes and their time of occurrence will be evaluated. The results of climate modelling and knowledge of past climate changes will merely be used as guidance of the extremes of climate changes to be considered and their consequences.

  17. Facile preparation of disposable immunosensor for Shigella flexneri based on multi-wall carbon nanotubes/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.co [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, 149, Jiaogong Road, Hangzhou 310035, Zhejiang Province (China); Zhan Xuejia [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, 149, Jiaogong Road, Hangzhou 310035, Zhejiang Province (China)

    2010-02-28

    Based on multi-wall carbon nanotubes (MWCNT)/chitosan/horseradish peroxidase labeled antibodies to Shigella flexneri (HRP-anti-S. flexneri) biocomposite film on a screen-printed electrode (SPE) surface, a disposable immunosensor has been developed for the rapid detection of S. flexneri. The HRP-anti-S. flexneri can be entrapped into MWCNT/chitosan composite matrix without other cross-linking agent. Thionine and H{sub 2}O{sub 2} were used as the mediator and substrate, respectively. The surface morphologies of modified films were characterized by atomic force microscope (AFM). Cyclic voltammery (CV) was carried out to characterize the electrochemical properties of the immobilization of materials on the electrode surface and quantified S. flexneri. Due to the strong electrocatalytic properties of MWCNT and HRP toward H{sub 2}O{sub 2}, the response signal was significantly amplified. S. flexneri could be detected by the decrease of the reduction peak current before and after immunoreaction. Under optimal conditions, S. flexneri could be detected in the range of 10{sup 4} to 10{sup 10} cfu mL{sup -1}, with a detection limit of 2.3 x 10{sup 3} cfu mL{sup -1} (S/N = 3). Furthermore, the proposed immunosensor exhibited a satisfactory specificity, reproducibility, stability and accuracy, indicating that the proposed immunosensor has potential application for a facile, rapid and harmless immunoassay.

  18. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  19. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  20. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

  1. The NIMBY game: Implementation of New Jersey's hazardous-waste-disposal-facility siting policy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, J.A.

    1991-01-01

    This thesis examines the contemporary problem of building and maintaining legislative and constituency group support for a public-siting process designed to counteract the Not-in-My-Backyard NIMBY Syndrome, in the context of public policy literature. A Policy Arena model that graphically reviews and analyzes the influence, interest, and perceived power of various players is developed and applied. The research methodology relies on 65 interviews with the key policy makers, implementers, and external observers of New Jersey's siting process as well as documents related to the issue. A case history is developed that provides a detailed overview of the development and implementation of New Jersey's hazardous-waste-disposal-facility siting policy. The research examines: the role of state government in siting policy, the effectiveness of New Jersey's siting policy implementation design, the usefulness of the process of cooptation of potential opponents into the decision-making process, and the ability of independent siting commissions to shield legislators and appointed bureaucrats from having to make politically sensitive decisions.

  2. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    Science.gov (United States)

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  3. Decision analysis applications and the CERCLA process

    Energy Technology Data Exchange (ETDEWEB)

    Purucker, S.T.; Lyon, B.F. [Oak Ridge National Lab., TN (United States). Risk Analysis Section]|[Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    Quantitative decision methods can be developed during environmental restoration projects that incorporate stakeholder input and can complement current efforts that are undertaken for data collection and alternatives evaluation during the CERCLA process. These decision-making tools can supplement current EPA guidance as well as focus on problems that arise as attempts are made to make informed decisions regarding remedial alternative selection. In examining the use of such applications, the authors discuss the use of decision analysis tools and their impact on collecting data and making environmental decisions from a risk-based perspective. They will look at the construction of objective functions for quantifying different risk-based perspective. They will look at the construction of objective functions for quantifying different risk-based decision rules that incorporate stakeholder concerns. This represents a quantitative method for implementing the Data Quality Objective (DQO) process. These objective functions can be expressed using a variety of indices to analyze problems that currently arise in the environmental field. Examples include cost, magnitude of risk, efficiency, and probability of success or failure. Based on such defined objective functions, a project can evaluate the impact of different risk and decision selection strategies on data worth and alternative selection.

  4. Method and result for calculation of radioactivity concentration of radionuclide corresponding to dose criterion for near surface disposal of radioactive waste generated from research, medical, and industrial facilities

    International Nuclear Information System (INIS)

    In this report, we calculated radioactivity concentration of radionuclides potentially contained in low level radioactive waste (LLW) generated from research, medical, and industrial facilities corresponding to dose criterion (10 μSv/y) for near surface disposal. From the result we discussed radionuclides whose radioactivity in the waste should be evaluated. Many kinds of radionuclides are contained in LLW generated from research facilities because of various uses of radioactive materials in the facilities. 220 kinds of nuclides whose half-life are more than 30 days were selected considering the possibility of existence in LLW generated from research facilities. Radioactivity concentrations corresponding to dose criterion of 40 nuclides among 220 ones were calculated by using the representative model in Japan because the concentrations of 40 nuclides had not been calculated yet. As a result, the radioactivity concentrations of 21 nuclides were evaluated, however, the concentrations of 19 ones were invalid values that are larger than the specific radioactivity of nuclides. Skyshine dose from each nuclide among 19 nuclides during operation of disposal facility was calculated. Skyshine dose from each of 11 nuclides among 19 ones was relatively high, therefore, 11 ones were selected as nuclides to be considered in safety assessment of operation period. Consequently, we got radioactivity concentrations of 141 nuclides corresponding to dose criterion among 220 ones. As a result the 141 nuclides were selected as the nuclides for evaluation of radioactivity in waste. And then we added 31 nuclides except for 141 ones as the nuclides to be evaluated in safety assessment of operation period. The radioactivity concentrations set in this report can be used as criteria of categorization of LLW between trench type and concrete vault type disposal and of preliminary selection of important nuclides of these disposals in the generic conditions. (author)

  5. 国外铀矿冶设施的退役治理%Decommissioning and disposal of foreign uranium mine and mill facilities

    Institute of Scientific and Technical Information of China (English)

    潘英杰; 徐乐昌; 薛建新; 袁柏祥

    2012-01-01

    Disposal techniques in decommissioning of foreign uranium mine and mill facilities are systematically discussed, including covering of uranium tailing impoundment, drainaging and consolidation of uranium tailing,and treatment of mining waste water and polluted groundwater.and the costs associated with disposal are analyzed. The necessity of strengthening the decommissioning disposal technology research and international exchanges and cooperation is emphasized.%系统论述了国外铀矿冶设施退役的治理技术,包括铀尾矿库覆盖治理、铀尾矿的排水固结、矿山废水和污染地下水治理等,并分析了相关的治理费用,强调了加强退役治理技术研究与国际交流与合作的必要性.

  6. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    International Nuclear Information System (INIS)

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme

  7. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  8. Potential for and consequences of criticality resulting from hydrogeochemically concentrated fissile uranium blended with soil in low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Evaluations were done to determine conditions that could permit nuclear criticality with fissile uranium in low-level-waste (LLW) facilities and to estimate potential radiation exposures to personnel if there were such an accident. Simultaneous hydrogeochemical and nuclear criticality studies were done (1) to identify some realistic scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) to model groundwater transport and subsequent concentration via sorption or precipitation of uranium, (3) to evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits, and (4) to estimate potential radiation exposures to personnel resulting from criticality consequences. The scope of the referenced work was restricted to uranium at an assumed 100 wt% 235U enrichment. Three outcomes of uranium concentration are possible: uranium concentration is increased to levels that do pose a criticality safety concern; uranium concentration is increased, but levels do not pose a criticality safety concern; or uranium concentration does not increase

  9. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    Science.gov (United States)

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  10. Evaluation of environmental change and its effects on the radiological performance of a hypothetical shallow engineered disposal facility at Elstow, Bedfordshire

    International Nuclear Information System (INIS)

    The results of a project designed to evaluate aspects of a hypothetical facility for disposal of radioactive wastes at Elstow, Bedfordshire, are described. The project included modelling of environmental change using the TIME2 code, groundwater flow modelling, biosphere modelling and risk analysis using the SYVAC A/C code. The aims of the work were to demonstrate use of TIME2, investigate the evolution of the facility's environment and to evaluate the influence of environmental change on estimates of radiological risk. Risk analysis of several time-independent environmental system states, using data obtained from the other tasks, indicated that environmental changes significantly influence estimates of radiological risk. (author)

  11. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.A. [Science Applications International Corp., Oak Ridge, TN (United States). Environmental Compliance Group

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solid Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.

  12. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources

  13. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    International Nuclear Information System (INIS)

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site

  14. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs

  15. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  16. The consideration of geological uncertainty in the siting process for a Geological Disposal Facility for radioactive waste

    Science.gov (United States)

    Mathers, Steve; McEvoy, Fiona; Shaw, Richard

    2015-04-01

    Any decision about the site of a Geological Disposal Facility at depth for medium to high level radioactive waste is based on a safety case which in turn is based on an understanding of the geological environment which enables, for example, understanding groundwater flows and groundwater chemical composition. Because the information on which geological understanding is based cannot be fully understood, it is important to ensure that: i. Inferences are made from data in a way that is consistent with the data. ii. The uncertainty in the inferred information is described, quantitatively where this is appropriate. Despite these uncertainties decisions can and must be made, and so the implications of the uncertainty need to be understood and quantified. To achieve this it is important to ensure that: i. An understanding of how error propagates in all models and decision tools. Information which is collected to support the decision-making process may be used as input into models of various kinds to generate further information. For example, a process model may be used to predict groundwater flows, so uncertainty in the properties which are input to the model (e.g. on rock porosity and structure) will give rise to uncertainty in the model predictions. Understanding how this happens is called the analysis of error propagation. It is important that there is an understanding of how error propagates in all models and decision tools, and therefore knowledge of how much uncertainty remains in the process at any stage. As successive phases of data collection take place the analysis of error propagation shows how the uncertainty in key model outputs is gradually reduced. ii. The implications of all uncertainties can be traced through the process. A clear analysis of the decision-making process is necessary so that the implications of all uncertainties can be traced through the process. This means that, when a final decision is made, one can state with a high level of confidence

  17. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments

  18. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Serne, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  19. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  20. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  1. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The general report and the present annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful

  2. CERCLA interim action at the Par Pond unit: A case study

    International Nuclear Information System (INIS)

    The Par Pond unit designated under CERCLA consists of sediments within a Savannah River Site (SRS) cooling water reservoir. The sediments are contaminated with radionuclides and nonradioactive constituents from nuclear production reactor operations. The mercury in Par Pond is believed to have originated from the Savannah River. Because of Par Pond Dam safety Issues, the water level of the reservoir was drawn down, exposing more than 1300 acres of contaminated sediments and triggering the need for CERCLA interim remedial action. This paper presents the interim action approach taken with Par Pond as a case study. The approach considered the complexity of the Par Pond ecosystem, the large size of Par Pond, the volume of contaminated sediments, and the institutional controls existing at SRS. The Environmental Protection Agency (EPA) considers units with large volumes of low-concentration wastes, as is the case with Par Pond, to be open-quotes special sites.close quotes Accordingly, EPA guidance establishes that the range of alternatives developed focus primarily on containment options and other remedial approaches that mitigate potential risks associated with the open-quotes special site.close quotes The remedial alternatives, according to EPA, are not to be prohibitively expensive or difficult to implement. This case study also is representative of the types of issues that will need to be addressed within the Department of Energy (DOE) complex as nuclear facilities are transitioned to inactive status and corrective/remedial actions are warranted

  3. Safety cases for radioactive waste disposal facilities: guidance on confidence building and regulatory review IAEA-ASAM co-ordinated research project

    International Nuclear Information System (INIS)

    The IAEA has been conducting two co-ordinated research programmes (CRPs) projects to develop and apply improved safety assessment methodologies for near-surface radioactive waste disposal facilities. The more recent of these projects, ASAM (application of safety assessment methodologies), included a Regulatory Review Working Group (RRWG) which has been working to develop guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides an overview of the ASAM project, focusing on the safety case and regulatory review. (authors)

  4. Legislative requirements for the construction of an underground disposal facility for radioactive wastes and spent fuel from the National Mining Administration's viewpoint

    International Nuclear Information System (INIS)

    In addition to Atomic Act no. 18/1997 and Waste Act no. 125/97 (for which as yet no implementing regulations have been issued), there are a number of acts, ordinances and regulations to be respected during the construction of an underground disposal facility. The following fields are discussed from this aspect: mining activity licensing, mining activity reporting, geologic survey, protected territories, licensing of special interventions into the Earth crust, and decommissioning. For each of these areas, the applicable legislative documents are given and the bodies engaged in the process are specified. (P.A.)

  5. Case study : evaluation of oilfield and water well disposal well designs for oil sands facility in northern Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Champollion, Y.; Gleixner, M.R.; Wozniewicz, J. [Golder Associates Ltd., Calgary, AB (Canada); MacFarlane, W.D.; Skulski, L. [Nexen Canada Ltd., Calgary, AB (Canada)

    2003-07-01

    Large volumes of wastewater disposal capacity will be required for the production of bitumen at the Long Lake Project, located in northeastern Alberta. An unconsolidated sand aquifer is the target formation for disposal. An evaluation of two disposal well designs, perforated casing (standard oil and gas approach), and wire-wound telescopic screen (standard water well approach) was performed. Skin, transmissivity and storability were the hydraulic parameters quantified. Full superposition type curves were used to conduct the transient analysis, along with the use of pressure derivative data. The results from the injection tests revealed that the sand aquifer at the Long Lake Project had suitable aquifer disposal capacity. The test results also revealed that clogging takes place in the vicinity of the wellbore, probably because of suspended solids in the injection water and the degassing effects. The water well design, as opposed to the standard oilfields well, makes provision for less costly re-development during operations, something that might be required if clogging problems occur. 3 refs., 8 figs.

  6. U.S. EPA'S STRATEGY FOR GROUND WATER QUALITY MONITORING AT HAZARDOUS WASTE LAND DISPOSAL FACILITIES LOCATED IN KARST TERRANES

    Science.gov (United States)

    Ground water monitoring of hazardous waste land disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground water quality monitoring requirement of one upg...

  7. Regional hydrogeological screening characteristics used for siting near-surface waste-disposal facilities in Oklahoma, U.S.A.

    Science.gov (United States)

    Johnson, Kenneth S.

    1991-01-01

    The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials.

  8. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Science.gov (United States)

    2010-01-01

    ... could erode or inundate waste disposal units. (7) The disposal site must provide sufficient depth to the... fluctuation of the water table. (8) The hydrogeologic unit used for disposal shall not discharge ground water... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal......

  9. The impact of a final disposal facility for spent nuclear fuel on a municipality`s image; Tutkimus loppusijoituslaitoksen vaikutuksista kuntien imagoon

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanpaeae, H.; Haapavaara, L.; Lampinen, T

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities` point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality`s image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter `which does not concern me`, provided that the facility will not be placed too near one`s own home. Among those interviewed the subject seemed not to be of any `great interest and did not arouse spontaneous feelings for or against`. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  10. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    Energy Technology Data Exchange (ETDEWEB)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for

  11. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  12. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    International Nuclear Information System (INIS)

    Following President Clinton's Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations

  13. A guide to CERCLA site assessment. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This Pocket Guide is a condensed version of information provided in three EPA documents: Guidance for Performing Preliminary Assessments Under CERCLA, Guidance for Performing Site Inspections Under CERCLA, and Hazard Ranking System Guidance Manual. Additionally the guide provides a DOE perspective on site assessment issues and information on the Federal Agency Hazardous Waste Compliance Docket as well as data sources for DOE site assessments. The guide is intended to present this information in a simple, portable, and direct manner that will allow the user to effectively focus on those aspects of the site assessment process of interest. The guide is not intended as a substitute for the three EPA guidance documents mentioned previously. DOE investigators should be thoroughly familiar with the EPA guidance before conducting site assessments. Use this pocketguide as an overview of procedures and requirements and as a field guide.

  14. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy's Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work

  15. Glossary of CERCLA, RCRA and TSCA related terms and acronyms

    International Nuclear Information System (INIS)

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993

  16. Standard format and content of a license application for a low-level radioactive waste disposal facility: Safety analysis report

    International Nuclear Information System (INIS)

    This document discusses the information that should be provided in the Safety Analysis Report and establishes a uniform format for presenting the information necessary to fulfill the licensing requirements for land disposal of radioactive waste called for in 10 CFR 61. The uniform format will (1) help ensure that the Safety Analysis Report contains the information required by 10 CFR 61, (2) aid the applicant and NRC staff in ensuring that the information is complete, (3) help persons reading the Safety Analysis Report to locate information, and (4) contribute to shortening the time needed for the review process

  17. Hazard Ranking System evaluation of CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    International Nuclear Information System (INIS)

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs

  18. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence

  19. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  20. Guidance for performing preliminary assessments under CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    EPA headquarters and a national site assessment workgroup produced this guidance for Regional, State, and contractor staff who manage or perform preliminary assessments (PAs). EPA has focused this guidance on the types of sites and site conditions most commonly encountered. The PA approach described in this guidance is generally applicable to a wide variety of sites. However, because of the variability among sites, the amount of information available, and the level of investigative effort required, it is not possible to provide guidance that is equally applicable to all sites. PA investigators should recognize this and be aware that variation from this guidance may be necessary for some sites, particularly for PAs performed at Federal facilities, PAs conducted under EPA`s Environmental Priorities Initiative (EPI), and PAs at sites that have previously been extensively investigated by EPA or others. The purpose of this guidance is to provide instructions for conducting a PA and reporting results. This guidance discusses the information required to evaluate a site and how to obtain it, how to score a site, and reporting requirements. This document also provides guidelines and instruction on PA evaluation, scoring, and the use of standard PA scoresheets. The overall goal of this guidance is to assist PA investigators in conducting high-quality assessments that result in correct site screening or further action recommendations on a nationally consistent basis.

  1. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  2. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  3. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Science.gov (United States)

    2010-04-01

    ... adjacent electric generating facility and B can use steam to power its turbine-generator. B needs steam... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Industrial development bonds used to provide... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste...

  4. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility: Safety analysis report

    International Nuclear Information System (INIS)

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff's review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission's regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements

  5. Environmental Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility: Environmental report

    International Nuclear Information System (INIS)

    The Environmental Standard Review Plan (ESRP) (NUREG-1300) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform environmental reviews of environmental reports prepared by applicants in support of license applications to construct and operate new low-level radioactive waste disposal facilities. The individual ESRPs that constitute this document identify the information considered necessary to conduct the review, the purpose and scope of the review, the analysis procedure and evaluation, the formal input to the environmental statement, and the references considered appropriate for each review. The ESRP is intended to ensure quality and uniformity of approach in individual reviews as well as compliance with the National Environmental Policy Act of 1969. In addition, the ESRP will make information about the environmental component of the licensing process more readily available and thereby will serve to improve the understanding of this process among the public, States and regional compacts, and the regulated community

  6. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff`s review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission`s regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements.

  7. Standard review plan for the review of a license application for a low-level radioactive waste disposal facility: Safety analysis report

    International Nuclear Information System (INIS)

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff's review process by interested members of the public and the nuclear power industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission's regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements

  8. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, R.; Malkumus, D. [Pacific Nuclear, Inc. (United States); Sonntag, T. [New York State Energy Research and Development Authority, NY (United States); Sundquist, J. [Ecology and Environment, Inc. (United States)

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  9. Recommendations for siting, development, and operation of a regional low-level radioactive waste disposal facility in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Harf, J.

    1994-12-31

    In 1984, pursuant to passage of the federal Low-Level Radioactive Waste Policy Act of 1980, the Ohio General Assembly voted overwhelmingly to join the Midwest Interstate Low-Level Radioactive Waste Commission. The original members of the Midwest Compact were Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin; however, Michigan was expelled in July 1991, for failure to fulfill its obligations as host state for the first regional facility. At that time, Ohio assumed responsibility as host state and proceeded to negotiate amendments to the Compact. In September 1992, the legislative leadership requested that Governor George V. Voinovich appoint a Blue Ribbon Committee to offer recommendations on siting criteria and that the Low-Level Radioactive Waste Advisory Committee report on other aspects of facility development, operation, and long-term care. After a year of meetings, public hearings, and deliberation, the two reports were released. The reports contain detailed recommendations on a wide variety of issues, including socio-economic, hydrogeologic, and health effects criteria; the establishment of an administrative structure and process; implementation of public education and information programs; community compensation and benefits plans; and achievement of agreement state status with the NRC for purposes of licensing and regulating the Ohio facility. The recommendations will be incorporated into enabling legislation for introduction later this year.

  10. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  11. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  12. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  13. Model for inactivation and disposal of infectious human immunodeficiency virus and radioactive waste in a BL3 facility

    International Nuclear Information System (INIS)

    A method is described for autoclaving low levels of solid infectious, radioactive waste. The method permits steam penetration to inactivate biologic waste, while any volatile radioactive compounds generated during the autoclave process are absorbed. Inactivation of radiolabeled infectious waste has been problematic because the usual sterilization techniques result in unacceptable radiation handling practices. If autoclaved under the usual conditions, there exists a high probability of volatilization or release of radioisotopes from the waste. This results in the radioactive contamination of the autoclave and the laboratory area where steam is released from the autoclave. Our results provide a practical method to inactivate and dispose of infectious radioactive waste. For our research, Bacillus pumilus spore strips and vaccinia virus were used as more heat-resistant surrogates of the human immunodeficiency virus (HIV). These surrogates were used because HIV is difficult to grow under most conditions and is less heat tolerant than the surrogates. In addition, B. pumilus has defined cell death values, whereas such values have not been established for HIV. Both B. pumilus and vaccinia virus are less hazardous to work with. The autoclave method is time efficient and can be performed by laboratory personnel with minimal handling of the waste. Furthermore, waste site handlers are able to visually inspect the solid waste containers and ascertain that inactivation procedures have been implemented

  14. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information.

  15. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  16. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen normaalikaeytoen, kaeyttoehaeirioeiden ja onnettomuustilanteiden aiheuttamien saeteilyannosten arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M. [VTT Energy, Espoo (Finland)

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  17. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating

  18. 40 CFR Appendix A to Part 307 - Application for Preauthorization of a CERCLA Response Action

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Application for Preauthorization of a CERCLA Response Action A Appendix A to Part 307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) CLAIMS PROCEDURES Pt. 307, App. A Appendix A to Part...

  19. 78 FR 63978 - Proposed CERCLA Settlements Relating to the Truckers Warehouse Site in Passaic, Passaic County...

    Science.gov (United States)

    2013-10-25

    ... AGENCY Proposed CERCLA Settlements Relating to the Truckers Warehouse Site in Passaic, Passaic County...(h)(1) of CERCLA, with (1) RJS Corp.; (2) Your Factory Warehouse, Inc., Douglas Marino and Mark... response costs incurred at or in connection with the Truckers Warehouse Site (``Site''), located in...

  20. CERCLA integration with site operations the Fernald experience

    International Nuclear Information System (INIS)

    A major transition in the Fernald Environmental Management Project (FEMP) site mission has occurred over the past few years. The production capabilities formally provided by the FEMP are being transferred to private industry through a vendor qualification program. Environmental compliance and site cleanup are now the primary focus. In line with this program, the production of uranium products at the site was suspended in July 1989 in order to concentrate resources on the environmental mission. Formal termination of the FEMP production mission was accomplished on June 19, 1991. Environmental issues such as stored inventories of process residues materials and equipment are being addressed under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The diversity of these hazards complicates the strategic planning for an integrated site cleanup program. This paper will discuss the programmatic approach which is being implemented to ensure activities such as waste management, site utility and support services, health and safety programs, and Resource Conservation and Recovery Act (RCRA) programs are being integrated with CERCLA. 6 figs., 3 tabs

  1. Shallow land disposal technology

    International Nuclear Information System (INIS)

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  2. Proceedings. NETEC workshop on shallow land disposal technology, 1997. 10. 20 - 10. 21, Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings cover the design and operational experience of shallow land disposal facility, and safety assessment and licensing issues of shallow land disposal facility. Ten articles are submitted.

  3. Proceedings. NETEC workshop on shallow land disposal technology, 1997. 10. 20 - 10. 21, Taejon, Korea

    International Nuclear Information System (INIS)

    This proceedings cover the design and operational experience of shallow land disposal facility, and safety assessment and licensing issues of shallow land disposal facility. Ten articles are submitted

  4. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  5. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944

  6. 76 FR 18549 - Casmalia Disposal Site; Notice of Proposed CERCLA Administrative De Minimis Settlement

    Science.gov (United States)

    2011-04-04

    ... liability for response costs and potential natural resource ] damage claims by the United States Fish and...&T, Inc., and Alcatel-Lucent USA Inc. as successor in interest to the claims asserted against...

  7. 77 FR 69620 - Casmalia Disposal Site; Notice of Proposed CERCLA Administrative De Minimis Settlement

    Science.gov (United States)

    2012-11-20

    ... Corporation, Children's Hospital of Los Angeles, CHM Manufacturing West, Inc., Chrome Nickel Plating, Circle... California, Nova Transportation Corp, Ojai Oil Company, O'Neil Data Systems, Inc., Orange Heights Orange..., Santa Maria Ford, Santa Maria Valley Warehouse, Sav-On Plating, Schlumberger Well Service, Sealright...

  8. The long-term and the short-term at a cropping municipal sewage sludge disposal facility

    International Nuclear Information System (INIS)

    The City of Raleigh, NC, chose land application of municipal sewage sludge as a means of reducing pollution to the Neuse River. The Neuse River Waste Water Treatment Plant (NRWWTP) is located in the Piedmont Province of North Carolina. The soils at the facility are derived largely from the Rolesville Granite. Sewage sludge is applied to over 640 acres of cropland, owned in fee or leased. In making the policy decision for use of the sludge land application method 20 or so years ago, the City had to evaluate the potential for heavy metal accumulation in the soils and plants as well as the potential for ground-water contamination from the nitrate-nitrogen. The city also had to make a policy decision about limiting the discharge of heavy metals to the sewer system. Study of data from monitoring wells demonstrate that well position is a key in determining whether or not nitrate-nitrogen contamination is detected. Data from a three-year study suggest that nitrate-nitrogen moves fairly rapidly t the water table, although significant buildup in nitrogen-nitrogen may take a number of years. Evidence exists suggesting that the time between application of sewage sludge and an increase of nitrate-nitrogen at the water table may be on the order of nine months to a year. It is apparent that in the case of municipal sewage sludge application one can anticipate some nitrate-nitrogen buildup and that the public policy on drinking water standards must recognize this fact

  9. Biodegradation of oil refinery wastes under OPA and CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M. [Ecology and Environment, Inc., Dallas, TX (United States)] [and others

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  10. 应用Ecolego软件计算低、中放固体废物处置场核素在地下水中的迁移%Calculation of Nuclides Transfer at Solid ILRW Disposal Facility Using Ecolego Software

    Institute of Scientific and Technical Information of China (English)

    赵杨军; 李洋; 顾志杰

    2013-01-01

    以国内某低、中放固体废物处置场为例,应用Ecolego软件,计算处置场关闭后核素在地下水中的迁移以及对公众造成的照射.通过计算表明,该处置场对于处置含有短寿命核素的废物有较好的效果(3H除外),该处置场对公众造成影响较大的核素为3H和14C,以及长寿命核素.因此,在进行废物处置时,要限制长寿命核素以及3H和14C的量.%Ecolego software was used for calculating the nuclides transfer in groundwater at low and intermediate level solid radioactive waste disposal facility.Preliminary result indicates that the disposal facility can effectively dispose the short-life nuclides except 3H.The suggestion is to constrain the quantity of long-life nuclides,3 H,14 C in waste at Low and Intermediate Level Solid Radioactive Waste Disposal Facility.

  11. Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. Effect of Selected Modeling Assumptions on Subsurface Radionuclide Transport Projections for the Potential Environmental Management Disposal Facility at Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [ORNL

    2016-06-01

    The Department of Energy s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-life was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to be pessimistic (conservative) for all parameter combinations considered.

  13. Effect of Selected Modeling Assumptions on Subsurface Radionuclide Transport Projections for the Potential Environmental Management Disposal Facility at Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2016-06-28

    The Department of Energy’s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-life was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to either provide a reasonably good approximation to the peak concentration or was significantly conservative (pessimistic) for all parameter combinations considered.

  14. Using DRASTIC'' to improve the accuracy of a geographical information system used for solid waste disposal facility siting: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Padgett, D.A. (Univ. of Florida, Gainesville, FL (United States). Dept. of Geography)

    1993-01-01

    Beginning in 1989, the citizens and commissioners of Alachua County, Florida began to develop a siting plan for a new solid waste disposal facility (SWDF). Through a cooperative effort with a private consulting firm, several evaluative criteria were selected and then translated into parameters for a geographical information system (GIS). Despite efforts to avoid vulnerable hydrogeology, the preferred site selected was in close proximity to the well field supplying Gainesville, Florida, home to approximately 75 percent of the county's population. The results brought forth a wave of protests from local residents claiming that leachate from the proposed SWDF would contaminate their drinking water. In this study, DRASTIC'' was applied in order to improve the accuracy and defensibility of the aquifer protection-based GIS parameters. DRASTIC'', a method for evaluating ground water contamination potential, is an acronym which stands for Depth to Water, Net Recharge, Aquifer Media, Soil Media, Topography, Impact of Vadose Zone Media, and Conductivity (Hydraulic)''.

  15. Potential CERCLA reauthorization issues relevant to US DOE's Environmental Restoration Program

    International Nuclear Information System (INIS)

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is currently scheduled to be reauthorized in 1994. The US Department of Energy (DOE) has a significant stake in CERCLA reauthorization. CERCLA, along with its implementing regulation, the National Contingency Plan (NCP), is the principal legal authority governing DOE's environmental restoration program. The manner in which CERCLA-related issues are identified, evaluated, and dispatched may have a substantial impact on DOE's ability to conduct its environmental restoration program. A number of issues that impact DOE's environmental restoration program could be addressed through CERCLA reauthorization. These issues include the need to (1) address how the National Environmental Policy Act (NEPA) should be integrated into DOE CERCLA actions, (2) facilitate the streamlining of the Superfund process at DOE sites, (3) address the conflicts between the requirements of CERCLA and the Resource Conservation and Recovery Act (RCRA) that are especially relevant to DOE, (4) examine the criteria for waiving applicable or relevant and appropriate requirements (ARARs) at DOE sites, and (5) delineate the appropriate use of institutional controls at DOE sites

  16. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides

  17. A comparison of the RCRA Corrective Action and CERCLA Remedial Action Processes

    Energy Technology Data Exchange (ETDEWEB)

    Traceski, Thomas T.

    1994-02-01

    This document provides a comprehensive side-by-side comparison of the RCRA corrective action and the CERCLA remedial action processes. On the even-numbered pages a discussion of the RCRA corrective action process is presented and on the odd-numbered pages a comparative discussion of the CERCLA remedial action process can be found. Because the two programs have a difference structure, there is not always a direct correlation between the two throughout the document. This document serves as an informative reference for Departmental and contractor personnel responsible for oversight or implementation of RCRA corrective action and CERCLA remedial action activities at DOE environmental restoration sites.

  18. Installation of a radioactive waste disposal facility. The necessity of building up durable links between the general public and radioactive waste. Feedback from experience in France

    International Nuclear Information System (INIS)

    2013 has been a banner year for Andra with widespread discussions on the question of long-term management of radioactive waste: a nationwide public discussion about the planned Cigeo deep disposal facility has been organized and national discussions on the energy source transition had inevitably brought up the question of what to do with future radioactive waste to be produced under the various scenarios put forward. In spite of an open institutional framework, with numerous legal provisions for citizen participation, 2013 showed that creation of a radioactive waste disposal facility is not, and cannot be, a question dealt with like breaking news, within a given temporal or spatial perimeter. Any attempts to bring up the subject under the spotlight of public scrutiny inevitably shift the discussions away from their central theme and abandon the underlying question - what should be done with the existing radioactive waste and the waste that is bound to be produced? - to move on to the other major question: ''Should we stop using nuclear power or not?'', which takes us away from our responsibilities towards future generations. Daring to face the question, anchor it in citizen discussions, and create awareness of our duties towards coming generations: this is the challenge that Andra had already set itself several years ago. Our position is a strong one; rather than seeking to mask the problem of radioactive waste, we must face up to our responsibilities: the waste is already there, and we have to do something with it. It will take time to be successful here. Long-term management of radioactive waste is clearly a really long-term matter. All the experience in the field has shown that it involves patience and careful listening, and requires building up a basis for solid trust among the potential neighboring population, who are the most directly concerned. Durable proximity human investment is one of the key factors of success. For over 20 years now

  19. Installation of a radioactive waste disposal facility. The necessity of building up durable links between the general public and radioactive waste. Feedback from experience in France

    Energy Technology Data Exchange (ETDEWEB)

    Comte, Annabelle; Farin, Sebastien [Andra, Chatenay-Malabry (France)

    2015-07-01

    2013 has been a banner year for Andra with widespread discussions on the question of long-term management of radioactive waste: a nationwide public discussion about the planned Cigeo deep disposal facility has been organized and national discussions on the energy source transition had inevitably brought up the question of what to do with future radioactive waste to be produced under the various scenarios put forward. In spite of an open institutional framework, with numerous legal provisions for citizen participation, 2013 showed that creation of a radioactive waste disposal facility is not, and cannot be, a question dealt with like breaking news, within a given temporal or spatial perimeter. Any attempts to bring up the subject under the spotlight of public scrutiny inevitably shift the discussions away from their central theme and abandon the underlying question - what should be done with the existing radioactive waste and the waste that is bound to be produced? - to move on to the other major question: ''Should we stop using nuclear power or not?'', which takes us away from our responsibilities towards future generations. Daring to face the question, anchor it in citizen discussions, and create awareness of our duties towards coming generations: this is the challenge that Andra had already set itself several years ago. Our position is a strong one; rather than seeking to mask the problem of radioactive waste, we must face up to our responsibilities: the waste is already there, and we have to do something with it. It will take time to be successful here. Long-term management of radioactive waste is clearly a really long-term matter. All the experience in the field has shown that it involves patience and careful listening, and requires building up a basis for solid trust among the potential neighboring population, who are the most directly concerned. Durable proximity human investment is one of the key factors of success. For over 20 years now

  20. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate

  1. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  2. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  3. 75 FR 34448 - Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation...

    Science.gov (United States)

    2010-06-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation... Lakes Container Corporation Superfund Site, located in Coventry Rhode Island with the settling parties...-1216. Comments should reference the Great Lakes Container Corporation Superfund Site, Coventry,...

  4. 76 FR 51029 - Proposed CERCLA Administrative Cost Recovery Settlement; Carpenter Avenue Mercury Site, Iron...

    Science.gov (United States)

    2011-08-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Carpenter Avenue Mercury Site, Iron... Mercury site in Iron Mountain, Dickenson County, Michigan with the following settling parties: The.... Comments should reference the Carpenter Avenue Mercury site, Iron Mountain, Dickenson County, Michigan...

  5. 77 FR 69827 - Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund...

    Science.gov (United States)

    2012-11-21

    ... outreach to local communities to increase their awareness and knowledge regarding the importance of... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund;...

  6. Decommissioning of U.S. Department of Energy surplus facilities under the Comprehensive Environmental Response, Compensation, and Liability Act

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has identified more than 850 contaminated surplus facilities that require decommissioning through the environmental restoration program. This paper discusses the regulatory framework for decommissioning these facilities, specifically the framework established by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLA jurisdiction covers releases of hazardous substances to the environment, substantial threats of such releases, and responses to these situations. DOE has determined that the use of CERCLA removal action authority is the appropriate means of responding to releases or threats of releases from contaminated surplus facilities under the jurisdiction, custody, or control of the Department. This paper focuses on the policy and process for decommissioning contaminated surplus facilities. Not all surplus facilities to be decommissioned will fall under CERCLA jurisdiction. In all instances, however, the same basic process will still be followed and a graded approach will be applied, consistent with DOE orders

  7. 世界中低水平放射性废物处置设施现状及启示%Status of Low and Intermediate Level Waste Disposal Facilities Around the World

    Institute of Scientific and Technical Information of China (English)

    乔亚华; 王亮; 程理; 刘福东; 张春明; 张琼

    2014-01-01

    随着核科学的飞速发展和应用,产生了大量的放射性废物,合理、安全的处置各类放射性废物,已成为世界各国刻不容缓的研究课题。各国已建或在建了许多中低水平放射性废物处置设施,这些设施的信息分散在各国的官方报告中,研究分析这些信息将对我国放射性废物的处置具有重要意义。本文通过调研大量资料,总结了世界核反应堆的现状(数据截止到2013年);介绍了中低水平放射性废物处置发展概况;分析了世界各国中低水平放射性废物处置设施的现状(数据截止到2011年);并对我国的中低放废物处置提出建议。为我国全面和正确的认识放射性废物处置,有的放矢的制定发展规划和开展相关研究提供了科学依据。%With the rapid development and application of nuclear science,large amounts of radioactive waste are produced. It has become a pressing issue that radioactive waste should be disposed off in proper disposal facilities. Some countries already have these facilities and others are planning theirs. Information about disposal facilities around the world is useful and necessary; however, data on this matter are usually scattered in official reports per country. In order to allow an easier access to this information, this paper aims to provide an overview of disposal facilities for low and intermediate level radioactive waste around the world (updated until 2011). Also, characteristics of the facilities were provided, when possible. The paper also provided a summarized overview of these reactors around the world (updated until 2013). This data collection may be an important tool for researchers, and other professionals in this field. Also, it might provide an overview about the final disposal of radioactive waste.

  8. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy eenvironmental management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    This report provides data and information needed to support the risk and impact assessments of high-level waste (HLW) management alternatives in the U.S. Department of Energy Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Available data on the physical form, chemical and isotopic composition, storage locations, and other waste characteristics of interest are presented. High-level waste management follows six implementation phases: current storage, retrieval, pretreatment, treatment, interim canister storage, and geologic repository disposal; pretreatment, treatment, and repository disposal are outside the scope of the WM PEIS. Brief descriptions of current and planned HLW management facilities are provided, including information on the type of waste managed in the facility, costs, product form, resource requirements, emissions, and current and future status. Data sources and technical and regulatory assumptions are identified. The range of HLW management alternatives (including decentralized, regionalized, and centralized approaches) is described. The required waste management facilities include expanded interim storage facilities under the various alternatives. Resource requirements for construction (e.g., land and materials) and operation (e.g., energy and process chemicals), work force, costs, effluents, design capacities, and emissions are presented for each alternative

  9. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Environmental Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    This report provides data and information needed to support the risk and impact assessments of high-level waste (HLW) management alternatives in the US Department of Energy Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Available data on the physical form, chemical and isotopic composition, storage locations, and other waste characteristics of interest are presented. High-level waste management follows six implementation phases: current storage, retrieval, pretreatment, treatment, interim canister storage, and geologic repository disposal; pretreatment, treatment, and repository disposal are outside the scope of the WM PEIS. Brief descriptions of current and planned HLW management facilities are provided, including information on the type of waste managed in the facility, costs, product form, resource requirements, emissions, and current and future status. Data sources and technical and regulatory assumptions are identified. The range of HLW management alternatives (including decentralized, regionalized, and centralized approaches) is described. The required waste management facilities include expanded interim storage facilities under the various alternatives. Resource requirements for construction (e.g., land and materials) and operation (e.g., energy and process chemicals), work force, costs, effluents, design capacities, and emissions are presented for each alternative

  10. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy eenvironmental management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S.M.; Conzelmann, G.; Gillette, J.L.; Kier, P.H.; Poch, L.A.

    1996-12-01

    This report provides data and information needed to support the risk and impact assessments of high-level waste (HLW) management alternatives in the U.S. Department of Energy Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Available data on the physical form, chemical and isotopic composition, storage locations, and other waste characteristics of interest are presented. High-level waste management follows six implementation phases: current storage, retrieval, pretreatment, treatment, interim canister storage, and geologic repository disposal; pretreatment, treatment, and repository disposal are outside the scope of the WM PEIS. Brief descriptions of current and planned HLW management facilities are provided, including information on the type of waste managed in the facility, costs, product form, resource requirements, emissions, and current and future status. Data sources and technical and regulatory assumptions are identified. The range of HLW management alternatives (including decentralized, regionalized, and centralized approaches) is described. The required waste management facilities include expanded interim storage facilities under the various alternatives. Resource requirements for construction (e.g., land and materials) and operation (e.g., energy and process chemicals), work force, costs, effluents, design capacities, and emissions are presented for each alternative.

  11. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release

  12. Large scale in-situ experiments on sealing constructions in underground disposal facilities for radioactive wastes. Examples of recent BfS- and GRS-activities

    International Nuclear Information System (INIS)

    This paper shows examples of in-situ constructions and laboratory tests that have been designed and implemented by BfS und GRS in order to demonstrate the technical feasibility of special constructions for the sealing of drifts and shafts in different salt formations. Since a direct verification of the long-term functionality (for times scales envisaged in long-term safety assessments) of such constructions is often not possible, an overall understanding of the main chemical and physical processes involved needs to be developed. Such an understanding is required in order to extrapolate the evolution of a sealing system with a sufficient degree of reliability. Laboratory tests and large-scale in-situ tests are necessary and integral parts of the procedures for enhancing the process understanding. Based on a safety case, BfS has developed a robust decommissioning concept for the closure of the low- and intermediate-level waste disposal facility Morsleben (ERAM) which also takes into account the retention of radionuclides by combined effects of different sealing components. GRS has contributed to this concept with laboratory tests and modelling of the long-term behaviour of the sealing material 'Salt concrete' foreseen for the sealing constructions in Morsleben. Salt concrete is based on the cement Portlandite i.e., on CaO. Furthermore GRS has also investigated the MgO based 'Sorel concrete' employed by BfS for the Asse project. The chemical corrosion path and the subsequent permeability changes for both concretes have been investigated with test procedures developed in the GRS laboratory. GRS has also developed and tested in laboratory and in-situ experiments a new Self-Sealing material 'Selbst Verheilender Versatz - SVV' (SVV, German for Self Sealing Backfill) which is able to achieve an instantaneous and long-lasting permeability reduction within the complex system consisting of the sealing construction and the Excavation Disturbed Zone (EDZ) upon brine intrusion

  13. Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    International Nuclear Information System (INIS)

    A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA

  14. Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Traceski, T.T.

    1994-06-01

    Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

  15. 75 FR 52942 - Two Proposed CERCLA Section 122(g) Administrative Agreements for De Minimis Settlements for the...

    Science.gov (United States)

    2010-08-30

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY Two Proposed CERCLA Section 122(g) Administrative Agreements for De Minimis Settlements for the...''), Region II, of two proposed de minimis administrative agreements pursuant to Section 122(g) of CERCLA,...

  16. DOE Land Disposal Restrictions strategy report for radioactive mixed waste

    International Nuclear Information System (INIS)

    This report is based on preliminary information available at the time of the Land Disposal Restrictions (LDR) Strategy Workshop in June 1989, and the critical review of the workshop data conducted by the Office Of Defense Programs and the affected Operations Offices in July and August 1989. The purpose of the workshop and this subsequent report is to identify the magnitude and scope of LDR issues and impacts regarding the storage, treatment, and disposal of RMW, and to suggest potential strategies for addressing LDR requirements. This report was prepared under the overall direction and coordination of the Department of Energy (DOE) Headquarters Environmental Guidance Division, RCRA/CERCLA Unit (EH-231). The report is a product of the LDR Strategy Workshop held during the month of June 1989. The workshop was divided into two work groups: a Land Disposal Restriction compliance strategy group and a RMW Best Demonstrated Available Technology and National Capacity Variance group

  17. Disposable rabbit

    Science.gov (United States)

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  18. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  19. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  20. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  1. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  2. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2010-08-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  3. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-12-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  4. 77 FR 9652 - Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake...

    Science.gov (United States)

    2012-02-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake Linden... administrative settlement for recovery of past response costs concerning the Lake Linden Superfund Site in Lake..., Chicago, Illinois, C-14J, 60604, (312) 886-6609. Comments should reference the Lake Linden Superfund...

  5. 77 FR 64513 - Proposed Administrative Agreement for Collection of CERCLA Past Costs

    Science.gov (United States)

    2012-10-22

    ... AGENCY Proposed Administrative Agreement for Collection of CERCLA Past Costs AGENCY: U.S Environmental... collection of a percentage of past response costs at the Ultimate Industries, Inc. Site. Respondent has agreed to pay $8,000 out of total past costs of approximately $83,776.10, in return for a covenant not...

  6. 78 FR 77673 - Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere...

    Science.gov (United States)

    2013-12-24

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere, Boone... recovery of past response costs concerning the Cadie Auto Salvage Site in Belvidere, Boone County, Illinois... Counsel, EPA, Office of Regional Counsel, Region 5, 77 W. Jackson Blvd., mail code: C-14J,...

  7. 78 FR 74128 - Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere...

    Science.gov (United States)

    2013-12-10

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere, Boone... recovery of past response costs concerning the Cadie Auto Salvage Site in Belvidere, Boone County, Illinois... Counsel, EPA, Office of Regional Counsel, Region 5, 77 W. Jackson Blvd., mail code: C-14J,...

  8. 77 FR 52021 - Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining...

    Science.gov (United States)

    2012-08-28

    ... AGENCY Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining... ``Settling Parties'') pertaining to the Mercury Refining Superfund Site (``Site'') located in the Towns of... each Settling Party to the EPA Hazardous Substance Superfund Mercury Refining Superfund Site...

  9. 78 FR 40140 - Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining...

    Science.gov (United States)

    2013-07-03

    ... AGENCY Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining... between EPA and Titan Wheel Corporation of Illinois (hereafter ``Titan'') pertaining to the Mercury.... Comments should be sent to the individual identified below and should reference the Mercury...

  10. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden

  11. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  12. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  13. Radiological framework for the disposal of materials from geothermal energy facilities in repositories; Radiologische Rahmenbedingungen fuer eine Entsorgung von Materialien der Geothermie auf Deponien

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer; Nickstadt, Kristin [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2014-10-01

    During utilization of deep geothermal energy sources NORM waste accumulate with radiological properties similar to the residues from crude oil or natural gas production or water treatment plants. The specific activities of these waste materials are in the range from less than 1 Bq/g to more than 1000 Bq/g. The estimated total annual amount of radiological relevant materials (scales, combustible materials, scrap metals) is about 5 to 6 tons with a total activity of about 0.4 GBq Ra-226 and about 2 GBq Pb-210. The established disposal paths for metal waste exist.

  14. Near-surface land disposal

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  15. Development of a model for geomorphological assessment at U.S. DOE chemical/radioactive waste disposal facilities in the central and eastern United States; Weldon spring site remedial action project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Landform development and long-term geomorphic stability is the result of a complex interaction of a number of geomorphic processes. These processes may be highly variable in intensity and duration under different physiographic settings. This limitation has influenced the applicability of previous geomorphological stability assessments conducted in the arid or semi-arid western United States to site evaluations in more temperate and humid climates. The purpose of this study was to develop a model suitable for evaluating both long-term and short-term geomorphic processes which may impact landform stability and hence the stability of disposal facilities located in the central and eastern United States. The model developed for the geomorphological stability assessment at the Weldon Spring Site Remedial Action Project (WSSRAP) near St. Louis, Missouri, included an evaluation of existing landforms and consideration of the impact of both long-term and short-term geomorphic processes. These parameters were evaluated with respect to their impact and contribution to three assessment criteria considered most important with respect to the stability analysis; evaluation of landform age, evaluation of present geomorphic process activity and; determination of the impact of the completed facility on existing geomorphic processes. The geomorphological assessment at the Weldon Spring site indicated that the facility is located in an area of excellent geomorphic stability. The only geomorphic process determined to have a potential detrimental effect on long-term facility performance is an extension of the drainage network. A program of mitigating measures has been proposed to minimize the impact that future gully extension could have on the integrity of the facility

  16. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  17. Comparative review of US Department of Energy CERCLA Federal Facility Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, M.R.; Gephart, R.E.; Hendrickson, P.L.; Keller, J.F.; Waller, W.K.

    1989-12-01

    The purpose of this report is to present a comparison of the three FFAs executed by DOE and EPA. The report is intended to serve as a convenient reference guide for those responsible for drafting or reviewing future FFAs being considered by DOE. In addition, this report can provide the framework for the future analysis completed FFAs and aid in the assessment of the relative merits of approaches and provisions used for different sites. 13 tabs.

  18. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  19. Performance assessment of grouted double-shell tank waste disposal at Hanford. Revision 1

    International Nuclear Information System (INIS)

    This document assesses the performance of the Grout Disposal Facility after closure. The facility and disposal environment are modeled to predict the long-term impacts of the disposal action. The document concludes that the disposal system provides reasonable assurance that doses to the public will remain within the performance objectives. This document is required for DOC Order 5820.2A

  20. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  1. Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    International Nuclear Information System (INIS)

    A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.'s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement

  2. Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.`s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement.

  3. Assessment report of research and development on 'the abolition measures of nuclear facilities and associated technology development' and 'radioactive waste treatment and disposal and associated technology development' (Interim report)

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) consulted the 'Evaluation Committee for Nuclear Cycle Backend Program Promotion' to perform the interim evaluation of 'the abolition measures of nuclear facilities and associated technology development' project and 'radioactive waste treatment and disposal and associated technology development' project in accordance with the 'Guideline for evaluation of government R and D activities', the 'Guideline for evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology (MEXT)' and the 'Operational rule for evaluation of R and D activities' by JAEA. In response to JAEA's request, the Committee decided the evaluation method and performed the interim evaluation of both projects from the viewpoints of purposes, plans, results and so on. As a result of review, the Committee concluded that both projects were proceeded adequately. (author)

  4. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    OpenAIRE

    Andrade C.; Ordoñez M.; Zuloaga P.; Castellote M.

    2011-01-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment ...

  5. Effect of sanitation facilities, domestic solid waste disposal and hygiene practices on water quality in Malawi’s urban poor areas: a case study of South Lunzu Township in the city of Blantyre

    Science.gov (United States)

    Palamuleni, Lobina G.

    results also indicated the coliform count ranging from 2900/100 ml to 4600/100 ml way higher than the WHO, MBS standard for drinking water which is 0 and the Water Department standard for untreated water of which range from 10-50 coliforms/100 ml. The results indicate that water resources have been polluted by lack of sanitation facilities, indiscriminate disposal of waste and the institutional set-up governing the provision of services in the area.

  6. Direct ultimate disposal of spent fuel. Handling tests for gallery storage. Final report. Main volume

    International Nuclear Information System (INIS)

    The volume contains the results of above ground simulated handling experiments for gallery storage in POLLUX containers: (1) design and testing of the track system for gallery storage; (2) fault behaviour of the disposal facility; (3) control programme of the disposal facility; (4) elimination of operational incidents in case of defects of the plateau wagon or of the disposal facility - radiological exposure of personnel; (5) simulation tests of operational failure of the plateau wagon or the disposal facility. (HP)

  7. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    International Nuclear Information System (INIS)

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ''baseline'' risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site

  8. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ``baseline`` risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site.

  9. Reporting continuous releases of hazardous and extremely hazardous substances under CERCLA and EPCRA

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This guidance is designed to provide basic instruction to US DOE and DOE operations contractor personnel on how to characterize CERCLA and EPCRA hazardous substance releases as continuous and how to prepare and deliver continuousreleasee reports to Federal, State, and local authorities. DOE staff should use this guidance as an overview of the continuous release requirements, a quick ready reference guide for specific topics concerning continuous releases and a step-by-step guide for the process of identifying and reporting continuous releases.

  10. Superfund TIO videos. Set A. Removal process: Planning and initiating removals, managing removals, non-CERCLA funded removals. Part 3 Audio-Visual

    International Nuclear Information System (INIS)

    The videotape is divided into three sections. Section 1 outlines the major components of planning and initiating a removal, such as identifying appropriate response actions, preparing an Action Memorandum (AM), projecting the cost of the removal, obtaining site access, setting up a command post, and overseeing the development of the required plans. The resources available to the OSC to conduct a removal also are discussed. Section 2 discusses the OSC's role in managing the removal and describes how to obtain resources and how to manage site activities and monitor costs. The statutory limits of a removal and the importance of documenting site activities accurately and completely also are outlined. Section 3 outlines the OSC's role in removal actions conducted by parties other than EPA OSCs. Discussed are CERCLA removals conducted by PRPs, States, Federal facilities and Indian tribes. Underground Storage Tank (UST) assessment and removal under Resource Conservation and Recovery Act (RCRA) authority is also discussed

  11. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.

  12. Analysis of abandoned potential CERCLA hazardous waste sites using historic aerial photographs

    International Nuclear Information System (INIS)

    Aerial photographs of varying scale from federal agencies and commercial aerial service companies covering the years 1938, 1942, 1948, 1952, 1957, 1960, 1970, 1971, 1977, and 1986 of the Edgewood Area of Aberdeen Proving Ground (APG), Maryland, (Gunpowder Neck 7.5 Minute United States Geological Survey Topographic Quadrangle Map) were evaluated for identification of potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) hazardous waste sites and land use changes for approximately 1500 acres (610 hectares) used in the testing of military-related chemicals and munitions on Carroll Island and Graces Quarters. Detailed testing records exist only for July 1964 to December 1971, thus making the interpretation of aerial photographs a valuable tool in reconstructing past activities from the late 1930s to June 1964 and guiding future sampling locations in the multiphased CERCLA process. Many potential test sites were activated by either clear-cutting tracks of vegetation or using existing cleared land until final abandonment of the site(s) circa 1974-1975. Ground inspection of open-quotes land scarringclose quotes at either known or suspected sites was essential for verifying the existence, location, and subsequent sampling of potential CERCLA sites. Photomorphic mapping techniques are described to delineate and compare different land use changes in past chemical and munitions handling and testing. Delineation of features was based on photographic characteristics of tone, pattern, texture, shape, shadow, size, and proximity to known features. 7 refs., 9 figs

  13. A tale of negotiations: CERCLA interagency agreement at the Mound plant

    International Nuclear Information System (INIS)

    The purpose of this paper is to explain some of the more important provisions of the Mound agreement and to explore some lessons learned from the Mound experience about CERCLA Interagency Agreement negotiations. The authors have chosen six specific IAG provisions to discuss because they represent key elements in their attempt to merge what may sometimes seem like incongruous goals - the need to conduct a thorough CERCLA cleanup under the direction of another federal agency and the desire to protect the public's money. The provisions they will discuss are: integration of CERCLA and RCRA requirements; EPA's covenant not to sue or assess administrative penalties against DOE's contractors for any of their actions which may have given rise to the releases covered by the agreement; inclusion of a streamlined Statement of Work; the procedure whereby investigative work already completed at the Mound site which was not conducted utilizing EPA-approved methods may be accepted for future reports; the short list of primary documents; and use of a yearly schedule for work activities.. Tritium, as well as trace levels of chlorinated organics, have been found in the groundwater at Mound. On-site and off-site soils are contaminated with plutonium and several on-site locations are contaminated with thorium

  14. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  15. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  16. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    This report focuses on the generation of hazardous waste (HW) and the treatment, storage, and disposal (TSD) of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for TSD are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial TSD facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine TSD operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. Furthermore, this report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the TSD alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  17. Grout treatment facility operation

    International Nuclear Information System (INIS)

    This paper summarizes the operation of the Grout Treatment Facility from initial testing to the final disposal to date of 3.8 x 103 m3 (1 Mgal) of low-level radioactive waste. It describes actual component testing and verification, testing of the full-scale system with simulated waste feed, summary of the radioactive disposal operation, lessons learned and equipment performance summary, facility impacts from safety analyses, long-term performance assessments, the Part B application, and projected facility modifications. The Grout Treatment Facility is one of two operations for permanently disposing of liquid defense wastes at the Hanford site near Richland, Washington, for the U.S. Department of Energy. High- and low-level radioactive wastes have been accumulating from defense material production since the mid-1940s at the Hanford site. All radioactive low-level and low-level mixed liquid wastes will be disposed of at the future Hanford Vitrification Facility

  18. 200 Area effluent treatment facility process control plan 98-02

    Energy Technology Data Exchange (ETDEWEB)

    Le, E.Q.

    1998-01-30

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

  19. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  20. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going