WorldWideScience

Sample records for ceramics test cases

  1. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  2. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  3. Firing: the proof test for ceramic processing

    International Nuclear Information System (INIS)

    Kingery, W.D.

    1975-01-01

    The object of ceramic processing is to form ware having certain shapes and properties. Thus, one test of the success of processing procedures must be in terms of the resulting structure and characteristics of a material after firing. During the firing process some few variations resulting from processing may be evened out, but the great majority of variation tends to be amplified. Examination of a few cases illustrates the nature of the defect amplification process. (U.S.)

  4. Testing Consent Order on Refractory Ceramic Fibers

    Science.gov (United States)

    This notice announces that EPA has signed signed an enforceable testing consent order under the Toxic Substances Control Act (TSCA), 15 U.S.C. section 2601 at seq., with three of the primary producers of refractory ceramic fibers (RCF).

  5. Ceramic restoration repair: report of two cases

    Directory of Open Access Journals (Sweden)

    Luís Henrique Araújo Raposo

    2009-04-01

    Full Text Available The esthetic and functional rehabilitation of patients with multiple missing teeth can be performed with several techniques and materials. Ceramic restorations provide reliable masticatory function and good esthetics. However, fracture can occur in some cases due to their brittle behavior. In some cases, the replacement of an extensive prosthesis is a problem due to the high treatment cost. In this paper, two cases are presented, in which fractures occurred in extensive metal-ceramic fixed partial dentures, and their replacement was not possible. Ceramic repair was chosen and the sequences of treatment with and without presence of the ceramic fragment are also discussed. The cases illustrate that, in some situations, fractured metal-ceramic partial dentures can be successfully repaired when prosthetic replacement is not a choice. Prosthodontists must use alternatives that allow a reliable repair to extensive metal-ceramic fixed partial dentures. Surface preparation of the ceramic with hydrofluoric acid in conjunction with a silane coupling agent is essential for a predictable bonding of composite resin. The repair performed with composite resin is an esthetic and functional alternative when extensive fixed partial dentures cannot be replaced.

  6. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  7. Proof test diagrams for Zerodur glass-ceramic

    Science.gov (United States)

    Tucker, D. S.

    1991-01-01

    Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams.

  8. Structural response testing of thermal barrier load bearing ceramic pads

    International Nuclear Information System (INIS)

    Pickering, J.L.; Black, W.E.; Luci, R.K.; Oland, C.B.

    1983-01-01

    A load-bearing insulating structure for use in a high-temperature gas-cooled reactor (HTGR) was investigated. The structure was composed of dense ceramic materials in the form of circular pads arranged in a stack. Specifically, the test program was structured to investigate the isolation effectiveness of interface materials placed between the ceramic pads to reduce the effectiveness of mechanically induced loads. The tests were conducted at room temperature using tapered loading platens on single ceramic pads. Seventeen alumina specimens, representing two types of material and two thicknesses, were tested. Three interface material thicknesses were introduced using silica cloth and graphite foil. Pre- and post-test nondestructive examinations were conducted in an effort to identify potential damage-inducing anomalies in the ceramic pads. A total of 62 tests was conducted with all specimens eventually loaded to failure

  9. Evaluation of Case Size 0603 BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2015-01-01

    High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.

  10. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  11. Testing of neutron-irradiated ceramic-to-metal seals

    International Nuclear Information System (INIS)

    Brown, R.D.; Clinard, F.W. Jr.; Lopez, M.R.; Martinez, H.; Romero, T.J.; Cook, J.H.; Barr, H.N.; Hittman, F.

    1990-01-01

    This paper reports on ceramic-to-metal seals prepared by sputtering a titanium metallizing layer onto ceramic disks and then brazing to metal tubes. The ceramics used were alumina, MACOR, spinel, AlON, and a mixture of Al 2 O 3 and Si 3 N 4 . Except for the MACOR, which was brazed to a titanium tube, the ceramics were brazed to niobium tubes. The seals were leak tested and then sent to Los Alamos National Laboratory, where they were irradiated using the spallation neutron source at the Los Alamos Meson Physics Facility. Following irradiation for ∼ 90 days to a fluence of 2.8 x 10 23 n/m 2 , the samples were moved to hot cells and again leak tested. Only the MACOR samples showed any measurable leaks. One set of samples was then pressurized to 6.9 MPa (1000 psi) and subsequently leak tested. No leaks were found. Bursting the seals required hydrostatic pressures of at least 34 MPa (5000 psi). The high seal strength and few leaks indicate that ceramic-to-metal seals can resist radiation-induced degradation

  12. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  13. Engine testing of ceramic cam-roller followers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. [Detroit Diesel Corp., MI (United States)

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  14. Engine testing of ceramic cam-roller followers

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. (Detroit Diesel Corp., MI (United States))

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  15. Performance test of a ceramic turbo-viscous pump

    International Nuclear Information System (INIS)

    Abe, Tetsuya; Hiroki, Seiji; Murakami, Yoshio; Shiraishi, Shigeyuki; Totoura, Sadayuki; Ohtaki, Takashi.

    1994-01-01

    In the special fields of nuclear fusion facilities and semiconductor production installation, the development of new vacuum pumps which can cope with strong magnetic fields, high temperature gas and corrosive gas is demanded. Mitsubishi Heavy Industries Ltd. has advanced the development of ceramic turbo-molecular pumps and ceramic turbo-viscous pumps, which use ceramic rotors and gas bearings since 1985. The evaluation test of the ceramic turbo-viscous vacuum pump CT-3000H which can evacuate from atmospheric pressure to high vacuum with one pump was carried out, and the experimental results on the performance and the reliability were obtained, therefore, those are reported in this paper. The structure, specification and features of the CT-3000H are shown. The exhaust performance test of the pump was carried out in conformity with the standard of the Vacuum Society of Japan, JVIS 005 'Method of performance test for turbo-molecular pumps'. The gases used were nitrogen and helium. The results are shown. The exhaust test from atmospheric pressure was carried out by two methods, and the results are shown. (K.I.)

  16. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  17. Rotating Beam Fatigue Testing and Hybrid Ceramic Bearings.

    Science.gov (United States)

    1994-07-01

    Runout and Fast Fracture ......... 20 FIG.7 Stress-life Plots of Rotating Beam Fatigue Testing ............. 23 FIG.8 Fractograph of Rotating Beam...Chand-Kare Engineering Ceramics, Worcester, MA. Diamond wheels of 600 grits were used with longitudinal grinding applied for the final finishing of...stress in the range of 600-850 MPa. Three test completion modes were encountered, i.e. fast fracture at setup, fatigue fracture and runout (no failure

  18. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  19. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic : microtensile versus shear test

    NARCIS (Netherlands)

    Valandro, Luiz F.; Ozcan, Mutlu; Amaral, Regina; Vanderlei, Aleska; Bottino, Marco A.

    2008-01-01

    This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC)

  20. ADM guidance-Ceramics: Fracture toughness testing and method selection.

    Science.gov (United States)

    Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich

    2017-06-01

    The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Updated FY12 Ceramic Fuels Irradiation Test Plan

    International Nuclear Information System (INIS)

    Nelson, Andrew T.

    2012-01-01

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  2. Comparative Test Case Specification

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

     This document includes a definition of the comparative test cases DSF200_3 and DSF200_4, which previously described in the comparative test case specification for the test cases DSF100_3 and DSF200_3 [Ref.1]....... This document includes a definition of the comparative test cases DSF200_3 and DSF200_4, which previously described in the comparative test case specification for the test cases DSF100_3 and DSF200_3 [Ref.1]....

  3. Comparison of two bond strength testing methodologies for bilayered all-ceramics

    NARCIS (Netherlands)

    Dundar, Mine; Ozcan, Mutlu; Gokce, Bulent; Comlekoglu, Erhan; Leite, Fabiola; Valandro, Luiz Felipe

    Objectives. This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems. Methods. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to

  4. Humidity Testing of PME and BME Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.; Herzberger, Jaemi

    2014-01-01

    Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.

  5. Dynamic fatigue testing of Zerodur glass-ceramic

    Science.gov (United States)

    Tucker, Dennis S.

    1988-01-01

    The inherent brittleness of glass invariably leads to a large variability in strength data and a time dependence in strength. Leading rate plays a large role in strength values. Glass is found to be weaker when supporting loads over long periods of time as compared to glass which undergoes rapid leading. These properties complicate the structural design allowables for the utilization of glass components in an application such as Advanced X-ray Astrophysics Facility (AXAF). The test methodology to obtain parameters which can be used to predict the reliability and life time of Zerodur glass-ceramic which is to be used for the mirrors in the AXAF is described.

  6. Comparison of two bond strength testing methodologies for bilayered all-ceramics.

    Science.gov (United States)

    Dündar, Mine; Ozcan, Mutlu; Gökçe, Bülent; Cömlekoğlu, Erhan; Leite, Fabiola; Valandro, Luiz Felipe

    2007-05-01

    This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to their respectively corresponding cores, namely leucite-reinforced ceramic ((IPS)Empress, Ivoclar), low leucite-reinforced ceramic (Finesse, Ceramco), glass-infiltrated alumina (In-Ceram Alumina, Vita) and lithium disilicate ((IPS)Empress 2, Ivoclar) were used for SBS and MTBS tests. Ceramic cores (N=40, n=10/group for SBS test method, N=5 blocks/group for MTBS test method) were fabricated according to the manufacturers' instructions (for SBS: thickness, 3mm; diameter, 5mm and for MTBS: 10 mm x 10 mm x 2 mm) and ultrasonically cleaned. The veneering ceramics (thickness: 2mm) were vibrated and condensed in stainless steel moulds and fired onto the core ceramic materials. After trying the specimens in the mould for minor adjustments, they were again ultrasonically cleaned and embedded in PMMA. The specimens were stored in distilled water at 37 degrees C for 1 week and bond strength tests were performed in universal testing machines (cross-head speed: 1mm/min). The bond strengths (MPa+/-S.D.) and modes of failures were recorded. Significant difference between the two test methods and all-ceramic types were observed (P<0.05) (2-way ANOVA, Tukey's test and Bonferroni). The mean SBS values for veneering ceramic to lithium disilicate was significantly higher (41+/-8 MPa) than those to low leucite (28+/-4 MPa), glass-infiltrated (26+/-4 MPa) and leucite-reinforced (23+/-3 MPa) ceramics, while the mean MTBS for low leucite ceramic was significantly higher (15+/-2 MPa) than those of leucite (12+/-2 MPa), glass-infiltrated (9+/-1 MPa) and lithium disilicate ceramic (9+/-1 MPa) (ANOVA, P<0.05). Both the testing methodology and the differences in chemical compositions of the core and veneering ceramics

  7. Structural integrity testing of glass-ceramic/molybdenum vacuum tube frames

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    In this study, vacuum tube subassemblies made of glass-ceramic insulators sealed to inner and outer molybdenum frames were loaded in compression to failure with a tensile test machine. Several factors were varied in processing these subassemblies. These factors included etching and nonetching of molybdenum piece parts, annealing and nonannealing of subassemblies, and vapor and non-vapor honing of insulators after sealing. After failure, the subassemblies were examined for fracture patterns. In most cases, fracture started at points near the lower portion of the inner sleeve-insulator interface. More load was carried by subassemblies having molybdenum piece parts that were acid etched. No difference appeared between the strength of subassemblies having annealed and nonannealed glass-ceramic insulators. Parts with vapor-honed insulators failed at substantially lower loads

  8. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes

    International Nuclear Information System (INIS)

    Motte, Fabrice; Falcoz, Quentin; Veron, Emmanuel; Py, Xavier

    2015-01-01

    Highlights: • ESEM and XRD characterizations have been performed. • Compatibility of these ceramics with the conventional binary Solar Salt is tested at 500 °C. • Tested ceramics have relevant properties to store thermal energy up to 1000 °C. • Feasibility of using ceramics as filler materials in thermocline is demonstrated. - Abstract: This paper demonstrates the feasibility of using several post-industrial ceramics as filler materials in a direct thermocline storage configuration. The tested ceramics, coming from several industrial processes (asbestos containing waste treatment, coal fired power plants or metallurgic furnaces) demonstrate relevant properties to store thermal energy by sensible heat up to 1000 °C. Thus, they represent at low-cost a promising, efficient and sustainable approach for thermal energy storage. In the present study, the thermo-chemical compatibility of these ceramics with the conventional binary Solar Salt is tested at medium temperature (500 °C) under steady state. In order to determine the feasibility of using such ceramics as filler material, Environmental Scanning Electron Microscopy (ESEM) and X-Ray Diffraction (XRD) characterizations have been performed to check for their chemical and structural evolution during corrosion tests. The final objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as structured filler material. Most of the tested ceramics present an excellent corrosion resistance in molten Solar Salt and should significantly decrease the current cost of concentrated solar thermal energy storage system

  9. Comparative Test Case Specification

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    This document includes the specification on the IEA task of evaluation building energy simulation computer programs for the Double Skin Facades (DSF) constructions. There are two approaches involved into this procedure, one is the comparative approach and another is the empirical one. In the comp....... In the comparative approach the outcomes of different software tools are compared, while in the empirical approach the modelling results are compared with the results of experimental test cases. The comparative test cases include: ventilation, shading and geometry....

  10. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  11. Thermal shock testing of ceramics with pulsed laser irradiation

    International Nuclear Information System (INIS)

    Benz, R.; Naoumidis, A.; Nickel, H.

    1986-04-01

    Arguments are presented showing that the resistance to thermal stressing (''thermal shock'') under pulsed thermal energy deposition by various kinds of beam irradiations is approximately proportional to Φ a √tp, where Φ a is the absorbed power density and tp is the pulse length, under conditions of diffusivity controlled spreading of heat. In practical beam irradiation testing, incident power density, Φ, is reported. To evaluate the usefulness of Φ√tp as an approximation to Φ a √tp, damage threshold values are reviewed for different kinds of beams (electron, proton, and laser) for a range of tp values 5x10 -6 to 2 s. Ruby laser beam irradiation tests were made on the following ceramics: AlN, BN, graphite, αSiC, β-SiC coated graphites, (α+β)Si 3 N 4 , CVD (chemical vapor deposition) TiC coated graphite, CVD TiC coated Mo, and CVD TiN coated IN 625. The identified failure mechanisms are: 1. plastic flow followed by tensile and bend fracturing, 2. chemical decomposition, 3. melting, and 4. loss by thermal spallation. In view of the theoretical approximations and the neglect of reflection losses there is reasonable accord between the damage threshold Φ√tp values from the laser, electron, and proton beam tests. (orig./IHOE)

  12. Construction and Testing of a 21 GHz Ceramic Based Power Extractor

    CERN Document Server

    Newsham, D; Carron, G; Döbert, Steffen; Gai, W; Konecny, R; Liu, W; Smirnov, A Yu; Thorndahl, L; Wilson, Ian H; Wuensch, Walter; Yu, D

    2003-01-01

    A ceramic based power extractor [1] operating at 21 GHz was built by DULY Research Inc. and tested at CTF2, the CERN Linear Collider (CLIC) Test Facility. The structure includes a ceramic extractor section, a 2-output-port, circular-to-rectangular waveguide coupler, and a 3-port rectangular waveguide combiner that provides for a single output waveguide. Results of cold tests and full beam tests are presented and compared with theoretical and numerical models.

  13. Hydroxylated ceramic waste forms and the absurdity of leach tests

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R; Odoj, R; Merz, E [eds.

    1981-06-01

    The repository pressure and temperature conditions during the thermal period projected in US repositories have been drastically lowered in the last year or two to new values of say 175 +- 50/sup 0/K. Using the argument that the evidence from natural models indicates the most stable mineral (= ceramic) hosts for radionuclides, one finds that under these new repository conditions such crystalline assemblages would be micas, clays, zeolites and other hydrated minerals, plus the tetravalent anhydrous oxide families. A waste form consisting of specific hydroxylated candidate phases can be made via a simple in-can technology (demonstrated by Oak Ridge) by reacting liquid wastes with precursor gels or phyllo or tektosilicates at <200/sup 0/C under modest pressure within the final disposal canister. The data on the rate of reaction of typical oxide materials to yield hydroxylated phases under these conditions show that the typical leach test (at 25 to 100/sup 0/C in deionized water) does not provide a simulation of the reactions which will occur. Hence such tests are not only totally meaningless with respect to qualifying a waste form for its role in a repository, they can be downright misleading.

  14. Hydroxylated ceramic waste forms and the absurdity of 'leach tests'

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R; Odoj, R; Merz, E [eds.

    1981-06-01

    The repository pressure and temperature conditions during the thermal period projected in U.S. repositories have been drastically lowered in the last year or two to new values of say 175 +- 50 K. Using the argument that the evidence from natural models indicates the most stable mineral (= ceramic) hosts for radionuclides, one finds that under these new repository conditions such crystalline assemblages would be micas, clays, zeolites, and other hydrated minerals, plus the tetravalent anhydrous oxide families. A waste form consisting of specific hydroxylated candidate phase can be made via a simple in-can technology (demonstrated by Oak Ridge) by reacting liquid wastes with precursor gels or phyllo or tektosilicates at <200/sup 0/C under modest pressure within the final disposal canister. The data on the rate of reaction of typical oxide materials to yield hydroxylated phases under these conditions show that the typical leach test (at 25-100/sup 0/C in deionized water) does not provide a simulation of the reactions which will occur. Hence such tests are not only totally meaningless with respect to qualifying a waste form for its role in a repository, they can be downright misleading.

  15. Automated Test Case Generation

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I would like to present the concept of automated test case generation. I work on it as part of my PhD and I think it would be interesting also for other people. It is also the topic of a workshop paper that I am introducing in Paris. (abstract below) Please note that the talk itself would be more general and not about the specifics of my PhD, but about the broad field of Automated Test Case Generation. I would introduce the main approaches (combinatorial testing, symbolic execution, adaptive random testing) and their advantages and problems. (oracle problem, combinatorial explosion, ...) Abstract of the paper: Over the last decade code-based test case generation techniques such as combinatorial testing or dynamic symbolic execution have seen growing research popularity. Most algorithms and tool implementations are based on finding assignments for input parameter values in order to maximise the execution branch coverage. Only few of them consider dependencies from outside the Code Under Test’s scope such...

  16. Computer-aided, single-specimen controlled bending test for fracture-kinetics measurement in ceramics

    International Nuclear Information System (INIS)

    Borovik, V.G.; Chushko, V.M.; Kovalev, S.P.

    1995-01-01

    Fracture testing of ceramics by using controlled crack growth is proposed to allow study of crack-kinetics behavior under a given loading history. A computer-aided, real-time data acquisition system improves the quality of crack-growth parameters obtained in a simple, single-specimen bend test. Several ceramic materials were tested in the present study: aluminum nitride as a linear-elastic material; and alumina and yttria-stabilized zirconia, both representative of ceramics with microstructure-dependent nonlinear fracture properties. Ambiguities in the crack-growth diagrams are discussed to show the importance of accounting for crack-growth history in correctly describing nonequilibrium fracture behavior

  17. Modern Nondestructive Test Methods for Army Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    Strand, Douglas J

    2008-01-01

    .... Ceramic matrix composites (CMC) are potentially good high-temperature structural materials because of their low density, high elastic moduli, high strength, and for those with weak interfaces, surprisingly good damage tolerance...

  18. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  19. Structural response testing of thermal barrier load-bearing ceramic pads

    International Nuclear Information System (INIS)

    Black, W.E.; Luci, R.K.; Pickering, J.L.; Oland, G.B.

    1983-01-01

    A load bearing insulating structure for use in a HTGR was investigated. The structure was composed of dense ceramic materials in the form of circular pads arranged in a stack. Specifically, the test program was structured to investigate the isolation effectiveness of interface materials placed between the ceramic pads to reduce the effectiveness of mechanically induced loads. The tests were conducted at room temperature using tapered loading platens on single ceramic pads. Seventeen alumina specimens, representing two types of material and two thicknesses, were tested. Three interface material thicknesses were introduced using silica cloth and graphite foil. Pre and post test nondestructive examinations were conducted in an effort to identify potential damage-inducing anomalies in the ceramic pads. A total of 62 tests was conducted with all specimens eventually loaded to failure. (orig./HP)

  20. Considerations on Dop (Depth Of Penetration) Test for Evaluation of Ceramics Materials Used in Ballistic Protection

    Science.gov (United States)

    Popa, Ioan-Dan; Dobriţa, Florin

    2017-12-01

    Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.

  1. Empirical Test Case Specification

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    This document includes the empirical specification on the IEA task of evaluation building energy simulation computer programs for the Double Skin Facades (DSF) constructions. There are two approaches involved into this procedure, one is the comparative approach and another is the empirical one. I....... In the comparative approach the outcomes of different software tools are compared, while in the empirical approach the modelling results are compared with the results of experimental test cases....

  2. Case Report: HIV test misdiagnosis

    African Journals Online (AJOL)

    Case Study: HIV test misdiagnosis 124. Case Report: HIV ... A positive rapid HIV test does not require ... 3 College of Medicine - Johns Hopkins Research Project, Blantyre,. Malawi ... test results: a pilot study of three community testing sites.

  3. Tests with ceramic waste form materials made by pressureless consolidation

    International Nuclear Information System (INIS)

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-01-01

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  4. Accuracy of data processing in ceramics bend tests

    International Nuclear Information System (INIS)

    Grushevskij, Ya.L.

    1979-01-01

    Described is the approximation and differentiation technique for loading-deformation charts being used to determine the bending strength of ceramics with provision for the nonlinearity of the deformation charts and differences in mechanical behaviuor of material during tension and compression. A relation between the strength calculation accuracy and experimental data reading errors has been established for such ceramic mateirals as Al 2 O 3 +15 % ZrSiO 4 , Y 2 O 3 +2.8% Al, etc. The negligence of the found aspects of mechanical material behaviuor was shown to result in errors two or three times higher than those introduced by the experiment results processing method

  5. Case Study: Testing with Case Studies

    Science.gov (United States)

    Herreid, Clyde Freeman

    2015-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses using case studies to test for knowledge or lessons learned.

  6. Numerical simulations of tests masonry walls from ceramic block using a detailed finite element model

    Directory of Open Access Journals (Sweden)

    V. Salajka

    2017-01-01

    Full Text Available This article deals with an analysis of the behaviour of brick ceramic walls. The behaviour of the walls was analysed experimentally in order to obtain their bearing capacity under static loading and their seismic resistance. Simultaneously, numerical simulations of the experiments were carried out in order to obtain additional information on the behaviour of masonry walls made of ceramic blocks. The results of the geometrically and materially nonlinear computations were compared to the results of the performed tests.

  7. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  8. Ceramic Veneers and Direct-Composite Cases of Amelogenesis Imperfecta Rehabilitation.

    Science.gov (United States)

    Shibata, S; Taguchi, Cmc; Gondo, R; Stolf, S C; Baratieri, L N

    2016-01-01

    The aim of this article is to present two case reports for the treatment of patients affected with amelogenesis imperfecta. One case was treated with composite resin and the other case with ceramic veneers. Esthetic and functional results were achieved using both treatments, and a review of advantages and disadvantages is presented.

  9. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    International Nuclear Information System (INIS)

    Senapati, Rajeev; Zhang Jianmei

    2010-01-01

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC 2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  10. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town

    International Nuclear Information System (INIS)

    Liao, Q. Lin; Liu, Cong; Wu, H. Yun; Jin, Yang; Hua, Ming; Zhu, B. Wan; Chen, Kai; Huang, Lei

    2015-01-01

    Soil cadmium (Cd) contamination is attributable to many sources, among which the ceramic industry is probably an important contributor whose relationship will be explored in this study. Upon studying a town in southeastern China that is quite famous for its ceramics, we observed that the soil Cd distribution agreed with the local ceramic industry's distribution in space and time from 2004 to 2014. Ceramic and pigment samples from a typical factory were selected in a case study, and a sediment core from a nearby river was collected. First, an application of the geo-accumulation index suggested that the sediment was very strongly polluted by Cd (mean 1874 mg/kg). Second, sediment dating indicated that the Cd concentration surge and the establishment of the factory were proximate in time (2002–2004). Third, principal component analysis showed high loading of Cd (0.947) solely, suggesting that the factory was most likely responsible for the Cd pollution found in the sediments of a nearby river. Finally, we infer that the soil cadmium pollution in the whole area may be related to the region's prosperous ceramic industry. Local government should reinforce controls of the ceramic industry and implement effective countermeasures. - Highlights: • The sediment is strongly polluted by Cd in a Chinese town. • Cd concentration surged when the nearby ceramic factory was established. • Cd is solely loaded in a principal component and abundant in the ceramic pigments. • The local ceramic industry may be responsible for the soil Cd contamination

  11. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q. Lin [Geological Survey of Jiangsu Province, Nanjing 210018 (China); Liu, Cong [Jiangsu Provincial Department of Land Resources, Nanjing 210017 (China); Wu, H. Yun [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, Box 624, 163 Xianlin Avenue, Nanjing 210023 (China); Jin, Yang; Hua, Ming; Zhu, B. Wan [Geological Survey of Jiangsu Province, Nanjing 210018 (China); Chen, Kai [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, Box 624, 163 Xianlin Avenue, Nanjing 210023 (China); Huang, Lei, E-mail: huanglei@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, Box 624, 163 Xianlin Avenue, Nanjing 210023 (China)

    2015-05-01

    Soil cadmium (Cd) contamination is attributable to many sources, among which the ceramic industry is probably an important contributor whose relationship will be explored in this study. Upon studying a town in southeastern China that is quite famous for its ceramics, we observed that the soil Cd distribution agreed with the local ceramic industry's distribution in space and time from 2004 to 2014. Ceramic and pigment samples from a typical factory were selected in a case study, and a sediment core from a nearby river was collected. First, an application of the geo-accumulation index suggested that the sediment was very strongly polluted by Cd (mean 1874 mg/kg). Second, sediment dating indicated that the Cd concentration surge and the establishment of the factory were proximate in time (2002–2004). Third, principal component analysis showed high loading of Cd (0.947) solely, suggesting that the factory was most likely responsible for the Cd pollution found in the sediments of a nearby river. Finally, we infer that the soil cadmium pollution in the whole area may be related to the region's prosperous ceramic industry. Local government should reinforce controls of the ceramic industry and implement effective countermeasures. - Highlights: • The sediment is strongly polluted by Cd in a Chinese town. • Cd concentration surged when the nearby ceramic factory was established. • Cd is solely loaded in a principal component and abundant in the ceramic pigments. • The local ceramic industry may be responsible for the soil Cd contamination.

  12. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  13. Do sanitary ceramic workers have a worse presentation of chest radiographs or pulmonary function tests than other ceramic workers?

    Directory of Open Access Journals (Sweden)

    Yu-Chung Tsao

    2017-03-01

    Conclusion: In this study, we found that sanitary ceramic workers were at a similar risk to other ceramic workers for moderate to severe silicosis when older age and longer working duration were accounted for.

  14. FY 1992 Research and development of ceramic gas turbines. Reliability demonstration tests for ceramic members; 1992 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai no shinraisei kakusho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    The creep rupture demonstration testing methods and non-destructive testing technologies are investigated for ceramic members, to promote development of ceramic gas turbines (CGT's), and the FY 1992 results are reported. For creep rupture demonstration testing methods, 3 types of silicon nitride as the CGT rotor materials are tested for tensile creep rupture at a rated temperature level (1200 degrees C) in the operating atmosphere (in the air), and applicability of the Larson-Miller method to ceramic members is investigated. It is found that Larson-Miller index, determined for each test temperature, is useful for explaining the test results, and analysis of the data by the Larson-Miller method is applicable to prediction of creep rupture life for specific members. For the non-destructive testing technologies to be applied to CGT members, the studied items include determination of white X-ray absorption coefficient by the film method and optimization of X-ray photographing, and the good results are produced. (NEDO)

  15. Effects of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics Evaluated by Modified Small Punch Tests

    Science.gov (United States)

    Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan

    2012-01-01

    Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.

  16. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  17. The ceramics industry and lead poisoning. Long-term testing.

    Science.gov (United States)

    De Rosa, E; Rossi, A; Toffolo, D; Brighenti, F; Rosa, A; Caroldi, S

    1980-12-01

    The investigation evaluates the efficiency attributed to some measures (improvements in environment, individual health habits) in reducing the risk of lead poisoning in the ceramics industry. The evaluation of the average levels of lead in the blood of 154 exposed workers was carried out in four plants at a time interval of six to eight months. The study considers the variations in relation to possible measures brought about during the interval. A reduction of environmental risk was in effect shown by a clear improvement in the blood lead levels, which still, however, exceeded the internationally recommended limits in many of the subjects. It was concluded that further improvements can only be made by reducing the lead content of the glazes used.

  18. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics.

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-12-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen's size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics.

  19. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-01-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen’s size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics. PMID:26816646

  20. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  1. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials For Hypersonic Flight

    Science.gov (United States)

    2011-11-30

    Ridge, D. G. Fletcher, C. O. Asma , O. Chazot, and J. Thömel, “Oxidation of ZrB2-SiC Ultra-High Temperature Ceramic Composites in Dissociated Air...Fletcher, C. O. Asma , “Characterization of ZrB2-SiC Ceramics Tested by Plasma Stream Oxidation,” poster, 32 th International Conference...Fahrenholtz, W.G., Hilmas, G.E., Zhu, S.M., Ridge, J., Fletcher, D.G., Asma , C.O., and Thomel, J., "Oxidation of ZrB2-SiC Ultrahigh-Temperature

  2. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  3. Accelerated life testing and reliability of high K multilayer ceramic capacitors

    Science.gov (United States)

    Minford, W. J.

    1981-01-01

    The reliability of one lot of high K multilayer ceramic capacitors was evaluated using accelerated life testing. The degradation in insulation resistance was characterized as a function of voltage and temperature. The times to failure at a voltage-temperature stress conformed to a lognormal distribution with a standard deviation approximately 0.5.

  4. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  5. Theory Testing Using Case Studies

    DEFF Research Database (Denmark)

    Møller, Ann-Kristina Løkke; Dissing Sørensen, Pernille

    2014-01-01

    The appropriateness of case studies as a tool for theory testing is still a controversial issue, and discussions about the weaknesses of such research designs have previously taken precedence over those about its strengths. The purpose of the paper is to examine and revive the approach of theory...... testing using case studies, including the associated research goal, analysis, and generalisability. We argue that research designs for theory testing using case studies differ from theorybuilding case study research designs because different research projects serve different purposes and follow different...... research paths....

  6. Theory testing using case studies

    DEFF Research Database (Denmark)

    Dissing Sørensen, Pernille; Løkke Nielsen, Ann-Kristina

    2006-01-01

    on the strengths of theory-testing case studies. We specify research paths associated with theory testing in case studies and present a coherent argument for the logic of theoretical development and refinement using case studies. We emphasize different uses of rival explanations and their implications for research...... design. Finally, we discuss the epistemological logic, i.e., the value to larger research programmes, of such studies and, following Lakatos, conclude that the value of theory-testing case studies lies beyond naïve falsification and in their contribution to developing research programmes in a progressive......Case studies may have different research goals. One such goal is the testing of small-scale and middle-range theories. Theory testing refers to the critical examination, observation, and evaluation of the 'why' and 'how' of a specified phenomenon in a particular setting. In this paper, we focus...

  7. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  8. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  9. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  10. RSG Deployment Case Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Owsley, Stanley L.; Dodson, Michael G.; Hatchell, Brian K.; Seim, Thomas A.; Alexander, David L.; Hawthorne, Woodrow T.

    2005-09-01

    The RSG deployment case design is centered on taking the RSG system and producing a transport case that houses the RSG in a safe and controlled manner for transport. The transport case was driven by two conflicting constraints, first that the case be as light as possible, and second that it meet a stringent list of Military Specified requirements. The design team worked to extract every bit of weight from the design while striving to meet the rigorous Mil-Spec constraints. In the end compromises were made primarily on the specification side to control the overall weight of the transport case. This report outlines the case testing results.

  11. FY 1993 Research and development of ceramic gas turbines. Development of methods of testing and evaluating ceramic member bonding techniques; 1993 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai setsugo gijutsu no shiken hyoka hoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    Studies are conducted to establish the methods of testing and evaluating applicability of ceramic-metal bonding for ceramic gas turbines, and the FY 1993 results are reported. The program involves measurement of residual stress by the X-ray method and durability tests for the joints of silicon nitride and austenitic stainless steel with copper as the intermediate layer, and analysis and classification of the strength/durability test results obtained until the previous fiscal year by the finite element method, to evaluate applicability of the joining. For the strength characteristics at high temperature, the test pieces tend to lose strength at 400 degrees C and higher, and high-temperature strength as cross-head displacement speed increases. The upper limit of bending strength at room temperature decreases as number of thermal cycles increases. The test pieces subjected to thermal cycles have a higher bending strength at high temperature than at room temperature. The results of the two-dimensional plasticity analysis of the residual stress in the joint by the finite element method are in good agreement with the results by the X-ray method. (NEDO)

  12. Experiments on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Ohno, Hideo; Naruse, Yuji; Coffin, D.O.; Walthers, C.R.; Binning, K.E.

    1985-01-01

    A ceramic electrolysis cell and a palladium diffuser are developed in Japan and is tested with tritium in Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory, in order to confirm the feasibility as possible upgrades for the fuel cleanup system (PCU). The ceramic electrolysis cell made of stabilized zirconia was operated at 630 0 C for an extended period with a mixture of 3% T 2 O in He carrier gas in the circulation system with oxidizing catalyst bed. The palladium diffuser was tested with circulated pure tritium gas at 280 0 C to verify the compatibility of the alloy with tritium, since the 3 He produced in the metal could cause a degradation. The isotopic effects were also measured for both devices

  13. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  14. Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample was initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na 2 O content of 4.6 wt%. An increased Na 2 O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na 2 O should aid in reduced cracking of the insulator during these tests

  15. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: a case report.

    Science.gov (United States)

    Tavarez, Rudys Rodolfo de Jesus; Goncalves, Leticia Machado; Dias, Ana Paula; Dias, Anna Claudia Pereira; Malheiros, Adriana Santos; Silva, Alice Carvalho; Bandeca, Matheus Coelho

    2014-06-01

    The rehabilitation of patients requiring an esthetic smile demands a multidisciplinary approach. This clinical report describes a treatment plan for recovery aesthetics' smile of anterior teeth using ceramic prosthesis with zirconia structure. Initially, a review of aesthetic parameters, diagnostic waxing, mock-up and provisional restorations was performed. A contextual assessment of aesthetic, proportion and shape of teeth was done to recreate a natural looking for teeth in consonance with the smile line. Subsequently, based on these parameters, fixed prostheses of the upper anterior teeth using ceramic restorations with zirconia infrastructures were performed. The use of ceramic restorations with zirconia structures associated with a careful treatment plan allows the professional to integrate esthetic and function for satisfactory clinical results. How to cite the article: Tavarez RR, Gonçalves LM, Dias AP, Dias AC, Malheiros AS, Silva AC, Bandeca MC. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: A case report. J Int Oral Health 2014;6(3):90-2.

  16. Standard Test Method for Bond Strength of Ceramic Tile to Portland Cement Paste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the ability of glazed ceramic wall tile, ceramic mosaic tile, quarry tile, and pavers to be bonded to portland cement paste. This test method includes both face-mounted and back-mounted tile. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  18. Applicability study on a ceramic filter with hot-test conducted in a BWR plant

    International Nuclear Information System (INIS)

    Yamada, K.; Shirai, T.; Wada, M.; Nakamizo, H.

    1991-01-01

    Radioactive crud removal and filtration performance recovery by backwashing were examined with a BWR plant pool water using a ceramic filter element, 0.1 micron in nominal pore size and 0.2m 2 in filtration area. Totally 1114 hours filter operation were accumulated. Ten backwashings were accomplished during the test period. The following results were obtained. (1) Radioactive crud concentration in the filter effluent remained below 10 5 Bq/m 3 . (2) Both pressure loss through the filter and dose rate at the filter vessel surface were recovered to the initial level by each backwashing. The surface dose rate after backwashing was approximately 0.01mSv/h. According to these test results, it is confirmed that the ceramic filter is appropriate for the treatment of highly crud concentrated radioactive liquid, which is generated in nuclear facilities, such as spent fuel reprocessing plants. (author)

  19. [The clinical application of zirconium-dioxide-ceramics. Case report].

    Science.gov (United States)

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  20. Achievement report for fiscal 1998. Research and development of ceramic gas turbine (Reliability verification test for ceramic members); 1998 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai no shinraisei kakusho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For a ceramic gas turbine to achieve efficiency of 42%, materials capable of withstanding approximately 1300 degrees C are required. In fiscal 1998, the mechanism of creep deformation and life prediction are studied, with specimens exposed to a short-term high-stress conditions equivalent to a time to fracture of 1000h. It is known after studies in the past that, under a stress of approximately 240Mpa, the logarithmic values of the load stress and time to fracture may be described by two differently inclined straight lines. Strain is accurately measured by use of a CCD camera for the determination of a creep curve, and then stress indexes are worked out. It is then found that the stress indexes are 4 on the lower stress side of 260MPa and 11 on the higher stress side of the same. This enables the extrapolation of short-term creep fracture data for the prediction of long-term life. No large-scale reduction in resistance to creep due to changes in the crystal phase is not predicted. Longitudinal sound wave speeds are measured, and the result manifestly describes how the longitudinal sound wave speed slows down with the progress of creepage in the material. Reference is also made to international reports about the study of ceramics performance tests and evaluation methods, international joint studies about mechanical properties tests, and the international round robin test of material powder. (NEDO)

  1. Standard test method for determination of breaking strength of ceramic tiles by three-point loading

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of breaking strength of ceramic tiles by three-point loading. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. It's about time? Testing the Dawson ceramic seriation using luminescence dating, Southern Nasca Region, Peru

    OpenAIRE

    Vaughn, KJ; Eerkens, JW; Lipo, C; Sakai, S; Schreiber, K

    2014-01-01

    Copyright © 2014 by the Society for American Archaeology. The Dawson seriation of Nasca ceramics has long been assumed to be an accurate marker of temporal changes in the pre-hispanic south coast of Peru. We test this assumption by directly dating a sample of sherds using Optically Stimulated Luminescence (OSL). Our results suggest that while some phases of the seriation are valid chronological markers, others appear to be the result of factors other than time. We discuss the implications of ...

  3. Dynamic Brazilian Test for Mechanical Characterization of Ceramic Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Martina Scapin

    2017-01-01

    Full Text Available The aim of this work is to identify the tensile strength of alumina (Corbit98, by performing Brazilian tests at different loading rate. In this kind of test, generally used for brittle material in static loading conditions, a cylindrical specimen is diametrically compressed and failure is generated in the middle of the component as a consequence of a positive tensile stress. In this work, this experimental technique was applied also in dynamic loading conditions by using a setup based on the Split Hopkinson Pressure Bar. Due to the properties of the investigated material, among which are high hardness, high compressive strength, and brittle behaviour, some precautions were needed to assure the validity of the tests. Digital Image Correlation techniques were applied for the analysis of high framerate videos.

  4. Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools

    OpenAIRE

    Loke Mun Sei

    2015-01-01

    Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, ...

  5. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic.

    Science.gov (United States)

    Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-11-01

    This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.

  6. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  7. Fission Product Release from Molten Pool: ceramic melt tests

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.B.; Lopukh, D.B.; Petchenkov, A.Yu. [AO ' NP Sintez' , St. Petersburg (RU)] [and others

    1999-07-01

    Experimental results are presented on the volatilisation of UO{sub 2{+-}}{sub x}, SrO, BaO, CeO{sub 2} from corium melts. Corium melts were generated by high frequency induction melting in a cold crucible. The surface temperature of the melts was in the range from 1753 to 3023 K. Some results of the tests are discussed and a comparison with published data is made. (author)

  8. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    International Nuclear Information System (INIS)

    Lee, Youngmin; Ku, Duck Young; Lee, Dong Won; Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon

    2016-01-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  9. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  10. Secondary waste form testing: ceramicrete phosphate bonded ceramics

    International Nuclear Information System (INIS)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-01-01

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO 3 , and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO 3 , and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO 3 filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was ∼5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from

  11. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  12. Authenticity test in ceramics and archaeological figures by thermoluminescence

    International Nuclear Information System (INIS)

    Ramirez L, A.; Schaaf, P.; Filloy, L.

    1999-01-01

    At present exists quite a lot of false archaeological pieces which provokes doubts about the legitimacy of the pieces. In this work it is presented the Authenticity test by Thermoluminescence realized at the urn of the goddess 13 serpent of the zapotec culture of Oaxaca which is exposed in Mexico City. The original piece contains crystalline structures which present hardly the thermoluminescence phenomena by the presence of 238 U, 232 Th, and 40 K getting with this the form and intensity of the natural thermoluminescence curve of an archaeological piece which shows a Tl peak and allows to know so if it was made recently or not. (Author)

  13. Nondestructive Testing of Ceramic Hip Joint Implants with Laser Spot Thermography

    Directory of Open Access Journals (Sweden)

    Roemer J.

    2017-12-01

    Full Text Available The paper presents an application of laser spot thermography for damage detection in ceramic samples with surface breaking cracks. The measurement technique is an active thermographic approach based on an external heat delivery to a test sample, by means of a laser pulse, and signal acquisition by an infrared camera. Damage detection is based on the analysis of surface temperature distribution near the exciting laser spot. The technique is nondestructive, non-contact and allows for full-field measurements. Surface breaking cracks are a very common type of damage in ceramic materials that are introduced in the manufacturing process or during the service period. This paper briefly discusses theoretical background of laser spot thermography, describes the experimental test rig and signal processing methods involved. Damage detection results obtained with laser spot thermography are compared with reference measurements obtained with vibrothermography. This is a different modality of active thermography, that has been previously proven effective for this type of damage. We demonstrate that both measurement techniques can be effectively used for damage detection and quality control applications of ceramic materials.

  14. Accelerated Testing Methodology for the Determination of Slow Crack Growth of Advanced Ceramics

    Science.gov (United States)

    Choi, Sung R.; Salem, Jonathan A.; Gyekenyesi, John P.

    1997-01-01

    Constant stress-rate (dynamic fatigue) testing has been used for several decades to characterize slow crack growth behavior of glass and ceramics at both ambient and elevated temperatures. The advantage of constant stress-rate testing over other methods lies in its simplicity: Strengths are measured in a routine manner at four or more stress rates by applying a constant crosshead speed or constant loading rate. The slow crack growth parameters (n and A) required for design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, an appreciable saving of test time can be achieved. If a preload corresponding to 50 % of the strength is applied to the specimen prior to testing, 50 % of the test time can be saved as long as the strength remains unchanged regardless of the applied preload. In fact, it has been a common, empirical practice in strength testing of ceramics or optical fibers to apply some preloading (less then 40%). The purpose of this work is to study the effect of preloading on the strength to lay a theoretical foundation on such an empirical practice. For this purpose, analytical and numerical solutions of strength as a function of preloading were developed. To verify the solution, constant stress-rate testing using glass and alumina at room temperature and alumina silicon nitride, and silicon carbide at elevated temperatures was conducted in a range of preloadings from O to 90 %.

  15. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Accelerated Testing Methodology Developed for Determining the Slow Crack Growth of Advanced Ceramics

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1998-01-01

    Constant stress-rate ("dynamic fatigue") testing has been used for several decades to characterize the slow crack growth behavior of glass and structural ceramics at both ambient and elevated temperatures. The advantage of such testing over other methods lies in its simplicity: strengths are measured in a routine manner at four or more stress rates by applying a constant displacement or loading rate. The slow crack growth parameters required for component design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, test time can be reduced appreciably. If a preload corresponding to 50 percent of the strength is applied to the specimen prior to testing, 50 percent of the test time can be saved as long as the applied preload does not change the strength. In fact, it has been a common, empirical practice in the strength testing of ceramics or optical fibers to apply some preloading (<40 percent). The purpose of this work at the NASA Lewis Research Center is to study the effect of preloading on measured strength in order to add a theoretical foundation to the empirical practice.

  17. Characterization and testing of a 238Pu loaded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    This paper will describe the preparation and progress of the effort at Argonne National Laboratory-West to produce ceramic waste forms loaded with 238 Pu. The purpose of this study is to determine the extent of damage, if any, that alpha decay events will play over time to the ceramic waste form under development at Argonne. The ceramic waste form is glass-bonded sodalite. The sodalite is utilized to encapsulate the fission products and transuranics which are present in a chloride salt matrix which results from a spent fuel conditioning process. 238 Pu possesses approximately 250 times the specific activity of 239 Pu and thus allows for a much shorter time frame to address the issue. In preparation for production of 238 Pu loaded waste forms 239 Pu loaded samples were produced. Data is presented for samples produced with typical reactor grade plutonium. X-ray diffraction, scanning electron micrographs and durability test results will be presented. The ramifications for the production of the 238 Pu loaded samples will be discussed

  18. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests.

    Science.gov (United States)

    Hambsch, B; Bösl, M; Eberhagen, I; Müller, U

    2012-01-01

    This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

  19. Field testing of a ceramic heat exchanger for heat recovery application

    Science.gov (United States)

    Sohal, M. S.

    1988-06-01

    AiResearch Company, Torrance, California, developed a 5 MMBtu/hr ceramic-metallic hybrid High Temperature Burner-Duct-Recuperator (HTBDR) system to recover energy from hot (up to 2500 F), dirty, and corrosive glue gas streams and preheat combustion air up to 2000 F. To reduce the cost and size of the ceramic recuperator, ceramic tubes with internal cruciform baffles were developed. The HTBDR system was tested on a 20 MMBtu/hr rotary forging furnace for about 2000 hours. To facilitate tube replacements, final design configuration uses horizontally mounted tubes. A maximum air preheat temperature of about 1916 F was achieved with a flue gas temperature of 2122 F. This represents fuel savings of about 30 to 50 percent (depending upon the amount of excess air) compared with an unrecuperated furnace. The overall design and operation of the recuperator proved to be successful up to the time of material failure. X ray diffraction of some failed components indicated that there was some residual Silicon in the interior regions and complete nitriding did not occur during the fabrication process. Degradation of failed components was probably caused by oxidation of residual silicon and by the stresses caused due to different coefficient of thermal expansion of various compounds during thermal cycling. A combination of severe and numerous thermal cycling coupled with incomplete nitriding was the most likely cause of material failure.

  20. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 900C

    International Nuclear Information System (INIS)

    Simpson, L. J.

    1998-01-01

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component

  1. Theory Testing Using Case Studies

    DEFF Research Database (Denmark)

    Sørensen, Pernille Dissing; Løkke, Ann-Kristina

    2006-01-01

    design. Finally, we discuss the epistemological logic, i.e., the value to larger research programmes, of such studies and, following Lakatos, conclude that the value of theory-testing case studies lies beyond naïve falsification and in their contribution to developing research programmes in a progressive...

  2. Achievement report for fiscal 1991. Research and development of ceramic gas turbine (Verification test on reliability of ceramic members); 1991 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai no shinraisei kakusho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    Development has been advanced on a test method to verify reliability of ceramics members being the basic material. Specifically, discussions were given on 1) the creep fracture verification test method, and 2) non-destructive test methods applied to different parts of the CGT. In Item 1, tension creep rupture tests were given on three kinds of candidate materials (Si{sub 3}N{sub 4}) used in the rotors in the atmosphere and the rated temperature zone. The fatigue resistance coefficient and the stress coefficient from several hours to 1,000 hours were calculated from the analysis of rupture time relative to temperatures and load stresses and elongation of the test pieces. It was verified that the test results can be put into order by using coefficients derived by test temperatures. The temperature was centered around 1,200 degrees C, and the load stress was varied from several ten to several hundred MPa. In Item 2, development was made on a theory to quantify the ultrasonic effective beam diameter by using the reflective echo heights, making it possible to make the ultrasonic flaw detection method into a theorem. Defects with sizes from 70 to 200 {mu} m can be estimated with error rates from 10 to 20%. (NEDO)

  3. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  4. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  5. Testing of ceramic gas turbine components under service-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Siebmanns, W [Motoren- und Turbinen-Union G.m.b.H., Muenchen (Germany, F.R.)

    1978-08-01

    If all gas turbine components which are in contact with hot gas are manufactured from special ceramics (silicon nitride, silicon carbide), cycle and component temperatures can be increased up to 1600/sup 0/K. MTU is developing various components, such as combustor and turbine wheel, step by step until they are ready for service. At present, combustors are surviving comprehensive service-like cyclic tests in hot gas at atmospheric pressure (1000 h, 1000 starts per component) without damage. Tests above atmospheric pressure (5 bar) are underway. At MTU, a rotor wheel variant consisting of a metallic hub with inserted single blades is being constructed. The step to aerodynamically contoured airfoils will follow, as soon as the stress problems encountered in connection with the blade root are fully under control. The program will be completed in 1980 with a test run of a prototype turbine made from ceramic components developed by various companies under the leadership of the DFVLR (Aerospace Research and Testing Institute).

  6. Development of piezoelectric ceramics driven fatigue testing machine for small specimens

    International Nuclear Information System (INIS)

    Saito, S.; Kikuchi, K.; Onishi, Y.; Nishino, T.

    2002-01-01

    A new fatigue testing machine with piezoelectric ceramics actuators was developed and a prototype was manufactured for high-cycle fatigue tests with small specimens. The machine has a simple mechanism and is compact. These features make it easy to set up and to maintain the machine in a hot cell. The excitation of the actuator can be transmitted to the specimen using a lever-type testing jig. More than 100 μm of displacement could be prescribed precisely to the specimen at a frequency of 50 Hz. This was sufficient performance for high-cycle bend fatigue tests on specimens irradiated at the SINQ target in Paul Scherrer Institute. The relationship of a displacement applied to the specimen and the strain of the necking part were obtained by experimental methods and by finite element method (FEM) calculations. Both results showed good agreement. This fact makes it possible to evaluate the strain of irradiated specimens by FEM simulations

  7. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  8. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Haibing; Shi, Tao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: hhw@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong, E-mail: inpcnyb@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China)

    2017-05-15

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  9. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    International Nuclear Information System (INIS)

    Zhang, Hao; Guo, Haibing; Shi, Tao; Ye, Minyou; Huang, Hongwen; Li, Zhenghong

    2017-01-01

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  10. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  11. Microindentation test for determining mechanical properties of corroded layers of ceramics

    International Nuclear Information System (INIS)

    Wakui, Takashi; Futakawa, Masatoshi; Tanabe, Yuji; Eto, Motokuni

    1999-01-01

    Microindentation tests on ceramics (Si-SiC, SiC, Al 2 O 3 and Si 3 N 4 ) immersed in boiling 95 wt% sulfuric acid for 100 or 1000 hours were performed to evaluate the mechanical properties of their corroded layers. The thickness (T) of corroded layer on ceramics was evaluated in terms of characteristic depth (d) which was determined from the point of inflection on the Depth-Load/Depth curve by the microindentation test. The relationship between T and d was found to be given as T nearly equal 10d. Finite element analyses were performed to validate the relationship and to clarify the effects of mechanical properties of corroded layer and the indenter tip radius on the relationship as well. The mechanical properties [Young's modulus (E f ) and yield stress (σ yf )] of corroded layers of Al 2 O 3 and Si 3 N 4 were identified by fitting the predicted Depth-Load/Depth curve to the experimental data. (author)

  12. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  13. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... immediately after the 24 hrs. test using single particle ICPMS and Transmission Electron Microscopy imaging. The preliminary results suggest that nanoparticulate titanium is released from both tiles – with and without nano-titanium dioxide coating. The size distributions of the released particles are similar...

  14. Evaluation of the ICET Test Stand to Assess the Performance of a Range of Ceramic Media Filter Elements in Support of ASME AG-1 Subsection FO

    Energy Technology Data Exchange (ETDEWEB)

    Schemmel, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-26

    High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes the modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.

  15. Study of Mechanical Characterization of Ceramic Specimens from a Brazilian Test Adaptation

    Directory of Open Access Journals (Sweden)

    Iglesias, I.

    2011-09-01

    Full Text Available The Brazilian Test is easy to perform and its result is the tensile strength of the material provided certain ratios are fulfilled between the diameter of the sample, the load bearing width and the characteristic length of the material. In this paper we present experimental results obtained from 8 mm-thick ceramic cylinders whose diameter was 40 mm in length. The cylinders were obtained from a standard type of clay by pressing and subsequent baking at 900 ºC. We made a complete mechanical characterization of the material, which included obtaining fracture properties, and a numerical simulation of the Brazilian test based on the cohesive crack model. Numerical results confirm that the size and boundary conditions chosen for the test are adequate to get the actual tensile strength of construction ceramics, which prove that this type of test is useful to compare the strength of several types of construction ceramics in a simple and convenient way. Besides, it requires a very small amount of material to prepare the specimen

    El ensayo de compresión diametral (ensayo Brasileño es un ensayo fácil de realizar que da como resultado la resistencia a tracción del material siempre que se cumplan una serie de proporciones entre el diámetro de la probeta, el ancho de reparto de la carga y la longitud característica del material. En este artículo presentamos unos resultados sobre probetas cerámicas cilíndricas de 40 mm de diámetro y 8 mm de espesor, elaboradas por prensado a partir de arcillas comunes y cocidas a 900 ºC. Se ha realizado una caracterización mecánica de dichas probetas, que incluye sus propiedades en fractura, y una simulación numérica del ensayo brasileño basada en el modelo de fisura cohesiva. Los resultados numéricos confirman que el tamaño y condiciones de contorno elegidos para el ensayo son apropiados para obtener la resistencia a tracción de este tipo de material cerámico con lo que este ensayo se convierte en

  16. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  17. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    Science.gov (United States)

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  18. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    Science.gov (United States)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, Si

  19. Manufacture and Test of a Small Ceramic-Insulated Nb$_{3}$Sn Split Solenoid

    CERN Document Server

    Bordini, B; Rossi, L; Tommasini, D

    2008-01-01

    A small split solenoid wound with high-Jc Nb$_{3}$Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP®) strand, was built and tested at CERN in order to study the applicability of: 1) ceramic wet glass braid insulation without epoxy impregnation of the magnet; 2) a new heat treatment devised at CERN and particularly suitable for reacting RRP® Nb$_{3}$Sn strands. This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 95 % of their short sample limits at the first quench; in split solenoid configuration the maximum field values in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due ...

  20. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    Science.gov (United States)

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  1. Effect of Control Mode and Test Rate on the Measured Fracture Toughness of Advanced Ceramics

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2018-01-01

    The effects of control mode and test rate on the measured fracture toughness of ceramics were evaluated by using chevron-notched flexure specimens in accordance with ASTM C1421. The use of stroke control gave consistent results with about 2% (statistically insignificant) variation in measured fracture toughness for a very wide range of rates (0.005 to 0.5 mm/min). Use of strain or crack mouth opening displacement (CMOD) control gave approx. 5% (statistically significant) variation over a very wide range of rates (1 to 80 µm/m/s), with the measurements being a function of rate. However, the rate effect was eliminated by use of dry nitrogen, implying a stress corrosion effect rather than a stability effect. With the use of a nitrogen environment during strain controlled tests, fracture toughness values were within about 1% over a wide range of rates (1 to 80 micons/m/s). CMOD or strain control did allow stable crack extension well past maximum force, and thus is preferred for energy calculations. The effort is being used to confirm recommendations in ASTM Test Method C1421 on fracture toughness measurement.

  2. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test.

    Science.gov (United States)

    Carrabba, Michele; Keeling, Andrew J; Aziz, Aziz; Vichi, Alessandro; Fabian Fonzar, Riccardo; Wood, David; Ferrari, Marco

    2017-05-01

    To compare three different compositions of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) ceramic and a lithium disilicate ceramic in terms of flexural strength and translucency. Three zirconia materials of different composition and translucency, Aadva ST [ST], Aadva EI [EI] and Aadva NT [NT](GC Tech, Leuven, Belgium) were cut with a slow speed diamond saw into beams and tabs in order to obtain, after sintering, dimensions of 1.2×4.0×15.0mm and 15.0×15.0×1.0mm respectively. Blocks of IPS e.max CAD LT were cut and crystallized in the same shapes and dimensions and used as a reference group [LD]. Beams (n=15) were tested in a universal testing machine for three-point bending strength. Critical fracture load was recorded in N, flexural strength (σ in MPa), Weibull modulus (m) and Weibull characteristic strength (σ 0 in MPa) were then calculated. Tabs (n=10) were measured with a spectrophotometer equipped with an integrating sphere. Contrast Ratios were calculated as CR=Yb/Yw. SEM of thermally etched samples coupled with lineal line analysis (n=6) was used to measure the tested zirconia grain size. Data were statistically analyzed. Differences in translucency, flexural strength and grain size were found to be statistically significant. CR increased and flexural strength decreased in the following order ST(σ 1215±190MPa, CR 0.74±0.01)>EI(σ 983±182MPa, CR 0.69±0.01)>NT(σ 539±66MPa, CR 0.65±0.01)>LD (σ 377±39Mpa, CR 0.56±0.02). The average grain size was different for the three zirconia samples with NT(558±38nm)>ST(445±34nm)>EI(284±11nm). The zirconia composition heavily influenced both the flexural strength and the translucency. Different percentages of Yittria and Alumina result in new materials with intermediate properties in between the conventional zirconia and lithium disilicate. Clinical indications for Zirconia Aadva NT should be limited up to three-unit span bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R; Eriksson, T; Lehtonen, P; Tiensuu, J [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  4. Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, L., E-mail: laurent.daniel@u-psud.fr [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); GeePs (CNRS UMR8507, CentraleSupelec, UPMC, Univ Paris-Sud), 91192 Gif sur Yvette cedex (France); Hall, D. A.; Withers, P. J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Koruza, J.; Webber, K. G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); King, A. [European Synchrotron Radiation Facility (ESRF), 6 rue J. Horowitz, 38043 Grenoble (France); Synchrotron SOLEIL, BP 48, 91192 Gif sur Yvette cedex (France)

    2015-05-07

    The blocking force test is a standard test to characterise the properties of piezoelectric actuators. The aim of this study is to understand the various contributions to the macroscopic behaviour observed during this experiment that involves the intrinsic piezoelectric effect, ferroelectric domain switching, and internal stress development. For this purpose, a high energy diffraction experiment is performed in-situ during a blocking force test on a tetragonal lead zirconate titanate (PZT) ceramic (Pb{sub 0.98}Ba{sub 0.01}(Zr{sub 0.51}Ti{sub 0.49}){sub 0.98}Nb{sub 0.02}O{sub 3}). It is shown that the usual macroscopic linear interpretation of the test can also be performed at the single crystal scale, allowing the identification of local apparent piezoelectric and elastic properties. It is also shown that despite this apparent linearity, the blocking force test involves significant non-linear behaviour mostly due to domain switching under electric field and stress. Although affecting a limited volume fraction of the material, domain switching is responsible for a large part of the macroscopic strain and explains the high level of inter- and intra-granular stresses observed during the course of the experiment. The study shows that if apparent piezoelectric and elastic properties can be identified for PZT single crystals from blocking stress curves, they may be very different from the actual properties of polycrystalline materials due to the multiplicity of the physical mechanisms involved. These apparent properties can be used for macroscopic modelling purposes but should be considered with caution if a local analysis is aimed at.

  5. Damage law identification of a quasi brittle ceramic from a b ending test using digital image correlation

    Directory of Open Access Journals (Sweden)

    Meille S.

    2010-06-01

    Full Text Available The quasi brittle ceramics show a non linear mechanical behaviour resulting most of the time in a dissymetry between their tensile and compressive stress-strain laws. The characterization of their fracture strengths might be biased if elastic linear formulae are used to analyze classical tests like bending tests. Based on Digital Image Correlation (DIC, a methodology is proposed to characterize materials with dissymmetric behaviours. Applying specific DIC decomposition functions for bending, compressive and tensile tests, a stress-strain model and its damage law are identified for aluminium titanate, a damageable micro cracked ceramic. This identification method using DIC can obviously be applied to other quasi brittle materials.

  6. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  7. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  8. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  9. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  11. Testing Cases under Title VII.

    Science.gov (United States)

    Rothschild, Michael; Werden, Gregory J.

    This paper discusses Congressional and judicial attempts to deal with the problem of employment practices which lead to discriminatory outcomes but which may not be discriminatory in intent. The use of paper and pencil tests as standards for hiring and promotion is focused on as an example of this type of employment practice. An historical account…

  12. Usability Testing: A Case Study.

    Science.gov (United States)

    Chisman, Janet; Walbridge, Sharon; Diller, Karen

    1999-01-01

    Discusses the development and results of usability testing of Washington State University's Web-based OPAC (online public access catalog); examines how easily users could navigate the catalog and whether they understood what they were seeing; and identifies problems and what action if any was taken. (LRW)

  13. Tools for Test Case Generation

    NARCIS (Netherlands)

    Belinfante, Axel; Frantzen, Lars; Schallhart, Christian; Broy, Manfred; Jonsson, Bengt; Katoen, Joost P.; Leucker, Martin; Pretschner, Alexander

    2005-01-01

    The preceding parts of this book have mainly dealt with test theory, aimed at improving the practical techniques which are applied by testers to enhance the quality of soft- and hardware systems. Only if these academic results can be efficiently and successfully transferred back to practice, they

  14. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  15. [Wear intensity and surface roughness of microhybrid composite and ceramic occlusal veneers on premolars after the thermocycling and cyclic mechanical loading tests].

    Science.gov (United States)

    Zhang, H Y; Jiang, T; Cheng, M X; Zhang, Y W

    2018-02-18

    To evaluate the wear intensity and surface roughness of occlusal veneers on premolars made of microhybrid composite resin or two kinds of ceramics in vitro after the thermocycling and cyclic mechanical loading tests. In the study,24 fresh extracted human premolars without root canal treatment were prepared (cusps reduction of 1.5 mm in thickness to simulate middle to severe tooth wear, the inclinations of cusps were 20°). The prepared teeth were restored with occlusal veneers made of three different materials: microhybrid composite, heat-pressed lithium disilicate ceramic and computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic in the thickness of 1.5 mm. The occlusal veneers were cemented with resin cement. The specimens were fatigued using the thermocycling and cyclic mechanical loading tests after being stored in water for 72 h. The wear of specimens was measured using gypsum replicas and 3D laser scanner before and after the thermocycling and cyclic mechanical loading tests and the mean lost distance (mm) was used to indicate the level of wear. The surfaces of occlusal contact area were observed and the surface roughness was recorded using 3D laser scanning confocal microscope before and after the fatigue test. Differences between the groups were compared using ONE-way ANOVA(Pcomposite group, heat-pressed lithium disilicate ceramic group, and CAD/CAM lithium disilicate ceramic group was (-0.13±0.03) mm, (-0.05±0.01) mm and (-0.05±0.01) mm, the wear of microhybrid composite was significantly higher than the two ceramic groups(Pcomposite was significantly higher than the two ceramic groups(Pcomposite(P=0.005) and CAD/CAM lithium disilicate ceramic (P=0.010). From the view of wear speed, microhybrid composite was significantly higher than the two kinds of ceramics, but it was similar to enamel when the opposing tooth was natural. The surface roughness before the themocycling and cyclic mechanical loading test of microhybrid

  16. Corrosion tests with uranium- and plutonium-loaded ceramic waste forms

    International Nuclear Information System (INIS)

    Morss, L. R.; Johnson, S. G.; Ebert, W. L.; DiSanto, T.; Frank, S. M.; Holly, J. L.; Kropf, A. J.; Mertz, C. J.; O'Holleran, T. P.; Richmann, M. K.; Sinkler, W.; Tsai, Y.; Warren, A. R.; Noy, M.

    2003-01-01

    Tests were conducted with ceramic waste form (CWF) materials that contained small amounts of uranium and plutonium to study their release behavior as the CWF corroded. Materials made using the hot isostatic press (HIP) and pressureless consolidation (PC) methods were examined and tested. Four different materials were made using the HIP method with two salts having different U:Pu mole ratios and two zeolite reagents having different residual water contents. Tests with the four HIP U,Pu-loaded CWF materials were conducted at 90 and 120 C, at CWF-to-water mass ratios of 1:10 and 1:20, and for durations between 7 and 365 days. Materials made using two PC processing conditions were also tested. Tests with the two PC U,Pu-loaded CWF materials were conducted at 90 and 120 C, at a CWF-to-water mass ratio of 1:10, and for durations between 7 and 182 days. The releases of matrix elements, U, and Pu in tests conducted under different test conditions and with different materials are compared to evaluate the effects of composition and processing conditions on the release behavior of U and Pu and the chemical durabilities of the different materials. The distributions of released elements among the fractions that were dissolved, in colloidal form in the solution, and fixed to test vessel walls were measured and compared. Characterization of Pu-bearing colloidal particles recovered from the test solutions using solids analysis techniques are also reported. The principal findings from this study are: (1) The release of U and Pu is about 10X less than the release of Si and 50X less than the release of B under all test conditions. This implies that U and Pu are in a phase that is less soluble than the sodalite and binder glass matrix. (2) Almost all of the plutonium that is released from U,Pu-loaded CWF is present either as colloidal-sized particles in the size range between 5 and 100 nm in the test solution (about 15% of the total) or becomes fixed on stainless steel test vessel

  17. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  18. FLEXURAL TESTING MACHINE AS AN OFF-LINE CONTROL SYSTEM FOR QUALITY MONITORING IN THE PRODUCTION OF BENDED CERAMIC TILES

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2016-06-01

    Full Text Available The capability to bend in a controlled manner Gres Porcelain stoneware tiles passing by a very exclusive process of pyroplastic deformation opens up entirely new opportunities in utilisation of this important family of ceramics. A bended tile can be exploited in innovative applications, such as stairs, shelves, benches and even radiators, turning this element from a simple piece of furnishing in a modern functional component. But this change in functionality also requires a different approach in the quality control, both at the product and process levels, that can no longer be limited to the use of tests specified in the regulations for traditional ceramics (e.g. colour, porosity, hygroscopic .... This article describes the first device so far devised for the verification of resistance to bending of curved tiles, discussing the correct way of use. The adoption of this particular equipment as an off-line control device can represent a valid strategy for monitoring the product and process quality.

  19. The Couplex test cases: models and lessons

    International Nuclear Information System (INIS)

    Bourgeat, A.; Kern, M.; Schumacher, S.; Talandier, J.

    2003-01-01

    The Couplex test cases are a set of numerical test models for nuclear waste deep geological disposal simulation. They are centered around the numerical issues arising in the near and far field transport simulation. They were used in an international contest, and are now becoming a reference in the field. We present the models used in these test cases, and show sample results from the award winning teams. (authors)

  20. Construction and testing of a system for the electrical characterization of ceramic thermistors at low temperatures

    Directory of Open Access Journals (Sweden)

    F. C. S. Luz

    2014-03-01

    Full Text Available A high-precision and low cost system was built for the electrical characterization of ceramic thermistors at low temperatures, using components readily available in materials research laboratories. The system presented excellent reproducibility in the electrical characterization of NTC ceramic sensors from -75 ºC (195 K to 23 ºC (296 K. The behavior of the NTC sensor was comparable to that of commercial thermistors only below room temperature (α = -3.2%/K, demonstrating the importance of fully characterizing these materials at both low and high temperatures.

  1. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  2. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  3. Achievement report for fiscal 1989. Research and development of ceramic gas turbine (Development of test and evaluation methods for ceramic member bonding technology); 1989 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai setsugo gijutsu no shiken hyoka hoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    Development of test and evaluation methods has been performed on a technology to bond ceramics with metals as a support to develop a ceramic gas turbine (CGT), from the viewpoint that what governs bonding is residual stress. Activities were made in the following three fields: 1) investigative studies, 2) tests and researches, and 3) analytical studies. In Item 1, literatures were investigated, and research plans were established with regard to residual stress. Selections were made on Si3N4 as the ceramics, ordinary steel (S45C) as the metal, butt joint bonding of flat plates with each other as the bonding method, X-ray stress measuring method and IF method (semi-destructive test) as the residual stress measuring methods, and the finite element method as the analytical method. In Item 2, bonded test pieces were made, and the residual stress measuring test was performed to discuss the test and evaluation methods in relation with the bonding patterns and adaptability of the bonding. In Item 3, basic discussions were given on applicability of the residual stress analysis method using the finite element method, and on analysis of the affecting factors and modeling. (NEDO)

  4. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  5. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Parameters governing tritium extraction rates from lithiated ceramics. The case of lithium aluminate

    International Nuclear Information System (INIS)

    Roth, E.; Botter, F.; Briec, M.; Rasneur, B.; Roux, N.

    1986-10-01

    Significant discrepancies between results of authors comparing tritium extraction rates from different lithiated ceramics are found in the literature. Recent results obtained at C.E.A., principally on lithium aluminates, show that, for a given ceramic, parameters other than textural (grain size, porosity, etc...) may play a predominant role. Enhancements of extraction rates have been induced by adding MgO to the solid or H 2 and CO to the sweep gas, but other factors, probably related to the surface condition of samples, may produce even greater effects. Results of investigations of the influence of exposure to air at given partial pressures of water vapor or of CO 2 show that strict preirradiation procedures must be adopted for preparation, storage and handling of ceramic tritium breeders

  7. Measuring Test Case Similarity to Support Test Suite Understanding

    NARCIS (Netherlands)

    Greiler, M.S.; Van Deursen, A.; Zaidman, A.E.

    2012-01-01

    Preprint of paper published in: TOOLS 2012 - Proceedings of the 50th International Conference, Prague, Czech Republic, May 29-31, 2012; doi:10.1007/978-3-642-30561-0_8 In order to support test suite understanding, we investigate whether we can automatically derive relations between test cases. In

  8. The influence of water saturation on mechanical properties of ceramic bricks – tests on 19th- century and contemporary bricks

    Directory of Open Access Journals (Sweden)

    Matysek, P.

    2016-09-01

    Full Text Available The paper presents test results concerning ceramic bricks produced in 1880’s. Bricks were obtained from a building erected as part of Archduke Rudolf barracks in Krakow. The tests helped to specify changes in brick compressive strength and hardness, caused by water saturation in the ceramic material. For comparison purposes, tests were also carried out on contemporary bricks. Tests showed that mechanical properties of the ceramic bricks in the water saturation state were worse than in the dry state. The impact of strong brick moisture on changes of mechanical parameters is essential in terms of safety assessment for brick structures.En el artículo se presentan los resultados del estudio de los ladrillos cerámicos producidos en los años 80 del siglo XIX. Los ladrillos se obtuvieron del edificio que forma parte de un conjunto de cuarteles del archiduque Rudolfo en Cracovia en Polonia. En los estudios se han determinado los cambios de la resistencia a la compresión y la dureza de los ladrillos, por efecto de la saturación de agua del material cerámico. A efectos comparativos, se han realizado también estudios de ladrillos producidos en la actualidad. Se ha comprobado que la saturación de agua de los ladrillos cerámicos lleva consigo una considerable disminución de las propiedades mecánicas. Por lo tanto, el impacto de la alta humedad de los ladrillos sobre el cambio de las propiedades mecánicas constituye un factor significativo en la evaluación de la seguridad en las construcciones de ladrillo.

  9. Test case preparation using a prototype

    OpenAIRE

    Treharne, Helen; Draper, J.; Schneider, Steve A.

    1998-01-01

    This paper reports on the preparation of test cases using a prototype within the context of a formal development. It describes an approach to building a prototype using an example. It discusses how a prototype contributes to the testing activity as part of a lifecycle based on the use of formal methods. The results of applying the approach to an embedded avionics case study are also presented.

  10. Achievement report for fiscal 1990. Research and development of ceramic gas turbine (Development of test and evaluation methods for ceramic member bonding technology); 1990 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai setsugo gijutsu no shiken hyoka hoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    Development of test and evaluation methods has been performed on a technology to bond ceramics with metals from the viewpoint that what governs bonding is residual stress. Activities were made in the following three fields: 1) tests and researches, 2) analytical studies, and 3) studies on correlation of residual stress with strength characteristics. In Item 1, selections were made on Si{sub 3}N{sub 4} as the ceramics, ordinary steel as the metal, and the brazing process in vacuum using Ti-based active metal as the bonding method. Discussions were given on processing of test pieces and the procedure thereof, an X-ray stress measuring method, a non-destructive inspection method, and a strength testing method. In Item 2, discussions were given on analysis of the bonding method and the residual stress in the bonding material due to brazing of ceramics with metal, for example, and the effects of the cutting process on the residual stress. In Item 3, discussions were given on mechanical strength evaluation on the bonding materials including the processing defects, for example, with regard to the correlation of the bonding residual stress with the mechanical strength characteristics, and on the effects of the residual stress on the tensile strength. (NEDO)

  11. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  12. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  13. The chemical composition and compression strengths of refractory ceramics, tested for 3 curing temperatures

    International Nuclear Information System (INIS)

    Wan Khairuddin bin Wan Ali

    1994-01-01

    An investigation was carried out to determine and compile the mechanical strength of a refractory ceramic made of ground fire bricks and refractory fire mortar. Three different compositions were studied for the compression strength and it was found that the composition with 50% fire bricks and 50% fire mortar gives the best mechanical strength. With this composition the maximum failure compression stress is 3.2 MPa. and the Young Modulus is 403.5 MPa. The investigation also shows that the curing temperatures and the composition percentages play an important role in determining the strength of the ceramic. The trend obtained from the investigation shows that there is the possibility that an optimum value of composition percentage exist

  14. Fabrication and testing of ceramic UO2 fuel - I-III. Part I

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The task described consists of the following: fabrication of UO 2 with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO 2 ; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO 2 powder. This volume includes reports on the first two tasks

  15. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  16. Automation of Test Cases for Web Applications : Automation of CRM Test Cases

    OpenAIRE

    Seyoum, Alazar

    2012-01-01

    The main theme of this project was to design a test automation framework for automating web related test cases. Automating test cases designed for testing a web interface provide a means of improving a software development process by shortening the testing phase in the software development life cycle. In this project an existing AutoTester framework and iMacros test automation tools were used. CRM Test Agent was developed to integrate AutoTester to iMacros and to enable the AutoTester,...

  17. Test case prioritization using Cuscuta search

    Directory of Open Access Journals (Sweden)

    Mukesh Mann

    2014-12-01

    Full Text Available Most companies are under heavy time and resource constraints when it comes to testing a software system. Test prioritization technique(s allows the most useful tests to be executed first, exposing faults earlier in the testing process. Thus makes software testing more efficient and cost effective by covering maximum faults in minimum time. But test case prioritization is not an easy and straightforward process and it requires huge efforts and time. Number of approaches is available with their proclaimed advantages and limitations, but accessibility of any one of them is a subject dependent. In this paper, artificial Cuscuta search algorithm (CSA inspired by real Cuscuta parasitism is used to solve time constraint prioritization problem. We have applied CSA for prioritizing test cases in an order of maximum fault coverage with minimum test suite execution and compare its effectiveness with different prioritization ordering. Taking into account the experimental results, we conclude that (i The average percentage of faults detection (APFD is 82.5% using our proposed CSA ordering which is equal to the APFD of optimal and ant colony based ordering whereas No ordering, Random ordering and Reverse ordering has 76.25%, 75%, 68.75% of APFD respectively.

  18. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  19. Intake and subsequent fate of a ceramic particle containing 2. 85 microCi /sup 241/Am: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L R; Sullivan, P A; Laferriere, J; Cumming, E; Demis, D

    1983-04-01

    Intake of /sup 241/Am was reported in a young female technologist. External monitoring, whole body counting, urinalysis and fecal analysis were performed to determine the subsequent fate of the contaminant. Five days later, more than 99.5% of the radioactivity was voided in a fecal sample. A single particle, containing 2.85 microCi of /sup 241/AmO2 incorporated in a ceramic matrix, was isolated from the fecal sample. Brief descriptions of the radioanalytical results and dosimetry implications are presented. A shadow shield whole body counter was conveniently used to make an early estimate of the intake. This initial estimate enabled staff to decide that it was not necessary to artifically remove the contaminant. It was estimated that the lower large intestine was the organ which received the highest dose due to the passage of the ceramic particle. Systemic uptake of /sup 241/JAm was indicated by urinalysis. The fractional transfer of /sup 241/Am from the GI tract to the blood was estimated to be less than 6 X 10(-5). This maximum estimate is limited by the MDA of the analytical procedures used. The fractional transfer of the /sup 241/Am from the GI tract to blood in this case is about an order of magnitude less than recent ICRP recommendations for ''all compounds of americium''.

  20. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  1. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  2. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  3. Standard test method for measurement of light reflectance value and small color differences between pieces of ceramic tile

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of Light Reflectance Value (LRV) and visually small color difference between pieces of glazed or unglazed ceramic tile, using any spectrophotometer that meets the requirements specified in the test method. LRV and the magnitude and direction of the color difference are expressed numerically, with sufficient accuracy for use in product specification. 1.2 LRV may be measured for either solid-colored tile or tile having a multicolored, speckled, or textured surface. For tile that are not solid-colored, an average reading should be obtained from multiple measurements taken in a pattern representative of the overall sample as described in 9.2 of this test method. Small color difference between tiles should only be measured for solid-color tiles. Small color difference between tile that have a multicolored, speckled, or textured surface, are not valid. 1.3 For solid colored tile, a comparison of the test specimen and reference specimen should be made under incandescent, f...

  4. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  5. Turbine-missile casing exit tests

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Sliter, G.E.

    1978-01-01

    Nuclear power plant designers are required to provide safety-related components with adequate protection against hypothetical turbine-missile impacts. In plants with a ''peninsula'' arrangement, protection is provided by installing the turbine axis radially from the reactor building, so that potential missile trajectories are not in line with the plant. In plants with a ''non-peninsula'' arrangement (turbine axis perpendicular to a radius), designers rely on the low probability of a missile strike and on the protection provided by reinforced concrete walls in order to demonstrate an adequate level of protection USNRC Regulatory Guide 1.115). One of the critical first steps in demonstrating adequacy is the determination of the energy and spin of the turbine segments as they exit the turbine casing. The spin increases the probability that a subsequent impact with a protective barrier will be off-normal and therefore less severe than the normal impact assumed in plant designs. Two full-scale turbine-missile casing exit tests which were conducted by Sandia Laboratories at their rocket-sled facility in Albuquerque, New Mexico, are described. Because of wide variations in turbine design details, postulated failure conditions, and missile exit scenarios, the conditions for the two tests were carefully selected to be as prototypical as possible, while still maintaining the well-controlled and well-characterized test conditions needed for generating benchmark data

  6. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  7. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  8. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  9. Evaluation of the Long-Term Performance of Titanate Ceramics for Immobilization of Excess Weapons Plutonium: Results from Pressurized Unsaturated Flow and Single Pass Flow-Through Testing

    International Nuclear Information System (INIS)

    BP McGrail; HT Schaef; JP Icenhower; PF Martin; RD Orr; VL Legore

    1999-01-01

    This report summarizes our findings from pressurized unsaturated flow (PUF) and single-pass flow-through (SPFT) experiments to date. Results from the PUF test of a Pu-bearing ceramic with enclosing surrogate high-level waste glass show that the glass reacts rapidly to alteration products. Glass reaction causes variations in the solution pH in contact with the ceramic materials. We also document variable concentrations of Pu in solution, primarily in colloidal form, which appear to be related to secular variations in solution composition. The apparent dissolution rate of the ceramic waste form, based on Ba concentrations in the effluent, is estimated at le 10 -5 g/(m 2 · d). Pu-bearing colloids were recovered in the size range of 0.2 to 2 microm, but it is not clear that such entities would be transported in a system that is not advective-flow dominated. Results from SPFT experiments give information on the corrosion resistance of two surrogate Pu-ceramics (Ce-pyrochlore and Ce-zirconolite) at 90 C over a pH range of 2 to 12. The two ceramics were doped with minor quantities (approximately0.1 mass%) of MoO 3 , so that concentrations of Mo in the effluent solution could be used to monitor the reaction behavior of the materials. The data obtained thus far from experiments with durations up to 150 d do not conclusively prove that the solid-aqueous solution systems have reached steady-state conditions. Therefore, the dissolution mechanism cannot be determined. Apparent dissolution rates of the two ceramic materials based on Ce, Gd, and Mo concentrations in the effluent solutions from the SPFT are nearly identical and vary between 1.1 to 8.5 x 10 -4 g/(m 2 · d). In addition, the data reveal a slightly amphoteric dissolution behavior, with a minimum apparent rate at pH = 7 to 8, over the pH range examined. Results from two related ceramic samples suggest that radiation damage can have a measurable effect on the dissolution of titanium-based ceramics. The rare earth

  10. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  11. Standard test methods for chemical analysis of ceramic whiteware materials using wavelength dispersive X-Ray fluorescence spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover the determination of ten major elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, and LOI in ceramic whitewares clays and minerals using wavelength dispersive X-ray fluorescence spectrometry (WDXRF). The sample is first ignited, then fused with lithium tetraborate and the resultant glass disc is introduced into a wavelength dispersive X-ray spectrometer. The disc is irradiated with X-rays from an X-ray tube. X-ray photons emitted by the elements in the samples are counted and concentrations determined using previously prepared calibration standards. (1) In addition to 10 major elements, the method provides a gravimetric loss-on-ignition. Note 1—Much of the text of this test method is derived directly from Major element analysis by wavelength dispersive X-ray fluorescence spectrometry, included in Ref (1). 1.2 Interferences, with analysis by WDXRF, may result from mineralogical or other structural effects, line overlaps, and matrix effects. The structure of the...

  12. Prototype development and testing of ultrafine grain NZP ceramics. Final report, July 28, 1995--April 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.J.

    1997-08-04

    The goal of this project was to demonstrate that a new low-expanding ceramic (Ca{sub 0.6},Mg{sub 0.4})Zr{sub 4}(PO{sub 4}){sub 6}, hereafter referred to as CMZP, could be used as an exhaust manifold liner in off-road diesel engines and provide improved engine efficiency (by permitting higher engine operating temperature). This study has successfully demonstrated this improvement and further engine testing (and possible manufacturing) is presently underway at Caterpillar Inc. Laboratories. Basically this program involved two subcontracts: one to Virginia Tech to develop sintering procedures for CMZP, and one to Caterpillar, Inc. to develop slip casting procedures for CMZP. Nearly 100kg of CMZP were prepared by MATVA, Inc. and Virginia Tech for use by Caterpillar. Virginia Tech developed detailed sintering procedures for CMZP and Caterpillar developed slip casting procedures and manufactured several exhaust manifold elbows. These elbows have been cast into prototype cylinder heads and have been shown to be acceptable replacements for metal manifolds. (Caterpillar advises that a new component may require up to 6 years of testing and qualification before acceptance as standard diesel engine part).

  13. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  14. Studies on Romanian archaeological objects using nuclear methods: cases of Pietroasa hoard and Cucuteni ceramics

    International Nuclear Information System (INIS)

    Constantinescu, B.; Cojocaru, V.; Bugoi, R.; Dumitriu, D.E.; Grambole, D.; Herrmann, F.; Secleman, D.; Popovici, M.

    2003-01-01

    mention: - identification of black pigment composition from Cucuteni (northern Moldova) and Ariusd (south-eastern Transylvania) type pottery (VI - IV Millennia B. Chr.) as various combinations of goethite (alphaFeOOH), hausmannite (MnMn 2 O 4 ) and bixbyte (Mn, Fe) 2 O 3 - for high-temperatures ( more than 600 deg C) fired pottery (the advanced Cucuteni ceramics types A and B) and psilomelane (MnO + MnO 2 + H 2 O in various concentration ratios) for low temperatures (less than 400 deg C) fired pottery (the primitive pre-Cucuteni type C) - all these minerals originating from northern Moldova mineral deposits of Iacobeni (neolithic trade routes put in evidence in this way - approx 500 km crossing Carpathian Mountains along Bistrita river); - no evidence of pyrolusite (MnO 2 ) and manganite [MnO(OH)] - main components of Ukrainian Nikopol manganese deposit (used as black pigment source by contemporary Tripolye Neolithic culture) was found; - identification of magnetite (iron oxide Fe 2 +Fe 3 +O 3 ) as main component for black pigments of Central Transylvania Petresti culture (4200 - 3500 B. Chr.); - identification of graphite as black pigment for Oltenia Starcevo-Cris culture - VI - V Millennia B. Chr.- ceramics (probably from northern Bulgaria graphite deposits); - identification of organic origin (bones or wood) carbon-based pigments for few Cucuteni shards from north-eastern Moldova; - identification of white pigment composition as calcite (CaCO 3 ) for Cucuteni culture and as calcium silicates mixed with illite [(K, H 2 ))Al 2 [(H 2 O, OH) 2 ]AlSi 3 O 10 ] for Petresti culture (Transylvania) and their minerals provenance areas; - identification of hematite (iron oxide Fe 2 O 3 ) as main component for red pigments for all examined shards; - identification of all examined shards as having local provenance for the clay. (authors)

  15. Multi-analytical characterization of archaeological ceramics. A case study from the Sforza Castle (Milano, Italy).

    Science.gov (United States)

    Barberini, V.; Maspero, F.; Galimberti, L.; Fusi, N.

    2009-04-01

    The aim of this work was the characterization, using several analytical techniques, of a sample of ancient pottery found during archaeological excavations in the 14th century's Sforza Castle in Milano. The use of a multi-analytical approach is well established in the study of archaeological materials (e.g. Tite et al. 1984, Ribechini et al. 2008). The chemical composition of the sample was determined with X-ray fluorescence spectroscopy. The chemical composition is: SiO2 61.3(±3)%, Al2O3 22.5(±2)%, Fe2O3 7.19(±6)%, K2O 3.85(±1)%, MgO 1.6(±1)%, Na2O 1.6(±4)% (probably overestimated), TiO2 1.02(±2)%, CaO 0.93(±1)%, MnO 0.15(±1)% and P2O5 0.06(±2)%. The K2O content, important when dealing with TL dating, was determined also with atomic absorption spectrophotometry. The K2O content determined with atomic absorption is 3.86(±3)%, in agreement with X-ray fluorescence analysis. The mineralogical composition of the sample was determined with X-ray powder diffraction: quartz 59.6(±1) wt%, mica 37.8(±3) wt% and feldspar (plagioclase) 2.6(±2) wt%. The sample homogeneity was assessed with X-ray computerised tomography (CT), which is a very powerful non-destructive analysis tool for 3D characterization (Sèguin, 1991). CT images show differences in materials with different X-ray absorption (mainly depending on different densities) and 3D reconstruction has many interesting archaeological applications (e.g. study of sealed jars). CT images of the studied sample showed the presence of angular fragments (probably quartz) few millimetres wide immersed in a fine grained matrix. Moreover, before and after the CT analysis, some ceramic powder was sampled to perform thermoluminescence analysis (TL, the powder used for this analysis can not be recovered). It was thus possible to evaluate the dose absorbed by the material due the X-ray irradiation. The dose absorbed after 3 hours of irradiation, the time needed for a complete scan of a 7 x 5 x 1 cm, is about 100 Gy, which

  16. Changes in the flexural strength of engineering ceramics after high temperature sodium corrosion test. Influence after sodium exposure for 1000 hours

    International Nuclear Information System (INIS)

    Hayashi, Kazunori; Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Komine, Ryuji; Yoshida, Eiichi

    1998-02-01

    Engineering ceramics have excellent properties such as high strength, high hardness and high heat resistance compared with metallic materials. To apply the ceramic in fast reactor environment, it is necessary to evaluate the sodium compatibility and the influence of sodium on the mechanical properties of ceramics. In this study, the influence of high temperature sodium on the mechanical properties of sintered ceramics of conventional and high purity Al 2 O 3 , SiC, SiAlON, AlN and unidirectional solidified ceramics of Al 2 O 3 /YAG eutectic composite were investigated by means of flexure tests. Test specimens were exposed in liquid sodium at 823K and 923K for 3.6Ms. There were no changes in the flexural strength of the conventional and high purity Al 2 O 3 , AlN and Al 2 O 3 /YAG eutectic composite after the sodium exposure at 823K. On the contrary, the decrease in the flexural strength was observed in SiC and SiAlON. After the sodium exposure at 923K, there were also no changes in the flexural strength of AlN and Al 2 O 3 /YAG eutectic composite. In the conventional and high purity Al 2 O 3 and SiC, the flexural strength decreased and signs of grain boundary corrosion were detected by surface observation. The flexural strength of SiAlON after the sodium exposure at 923K increased instead of severe corrosion. In the specimens those showed no changes in the flexural strength, further exposure in sodium is needed to verify whether the mechanical properties degrade or not. For SiAlON, it is necessary to clarify the reason for the increased strength after the sodium exposure at 923K. (author)

  17. Reliability of ceramics for heat engine applications

    Science.gov (United States)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  18. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  19. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  20. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  1. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  2. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  3. Test case for a near-surface repository

    International Nuclear Information System (INIS)

    Elert, M.; Jones, C.; Nilsson, L.B.; Skagius, K.; Wiborgh, M.

    1998-01-01

    A test case is presented for assessment of a near-surface disposal facility for radioactive waste. The case includes waste characterization and repository design, requirements and constraints in an assessment context, scenario development, model description and test calculations

  4. Achievement report for fiscal 1991. Research and development of ceramic gas turbine (Development of test and evaluation method for ceramic member bonding technology); 1991 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai setsugo gijutsu no shiken hyoka hoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    Development has been made on the test and evaluation method for a technology of bonding ceramics with metals from a viewpoint that what governs the bonding is residual stress. Activities were made on 1) test researches, 2) analysis researches, and 3) researches on the correlation of residual stress with mechanical strength characteristics. In Item 1, tests on the bonding residual stress and mechanical strength characteristics, tests on high temperature mechanical strength characteristics, X-ray stress measurement, IF method measurement, and mechanical strength test were performed. In Item 2), researches were made on three-dimensional stress analysis of interface bonded with different materials, high temperature mechanical strength of bonded bodies, and heat cycle fatigue strength. In Item 3, destruction dynamic discussions were given on the effects of the residual stress on the tension rupture strength, and cracks on bonded interface. Specifically speaking, residual stress in four kinds of bonded bodies with various sizes (Si{sub 3}N{sub 4}/Cu/steel), for example, was measured, the bonded bodies were subjected to a cutting process, and considerations were given on the effects imposed on re-distribution of the residual stress due to the cutting and on the bonding strength. (NEDO)

  5. Test-element assembly and loading parameters for the in-pile test of HCPB ceramic pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der E-mail: vanderlaan@nrg-nl.com; Boccaccini, L.V.; Conrad, R.; Fokkens, J.H.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Reimann, J.; Stijkel, M.P.; Malang, S

    2002-11-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters.

  6. Application of interconnected porous hydroxyapatite ceramic block for onlay block bone grafting in implant treatment: A case report.

    Science.gov (United States)

    Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki

    2017-12-01

    Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.

  7. Dynamic test of the ITER blanket key and ceramic insulated pad

    International Nuclear Information System (INIS)

    Khomyakov, S.; Sysoev, G.; Strebkov, Yu.; Kucherov, A.; Ioki, K.

    2010-01-01

    The dynamic testing of the blanket module's key integrated into ITER vacuum vessel portion has been performed in 2008 to investigate its capability to react the electro-magnetic (EM) loads. The preliminary analysis showed the large dynamic amplification factor (DAF) of the reactions because of technological gaps between the blanket module and key. Shock load may yield the bronze pads, which protect the blanket electrical insulation from damage. However the dynamic analysis of such particularly non-linear system needs an experimental ground and confirmation. Toward this end, as well as demonstration of the key reliability, the special test facility has been made, and the full-scale mock-up of the inboard intermodular key was tested. So as not to scale non-linear dynamic parameters, 1-ton mass was built on the single flexible support. The key was welded in a 60-mm thick steel plate modeled with a fragment of the VV. The different gaps were set in between the bronze pad of the key and the mass shock worker. This system (supplemented with some additional constraints) has natural oscillations like as the 4-ton module built on four flexible supports. Thus the most critical radial torque might be modeled with a straight force. The objectives of the test were as follows: dynamic response, DAF and damping factor determination; measurement of the strain oscillations in the key's base and in the weld seam; comparison of the measured data with computation results. The paper will present the analytical grounds of the testing conditions, test facility description, analytical adaptation of the facility, experimental results, its comparison with analysis and discussion, and guidelines for the next experimental phase.

  8. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  9. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  10. Product consistency test and toxicity characteristic leaching procedure results of the ceramic waste form from the electrometallurgical treatment process for spent fuel

    International Nuclear Information System (INIS)

    Johnson, S. G.; Adamic, M. L.: DiSanto, T.; Warren, A. R.; Cummings, D. G.; Foulkrod, L.; Goff, K. M.

    1999-01-01

    The ceramic waste form produced from the electrometallurgical treatment of sodium bonded spent fuel from the Experimental Breeder Reactor-II was tested using two immersion tests with separate and distinct purposes. The product consistency test is used to assess the consistency of the waste forms produced and thus is an indicator of a well-controlled process. The toxicity characteristic leaching procedure is used to determine whether a substance is to be considered hazardous by the Environmental Protection Agency. The proposed high level waste repository will not be licensed to receive hazardous waste, thus any waste forms destined to be placed there cannot be of a hazardous nature as defined by the Resource Conservation and Recovery Act. Results are presented from the first four fully radioactive ceramic waste forms produced and from seven ceramic waste forms produced from cold surrogate materials. The fully radioactive waste forms are approximately 2 kg in weight and were produced with salt used to treat 100 driver subassemblies of spent fuel

  11. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  12. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  13. Biaxial (Tension-Torsion) Testing of an Oxide/Oxide Ceramic Matrix Composite

    Science.gov (United States)

    2013-03-01

    11 3.1 NextelTM 720/AS Dogbone and Straightsided Specimen Layups . . . . . . . . 15 3.2 Prepreg processing steps of NextelTM 720/AS composite...the laminate in the test section, used for producing circum- ferential or axial stresses, should be minimized to avoid adding a high radial stress...provided fabrication process in Figure 3.2. The process followed the fabric, prepreg , and layup process versus the fiber tow and filament winding

  14. TECHNOLOGICAL TESTS USING QUARTZITE RESIDUES AS COMPONENT OF CERAMIC MASS AT THE PORCELAIN STONEWARE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Marcondes Mendes Souza

    2015-03-01

    Full Text Available This work aims to evaluate through technological tests the use of quartzite residues as component at the the production of porcelain stoneware. Were collected five samples of quartzites called of green quartzite, black quartzite, pink quartzite, goldy quartzite, white quartzite. After, the raw materials were milled, passed by a sieve with a Mesh of 200# (Mesh and characterized by chemical analysis in fluorescence of x-rays and also analysis of the crystalline phases by diffraction of x-rays. The porcelain tiles mass is composed of five formulations containing 57% of feldspar, 37% of clay and 6% of residues of quartzite with different coloration. For the preparation of the specimens, it was used uniaxial pressing, which afterwards were synthesized at 1150°C, 1200°C and 1250°C. After the sintering, the specimens were submit for tests of technological characterization like: water absorption, linear shrinkage, apparently porosity, density and flexural strain at three points. The results presented in the fluorescence of x-rays showed a high-content of iron oxide on black quartzite that is why it was discarded the utilization of it in porcelain stoneware. All quartzite formulations had low water absorption achieved when synthesized at 1200°C, getting 0.1 to 0.36% without having gone through the atomization process. At the tests of flexural strain, all the quartzite had in acceptance limits, according to the European norm EN 100, overcoming 27 MPA at 1200°C

  15. Casing pull tests for directionally drilled environmental wells

    International Nuclear Information System (INIS)

    Staller, G.E.; Wemple, R.P.; Layne, R.R.

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it's industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported

  16. Casing pull tests for directionally drilled environmental wells

    Energy Technology Data Exchange (ETDEWEB)

    Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

  17. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  18. Electron beam test of an iron/gas calorimeter based on ceramic parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Herve, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Maggi, F.; Malinin, A.; Meschini, M.; Pojidaev, V.; Radermacher, E.; Salicio, J.M.

    1995-01-01

    The baseline option for the very forward calorimetry in the CMS experiment is an iron/gas calorimeter based on parallel plate chambers. A small prototype module of such a calorimeter, has been tested using electrons of 5 to 100 GeV/c momentum with various high voltages and two gases: CO2 (100%) and CF4/CO2 (80/20), at atmospheric pressure. The collected charge has been measured as a function of the high voltage and of the electron energy. The energy resolution has also been measured. Comparisons have been made with Monte-Carlo predictions. Agreement between data an simulation allows to make and estimation of the expected performance of a full size calorimeter. (Author) 23 refs

  19. Electron beam test of an iron/gas calorimeter based on ceramic parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, G.L.; Bizzeti, A.; choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Herve, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Maggi, F.; Malininin, A.; Meschini, M.; Pojidaev, V.; Radermacher, E.; Salicio, J.M.

    1995-12-01

    The baseline option for the very forward calorimetry in the CMS experiment is an iron/gas calorimeter based on parallel plate chambers. A small prototype module of such a calorimeter, has been tested using electrons of 5 to 100 GeV/c momentum with various high voltages and two gases: CO 2 (100%) and CF 4 /CO 2 (80/20), at atmospheric pressure. The collected charge has been measured as a function of the high voltage and of the electron energy. The energy resolution has also been measured. Comparisons have been made with Monte-Carlo predictions. Agreement between data an simulation allows to make and estimation of the expected performance of a full size calorimeter. (Author)

  20. A simple surrogate test method to rank the wear performance of prospective ceramic materials under hip prosthesis edge-loading conditions.

    Science.gov (United States)

    Sanders, Anthony P; Brannon, Rebecca M

    2014-02-01

    This research has developed a novel test method for evaluating the wear resistance of ceramic materials under severe contact stresses simulating edge loading in prosthetic hip bearings. Simply shaped test specimens - a cylinder and a spheroid - were designed as surrogates for an edge-loaded, head/liner implant pair. Equivalency of the simpler specimens was assured in the sense that their theoretical contact dimensions and pressures were identical, according to Hertzian contact theory, to those of the head/liner pair. The surrogates were fabricated in three ceramic materials: Al2 O3 , zirconia-toughened alumina (ZTA), and ZrO2 . They were mated in three different material pairs and reciprocated under a 200 N normal contact force for 1000-2000 cycles, which created small (material pairs were ranked by their wear resistance, quantified by the volume of abraded material measured using an interferometer. Similar tests were performed on edge-loaded hip implants in the same material pairs. The surrogates replicated the wear rankings of their full-scale implant counterparts and mimicked their friction force trends. The results show that a proxy test using simple test specimens can validly rank the wear performance of ceramic materials under severe, edge-loading contact stresses, while replicating the beginning stage of edge-loading wear. This simple wear test is therefore potentially useful for screening and ranking new, prospective materials early in their development, to produce optimized candidates for more complicated full-scale hip simulator wear tests. Copyright © 2013 Wiley Periodicals, Inc.

  1. HYBRID DATA APPROACH FOR SELECTING EFFECTIVE TEST CASES DURING THE REGRESSION TESTING

    OpenAIRE

    Mohan, M.; Shrimali, Tarun

    2017-01-01

    In the software industry, software testing becomes more important in the entire software development life cycle. Software testing is one of the fundamental components of software quality assurances. Software Testing Life Cycle (STLC)is a process involved in testing the complete software, which includes Regression Testing, Unit Testing, Smoke Testing, Integration Testing, Interface Testing, System Testing & etc. In the STLC of Regression testing, test case selection is one of the most importan...

  2. Ion implantation and fracture toughness of ceramics

    International Nuclear Information System (INIS)

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  3. Reliability Estimation for Single-unit Ceramic Crown Restorations

    Science.gov (United States)

    Lekesiz, H.

    2014-01-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249

  4. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  5. Integration testing through reusing representative unit test cases for high-confidence medical software.

    Science.gov (United States)

    Shin, Youngsul; Choi, Yunja; Lee, Woo Jin

    2013-06-01

    As medical software is getting larger-sized, complex, and connected with other devices, finding faults in integrated software modules gets more difficult and time consuming. Existing integration testing typically takes a black-box approach, which treats the target software as a black box and selects test cases without considering internal behavior of each software module. Though it could be cost-effective, this black-box approach cannot thoroughly test interaction behavior among integrated modules and might leave critical faults undetected, which should not happen in safety-critical systems such as medical software. This work anticipates that information on internal behavior is necessary even for integration testing to define thorough test cases for critical software and proposes a new integration testing method by reusing test cases used for unit testing. The goal is to provide a cost-effective method to detect subtle interaction faults at the integration testing phase by reusing the knowledge obtained from unit testing phase. The suggested approach notes that the test cases for the unit testing include knowledge on internal behavior of each unit and extracts test cases for the integration testing from the test cases for the unit testing for a given test criteria. The extracted representative test cases are connected with functions under test using the state domain and a single test sequence to cover the test cases is produced. By means of reusing unit test cases, the tester has effective test cases to examine diverse execution paths and find interaction faults without analyzing complex modules. The produced test sequence can have test coverage as high as the unit testing coverage and its length is close to the length of optimal test sequences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Experimental programme in support of the development of the European ceramic-breeder-inside-tube test-blanket: present status and future work

    International Nuclear Information System (INIS)

    Proust, E.; Roux, N.; Flament, T.; Anzidei, L.; ENEA, Frascati; Casadio, S.; Dell'orco, G.

    1992-01-01

    Four DEMO blanket classes are under investigation within the framework of the European Test-Blanket Development Programme. One of them is featured by the use of lithium ceramic breeder pellets contained inside externally helium cooled tubes. This paper summarizes the main achievements to date of the experimental programme supporting the development of this class of blanket. It also gives an outline of the areas of the breeder material, beryllium, tritium control, and thermomechanical tests, the future work envisaged for the 92-94 period. 53 refs

  7. Participation in IAEA proficiency test exercise on major, minor and trace elements in ancient Chinese ceramic (IAEA-CU-2006-06) using low power research reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Zaidi, J.H.

    2011-01-01

    A proficiency test (PT) exercise was offered by the International Atomic Energy Agency (IAEA) for major, minor and trace elements in Chinese ceramic reference material (IAEA-CU-2006-06). Neutron activation analysis (NAA) laboratory at PINSTECH, Pakistan participated in the exercise and submitted the results for 28 elements. The aim of participation was to develop a suitable methodology for accurate measurement of as many elements as possible in ceramic material using a low power reactor (PARR-2) as this would help future investigation in a project on the authenticity of art objects, for provenance, conservation and management of ancient cultural heritage of the country. After receiving the final report of the PT exercise, a critical review of our data and final scoring of each element is made to check the suitability of our methodology and reliability of the acquired data. Most of the reported results passed different statistical evaluation criterion such as relative bias, z-score and u-scores and ratio of our results and IAEA target values. One element (Yb) falls in the unacceptable range of relative bias and z-scores. Hf and Tb showed slightly high z-scores within the questionable range. Ho, Mo and Sn were determined during this study but their results were not submitted to the IAEA. The confidence of accuracy observed for most of the elements in ceramic material has made it mandatory to report their results as information values. (author)

  8. Neutrons, radiation and archaeology: a multi analytical case study of incised rim tradition ceramics in Central Amazon

    International Nuclear Information System (INIS)

    Hazenfratz-Marks, Roberto

    2014-01-01

    This thesis is an interdisciplinary archaeometric study involving archaeological ceramic material from two large archaeological sites in Central Amazon, namely Lago Grande and Osvaldo, on the confluence region of Negro and Solimoes rivers. It was tested a hypothesis about the existence of an exchange network between the former inhabitants of those sites, focusing on material and/or technological exchange. That hypothesis has implications for archaeological theories of human occupation of the pre-colonial Central Amazon, which try to relativise the role of ecological difficulties of the tropical forest as a limiting factor for the emergence of social complexity in the region. The physical-chemical characterization of potsherds and clay samples near the sites was carried out by: instrumental neutron activation analysis (INAA) to determine the elemental chemical composition; electron paramagnetic resonance (EPR) to determine the firing temperature; X-ray diffraction (XRD) to determine the mineralogical composition; and dating by optically stimulated luminescence (OSL). Previous studies showed that Osvaldo and Lago Grande were occupied by people which produced pottery classified in the Manacapuru and Paredao phases, subclasses of the Incised Rim Tradition, around the 5-10th and 7-12th centuries BC, respectively. INAA results were analyzed by multivariate statistical methods, whereby two chemical groups of pottery were defined for each archaeological site. Significant variation in firing temperatures and mineralogical composition were not identified for such groups. By integration of the results with archaeological data, the superposition between pairs of chemical groups was interpreted as a correlate of an ancient exchange network, although it was not possible to define if it existed exclusively between Lago Grande and Osvaldo. On the contrary, it was suggested that Lago Grande participated in a more extensive exchange network by comparison of two chemical groups

  9. Development and set-up of a test system for non-destructive acoustic and ultrasonic testing of silicon nitride ceramics valves; Entwicklung und Aufbau eines Pruefsystems zur zerstoerungsfreien Klang- und Ultraschallpruefung von Ventilen aus Siliciumnitrid-Keramik

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, H.A.; Caspers, B.; Hennicke, J.; Feuer, H.; Petzenhauser, I. [Cremer Forschungsinstitut GmbH und Co. KG, Roedental (Germany)

    1999-07-01

    Valves made of silicon nitrice ceramics have advantages over metal valves owing to their low density, high wear resistance, low thermal conductivity and high termperature resistance. Reciprocating piston engines with ceramic valves have a lower fuel consumption, lower noise, and lower exhaust emissions. On the other hand, ceramic materials have the disadvantage of being brittele, i.e. mechanical stress concentrations at crack tips cannot be removed by plastic deformation. In order to ensure safe application in piston engines, all ceramic valves must therefore be tested by nondestructive methods in order to detect and replace defective valves. [German] Ventile aus Siliciumnitrid-Keramik haben infolge ihrer geringen Dichte, hohen Verschleissfestigkeit, niedrigen Waermeleitfaehigkeit und hohen Temperaturfestigkeit gegenueber Ventilen aus metallischen Werkstoffen ganz entscheidende Vorteile. So haben Hubkolbenmotoren mit Keramikventilen einen deutlich geringeren Treibstoffbedarf und zeigen bei einem erheblich reduzierten Geraeuschpegel eine schadstoffaermere Abgasentwicklung. Diesen Vorteilen steht die allen keramischen Werkstoffen gemeinsame Eigenschaft der Sproedigkeit gegenueber. So koennen mechanische Spannungskonzentrationen an Rissspitzen nicht durch plastische Verformung abgebaut werden. Fuer den sicheren Einsatz im Hubkolbenmotor muessen daher die Keramikventile einer zerstoerungsfreien Bewertung unterzogen werden, um fehlerhafte Ventile zu erkennen und auszuscheiden. (orig.)

  10. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of stoneware ceramics and bricks

    Czech Academy of Sciences Publication Activity Database

    Gualtieri, A. F.; Riva, V.; Bresciani, A.; Maretti, S.; Tamburini, M.; Viani, Alberto

    2014-01-01

    Roč. 47, č. 3 (2014), s. 835-846 ISSN 0021-8898 R&D Projects: GA MŠk(CZ) LO1219 Keywords : amorphous phases * bricks * ceramics * internal standards * quantitative phase analysis Subject RIV: JN - Civil Engineering Impact factor: 3.720, year: 2014 http://scripts.iucr.org/cgi-bin/paper?S160057671400627X

  12. The energy efficiency and environmental impacts in the ceramic industry: the case of ceramic coatings segment; A eficiencia energetica e os impactos na industria ceramica: o caso do segmento de revestimentos ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], email: mauro_berni@yahoo.com.br; Bajay, Sergio Valdir [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia

    2010-07-01

    The Brazilian ceramic industry has great importance for the country, with a stake of more than 1.0% of GDP, or approximately $ 6 billion. The segment of ceramic coatings due to the higher revenues, production, employment, value of manufacturing and penetration in foreign markets, has been the highlight of the ceramic sector. Besides most representative in economic terms, the ceramic coatings segment presents with the largest final energy consumption and volume of emissions. This work shows the evolution of the final energy consumption of the ceramic sector, showing that the segment of ceramic coatings can be successful harnessing of potential energy conservation with reflections on the mitigation of greenhouse gas emissions. Therefore, the study evaluates: the process and energy sources; reducing impacts along the entire life cycle of products and the management actions providing a new corporate culture and social and environmental responsibility.

  13. Ceramics research in a high-energy neutron source

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1989-01-01

    The studies on the irradiation effect to ceramics have added much to the basic understanding of their behavior, for example, the amorphous state of ceramics related to radiation-induced metamictization, the radiation-induced strengthening and toughening due to ultrafine defect aggregates, the in situ degradation of electrical resistivity, the role of radiation-induced defects on thermal conductivity and so on. Most of the irradiation testing on ceramics in the fields of structural and thermal properties have been carried out by using fast fission neutrons of about 1 MeV, but if this energy could be significantly changed, the size and nature of damage cascade and the quantity of transmutation gases produced would change. The significance of neutron source parameters, the special test requirement for ceramics such as the use of miniature specimens, the control of test environment, the transient reduction of electrical resistivity and so on are discussed. A special case of ceramic studies is that on new oxide superconductors. These materials can be made into amorphous state at about 1 dpa using 1 MeV electrons, and are considered to be fairly damage-sensitive. (K.I.)

  14. Fracturing of revision of a cobalt-chrome femoral head after fracturing of a ceramic femoral head, with diffuse metallosis. Case report

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Dantas Costa Marques

    2013-04-01

    Full Text Available We presente a case of a fracture of a cobalt-chrome femoral head after revision of a hip total prosthesis with ceramic femoral head fracture. During surgery we found the cobalt-chrome femoral head fracture, wear of the polyethylene and massive metallosis in muscular and cartilaginous tissue. Both femoral stem and acetabular cup were stable and without apparent wearing. After surgical debridement, we promoted the substitution of the femoral head and the acetabular polyethylene by similar ones. After 12 months of follow-up, the patient has no pain complaints, function limit or systemic signs associated with malign metallosis

  15. An interdisciplinary approach to reconstruct a fractured tooth under an intact all ceramic crown: Case report with four years follow up

    Directory of Open Access Journals (Sweden)

    Sudhir Bhandari

    2011-01-01

    Full Text Available Trauma causing the fracture of a restored tooth with the extracoronal full coverage prosthesis remaining intact is a common occurrence in dental practice. Reconstruction of the damaged tooth foundation and recementation of the crown can pose quite a challenge for the restorative dentist. This case report describes an innovative interdisciplinary chairside technique for the recementation of an all-ceramic crown on a fractured maxillary central incisor. The course of care described is effective, affordable, and saves time in comparison with other treatment options for such clinical situations.

  16. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  17. Fracture mechanics of ceramics. Vol. 7

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.

    1986-01-01

    This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines

  18. Computerized Adaptive Testing. A Case Study.

    Science.gov (United States)

    1980-12-01

    Vocational Interest Blank in 1927 [Dubois 1970]. 3. German Contributions Cattell also studied for a period of three years in Leipzig under Wilhelm Wundt in the...world’s first psychological laboratory, 2 founded by Wundt in 1879 [Heidbreder 1933]. 2William James’ laboratory, established at Harvard in 1875, did...have become important parts of psychological test theory. Under Wundt , Spearman’s principal endeavor was experimental psychology, but he also found time

  19. Test case for a near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Jones, C. [Kemakta Konsult AB, Stockholm (Sweden); Nilsson, L.B. [Swedish Nuclear Fuel and Waste Co, Stockholm (Sweden); Skagius, K.; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-09-01

    A test case is presented for assessment of a near-surface disposal facility for radioactive waste. The case includes waste characterization and repository design, requirements and constraints in an assessment context, scenario development, model description and test calculations 6 refs, 12 tabs, 16 figs

  20. Incorporation of gypsum waste in ceramic block production: Proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process.

    Science.gov (United States)

    Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M

    2012-01-01

    Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool

  1. Guidelines for the scale-up of an aqueous ceramic process: a case study of statistical process control

    OpenAIRE

    Mortara, L.; Alcock, Jeffrey R.

    2011-01-01

    Process-scale up is the change from a feasibility study in a laboratory to a full-scale prototype production process. It is an important issue for the ceramics industry, but has been the subject of relatively little systematic research. This paper will show how certain manufacturing concepts used in a number of industries - can be applied to the scale up of a feasibility study level, aqueous tape casting process. In particular, it examines the elements of process standardisa...

  2. Validation test case generation based on safety analysis ontology

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Wang, Wen-Shing

    2012-01-01

    Highlights: ► Current practice in validation test case generation for nuclear system is mainly ad hoc. ► This study designs a systematic approach to generate validation test cases from a Safety Analysis Report. ► It is based on a domain-specific ontology. ► Test coverage criteria have been defined and satisfied. ► A computerized toolset has been implemented to assist the proposed approach. - Abstract: Validation tests in the current nuclear industry practice are typically performed in an ad hoc fashion. This study presents a systematic and objective method of generating validation test cases from a Safety Analysis Report (SAR). A domain-specific ontology was designed and used to mark up a SAR; relevant information was then extracted from the marked-up document for use in automatically generating validation test cases that satisfy the proposed test coverage criteria; namely, single parameter coverage, use case coverage, abnormal condition coverage, and scenario coverage. The novelty of this technique is its systematic rather than ad hoc test case generation from a SAR to achieve high test coverage.

  3. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  4. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  5. Herbalife hepatotoxicity: Evaluation of cases with positive reexposure tests.

    Science.gov (United States)

    Teschke, Rolf; Frenzel, Christian; Schulze, Johannes; Schwarzenboeck, Alexander; Eickhoff, Axel

    2013-07-27

    To analyze the validity of applied test criteria and causality assessment methods in assumed Herbalife hepatotoxicity with positive reexposure tests. We searched the Medline database for suspected cases of Herbalife hepatotoxicity and retrieved 53 cases including eight cases with a positive unintentional reexposure and a high causality level for Herbalife. First, analysis of these eight cases focused on the data quality of the positive reexposure cases, requiring a baseline value of alanine aminotransferase (ALT) Herbalife in these eight cases were probable (n = 1), unlikely (n = 4), and excluded (n = 3). Confounding variables included low data quality, alternative diagnoses, poor exclusion of important other causes, and comedication by drugs and herbs in 6/8 cases. More specifically, problems were evident in some cases regarding temporal association, daily doses, exact start and end dates of product use, actual data of laboratory parameters such as ALT, and exact dechallenge characteristics. Shortcomings included scattered exclusion of hepatitis A-C, cytomegalovirus and Epstein Barr virus infection with only globally presented or lacking parameters. Hepatitis E virus infection was considered in one single patient and found positive, infections by herpes simplex virus and varicella zoster virus were excluded in none. Only one case fulfilled positive reexposure test criteria in initially assumed Herbalife hepatotoxicity, with lower CIOMS based causality gradings for the other cases than hitherto proposed.

  6. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  7. Sample test cases using the environmental computer code NECTAR

    International Nuclear Information System (INIS)

    Ponting, A.C.

    1984-06-01

    This note demonstrates a few of the many different ways in which the environmental computer code NECTAR may be used. Four sample test cases are presented and described to show how NECTAR input data are structured. Edited output is also presented to illustrate the format of the results. Two test cases demonstrate how NECTAR may be used to study radio-isotopes not explicitly included in the code. (U.K.)

  8. Making System Dynamics Cool IV : Teaching & Testing with Cases & Quizzes

    NARCIS (Netherlands)

    Pruyt, E.

    2012-01-01

    This follow-up paper presents cases and multiple choice questions for teaching and testing System Dynamics modeling. These cases and multiple choice questions were developed and used between January 2012 and April 2012 a large System Dynamics course (250+ 2nd year BSc and 40+ MSc students per year)

  9. Making System Dynamics Cool III : New Hot Teaching & Testing Cases

    NARCIS (Netherlands)

    Pruyt, E.

    2011-01-01

    This follow-up paper presents seven actual cases for testing and teaching System Dynamics developed and used between January 2010 and January 2011 for one of the largest System Dynamics courses (250+ students per year) at Delft University of Technology in the Netherlands. The cases presented in this

  10. Er,Cr:YSGG Laser as a Novel Method for Rebonding Failed Ceramic Brackets.

    Science.gov (United States)

    Sohrabi, Aydin; Jafari, Sanaz; Kimyai, Soodabeh; Rikhtehgaran, Sahand

    2016-10-01

    Since there is no standard method for rebonding loose ceramic brackets, the aim of this study was to evaluate the possibility of using Er,Cr:YSGG laser to eliminate the remaining composite materials from the base of ceramic brackets and to compare the bond strength of rebonded brackets with the new ones. Sixty-two extracted human premolars were mounted in acrylic cylinders. Thirty-one ceramic brackets were bonded, and shear bond strength was tested using Hounsfield testing machine. The remnants of the bonding material were removed from the bases of brackets using Er,Cr:YSGG laser. These brackets were rebonded to 31 fresh teeth and again shear bond strength was measured. Pattern of debonding was assessed in both cases under a stereomicroscope and graded according to ARI index. Data were analyzed with independent t-test and Fisher's exact test. Mean shear bond strength of the bond and rebond groups was 12.29 ± 5.46 and 10.58 ± 5.16 MPa, respectively. There were no significant differences between the two groups (p = 0.21). Pattern of bond failure was not statistically different between the two groups. Er,Cr:YSGG laser was effective in removing the remnants of bonding material from the base of ceramic brackets without any interference with the ceramic base itself, demonstrating that it might be a suitable method for rebonding ceramic brackets.

  11. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  12. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  13. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  14. Fatigue strength of Al2O3 and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Sonsino, C.M.

    1992-01-01

    Various Al 2 O 3 ceramics and random samples of two Si 3 N 4 ceramics were examined, with all specimens differing in terms of material and manufacturing parameters. Of the Al 2 O 3 ceramics, randomly selected specimens were tested for their banding strength at room temperature, and three specifically selected specimens were tested for their compressive strength at room temperature, at 800 C and at 1200 C. A number of specimen variants were examined by cyclic fatigue tests at room temperature and 800 C, and at 1200 C in one case, the specimens used being slightly notched specimens (α n = 1,02 and 1,08), or more heavily notched speciments (α n = 1.77, 1.90 and 2.24), with bending loads being either cyclic or growing. The Si 3 N 4 specimens were randomly chosen for bending tests and cyclic fatigue tests, at room temperature. (orig./MM) [de

  15. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  16. The Effect of Chlorides on the Correlation of Accelerated Laboratory Corrosion Tests to Out-Door Exposure Tests for Ceramics-Aluminum Couples

    Science.gov (United States)

    2010-02-01

    approximately 2000 psi. (G-10 fiber glass) (G-10 fiber glass) Ceramic Coupon *Courtesy : George Hawthorn of Hawaii Corrosion Lab Outdoor Exposure Procedures...agricultural, and arid). • Hawaii’s climate is one of the most spatially diverse on Earth. Kahuku* Coconut Island* – Marine environment – Marine...T6 Al Kilauea Kahuku Coconut Island Manoa Campbell Waipahu Ewanui Mauna Loa C o rr o s io n r a te s a t th e i n te rf a c e r e g io n ( g m d

  17. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  18. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  19. Methodological proposal for the volumetric study of archaeological ceramics through 3D edition free-software programs: the case of the celtiberians cemeteries of the meseta

    Directory of Open Access Journals (Sweden)

    Álvaro Sánchez Climent

    2014-10-01

    Full Text Available Nowadays the free-software programs have been converted into the ideal tools for the archaeological researches, reaching the same level as other commercial programs. For that reason, the 3D modeling tool Blender has reached in the last years a great popularity offering similar characteristics like other commercial 3D editing programs such as 3D Studio Max or AutoCAD. Recently, it has been developed the necessary script for the volumetric calculations of three-dimnesional objects, offering great possibilities to calculate the volume of the archaeological ceramics. In this paper, we present a methodological approach for the volumetric studies with Blender and a study case of funerary urns from several celtiberians cemeteries of the Spanish Meseta. The goal is to demonstrate the great possibilities that the 3D editing free-software tools have in the volumetric studies at the present time.

  20. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  1. Prioritizing Test Cases for Memory Leaks in Android Applications

    Institute of Scientific and Technical Information of China (English)

    Ju Qian; Di Zhou

    2016-01-01

    Mobile applications usually can only access limited amount of memory. Improper use of the memory can cause memory leaks, which may lead to performance slowdowns or even cause applications to be unexpectedly killed. Although a large body of research has been devoted into the memory leak diagnosing techniques after leaks have been discovered, it is still challenging to find out the memory leak phenomena at first. Testing is the most widely used technique for failure discovery. However, traditional testing techniques are not directed for the discovery of memory leaks. They may spend lots of time on testing unlikely leaking executions and therefore can be inefficient. To address the problem, we propose a novel approach to prioritize test cases according to their likelihood to cause memory leaks in a given test suite. It firstly builds a prediction model to determine whether each test can potentially lead to memory leaks based on machine learning on selected code features. Then, for each input test case, we partly run it to get its code features and predict its likelihood to cause leaks. The most suspicious test cases will be suggested to run at first in order to reveal memory leak faults as soon as possible. Experimental evaluation on several Android applications shows that our approach is effective.

  2. Numerical simulation of diametral compression tests for the evaluation of porous ceramic disks; Simulacion numerica de ensayos de compresion diametral para la evaluacion de discos ceramicos porosos

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M. L.; Tomba Martinez, A. G.; Camerucci, M. A.

    2012-11-01

    The mechanical behavior of porous cordierite materials was studied by diametral compression tests. The analytical solution allowing the indirect measuring of the tensile mechanical strength in this load configuration is formulated under certain assumption which may be not satisfied in practice. With the aim to analyze deviations of the ideal conditions, the test was simulated using computational techniques. Porous cordierite disks were prepared by firing (650 degree centigrade, 2h) and reaction-sintering (1330 degree centigrade, 4h) of green disks shaped by thermo gelling the aqueous suspensions of a cordierite precursor mixture (kaolin, talc and alumina) with native potato starch as a consolidator/binder of ceramic particles and a pore former by burn-out at high temperature. The mechanical tests were carried out in displacement control (0.2 mm/min) using a servo hydraulic testing machine. From the apparent stress-strain ratio, the following parameters were determined: mechanical strength, apparent Young modulus and yield stress. Fracture features of tested disks were also analyzed. The influence of the geometrical deviations more usually identified in practice (deviation of the circularity and no parallelism between the plane surfaces of the disk) on the stress distribution was studied by means of the simulation by finite element method, considering the Hertzs equation for contact problems as reference. (Author) 20 refs.

  3. The International intraval project. Phase 1 test cases

    International Nuclear Information System (INIS)

    1992-01-01

    This report contains a description of the test cases adopted in Phase 1 of the international cooperation project INTRAVAL. Seventeen test cases based on bench-scale experiments in laboratory, field tests and natural analogue studies, have been included in the study. The test cases are described in terms of experimental design and types of available data. In addition, some quantitative examples of available data are given as well as references to more extensive documentation of the experiments on which the test cases are based. Fithteen test cases examples are given: 1 Mass transfer through clay by diffusion and advection. 2 Uranium migration in crystalline bore cores, small scale pressure infiltration experiments. 3 Radionuclide migration in single natural fractures in granite. 4 Tracer tests in a deep basalt flow top. 5 Flow and tracer experiment in crystalline rock based on the Stripa 3-D experiment. 6 Tracer experiment in a fracture zone at the Finnsjon research area. 7 Synthetic data base, based on single fracture migration experiments in Grimsel rock laboratory. 8 Natural analogue studies at Pocos de Caldas, Minais Gerais, Brazil. Redox-front and radionuclide movement in an open pit uranium mine. 9 Natural analogue studies at the Koongarra site in the Alligator Rivers area of the Northern Territory, Australia. 10 Large block migration experiments in a block of crystalline rock. 11 Unsaturated flow and transport experiments performed at Las Cruces, New Mexico. 12 Flow and transport experiment in unsaturated fractured rock performed at the Apache Leap Tuff site, Arizona. 13 Experiments in partially saturated tuffaceous rocks performed in the G-tunnel underground facility at the Nevada Test site, USA. 14 Experimental study of brine transport in porous media. 15 Groundwater flow in the vicinity of the Gorleben Salt Dome, Federal Republic of Germany

  4. Highly Automated Agile Testing Process: An Industrial Case Study

    Directory of Open Access Journals (Sweden)

    Jarosław Berłowski

    2016-09-01

    Full Text Available This paper presents a description of an agile testing process in a medium size software project that is developed using Scrum. The research methods used is the case study were as follows: surveys, quantifiable project data sources and qualitative project members opinions were used for data collection. Challenges related to the testing process regarding a complex project environment and unscheduled releases were identified. Based on the obtained results, we concluded that the described approach addresses well the aforementioned issues. Therefore, recommendations were made with regard to the employed principles of agility, specifically: continuous integration, responding to change, test automation and test driven development. Furthermore, an efficient testing environment that combines a number of test frameworks (e.g. JUnit, Selenium, Jersey Test with custom-developed simulators is presented.

  5. Performances of multi-channel ceramic photomultipliers

    International Nuclear Information System (INIS)

    Comby, G.; Karolak, M.; Piret, Y.; Mouly, J.P.

    1995-09-01

    Ceramic electron multipliers with real metal dynodes and independent channels ware constructed using multilayer ceramic technology. Tests of these prototypes show their capability to form sensitive detectors such as photomultipliers or light intensifiers. Here, we present results for the photocathode sensitivity, dynode activation, gain, linearity range and dynamic characteristics as well as the effect of 3-year aging of the main operational functions. The advantages provided by the ceramic components are discussed. These results motivate the development of a compact 256 pixel ceramic photomultiplier. (author)

  6. Measurement of Emissivity of Porous Ceramic Materials

    OpenAIRE

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  7. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  8. Improving Eco-Efficiency through Waste Reduction beyond the Boundaries of a Firm: Evidence from a Multiplant Case in the Ceramic Industry

    Directory of Open Access Journals (Sweden)

    Guido J. L. Micheli

    2018-01-01

    Full Text Available To pursue eco-efficiency, one of the most important principles is the sustainable use of resources. The challenge in resource use improvement lies in a clear assessment of resource utilization. However, this evaluation is currently performed within the scope of a company and such an approach is not sustainable anymore in a world with increasingly complex production systems. This paper provides a decision support system (DSS to disclose where wastes absorb resource capacity of a whole production system beyond the boundaries of a firm. In this way, an intervention priority plan can be established to effectively improve the eco-efficiency of production systems by considering interactions among players of a multiplant or supply chain context. An implementation of the DSS is proposed for the ceramic industry to test it and explore the potential benefits. Results confirm that the DSS can effectively enable different actors to understand how significant inter-firm saving opportunities can be identified.

  9. OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

    Directory of Open Access Journals (Sweden)

    A. Jalila

    2015-10-01

    Full Text Available The adoption of fault detection techniques during initial stages of software development life cycle urges to improve reliability of a software product. Specification-based testing is one of the major criterions to detect faults in the requirement specification or design of a software system. However, due to the non-availability of implementation details, test case generation from formal specifications become a challenging task. As a novel approach, the proposed work presents a methodology to generate test cases from OCL (Object constraint Language formal specification using Category Partitioning Method (CPM. The experiment results indicate that the proposed methodology is more effective in revealing specification based faults. Furthermore, it has been observed that OCL and CPM form an excellent combination for performing functional testing at the earliest to improve software quality with reduced cost.

  10. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  11. Shade guide optimization--a novel shade arrangement principle for both ceramic and composite shade guides when identifying composite test objects.

    Science.gov (United States)

    Østervemb, Niels; Jørgensen, Jette Nedergaard; Hørsted-Bindslev, Preben

    2011-02-01

    The most widely used shade guide for composite materials is made of ceramic and arranged according to a non-proven method. There is a need for a composite shade guide using a scientifically based arrangement principle. To compare the shade tab arrangement of the Vitapan Classical shade guide and an individually made composite shade guide using both the originally proposed arrangement principle and arranged according to ΔE2000 values with hue group division. An individual composite shade guide made from Filtek Supreme XT body colors was compared to the Vitapan Classical shade guide. Twenty-five students matched color samples made from Filtek Supreme XT body colors using the two shade guides arranged after the two proposed principles--four shade guides in total. Age, sequence, gender, time, and number of correct matches were recorded. The proposed visually optimal composite shade guide was both fastest and had the highest number of correct matches. Gender was significantly associated with time used for color sampling but not regarding the number of correct shade matches. A composite shade guide is superior compared to the ceramic Vitapan Classical guide when using composite test objects. A rearrangement of the shade guide according to hue, subdivided according to ΔE2000, significantly reduces the time needed to take a color sample and increases the number of correct shade matches. Total color difference in relation to the lightest tab with hue group division is recommended as a possible and universally applicable mode of tab arrangement in dental color standards. Moreover, a shade guide made of the composite materials itself is to be preferred as both a faster and more accurate method of determining color. © 2011, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2011, WILEY PERIODICALS, INC.

  12. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation.

    Science.gov (United States)

    Spies, Benedikt Christopher; Witkowski, Siegbert; Butz, Frank; Vach, Kirstin; Kohal, Ralf-Joachim

    2016-10-01

    The aim of this study was to determine the success and survival rate of all-ceramic bi-layered implant-supported three-unit fixed dental prostheses (IS-FDPs) 3 years after implant placement. Thirteen patients (seven males, six females; age: 41-78 years) received two one-piece ceramic implants (alumina-toughened zirconia) each in the region of the premolars or the first molar and were finally restored with adhesively cemented bi-layered zirconia-based IS-FDPs (3 in the maxilla, 10 in the mandible) composed of CAD/CAM-fabricated zirconia frameworks pressed-over with fluor-apatite glass-ceramic ingots. At prosthetic delivery and the follow-ups after 1, 2 and 3 years, the restorations were evaluated using modified United States Public Health Service (USPHS) criteria. Restorations with minor veneer chippings, a small-area occlusal roughness, slightly soundable restoration margins, minimal contour deficiencies and tolerable color deviations were regarded as success. In case of more distinct defects that could, however, be repaired to a clinically acceptable level, IS-FDPs were regarded as surviving. Kaplan-Meier plots were used for the success/survival analyses. To verify an impact on subjective patients' perceptions, satisfaction was evaluated by visual analog scales (VAS). All patients were seen 3 years after implant installation. No IS-FDP had to be replaced, resulting in 100% survival after a mean observation period of 29.5 months (median: 30.7). At the 3-year follow-up, 7/13 IS-FDPs showed a veneer chipping, 13/13 an occlusal roughness and 12/13 minimal deficiencies of contour/color. Since six restorations showed a major chipping and/or a major occlusal roughness, the Kaplan-Meier success rate was 53.8%. However, patients' significantly improved perceptions of function, esthetics, sense, and speech at prosthetic delivery remained stable over time. Bi-layered zirconia/fluor-apatite IS-FDPs entirely survived the observation period but showed a high frequency of

  13. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  14. GENERATING TEST CASES FOR PLATFORM INDEPENDENT MODEL BY USING USE CASE MODEL

    OpenAIRE

    Hesham A. Hassan,; Zahraa. E. Yousif

    2010-01-01

    Model-based testing refers to testing and test case generation based on a model that describes the behavior of the system. Extensive use of models throughout all the phases of software development starting from the requirement engineering phase has led to increased importance of Model Based Testing. The OMG initiative MDA has revolutionized the way models would be used for software development. Ensuring that all user requirements are addressed in system design and the design is getting suffic...

  15. Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics

    Directory of Open Access Journals (Sweden)

    J.D. Clayton

    2016-08-01

    Full Text Available Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate's theory demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit (HEL only in the latter. In contrast, in the former (i.e., hypervelocity and thick target experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.

  16. High-performance ceramics - state of the art and trends of development

    International Nuclear Information System (INIS)

    Gadow, R.; Keizer, K; Burggraaf, A.J.; Boch, P.; Chartier, T.; Thomann, H.

    1989-01-01

    This paper contains 4 lectures on the following topics: 1. fiber and whisker reinforced ceramics (R. Gadow), 2. ceramic membranes (K. Keizer, A.J. Burggraf), 3. ceramic processing techniques: The case of tape casting (P. Bach, T. Chartier), 4. ceramic superconductors (H. Thomann). Three contributions are separately analyzed for the ENERGIE database. (MM) [de

  17. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  18. An Iterative Procedure for Efficient Testing of B2B: A Case in Messaging Service Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL

    2007-03-01

    Testing is a necessary step in systems integration. Testing in the context of inter-enterprise, business-to-business (B2B) integration is more difficult and expensive than intra-enterprise integration. Traditionally, the difficulty is alleviated by conducting the testing in two stages: conformance testing and then interoperability testing. In conformance testing, systems are tested independently against a reference system. In interoperability testing, they are tested simultaneously against one another. In the traditional approach for testing, these two stages are performed sequentially with little feedback between them. In addition, test results and test traces are left only to human analysis or even discarded if the solution passes the test. This paper proposes an approach where test results and traces from both the conformance and interoperability tests are analyzed for potential interoperability issues; conformance test cases are then derived from the analysis. The result is that more interoperability issues can be resolved in the lower-cost conformance testing mode; consequently, time and cost required for achieving interoparble solutions are reduced.

  19. Making System Dynamics Cool? Using Hot Testing & Teaching Cases

    NARCIS (Netherlands)

    Pruyt, E.

    2009-01-01

    This paper deals with the use of ‘hot’ real-world cases for both testing and teaching purposes such as in the Introductory System Dynamics course at Delft University of Technology in the Netherlands. The paper starts with a brief overview of the System Dynamics curriculum. Then the problem-oriented

  20. Couplex1 test case nuclear - Waste disposal far field simulation

    International Nuclear Information System (INIS)

    2001-01-01

    This first COUPLEX test case is to compute a simplified Far Field model used in nuclear waste management simulation. From the mathematical point of view the problem is of convection diffusion type but the parameters are highly varying from one layer to another. Another particularity is the very concentrated nature of the source, both in space and in time. (author)

  1. Gifted and Talented Education: A National Test Case in Peoria.

    Science.gov (United States)

    Fetterman, David M.

    1986-01-01

    This article presents a study of a program in Peoria, Illinois, for the gifted and talented that serves as a national test case for gifted education and minority enrollment. It was concluded that referral, identification, and selection were appropriate for the program model but that inequalities resulted from socioeconomic variables. (Author/LMO)

  2. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  3. FARO base case post-test analysis by COMETA code

    Energy Technology Data Exchange (ETDEWEB)

    Annunziato, A.; Addabbo, C. [Joint Research Centre, Ispra (Italy)

    1995-09-01

    The paper analyzes the COMETA (Core Melt Thermal-Hydraulic Analysis) post test calculations of FARO Test L-11, the so-called Base Case Test. The FARO Facility, located at JRC Ispra, is used to simulate the consequences of Severe Accidents in Nuclear Power Plants under a variety of conditions. The COMETA Code has a 6 equations two phase flow field and a 3 phases corium field: the jet, the droplets and the fused-debris bed. The analysis shown that the code is able to pick-up all the major phenomena occurring during the fuel-coolant interaction pre-mixing phase.

  4. Test cases for interface tracking methods: methodology and current status

    International Nuclear Information System (INIS)

    Lebaigue, O.; Jamet, D.; Lemonnier, E.

    2004-01-01

    Full text of publication follows:In the past decade, a large number of new methods have been developed to deal with interfaces in the numerical simulation of two-phase flows. We have collected a set of 36 test cases, which can be seen as a tool to help engineers and researchers selecting the most appropriate method(s) for their specific fields of application. This set can be use: - To perform an initial evaluation of the capabilities of available methods with regard to the specificity of the final application and the most important features to be recovered from the simulation. - To measure the maximum mesh size to be used for a given physical problem in order to obtain an accurate enough solution. - To assess and quantify the performances of a selected method equipped with its set of physical models. The computation of a well-documented test case allows estimating the error due to the numerical technique by comparison with reference solutions. This process is compulsory to gain confidence and credibility on the prediction capabilities of a numerical method and its physical models. - To broaden the capabilities of a given numerical technique. The test cases may be used to identify the need for improvement of the overall numerical scheme or to determine the physical part of the model, which is responsible for the observed limitations. Each test case falls within one of the following categories: - Analytical solutions of well-known sets of equations corresponding to simple geometrical situations. - Reference numerical solutions of moderately complex problems, produced by accurate methods (e.g., boundary Fitted coordinate method) on refined meshes. - Separate effects analytical experiments. The presentation will suggest how to use the test cases for assessing the physical models and the numerical methods. The expected fallout of using test cases is indeed on the one hand to identify the merits of existing methods and on the other hand to orient further research towards

  5. Fabrication of ceramic components for fluidics with green machining and reaction binding of Al-containing precursor mixes - component design and testing. Final report; Fertigung von keramischen Bauteilen fuer die Fluidtechnik mit Gruenbearbeitung und Reaktionsbinden von Al-haltigen Precursormischungen - Bauteilgestaltung und Erprobung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Skirde, E.; Esders, H.; Ivantysyn, J.

    2003-03-05

    The Sauer-Danfoss project covered the testing of ceramic pistons and bushings in oil-hydraulic swash plate axial piston pumps. Both components move relative to each other while transmitting very high forces. This results in high component stresses and in high tribological loads of the contact surface. If the ceramic components can withstand both types of stress, the range of permissible operating parameters can be extended, especially the maximum speed as ceramics have a much lower specific mass than metals, which result in much lower inertial forces. In conventional systems of steel piston and metal bushing, high speed and high temperatures will result in poor lubrication and cause freezing of the piston. This is not the case with ceramics because of their great hardness, heat resistance, and chemical inertness. (orig.) [German] Das Teilprojekt von Sauer-Danfoss befasste sich mit der Erprobung keramischer Kolben und Buchsen in oelhydraulischen Schraegscheiben-Axialkolbenpumpen. Beide Bauteile (die sogenannten Leitteile) bewegen sich relativ zueinander und uebertragen dabei sehr hohe Betriebskraefte. Daraus resultieren nicht nur grosse Spannungen in den Teilen, sondern auch hohe tribologische Beanspruchungen in der Kontaktflaeche. Wenn die keramischen Bauteile beiden Beanspruchungsarten gewachsen sind, dann ist eine Ausdehnung des Bereichs erlaubter Betriebsparameter moeglich. Insbesondere ist hier die maximale Drehzahl zu nennen, da aus der im Vergleich zu metallischen Werkstoffen sehr geringen spezifischen Masse von Keramik weitaus geringere Traegheitskraefte resultieren. Bei der konventionellen Werkstoffpaarung (gehaerteter Stahlkolben-Messingbuchse) besteht ausserdem bei hohen Drehzahlen und Temperaturen wegen der damit verbundenen schlechten Schmierung die Gefahr des Festfressens. Diese ist bei keramischen Werkstoffen aufgrund der hohen Haerte, Waermebestaendigkeit und chemischen Inertheit nicht zu erwarten. (orig.)

  6. Studies on Romanian archaeological objects using atomic methods: the cases of the Pietroasa hoard and Cucuteni ceramics

    International Nuclear Information System (INIS)

    Constantinescu, B.; Cojocaru, V.; Dumitriu, D.E.; Bugoi, R.; Seclaman, D.; Popovici, D.; Grambole, D.; Herrmann, F.

    2004-01-01

    Five fragments of ancient gold objects coming from the famous Pietroasa 'Closca cu Puii de aur' (The Golden Brood Hen with its Chickens') Romanian hoard were analyzed using micro-PIXE (Particle Induced X-ray Emission) technique. The purpose of the study was to clarify the metal provenance. To reach this goal, the presence of trace elements (Cu, Te, Cr, Nb, Ta) and PGE (Platinum Group Elements) was analyzed. The existence of inclusions (micrometer size areas of composition different from the surroundings) was also checked. We found Ta, Nb, and Cr inclusions on three samples and Pd inclusions on one sample. The measurements led to some conclusions for possible three gold ore sources of the Pietroasa treasury: South-Ural Mountains, Nubia (Sudan) deposits and Roman imperial coins. The composition of black, white and red pigments from the Neolithic Cucuteni ceramics shards found in Moldavia and South-Eastern Transylvania was determined using Synchrotron Radiation induced X-ray Powder Diffraction (SR-XRD) at MAX II synchrotron in Lund, Sweden. Different manganese oxides, animal carbon and graphite were detected in the black pigments, calcite and aluminium silicates in the white pigments and iron oxides (mainly hematite) in the red pigments. (authors)

  7. Negative Exercise Stress Test: Does it Mean Anything? Case study

    Directory of Open Access Journals (Sweden)

    Hassan A. Mohamed

    2007-01-01

    Full Text Available Despite its low sensitivity and specificity (67% and 72%, respectively, exercise testing has remained one of the most widely used noninvasive tests to determine the prognosis in patients with suspected or established coronary disease.As a screening test for coronary artery disease, the exercise stress test is useful in that it is relatively simple and inexpensive. It has been considered particularly helpful in patients with chest pain syndromes who have moderate probability for coronary artery disease, and in whom the resting electrocardiogram (ECG is normal. The following case presentation and discussion will question the predictive value of a negative stress testing in patients with moderate probability for coronary artery disease.

  8. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  9. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  10. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  11. Tests of spinning turbine fragment impact on casing models

    International Nuclear Information System (INIS)

    Wilbeck, J.S.

    1984-01-01

    Ten 1/11-scale model turbine missile impact tests were conducted at a Naval spin chamber test facility to assess turbine missile effects in nuclear plant design. The objective of the tests was to determine the effects of missile spin, blade crush, and target edge conditions on the impact of turbine disk fragments on the steel casing. The results were intended for use in making realistic estimates for the initial conditions of fragments that might escape the casing in the event of a disk burst in a nuclear plant. The burst of a modified gas turbine rotor in a high-speed spin chamber provided three missiles with the proper rotational and translational velocities of actual steam turbine fragments. Tests of bladed, spinning missiles were compared with previous tests of unbladed, nonspinning missiles. The total residual energy of the spinning missiles, as observed from high-speed photographs of disk burst, was the same as that of the nonspinning missiles launched in a piercing orientation. Tests with bladed missiles showed that for equal burst speeds, the residual energy of bladed missiles is less than that of unbladed missiles. Impacts of missiles near the edge of targets resulted in residual missile velocities greater than for central impact. (orig.)

  12. [Posterior ceramic bonded partial restorations].

    Science.gov (United States)

    Mainjot, Amélie; Vanheusden, Alain

    2006-01-01

    Posterior ceramic bonded partial restorations are conservative and esthetic approaches for compromised teeth. Overlays constitute a less invasive alternative for tooth tissues than crown preparations. With inlays and onlays they are also indicated in case of full arch or quadrant rehabilitations including several teeth. This article screens indications and realization of this type of restorations.

  13. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  14. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  15. Prestresses in bilayered all-ceramic restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N; Feilzer, Albert J; de Jager, Niek; Kleverlaan, Cornelis J

    2008-10-01

    A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+DeltaTEC). The concept behind this TEC mismatch is to generate compressive stresses in the weaker veneering ceramic and thus enhance the overall strength of the restoration. This technique had excellent results with porcelain fused to metal restorations (PFM). However, there are concerns to apply this concept to all-ceramic restorations. The aim of this research was to determine the stresses in bilayered all-ceramic restorations due to the mismatch in TEC. Two commercial veneering ceramics with a TEC lower than that of zirconia (+DeltaTEC); NobelRondo zirconiatrade mark and Lava Ceramtrade mark, plus one experimental veneering ceramic with an identical TEC that matches that of zirconia (DeltaTEC = 0) were used to veneer zirconia discs. The specimens were loaded in biaxial flexure test setup with the veneer ceramic in tension. The stresses due to load application and TEC mismatch were calculated using fractography, engineering mathematics, and finite element analysis (FEA). In this study, the highest load at failure (64 N) was obtained with the experimental veneer where the thermal mismatch between zirconia and veneering ceramic was minimal. For the two commercial veneer ceramics the magnitude of the thermal mismatch localized at the zirconia veneer interface (42 MPa) exceeded the bond strength between the two materials and resulted in delamination failure during testing (ca. 50 MPa). For all-ceramic zirconia veneered restorations it is recommended to minimize the thermal mismatch as much as possible. (c) 2008 Wiley Periodicals, Inc.

  16. Research on Durability of Recycled Ceramic Powder Concrete

    Science.gov (United States)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  17. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  19. Paternity tests in Mexico: Results obtained in 3005 cases.

    Science.gov (United States)

    García-Aceves, M E; Romero Rentería, O; Díaz-Navarro, X X; Rangel-Villalobos, H

    2018-04-01

    National and international reports regarding the paternity testing activity scarcely include information from Mexico and other Latin American countries. Therefore, we report different results from the analysis of 3005 paternity cases analyzed during a period of five years in a Mexican paternity testing laboratory. Motherless tests were the most frequent (77.27%), followed by trio cases (20.70%); the remaining 2.04% included different cases of kinship reconstruction. The paternity exclusion rate was 29.58%, higher but into the range reported by the American Association of Blood Banks (average 24.12%). We detected 65 mutations, most of them involving one-step (93.8% and the remaining were two-step mutations (6.2%) thus, we were able to estimate the paternal mutation rate for 17 different STR loci: 0.0018 (95% CI 0.0005-0.0047). Five triallelic patterns and 12 suspected null alleles were detected during this period; however, re-amplification of these samples with a different Human Identification (HID) kit confirmed the homozygous genotypes, which suggests that most of these exclusions actually are one-step mutations. HID kits with ≥20 STRs detected more exclusions, diminishing the rate of inconclusive results with isolated exclusions (Powerplex 21 kit (20 STRs) and Powerplex Fusion kit (22 STRs) offered similar PI (p = 0.379) and average number of exclusions (PE) (p = 0.339) when a daughter was involved in motherless tests. In brief, besides to report forensic parameters from paternity tests in Mexico, results describe improvements to solve motherless paternity tests using HID kits with ≥20 STRs instead of one including 15 STRs. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Full scale turbine-missile casing exit tests

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Schamaun, J.T.; Sliter, G.E.

    1979-01-01

    Two full-scale tests have simulated the impact of a fragment from a failed turbine disk upon the steel casing of a low-pressure steam turbine with the objective of providing data for making more realistic assessments of turbine missile effects for nuclear power plant designers. Data were obtained on both the energy-absorbing mechanisms of the impact process and the post-impact trajectory of the fragment. (orig.)

  1. DWPF PCCS version 2.0 test case

    International Nuclear Information System (INIS)

    Brown, K.G.; Pickett, M.A.

    1992-01-01

    To verify the operation of the Product Composition Control System (PCCS), a test case specific to DWPF operation was developed. The values and parameters necessary to demonstrate proper DWPF product composition control have been determined and are presented in this paper. If this control information (i.e., for transfers and analyses) is entered into the PCCS as illustrated in this paper, and the results obtained correspond to the independently-generated results, it can safely be said that the PCCS is operating correctly and can thus be used to control the DWPF. The independent results for this test case will be generated and enumerated in a future report. This test case was constructed along the lines of the normal DWPF operation. Many essential parameters are internal to the PCCS (e.g., property constraint and variance information) and can only be manipulated by personnel knowledgeable of the Symbolics reg-sign hardware and software. The validity of these parameters will rely on induction from observed PCCS results. Key process control values are entered into the PCCS as they would during normal operation. Examples of the screens used to input specific process control information are provided. These inputs should be entered into the PCCS database, and the results generated should be checked against the independent, computed results to confirm the validity of the PCCS

  2. A Human Proximity Operations System test case validation approach

    Science.gov (United States)

    Huber, Justin; Straub, Jeremy

    A Human Proximity Operations System (HPOS) poses numerous risks in a real world environment. These risks range from mundane tasks such as avoiding walls and fixed obstacles to the critical need to keep people and processes safe in the context of the HPOS's situation-specific decision making. Validating the performance of an HPOS, which must operate in a real-world environment, is an ill posed problem due to the complexity that is introduced by erratic (non-computer) actors. In order to prove the HPOS's usefulness, test cases must be generated to simulate possible actions of these actors, so the HPOS can be shown to be able perform safely in environments where it will be operated. The HPOS must demonstrate its ability to be as safe as a human, across a wide range of foreseeable circumstances. This paper evaluates the use of test cases to validate HPOS performance and utility. It considers an HPOS's safe performance in the context of a common human activity, moving through a crowded corridor, and extrapolates (based on this) to the suitability of using test cases for AI validation in other areas of prospective application.

  3. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  4. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  5. Siamese twins with craniofacial duplication and bilateral cleft lip/palate in a ceramic representation of the Chimú culture (Peru): a comparative analysis with a current case.

    Science.gov (United States)

    Pachajoa, Harry; Hernandez-Amaris, Maria F; Porras-Hurtado, Gloria Liliana; Rodriguez, Carlos A

    2014-06-01

    Craniofacial duplication or diprosopus is a very rare malformation that is present in approximately 0.4% of conjoined twins. Here is presented a case of craniofacial duplication in association with bilateral cleft lip/palate in both heads found in a ceramic representation from the early Chimú culture from Peru. A comparative analysis is made with a current case of a 28-week-old fetus with similar characteristics. After reviewing the medical literature on conjoined twins, very few reports of facial cleft in both twins were found, with no reports at all of bilateral cleft lip/palate. This ceramic crock is considered one of the first representations suggestive of craniofacial duplication, and probably the first reporting it in association with facial cleft.

  6. Interaction phenomena at reactive metal/ceramic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-11-03

    The objective of this study was to understand the interface chemical reactions between stable ceramics and reactive liquid metals, and developing microstructure. Experiments were conducted at elevated temperatures where small metal samples of Zr and Zr-alloy were placed on top of selected oxide and non-oxide ceramic substrates (Y{sub 2}O{sub 3}, ZrN, ZrC, and HfC). The sample stage was heated in high-purity argon to about 2000 C, held in most cases for five minutes at the peak temperature, and then cooled to room temperature at {approximately}20 c/min. An external video camera was used to monitor the in-situ wetting and interface reactions. Post-test examinations of the systems were conducted by scanning electron microscopy and energy dispersive spectroscopy. It was determined that the Zr and the Zr-alloy are very active in the wetting of stable ceramics at elevated temperatures. In addition, in some systems, such as Zr/ZrN, a reactive transition phase formed between the ceramic and the metal. In other systems, such as Zr/Y{sub 2}O{sub 3}, Zr/ZrC and Zr/HfC, no reaction products formed, but a continuous and strong joint developed under these circumstances also.

  7. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  8. Concept Test of a Smoking Cessation Smart Case.

    Science.gov (United States)

    Comello, Maria Leonora G; Porter, Jeannette H

    2018-04-05

    Wearable/portable devices that unobtrusively detect smoking and contextual data offer the potential to provide Just-In-Time Adaptive Intervention (JITAI) support for mobile cessation programs. Little has been reported on the development of these technologies. To address this gap, we offer a case report of users' experiences with a prototype "smart" cigarette case that automatically tracks time and location of smoking. Small-scale user-experience studies are typical of iterative product design and are especially helpful when proposing novel ideas. The purpose of the study was to assess concept acceptability and potential for further development. We tested the prototype case with a small sample of potential users (n = 7). Participants used the hardware/software for 2 weeks and reconvened for a 90-min focus group to discuss experiences and provide feedback. Participants liked the smart case in principle but found the prototype too bulky for easy portability. The potential for the case to convey positive messages about self also emerged as a finding. Participants indicated willingness to pay for improved technology (USD $15-$60 on a one-time basis). The smart case is a viable concept, but design detail is critical to user acceptance. Future research should examine designs that maximize convenience and that explore the device's ability to cue intentions and other cognitions that would support cessation. This study is the first to our knowledge to report formative research on the smart case concept. This initial exploration provides insights that may be helpful to other developers of JITAI-support technology.

  9. Large block migration experiments: INTRAVAL phase 1, Test Case 9

    Energy Technology Data Exchange (ETDEWEB)

    Gureghian, A.B.; Noronha, C.J. (Battelle, Willowbrook, IL (USA). Office of Waste Technology Development); Vandergraaf, T.T. (Atomic Energy of Canada Ltd., Ottawa, ON (Canada))

    1990-08-01

    The development of INTRAVAL Test Case 9, as presented in this report, was made possible by a past subsidiary agreement to the bilateral cooperative agreement between the US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) encompassing various aspects of nuclear waste disposal research. The experimental aspect of this test case, which included a series of laboratory experiments designed to quantify the migration of tracers in a single, natural fracture, was undertaken by AECL. The numerical simulation of the results of these experiments was performed by the Battelle Office of Waste Technology Development (OWTD) by calibrating an in-house analytical code, FRACFLO, which is capable of predicting radionuclide transport in an idealized fractured rock. Three tracer migration experiments were performed, using nonsorbing uranine dye for two of them and sorbing Cs-137 for the third. In addition, separate batch experiments were performed to determine the fracture surface and rock matrix sorption coefficients for Cs-137. The two uranine tracer migration experiment were used to calculate the average fracture aperture and to calibrate the model for the fracture dispersivity and matrix diffusion coefficient. The predictive capability of the model was then tested by simulating the third, Cs-137, tracer test without changing the parameter values determined from the other experiments. Breakthrough curves of both the experimental and numerical results obtained at the outlet face of the fracture are presented for each experiment. The reported spatial concentration profiles for the rock matrix are based solely on numerical predictions. 22 refs., 12 figs., 8 tabs.

  10. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  11. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  12. Report on the IAEA-CU-2006-06 proficiency test on the determination of major, minor and trace elements in ancient Chinese ceramic

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Trinkl, A.; Toervenyi, A.; Zeiller, E.; Benesch, T.; Sansone, U.

    2006-10-01

    ancient Chinese ceramic, to assure that the conclusions of art objects studies are based on reliable and validated nuclear analytical results and to ensure the comparability of the results of different countries. An ancient Chinese ceramic reference material, prepared and characterized for major, minor and trace elements, by the Institute of High Energy Physics, Chinese Academy of Sciences, was used in the proficiency test. The test material was distributed to the participating laboratories in February 2006 and the deadline for receiving the results was set at 7 August 2006. The participating laboratories were requested to analyse the samples employing the methods used in their routine work, so that their performance on the test samples could be directly related to the real performance of the laboratory. Each laboratory was given a confidential code to assure the anonymity of the evaluation results. 24 laboratories from the 37 initially registered reported their results to the IAEA. The analytical results of the participating laboratories were compared with the reference values assigned to the reference material, and a rating system was applied

  13. Fabrication and Test of a Nb$_{3}$Sn Model Magnet With Ceramic Insulation for the Next Generation Undulator of the LHC

    CERN Document Server

    Elias, N; Dalexandro, N; Giloux, C; Bordini, B; Maccaferri, R

    2010-01-01

    The future run of the Large Hadron Collider with lead ions will require important modifications in the synchrotron radiation profile monitor system, which at present comprises two superconducting undulators wound from Nb-Ti conductor, delivering 5 T in a 60 mm gap, and with a period of 280 mm. Whilst the gap and the nominal field of the future undulators will remain the same, the period shall be 140 mm, which translates to a peak field of over 8 T in the coils and hence requires the use of Nb$_{3}$Sn technology. In this paper the electromagnetic design of the undulator is summarized. We describe the fabrication of a race-track coil wound with a 0.8 mm diameter Nb$_{3}$Sn strand with ceramic insulation. Finally, the results of successful tests made at 4.3 K and 1.9 K in a mirror configuration are presented. 10 T at 4.3 K and 11.5 T at 1.9 K were measured in the yoke gap, thus validating this concept for the future undulator.

  14. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  15. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  16. Frictional Resistance of Three Types of Ceramic Brackets

    Directory of Open Access Journals (Sweden)

    Claire L Williams

    2014-01-01

    Full Text Available Objectives: To investigate the static frictional resistance at the bracket/archwire interface in two recently introduced bracket systems and compare them to conventional ceramic and conventional metal bracket systems. Three variables were considered including the bracket system, archwire type and archwire angulation. Material and Methods: Four bracket systems were tested in vitro: Self ligating ceramic, ceramic with metal slot and module, conventional ceramic with module and conventional metal with module. A specially constructed jig and an Instron testing machine were used to measure the static frictional resistance for 0.014 inches round and 0.018 x 0.025 inches rectangular stainless steel wires at 0° and 7° angulations. Main outcome measures: static frictional force at the bracket/archwire interface; recorded and measured in units of force (Newtons. Results: Self ligating ceramic and metal slot ceramic bracket systems generated significantly less static frictional resistance than conventional ceramic bracket systems with the wire at both angulations (P < 0.05. Changing the wire from 0.014 round to 0.018 x 0.025 rectangular wire significantly increased frictional forces for metal slot ceramic and conventional metal bracket systems (P < 0.01. Increasing wire angulation significantly increased frictional resistance at the bracket/archwire interface for all four types of bracket systems tested (P < 0.001. Conclusions: Compared to conventional ceramic, self ligating ceramic and metal slot ceramic bracket systems should give improved clinical performance, matching that of conventional metal brackets.

  17. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  18. Synthesis and characterization of biomorphic ceramics

    International Nuclear Information System (INIS)

    Rambo, Carlos Renato

    2001-01-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO 2 originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  19. [Comparison of machinability of two types of dental machinable ceramic].

    Science.gov (United States)

    Fu, Qiang; Zhao, Yunfeng; Li, Yong; Fan, Xinping; Li, Yan; Lin, Xuefeng

    2002-11-01

    In terms of the problems of now available dental machinable ceramics, a new type of calcium-mica glass-ceramic, PMC-I ceramic, was developed, and its machinability was compared with that of Vita MKII quantitatively. Moreover, the relationship between the strength and the machinability of PMC-I ceramic was studied. Samples of PMC-I ceramic were divided into four groups according to their nucleation procedures. 600-seconds drilling tests were conducted with high-speed steel tools (Phi = 2.3 mm) to measure the drilling depths of Vita MKII ceramic and PMC-I ceramic, while constant drilling speed of 600 rpm and constant axial load of 39.2 N were used. And the 3-point bending strength of the four groups of PMC-I ceramic were recorded. Drilling depth of Vita MKII was 0.71 mm, while the depths of the four groups of PMC-I ceramic were 0.88 mm, 1.40 mm, 0.40 mm and 0.90 mm, respectively. Group B of PMC-I ceramic showed the largest depth of 1.40 mm and was statistically different from other groups and Vita MKII. And the strength of the four groups of PMC-I ceramic were 137.7, 210.2, 118.0 and 106.0 MPa, respectively. The machinability of the new developed dental machinable ceramic of PMC-I could meet the need of the clinic.

  20. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  1. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  2. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  3. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  4. Automated Test Case Generation for an Autopilot Requirement Prototype

    Science.gov (United States)

    Giannakopoulou, Dimitra; Rungta, Neha; Feary, Michael

    2011-01-01

    Designing safety-critical automation with robust human interaction is a difficult task that is susceptible to a number of known Human-Automation Interaction (HAI) vulnerabilities. It is therefore essential to develop automated tools that provide support both in the design and rapid evaluation of such automation. The Automation Design and Evaluation Prototyping Toolset (ADEPT) enables the rapid development of an executable specification for automation behavior and user interaction. ADEPT supports a number of analysis capabilities, thus enabling the detection of HAI vulnerabilities early in the design process, when modifications are less costly. In this paper, we advocate the introduction of a new capability to model-based prototyping tools such as ADEPT. The new capability is based on symbolic execution that allows us to automatically generate quality test suites based on the system design. Symbolic execution is used to generate both user input and test oracles user input drives the testing of the system implementation, and test oracles ensure that the system behaves as designed. We present early results in the context of a component in the Autopilot system modeled in ADEPT, and discuss the challenges of test case generation in the HAI domain.

  5. Experimental impact testing and analysis of composite fan cases

    Science.gov (United States)

    Vander Klok, Andrew Joe

    For aircraft engine certification, one of the requirements is to demonstrate the ability of the engine to withstand a fan blade-out (FBO) event. A FBO event may be caused by fatigue failure of the fan blade itself or by impact damage of foreign objects such as bird strike. An un-contained blade can damage flight critical engine components or even the fuselage. The design of a containment structure is related to numerous parameters such as the blade tip speed; blade material, size and shape; hub/tip diameter; fan case material, configuration, rigidity, etc. To investigate all parameters by spin experiments with a full size rotor assembly can be prohibitively expensive. Gas gun experiments can generate useful data for the design of engine containment cases at much lower costs. To replicate the damage modes similar to that on a fan case in FBO testing, the gas gun experiment has to be carefully designed. To investigate the experimental procedure and data acquisition techniques for FBO test, a low cost, small spin rig was first constructed. FBO tests were carried out with the small rig. The observed blade-to-fan case interactions were similar to those reported using larger spin rigs. The small rig has the potential in a variety of applications from investigating FBO events, verifying concept designs of rotors, to developing spin testing techniques. This rig was used in the developments of the notched blade releasing mechanism, a wire trigger method for synchronized data acquisition, high speed video imaging and etc. A relationship between the notch depth and the release speed was developed and verified. Next, an original custom designed spin testing facility was constructed. Driven by a 40HP, 40,000rpm air turbine, the spin rig is housed in a vacuum chamber of phi72inx40in (1829mmx1016mm). The heavily armored chamber is furnished with 9 viewports. This facility enables unprecedented investigations of FBO events. In parallel, a 15.4ft (4.7m) long phi4.1inch (105mm

  6. Influence of implant abutment material and ceramic thickness on optical properties.

    Science.gov (United States)

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔEabutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more

  7. Properties of textile grade ceramic fibers

    International Nuclear Information System (INIS)

    Pudnos, E.

    1992-01-01

    The availability of textile grade ceramic fibers has sparked great interest for applications in composite reinforcement and high temperature insulation. This paper summarizes the properties of various small diameter textile grade ceramic fibers currently available. Room temperature mechanical and electrical properties of the fibers are discussed for three cases: ambient conditions, after heat aging in argon, and after heat aging in wet air. Dow Corning (R) HPZ Ceramic Fiber, a silicon nitride type fiber, is shown to have improved retention of mechanical and electrical properties above 1200 C

  8. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  9. Relational Constraint Driven Test Case Synthesis for Web Applications

    Directory of Open Access Journals (Sweden)

    Xiang Fu

    2010-09-01

    Full Text Available This paper proposes a relational constraint driven technique that synthesizes test cases automatically for web applications. Using a static analysis, servlets can be modeled as relational transducers, which manipulate backend databases. We present a synthesis algorithm that generates a sequence of HTTP requests for simulating a user session. The algorithm relies on backward symbolic image computation for reaching a certain database state, given a code coverage objective. With a slight adaptation, the technique can be used for discovering workflow attacks on web applications.

  10. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  11. Automatic WSDL-guided Test Case Generation for PropEr Testing of Web Services

    Directory of Open Access Journals (Sweden)

    Konstantinos Sagonas

    2012-10-01

    Full Text Available With web services already being key ingredients of modern web systems, automatic and easy-to-use but at the same time powerful and expressive testing frameworks for web services are increasingly important. Our work aims at fully automatic testing of web services: ideally the user only specifies properties that the web service is expected to satisfy, in the form of input-output relations, and the system handles all the rest. In this paper we present in detail the component which lies at the heart of this system: how the WSDL specification of a web service is used to automatically create test case generators that can be fed to PropEr, a property-based testing tool, to create structurally valid random test cases for its operations and check its responses. Although the process is fully automatic, our tool optionally allows the user to easily modify its output to either add semantic information to the generators or write properties that test for more involved functionality of the web services.

  12. Automatic Generation of Test Cases from UML Models

    Directory of Open Access Journals (Sweden)

    Constanza Pérez

    2018-04-01

    Full Text Available [Context] The growing demand for high-quality software has caused the industry to incorporate processes to enable them to comply with these standards, but increasing the cost of development. A strategy to reduce this cost is to incorporate quality evaluations from early stages of software development. A technique that facilitates this evaluation is the model-based testing, which allows to generate test cases at early phases using as input the conceptual models of the system. [Objective] In this paper, we introduce TCGen, a tool that enables the automatic generation of abstract test cases starting from UML conceptual models. [Method] The design and implementation of TCGen, a technique that applies different testing criteria to class diagrams and state transition diagrams to generates test cases, is presented as a model-based testing approach. To do that, TCGen uses UML models, which are widely used at industry and a set of algorithms that recognize the concepts in the models in order to generate abstract test cases. [Results] An exploratory experimental evaluation has been performed to compare the TCGen tool with traditional testing. [Conclusions] Even though the exploratory evaluation shows promising results, it is necessary to perform more empirical evaluations in order to generalize the results. Abstract (in Spanish: [Contexto] La creciente demanda de software de alta calidad ha provocado que la industria incorpore procesos para permitirles cumplir con estos estándares, pero aumentando el costo del desarrollo. Una estrategia para reducir este costo es incorporar evaluaciones de calidad desde las primeras etapas del desarrollo del software. Una técnica que facilita esta evaluación es la prueba basada en modelos, que permite generar casos de prueba en fases tempranas utilizando como entrada los modelos conceptuales del sistema. [Objetivo] En este artículo, presentamos TCGen, una herramienta que permite la generación automática de casos de

  13. Authenticity test in ceramics and archaeological figures by thermoluminescence; Prueba de Autenticidad en ceramicas y figuras arqueologicas por termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez L, A.; Schaaf, P. [Laboratorio de Termoluminiscencia, Instituto de Geofisica-UNAM (Mexico); Filloy, L. [Museo Nacional de Antropologia e Historia, Ciudad de Mexico (Mexico)

    1999-07-01

    At present exists quite a lot of false archaeological pieces which provokes doubts about the legitimacy of the pieces. In this work it is presented the Authenticity test by Thermoluminescence realized at the urn of the goddess 13 serpent of the zapotec culture of Oaxaca which is exposed in Mexico City. The original piece contains crystalline structures which present hardly the thermoluminescence phenomena by the presence of {sup 238} U, {sup 232} Th, and {sup 40} K getting with this the form and intensity of the natural thermoluminescence curve of an archaeological piece which shows a Tl peak and allows to know so if it was made recently or not. (Author)

  14. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    International Nuclear Information System (INIS)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit

  15. Origin of honeycombs: Testing the hydraulic and case hardening hypotheses

    Science.gov (United States)

    Bruthans, Jiří; Filippi, Michal; Slavík, Martin; Svobodová, Eliška

    2018-02-01

    Cavernous weathering (cavernous rock decay) is a global phenomenon, which occurs in porous rocks around the world. Although honeycombs and tafoni are considered to be the most common products of this complex process, their origin and evolution are as yet not fully understood. The two commonly assumed formation hypotheses - hydraulic and case hardening - were tested to elucidate the origin of honeycombs on sandstone outcrops in a humid climate. Mechanical and hydraulic properties of the lips (walls between adjacent pits) and backwalls (bottoms of pits) of the honeycombs were determined via a set of established and novel approaches. While the case hardening hypothesis was not supported by the determinations of either tensile strength, drilling resistance or porosity, the hydraulic hypothesis was clearly supported by field measurements and laboratory tests. Fluorescein dye visualization of capillary zone, vapor zone, and evaporation front upon their contact, demonstrated that the evaporation front reaches the honeycomb backwalls under low water flow rate, while the honeycomb lips remain dry. During occasional excessive water flow events, however, the evaporation front may shift to the lips, while the backwalls become moist as a part of the capillary zone. As the zone of evaporation corresponds to the zone of potential salt weathering, it is the spatial distribution of the capillary and vapor zones which dictates whether honeycombs are created or the rock surface is smoothed. A hierarchical model of factors related to the hydraulic field was introduced to obtain better insights into the process of cavernous weathering.

  16. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  17. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  18. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  19. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  20. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  1. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  2. Development of ceramic vacuum pumps for fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    To achieve the magnetic field resistance and tritium resistance which are required for vacuum pumps for fusion reactors, a vacuum pump consisting of middle-ceramic turbo molecular pump (TMP), using ceramic rotor and ceramic turbo roughing pump was developed. In colaboration with the Japan Atomic Energy Research Institute, performance tests on pumping speed, compression ratio of middle-ceramic TMP and both of pumping characteristics were carried out. Sufficient performances were obtained. It was showed that middle-ceramic TMP had pumping speed of more than 500 l/s, and could achieve the pressure below 4 x 10 -7 Pa. Ceramic turbo roughing pump could vacuum from atmospheric pressure. It is concluded that complete oil-free ceramic vacuum pump can be put into practical use (K.S.)

  3. Clinical Bonding of Resin Nano Ceramic Restorations to Zirconia Abutments : A Case Series within a Randomized Clinical Trial

    NARCIS (Netherlands)

    Schepke, Ulf; Meijer, Henny J. A.; Vermeulen, Karin M.; Raghoebar, Gerry M.; Cune, Marco S.

    2016-01-01

    Background: New dental materials are introduced and promoted in the field without extensive clinical testing. Using those materials in a clinical setting might result in unacceptable early failure rates. Purpose: The purpose of this paper was to analyze bonding of a new dental restorative material

  4. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  5. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  6. Clay Ceramic Filter for Water Treatment

    Directory of Open Access Journals (Sweden)

    Zereffa Enyew Amare

    2017-05-01

    Full Text Available Ceramic water filters were prepared from different proportions of kaolin and soft wood and sintered at 900 °C, 950 °C, and 1000 °C. The flow rate, conductivity, pH of filtered water and removal efficiency (microbial, water hardness agent’s, nitrite and turbidity were analysed. The ceramic filter with 15 % saw dust, 80 % clay and 5 % grog that was fired at temperature of 950 °C or 1000 °C showed the best removal efficiency. Statistical ANOVA tests showed a significant difference between ceramic filters with various compositions in their removal efficiencies.

  7. Transfer of drug dissolution testing by statistical approaches: Case study

    Science.gov (United States)

    AL-Kamarany, Mohammed Amood; EL Karbane, Miloud; Ridouan, Khadija; Alanazi, Fars K.; Hubert, Philippe; Cherrah, Yahia; Bouklouze, Abdelaziz

    2011-01-01

    The analytical transfer is a complete process that consists in transferring an analytical procedure from a sending laboratory to a receiving laboratory. After having experimentally demonstrated that also masters the procedure in order to avoid problems in the future. Method of transfers is now commonplace during the life cycle of analytical method in the pharmaceutical industry. No official guideline exists for a transfer methodology in pharmaceutical analysis and the regulatory word of transfer is more ambiguous than for validation. Therefore, in this study, Gauge repeatability and reproducibility (R&R) studies associated with other multivariate statistics appropriates were successfully applied for the transfer of the dissolution test of diclofenac sodium as a case study from a sending laboratory A (accredited laboratory) to a receiving laboratory B. The HPLC method for the determination of the percent release of diclofenac sodium in solid pharmaceutical forms (one is the discovered product and another generic) was validated using accuracy profile (total error) in the sender laboratory A. The results showed that the receiver laboratory B masters the test dissolution process, using the same HPLC analytical procedure developed in laboratory A. In conclusion, if the sender used the total error to validate its analytical method, dissolution test can be successfully transferred without mastering the analytical method validation by receiving laboratory B and the pharmaceutical analysis method state should be maintained to ensure the same reliable results in the receiving laboratory. PMID:24109204

  8. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  9. Time-Optimal Real-Time Test Case Generation using UPPAAL

    DEFF Research Database (Denmark)

    Hessel, Anders; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    Testing is the primary software validation technique used by industry today, but remains ad hoc, error prone, and very expensive. A promising improvement is to automatically generate test cases from formal models of the system under test. We demonstrate how to automatically generate real...... test purposes or generated automatically from various coverage criteria of the model.......-time conformance test cases from timed automata specifications. Specifically we demonstrate how to fficiently generate real-time test cases with optimal execution time i.e test cases that are the fastest possible to execute. Our technique allows time optimal test cases to be generated using manually formulated...

  10. 30 CFR 250.520 - When do I have to perform a casing diagnostic test?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When do I have to perform a casing diagnostic... Operations Casing Pressure Management § 250.520 When do I have to perform a casing diagnostic test? (a) You must perform a casing diagnostic test within 30 days after first observing or imposing casing pressure...

  11. Test Automation Process Improvement A case study of BroadSoft

    OpenAIRE

    Gummadi, Jalendar

    2016-01-01

    This master thesis research is about improvement of test automation process at BroadSoft Finland as a case study. Test automation project recently started at BroadSoft but the project is not properly integrated in to existing process. Project is about converting manual test cases to automation test cases. The aim of this thesis is about studying existing BroadSoft test process and studying different test automation frameworks. In this thesis different test automation process are studied ...

  12. Pumping tests in nonuniform aquifers - The radially symmetric case

    Science.gov (United States)

    Butler, J.J.

    1988-01-01

    Traditionally, pumping-test-analysis methodology has been limited to applications involving aquifers whose properties are assumed uniform in space. This work attempts to assess the applicability of analytical methodology to a broader class of units with spatially varying properties. An examination of flow behavior in a simple configuration consisting of pumping from the center of a circular disk embedded in a matrix of differing properties is the basis for this investigation. A solution describing flow in this configuration is obtained through Laplace-transform techniques using analytical and numerical inversion schemes. Approaches for the calculation of flow properties in conditions that can be roughly represented by this simple configuration are proposed. Possible applications include a wide variety of geologic structures, as well as the case of a well skin resulting from drilling or development. Of more importance than the specifics of these techniques for analysis of water-level responses is the insight into flow behavior during a pumping test that is provided by the large-time form of the derived solution. The solution reveals that drawdown during a pumping test can be considered to consist of two components that are dependent and independent of near-well properties, respectively. Such an interpretation of pumping-test drawdown allows some general conclusions to be drawn concerning the relationship between parameters calculated using analytical approaches based on curve-matching and those calculated using approaches based on the slope of a semilog straight line plot. The infinite-series truncation that underlies the semilog analytical approaches is shown to remove further contributions of near-well material to total drawdown. In addition, the semilog distance-drawdown approach is shown to yield an expression that is equivalent to the Thiem equation. These results allow some general recommendations to be made concerning observation-well placement for pumping

  13. Fabrication and testing of the sintered ceramic UO2 fuel - I - III, Part III - testing of sintered uranium dioxide properties dependent on the fabrication procedure

    International Nuclear Information System (INIS)

    Novakovic, M.; Ristic, M.M.

    1961-12-01

    The objective of this task was testing the influence of some parameters on the properties of sintered UO 2 . The influence of parameters tested were as follows: adhesives; pressure in the pressing procedure; temperature of sintering of the UO 2 powder. Other parameters were chosen according to the theoretical study. Sintering was done in argon atmosphere. Characterization of the UO 2 powder was performed meaning determining the needed chemical, physical and physico-chemical properties. Some new methods were developed within this task: SET method for measuring the specific surfaces, DTA, TGA, high-temperature torsion

  14. Tensile Behaviour of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Řehořek, Lukáš; Dlouhý, Ivo; Chlup, Zdeněk

    2009-01-01

    Roč. 53, č. 4 (2009), s. 237-241 ISSN 0862-5468 R&D Projects: GA ČR GA101/09/1821; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : Tensile test * Ceramics foam * Open porosity * Tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.649, year: 2009

  15. Tensile properties of open cell ceramic foams

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2013-01-01

    Roč. 3, č. 1 (2013), s. 106-113 ISSN 1338-1660. [FRACTOGRAPHY 2012. Stará Lesná, 21.10.2012-24.10.2012] R&D Projects: GA ČR(CZ) GA101/09/1821 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : tension test * cellular materials * ceramics Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  16. Natural Radioactivity in Ceramic Materials

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Kamel, N.H.

    2005-01-01

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  17. Ceramic transactions: Environmental and waste management issues in the ceramic industry. Volume 39

    International Nuclear Information System (INIS)

    Mellinger, G.B.

    1994-01-01

    A symposium on environmental and waste management issues in the ceramic industry took place in Cincinnati, Ohio, April 19-22, 1993. The symposium was held in conjunction with the 95th Annual Meeting of the American Ceramic Society and was sponsored by the Ceramic Manufacturing Council, Legislative and Regulatory Affairs Committee with the Glass and Optical Materials, Basic Science, Cements, Nuclear, Refractory Ceramics, Structural Clay Products, Whitewares, Design, Electronics, Engineering Ceramics, and Materials and Equipment Divisions. This volume documents several of the papers that were presented at the symposium. Papers presented in this volume are categorized under the following headings: vitrification of hazardous and mixed wastes; waste glass properties and microstructure; processing of nuclear waste disposal glasses; waste form qualification; glass dissolution: modeling and mechanisms; systems and field testing of waste forms

  18. Evaluation of the reuse of glass and ceramic blocks in the development of a ceramic products

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Silva, L.A.; Martins, B.E.D.B.S.; Felippe, C.E.C.; Almeida, V.C.

    2010-01-01

    The ceramic industry has enormous potential to absorb wastes. The main objective of this study was to evaluate the feasibility of reusing leftovers ceramic blocks, from construction and, with shards of glass in the development of a ceramic product. The ceramic pieces were prepared with different compositions of glass by the method of pressing conformation and heating at 1000 and 1100 deg C. The conformed pieces were tested for linear shrinkage, water absorption, porosity, and tensile strength. The techniques for characterization were X-ray fluorescence, X-ray diffraction and scanning electron microscopy, the results show that the ceramic material produced has a high flexural strength and low values of water absorption. (author)

  19. DECOVALEX I - Test Case 1: Coupled stress-flow model

    International Nuclear Information System (INIS)

    Rosengren, L.; Christianson, M.

    1995-12-01

    This report presents the results of the coupled stress-flow model, test case 1 of Decovalex. The model simulates the fourth loading cycle of a coupled stress-flow test and subsequent shearing up to and beyond peak shear resistance. The first loading sequence (A) consists of seven normal loading steps: 0, 5, 15, 25, 15, 5, 0 MPa. The second loading sequence (B) consists of the following eight steps: unstressed state, normal boundary loading of 25 MPa (no shearing), and then shearing of 0.5, 0.8, 2, 4, 2, 0 mm. Two different options regarding the rock joint behaviour were modeled in accordance with the problem definition. In option 1 a linear elastic joint model with Coulomb slip criterion was used. In option 2 a non-linear empirical (i.e. Barton-Bandis) joint model was used. The hydraulic condition during both load sequence A and B was a constant head of 5 m at the inlet point and 0 m at the outlet point. All model runs presented in this report were performed using the two-dimensional distinct element computer code UDEC, version 1.8. 30 refs, 36 figs

  20. A continuing study of electrically conducting ceramics. Final report, August 9, 1978 - March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A series of 36 perovskite ceramics based on SrZrO/sub 3/ has been prepared and investigated as potential materials for electrodes for MHD systems using hydrogen as a fuel. All ceramics prepared were found to be relatively dark in color, indicating optical absorptions associated with the existence of conduction electrons. Many were found to be soft and crumbly after firing at 1400/sup 0/ or 1500/sup 0/C, but became hard and often quite shiny when fired at 1650/sup 0/C using a special graphite induction furnace. In most cases, this increase in hardness was also accompanied by a significant density increase. Most ceramics were found to be composed of second perovskite structures, i.e. manganates of Ba, Ca, Sr or La, in addition to the zirconate phase. Their room temperature electrical resistivity was determined by the van der Paaw method. Results show that resistivity falls below 100 ohm-cm (the value acceptable for MHD electrodes) for certain ceramics of the types tested. The resistivity value was found to vary significantly with firing temperature; this can be correlated with the crystal structures and number of phases within the ceramic. Weight loss measurements done at 1440/sup 0/C have enabled three ceramics to be identified as potential materials for thermoelectric converters requiring high temperature structural and chemical stability in oxidizing atmospheres. An appendix reviews the current status of the basis for development of perovskite ceramics and specific materials are discussed on the basis of relevant thermoelectric properties. Also included is a review of semiconductor thermocouples and of materials selection for insulators and electrodes for use in MHD systems. 91 refs., 3 figs., 10 tabs.

  1. Prospects of ceramic tritium breeder materials

    International Nuclear Information System (INIS)

    Roth, E.; Roux, N.; Conservatoire National des Arts et Metiers; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1989-01-01

    In this paper the authors examine the prospects of the main ceramics proposed as breeder materials for fusion reactors, i.e. Li-2O, Li-2ZrO-3, LiAlO-2, Li-4SiO-4. To do so they review terms of reference of contemplated blankets for NET, ITER and DEMO, and the proposed blanket concepts and materials. Issues respective to the use of each breeder material are examined, and from this review it is concluded that ceramics are the most favorable breeder materials whose use can be contemplated as well for a driver blanket for NET or ITER and for a DEMO blanket. Ceramics are then compared between themselves and it is seen that, subject to the confirmation of recent experimental results, lithium zirconate could be used with advantage in any of the present blanket concepts, except in those employing lithium at its natural isotopic abundance, in which case only Li-2O can be used. However in specific cases, or in parts of a blanket, other ceramics may be profitably employed. As a general conclusion suggestions are made to further improve ceramic breeder performances, and it is recommended to intensify also work on problems that have to be solved in order to operate ceramic breeder blankets e.g. tritium extraction and recovery systems and conditions of beryllium use. (author). 37 refs.; 12 tabs

  2. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances ... ally considered oxide materials for many applications. .... three cases but is more pronounced in the case of C12A7.

  3. Study of Wettability of Clayey Ceramic and Fluorescent Lamp Glass Waste Powders

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Monteiro, Sergio Neves; Ribeiro, Sebastião; Sardinha, Leonardo Carneiro; Vieira, Carlos Maurício Fontes

    The glass tube of spent fluorescent lamps is contaminated with mercury, which might be a serious hazard in the case of conventional recycling by melting with other glasses. A possible solution could be its incorporation into a clay body to fabricate common fired ceramics such as bricks and tiles. The objective of this work is to characterize a type of fluorescent lamp glass waste to be incorporated into a clayey ceramic. The characterization was performed in terms of wettability tests to evaluate the interaction between the surface of the clayey ceramic and glass waste as a function of the firing temperature. The results showed that the contact angle decreased with increasing temperature, reaching a value of 79°, at a temperature of 1100°C, but not sufficient to completely wet the ceramic. However, compatible chemical composition and reduction of porosity by the flow of soft glass waste between the clay particles favor the consolidation of the ceramics structure above 900°C.

  4. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  5. Small recuperated ceramic microturbine demonstrator concept

    International Nuclear Information System (INIS)

    McDonald, Colin F.; Rodgers, Colin

    2008-01-01

    It has been about a decade since microturbines first entered service in the distributed generation market, and the efficiencies of these turbogenerators rated in the 30-100 kW power range have remained essentially on the order of 30%. In this time frame the cost of fuel (natural gas and oil) has increased substantially, and efforts are now underway to increase the efficiency of microturbines to 40% or higher. Various near-term means of achieving this are underway by utilizing established gas turbine technology, but now based on more complex thermodynamic cycles. A longer-term approach of improving efficiency is proposed in this paper based on the retention of the basic recuperated Brayton cycle, but now operating at significantly higher levels of turbine inlet temperature. However, in small low pressure ratio recuperated microturbines embodying radial flow turbomachinery this necessitates the use of ceramic components, including the turbine, recuperator and combustor. A development approach is proposed to design, fabricate and test a 7.5 kW ceramic microturbine demonstrator concept, which for the first time would involve the coupling of a ceramic radial flow turbine, a ceramic combustor, and a compact ceramic fixed-boundary high effectiveness recuperator. In a period of some three years, the major objectives of the proposed small ceramic microturbine R and D effort would be to establish a technology base involving thermal and stress analysis, design methodology, ceramic component fabrication techniques, and component development, these culminating in the assembly and testing to demonstrate engine structural integrity, and to verify performance. This would provide a benchmark for more confidently advancing to increased size ceramic-based turbogenerators with the potential for efficiencies of over 40%. In addition, the power size of the tested prototype could possibly emerge as a viable product, namely as a natural gas-fired turbogenerator with the capability of

  6. Machinability of IPS Empress 2 framework ceramic.

    Science.gov (United States)

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  7. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  8. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  9. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  10. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  11. Hemorrhagic iliopsoas bursitis complicating well-functioning ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim

    2009-08-01

    Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.

  12. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  13. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  14. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  15. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  16. Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure

    DEFF Research Database (Denmark)

    Koivisto, Antti Joonas; Kling, Kirsten Inga; Fonseca, Ana Sofia

    2018-01-01

    Nanoscale TiO2 (nTiO2) is manufactured in high volumes and is of potential concern in occupational health. Here, we measured workers exposure levels while ceramic honeycombs were dip coated with liquid photoactive nanoparticle suspension and dried with an air blade. The measured nTiO2 concentrati...

  17. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  18. Research into properties of wear resistant ceramic metal plasma coatings

    Science.gov (United States)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  19. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  20. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  1. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  2. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  3. 30 CFR 250.522 - When do I have to repeat casing diagnostic testing?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When do I have to repeat casing diagnostic... Operations Casing Pressure Management § 250.522 When do I have to repeat casing diagnostic testing? Casing diagnostic testing must be repeated according to the following table: When * * * you must repeat diagnostic...

  4. Ceramics in Restorative and Prosthetic DENTISTRY1

    Science.gov (United States)

    Kelly, J. Robert

    1997-08-01

    This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.

  5. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    Science.gov (United States)

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  6. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  7. In vivo biofilm formation on different dental ceramics.

    Science.gov (United States)

    Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike

    2011-01-01

    To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.

  8. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  9. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  10. Report on results 1998. Standardization of test measuring method of fine ceramics for communication equipment; 1998 nendo seika hokokusho. Tsushin kikiyo fine ceramics no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Technological development is in progress at present for the intelligent transport system for example that uses a microwave frequency range of 60GHz or 90GHz toward the practical use, with a demand increasing for measuring the electrical properties of fine ceramics (FC) to be used in the communication equipment of the system. The measuring method in the microwave frequency range of 30GHz or less is about to be standardized in IEC TC49/WG10; however, the method above 30GHz has not yet been examined for the standardization internationally. The subject research is intended to establish the method of measuring electrical properties such as the dielectric constant of FC for a high-frequency/ultra high-frequency wave range, dielectric loss and surface resistivity, to standardize the principle of their measuring methods, measuring tools, adjusting method of samples, procedures of measurement, etc., and to aim at the international standardization. This year, investigation and examination were carried out on various measuring methods including overseas examinations in the U.S., extracting the Fabry-Perot resonator method and a conductive cylindrical dielectric cavity resonator perturbation method for example, and evaluating the specifications of standard reference materials. In addition, a morphological technique was established for measuring sample surfaces affecting measurements, by means of an accurate measuring instrument for thin film surfaces. (NEDO)

  11. Study of the effect of nano surface morphology on the stain-resistant property of ceramic tiles

    International Nuclear Information System (INIS)

    Pan, S P; Hung, J K; Liu, Y T

    2014-01-01

    In this study, six types of commercially available ceramic tiles, including nano-structured ceramic tiles and regular ceramic tiles, were selected to investigate the effect of surface morphology on their stain-resistant property. The stain-resistant efficiencies of various ceramic tiles with nano-size surface were measured in order to determine the appropriate method for testing ceramic tiles with nano-structure surface

  12. From Vitruvius' ceramic powder additives to modern restoration

    Directory of Open Access Journals (Sweden)

    Mário Mendonça de Oliveira

    2008-01-01

    Full Text Available The text aims at giving a general view of the use of lime mortars additivated with ceramic powder taking advantage of its pozzolanic reactions. It emphasizes the main explicit references of this technique in the ancient writers, starting from Vitruvius and going through important theoreticians of the Renaissance, until it reaches the military engineers of the XVII e XVIII centuries, particularly the Portuguese engineers who had a strong influence in the overseas constructions techniques. Some mistakes in the interpretation of these texts regarding the properties attributed to the addition of ceramic powder in lime mortars are also mentioned. The continuation of the work refers to the description and commentaries of the tests and laboratory observations carried out on the additivated mortars in question. Among these are highlighted the hardening time, the mechanical resistance (axial compression and traction by diametral compression, water absorption by capillary uptake, total water porosity, accelerated aging in saturated solution of Na2SO4, loss on ignition x-rays fluorescence, permeability to water vapor and other procedures that contribute to the evaluation of the behavior of lime mortars additivated with the "cocciopesto" and of the pozzolanic reactions occurring in the material. As the theory would have no sense if it is not necessarily put in practice, the work ends with the description of the application of the mortar additivated with ceramic powder in a concrete case of restoration, with the description of the obtained results.

  13. Achievement report for fiscal 1998. Research and development of ceramic gas turbine (Regenerative single-shaft ceramic gas turbine for cogeneration); 1998 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saiseishiki ichijiku ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Efforts are exerted to develop a 300kW-class ceramic gas turbine with a turbine inlet temperature of 1350 degrees C and thermal efficiency of 42% or higher. The soundness in strength of the ceramic rotor blades and their fastening structure is confirmed. Rotor blade cushion thickness is found to decrease in start-and-stop repetitions in the initial period, but not thereafter. The exhaust diffuser and exhaust path shape are studied and improved for an increase in output, which improves turbine efficiency by 1.7%. Under the operating conditions of 1350 degrees C and full load, NOx emissions and combustion efficiency prove to be 5.6ppm and 99.9%. Even in the case using a large-diameter liner with its combustion efficiency under light load improved, the ultimate target value is achieved. Studies are further conducted on centrifugal stage loss reduction towards the ultimate goal set for the compressor. The diffuser shape is improved and the shroud clearance is reduced, and insulation efficiency of 81.1% is attained at the designing stage. In a test run of a pilot ceramic gas turbine in which temperature finally arrives at 1350 degrees C, engine thermal efficiency of 35% and shaft output of 282kW are achieved. (NEDO)

  14. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  15. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.

    Science.gov (United States)

    Siskey, Ryan; Ciccarelli, Lauren; Lui, Melissa K C; Kurtz, Steven M

    2016-11-01

    endplates were the primary sources of wear and demonstrated an abrasive wear mechanism. Under idealized and impingement conditions, the ceramic core also demonstrated slight polishing of the articulating surface but the change in mass was unmeasurable. During abrasive testing, the titanium transfer on the core was shown to polish over 5 MC of testing. In all cases and consistent with previous studies of other PEEK bearing couples, the particle size was primarily < 2 µm and morphology was smooth and spheroidal. Overall, the idealized PEEK-on-ceramic wear rate (0.7 ± 0.1 mm 3 /MC) appears comparable to the published wear rates for other polymer-on-hard bearing couples (0.3-6.7 mm 3 /MC) and within the range of 0.2 to 1.9 mm 3 /MC reported for PEEK-on-PEEK cervical disc designs. The particles, based on size and morphology, also suggest the wear mechanism is comparable between the PEEK-on-ceramic couple and other polymer-on-ceramic orthopaedic couples. The PEEK-on-ceramic bearing considered in this study is a novel bearing couple for use in total disc arthroplasty devices and will require clinical evaluation to fully assess the bearing couple and total disc design. However, the wear rates under idealized and adverse conditions, and particle size and morphology, suggest that PEEK-on-ceramic bearings may be a reasonable alternative to polyethylene-on-CoCr and metal-on-metal bearings currently used in cervical TDRs.

  16. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  17. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  18. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  19. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  20. HIV Testing among Canadian Tuberculosis Cases from 1997 to 1998

    Directory of Open Access Journals (Sweden)

    Tara Harris

    2006-01-01

    Full Text Available BACKGROUND: Recent evidence suggests a global rise in adult tuberculosis (TB cases associated with HIV/AIDS. The World Health Organization, the United States Centers for Disease Control and Prevention, and the Public Health Agency of Canada advocate universal screening of all TB cases for HIV. The contribution of HIV to the TB burden in Canada remains unclear.

  1. Application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2009-07-01

    Drivers for using ceramic membranes in steam assisted gravity drainage (SAGD) include reduced investment cost; alternative treatment technologies that reduce energy and greenhouse gas emissions; and ceramic membranes can be chemically and steam cleaned. This presentation discussed the application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse. The presentation illustrated conventional ceramic membranes as well as surface enhanced membranes and provided background information on oil separation. Other topics that were discussed included issues regarding desalter bottoms de-oiling; challenges in de-oiling oil sands produced water; CeraMem surface enhanced membranes; surface facilities and ceramic membrane opportunities; and water treatment using ceramic membranes. The presentation concluded with a discussion of the application of ceramic membranes to SAGD next steps such as a demonstration test of industrial prototype membranes for de-oiling, and pilot testing of ceramic desilication. tabs., figs.

  2. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  3. Business models & business cases for point-of-care testing

    NARCIS (Netherlands)

    Staring, A.J.; Meertens, L. O.; Sikkel, N.

    2016-01-01

    Point-Of-Care Testing (POCT) enables clinical tests at or near the patient, with test results that are available instantly or in a very short time frame, to assist caregivers with immediate diagnosis and/or clinical intervention. The goal of POCT is to provide accurate, reliable, fast, and

  4. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  5. Ceramic design methodology and the AGT-101

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.L.; Carruthers, W.D.; Evershed, R.J.; Kidwell, J.R.

    1985-03-01

    The Garrett/Ford Advanced Gas Turbine (AGT101) technology project has made significant progress in the areas of ceramic component design, analysis, and test evaluation using an iterative approach. Design stress limits are being defined for state-of-the-art fine ceramics with good correlation between analytical predictions and empirical results. Recent tests in both rigs and engines are demonstrating the feasibility of high temperature/strength ceramic materials in the gas turbine environment. Component transient stress fields are being defined providing the data base for lower stress/longer life component design. Thermally induced transient stresses to 220 MPa (32 ksi) in reaction bonded silicon nitride (RBSN), 310 Mpa (45 ksi) in sintered alpha silicon carbide (SASC), and 345 MPa (50 ksi) in sintered silicon nitride (SSN) have been successfully demonstrated in AGT101 component screening and qualification test rigs.

  6. Developing 300°C Ceramic Circuit Boards

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A

    2015-02-15

    This paper covers the development of a geothermal ceramic circuit board technology using 3D traces in a machinable ceramic. Test results showing the circuit board to be operational to at least 550°C. Discussion on producing this type of board is outlined along with areas needing improvement.

  7. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  8. Diatomite based ceramics macro- and microscopic characterization

    Science.gov (United States)

    Aderdour, H.; Bentayeb, A.; Nadiri, A.; Ouammou, A.; Sangleboeuf, J.-C.; Lucas-Girot, A.; Carel, C.

    2005-03-01

    A Moroccan diatomite is characterized chemically and physically. Mechanical properties of ceramics prepared by sintering at different temperatures ranging from 1050 to 1350° C are studied. Compressive strength and Young modulus are determined by compression tests. Densification and evolution of the microstructure are followed by SEM and other tests.

  9. Reference materials and representative test materials: the nanotechnology case

    International Nuclear Information System (INIS)

    Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. J.; Rauscher, H.; Emons, H.; Stamm, H.

    2013-01-01

    An increasing number of chemical, physical and biological tests are performed on manufactured nanomaterials for scientific and regulatory purposes. Existing test guidelines and measurement methods are not always directly applicable to or relevant for nanomaterials. Therefore, it is necessary to verify the use of the existing methods with nanomaterials, thereby identifying where modifications are needed, and where new methods need to be developed and validated. Efforts for verification, development and validation of methods as well as quality assurance of (routine) test results significantly benefit from the availability of suitable test and reference materials. This paper provides an overview of the existing types of reference materials and introduces a new class of test materials for which the term ‘representative test material’ is proposed. The three generic concepts of certified reference material, reference material(non-certified) and representative test material constitute a comprehensive system of benchmarks that can be used by all measurement and testing communities, regardless of their specific discipline. This paper illustrates this system with examples from the field of nanomaterials, including reference materials and representative test materials developed at the European Commission’s Joint Research Centre, in particular at the Institute for Reference Materials and Measurements (IRMM), and at the Institute for Health and Consumer Protection (IHCP).

  10. Ceramic coatings for water-repellent textiles

    Science.gov (United States)

    Colleoni, C.; Esposito, F.; Guido, E.; Migani, V.; Trovato, V.; Rosace, G.

    2017-10-01

    In recent years, ceramic coatings have been widely studied for their potential performance in many scientific and technological fields. Ceramic coatings are also used as a textile-finishing agent to impart several properties such as anti-bacterial, anti-abrasion, flame retardant. In this study, fluoro free water repellent finishings have been developed to assess the features of the silica films on the textile fabrics. The water repellency of the treated samples has been evaluated by different tests such as water contact angle, water uptake and drop test.

  11. ATTAP/AGT101 - Year 2 progress in ceramic technology development

    Science.gov (United States)

    Kidwell, J. R.; Lindberg, L. J.; Morey, R. E.

    1990-01-01

    The progress made by the Advanced Turbine Technology Applications Project (ATTAP) is summarized, with emphasis on the following areas: ceramic materials assessment and characterization, ceramic impact damage assessment, ceramic combustor evaluation, turbine inlet particle separator development, impact-tolerant turbine designs, and net-shape ceramic component fabrications. In the evolutionary ceramics development in the Automotive Gas Turbine (AGT101) and ATTAP programs initial designs were conceived to reduce stresses by using well-established criteria: bodies of revolution were preferred over nonaxisymmetric geometries, sharp corners were avoided, the contact area between components was kept as large as possible, and small parts were preferred over large when feasible. Projects discussed include: initial ceramic component fabrication by ceramic suppliers in 1990, engine test to 1371 C in 1991, 100-hr test bed engine durability test in 1991, and 300-hr test bed engine durability in 1992.

  12. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  13. Evaluation of Test-Driven Development : An Industrial Case Study

    NARCIS (Netherlands)

    Wasmus, H.; Gross, H.G.

    2007-01-01

    Test-driven development is a novel software development practice and part of the Extreme Programming paradigm. It is based on the principle that tests should be designed and written for a module iteratively, while the code of the module is devised. This is the opposite of what is usual in current

  14. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  15. Integrating non-animal test information into an adaptive testing strategy - skin sensitization proof of concept case.

    Science.gov (United States)

    Jaworska, Joanna; Harol, Artsiom; Kern, Petra S; Gerberick, G Frank

    2011-01-01

    There is an urgent need to develop data integration and testing strategy frameworks allowing interpretation of results from animal alternative test batteries. To this end, we developed a Bayesian Network Integrated Testing Strategy (BN ITS) with the goal to estimate skin sensitization hazard as a test case of previously developed concepts (Jaworska et al., 2010). The BN ITS combines in silico, in chemico, and in vitro data related to skin penetration, peptide reactivity, and dendritic cell activation, and guides testing strategy by Value of Information (VoI). The approach offers novel insights into testing strategies: there is no one best testing strategy, but the optimal sequence of tests depends on information at hand, and is chemical-specific. Thus, a single generic set of tests as a replacement strategy is unlikely to be most effective. BN ITS offers the possibility of evaluating the impact of generating additional data on the target information uncertainty reduction before testing is commenced.

  16. Corrosion behavior of pyroclore-rich titanate ceramics for plutonium disposition; impurity effects

    International Nuclear Information System (INIS)

    Bakel, A. J.

    1999-01-01

    The baseline ceramic contains Ti, U, Ca, Hf, Gd, and Ce, and is made up of only four phases, pyrochlore, zirconolite, rutile, and brannerite. The impurities present in the three other ceramics represent impurities expected in the feed, and result in different phase distributions. The results from 3 day, 90 C MCC-1 tests with impurity ceramics were significantly different than the results from tests with the baseline ceramic. Overall, the addition of impurities to these titanate ceramics alters the phase distributions, which in turn, affects the corrosion behavior

  17. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  18. EXPLORATION WELL TEST CASE HISTORY CONFIRMS IMPORTANCE OF DST

    Directory of Open Access Journals (Sweden)

    Dario Damjanić

    2009-12-01

    Full Text Available Drill stem testing of the exploration well consisted of two flow and two pressure build-up periods. Gas was obtained. Modified isochronal test was used during testing the well after completion. Except gas, small quantity of condensate and traces of oil and water were obtained. Both pressure build-up analyses showed that formation permeability is low. DST pressure build-up analysis showed that wellbore damage is present. This was proved later, when acid treatment was performed, by which skin was removed and production increased significantly. Data obtained by well testing are very important for future productivity prediction and determination of optimal well completion and surface facility construction (the paper is published in Croatian.

  19. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  20. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  1. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  2. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  3. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  4. Characterisation of Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics by SEM, XRD, XPS and dielectric permittivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Molak, A. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland)]. E-mail: molak@us.edu.pl; Talik, E. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Kruczek, M. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Paluch, M. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Ratuszna, A. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Ujma, Z. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland)

    2006-03-15

    The Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics has been obtained from oxides by sintering in air, using a two-stage process with precursor columbite-like (Mn{sub 0.5}Nb)O{sub 3} phase. The PbO oxide was added in the second stage. Analysis of the X-ray diffraction pattern shows that the ceramics consist of 91% of major perovskite phase. A monoclinic distortion of the perovskite structure was found. The cell parameters are a = 12.193(3) A, b = 11.966(6) A, c 12.144(2) A, {beta} = 90{sup o}10.7'. The microanalysis made with SEM exhibited fluctuation in chemical composition of the perovskite phase. Precipitation of MnO{sub 2}, PbO and the Pb-Mn-Nb-O phase different from perovskite was found. The X-ray photoelectron spectroscopy was used to study the electronic structure of the Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics. The core levels of lead, manganese, niobium and oxygen were measured. The shape of valence band ridge is influenced by Mn 3d states. The real average chemical composition obtained from the XPS measurement is Pb{sub 0.99}(Mn{sub 0.42}Nb{sub 0.67})O{sub 2.92}. Broadband dielectric measurement was carried out in 10{sup -2} to 10{sup 6} Hz and within 80-700 K ranges. The dominant relaxation process exhibits characteristic times typical for ionic processes {tau} {sub 0,H} = 1 x 10{sup -11} s for the higher temperature range and, {tau} {sub 0,L} = 1 x 10{sup -9} s for lower temperatures. The activation energy of relaxation process, E {sub M,H} = 0.43 eV and E {sub M,L} = 0.34 eV corresponds to activation energy of electric conductivity. The dielectric relaxation is ascribed to dipoles created by oxygen vacancies and/or Mn-V {sub O} complexes.

  5. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  6. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  7. Technology Solutions Case Study: Combustion Safety Simplified Test Protocol

    Energy Technology Data Exchange (ETDEWEB)

    L. Brand, D. Cautley, D. Bohac, P. Francisco, L. Shen, and S. Gloss

    2015-12-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives.

  8. Efficiency of color vision tests in hereditary dyschromatopsia: case report

    OpenAIRE

    Fernandes, Luciene Chaves; Urbano, Lúcia Carvalho de Ventura

    2008-01-01

    As autoras relatam dois casos de discromatopsia hereditária e discutem a eficiência dos testes cromáticos no diagnóstico de uma discromatopsia. Os pacientes foram reprovados em diferentes concursos públicos federais por apresentarem diagnóstico de discromatopsia hereditária pelo teste de Ishihara. Submeteram-se a exame oftalmológico, com resultados dentro da normalidade. Procuraram novo parecer para melhor caracterização da sua discromatopsia. Não havia sintomas relacionados à deficiência. Os...

  9. Characterization of microstructure of Si3N4 whisker reinforced glass ceramic

    International Nuclear Information System (INIS)

    Han, Byoung Sung; Choi, Shung Shaon

    1993-01-01

    Glass ceramics, especially fiber-reinforced composite ceramics, have attracted a great deal of attention in improving the reliability of ceramic components because of the improvement in various mechanical properties. Through hot-pressing and sintering, 225 cordierite was transformed with glass ceramic and mullite phase. Particularly glass glain size increased with the increasing of the sintering temperature and the heat treatment enhance the toughness and hardness of materials. Like the increased sintering temperature, the roughness increased with increasing whisker vol.%. In case of whisker-rinforced glass ceramic, the fracture surface of samples has been associated with a whisker orientation of samples. (Author)

  10. Findings concerning testis, vas deference, and epididymis in adult cases with nonpalpable testes

    Directory of Open Access Journals (Sweden)

    Coskun Sahin

    2011-12-01

    Full Text Available In this study, we aimed to state the relationship between testis, epididymis and vas deference, in adult cases with nonpalpable testis. Between January 1996 and December 2009, we evaluated 154 adult cases with nonpalpable testes. Mean age was 23 years (20-27 years. Explorations were performed by open inguinal incision, laparoscopy, and by inguinal incision and laparoscopy together on 22, 131 and 1 patient, respectively. Of all the unilateral cases, 32 were accepted as vanishing testis. In five of these cases, vas deference was ending inside the abdomen, and in the others, it was ending inside the scrotum. In the remaining 99 unilateral and 22 bilateral cases, 143 testes were found in total. Testes were found in the inguinal canal as atrophic in one case, at the right renal pedicle level with dysmorphic testis in one case, and anterior to the internal ring between the bladder and the common iliac vessels at a smaller than normal size in 119 cases. One (0.69% case did not have epididymis. While epididymis was attached to the testis only at the head and tail locations in 88 (61.53% cases, it was totally attached to the testis in 54 (37.76% cases. There is an obviously high incidence rate of testis and vas deference anomalies, where epididymis is the most frequent one. In cases with abdominal testes, this rate is highest for high localised abdominal testes.

  11. Relation between microstructure and dielectric breakdown in the case of aluminous ceramics (SEMM method); Comportement d'alumines face a l'injection de charges. Relation microstructure - claquage dielectrique - mesure des charges d'influence (methode SEMM)

    Energy Technology Data Exchange (ETDEWEB)

    Liebault, J.

    1999-02-01

    The dielectric breakdown is strongly linked to the injection and the accumulation of charges in a non-conducting material. The physics of charged insulators proposes mechanisms of trapping and transport of charges in aluminium oxides by considering defects as localization sources of charges and of energy. In order to measure the influence of defects on dielectric breakdown, various aluminous ceramics have been elaborated. The nature and the quantity of defects have been characterized by the nature and the rate of impurities, by porosity, by the quantity of grain boundaries and by the presence and distribution of secondary phases. These materials have undergone breakdown tests. The dielectric rigidity depends strongly on the nature and the distribution of crystallographic defects (vacancy, interstitial ions and dislocation), on the other hand porosity below 5% has no influence. The doping of an alumina ceramic containing less than 100 ppm of impurities implies a diminution of its dielectric rigidity. The measurement of the SEMM (scanning electron microscopy mirror) effect allows the characterization of insulating materials. This method permits the evaluation of the ability for materials to trap charges, it gives information about the charge kinetic of trapping, charge localization and the energy levels of traps. (A.C.)

  12. Testing Affine Term Structure Models in Case of Transaction Costs

    NARCIS (Netherlands)

    Driessen, J.J.A.G.; Melenberg, B.; Nijman, T.E.

    1999-01-01

    In this paper we empirically analyze the impact of transaction costs on the performance of affine interest rate models. We test the implied (no arbitrage) Euler restrictions, and we calculate the specification error bound of Hansen and Jagannathan to measure the extent to which a model is

  13. The Florida State Initial Teacher Certification Test: A Case Study.

    Science.gov (United States)

    Dorn, Charles M.

    1989-01-01

    Describes the development of the art certification examination which was designed for the Florida State Initial Teacher Certification Test. Discusses problems of subjectivity, content, and question format. Suggests criteria which can guide the development of viable college art education programs that can adequately prepare teachers in the areas of…

  14. Anterior abdominal wall ectopic testes: A report of two cases ...

    African Journals Online (AJOL)

    Undescended testis (UDT) is a common anomaly of the male reproductive system affecting about 2% to 4% of male infants more commonly preterms. If the testis remains in the line of normal descent, it is classified as an UDT. If it is not in the line of normal descent, it is termed an ectopic testis. Common sites of ectopic testes ...

  15. Functional Literacy Tests: A Case of Anticipatory Validity?

    Science.gov (United States)

    Anderson, Lorin W.; Anderson, Jo Craig

    1981-01-01

    Development of the mathematics functional literacy test (MFLT) is described, issues of predictive and content validity are discussed, and implications for educational policy are presented. Ten basic skill areas identified by the National Council of Supervisors of Mathematics were used as the basis for the development of the MFLT. (RL)

  16. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    International Nuclear Information System (INIS)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300 degrees C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss

  17. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  18. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  19. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  20. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  1. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  2. Ceramic Technology Project. Semiannual progress report, April 1991--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  3. Evaluation of a novel multiple phase veneering ceramic.

    Science.gov (United States)

    Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah

    2015-04-01

    To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. The case for bilingual language tests: a study of test adaptation and ...

    African Journals Online (AJOL)

    The justification for the use of language tests in education in multilingual and multicultural societies needs to include both the aims of bilingual education, and evidence that the international standards for tests that are available in two or more languages are being met. In multilingual and multicultural societies, language tests ...

  5. Simulation and performance study of ceramic THGEM

    Science.gov (United States)

    Yan, Jia-Qing; Xie, Yu-Guang; Hu, Tao; Lu, Jun-Guang; Zhou, Li; Qu, Guo-Pu; Cai, Xiao; Niu, Shun-Li; Chen, Hai-Tao

    2015-06-01

    THGEMs based on a ceramic substrate have been successfully developed for neutron and single photon detection. The influences on thermal neutron scattering and internal radioactivity of both ceramic and FR-4 substrates were studied and compared. The ceramic THGEMs are homemade, of 200 μm hole diameter, 600 μm pitch, 200 μm thickness, 80 μm rim, and 50 mm×50 mm sensitive area. FR-4 THGEMs with the same geometry were used as a reference. The gas gain, energy resolution and gain stability were measured in different gas mixtures using 5.9 keV X-rays. The maximum gain of a single layer ceramic THGEM reaches 6×104 and 1.5×104 at Ne+CH4=95:5 and Ar + i-C4H10 = 97:3, respectively. The energy resolution is better than 24%. Good gain stability was obtained during a more than 100 hour continuous test in Ar+CO2 = 80:20. By using a 239Pu source, the alpha deposited energy spectrum and gain curve of the ceramic THGEM were measured. Supported by National Natural Science Foundation of China (11205173) and State Key Laboratory of Particle Detection and Electronics (H9294206TD)

  6. Test of the Bank Lending Channel: The Case of Poland

    Directory of Open Access Journals (Sweden)

    Yu HSING

    2013-11-01

    Full Text Available This paper tests the bank lending channel for Poland based on a simultaneousequation model consisting of demand for and supply of bank loans. The three-stage least squares method is employed in empirical work. This paper finds support for a bank lending channel for Poland. Expansionary monetary policy through a lower money market rate or open market purchase of government bonds to increase bank reserves/deposits would increase bank loan supply.

  7. Proposing and testing SOA governance process: A case study approach

    DEFF Research Database (Denmark)

    Koumaditis, Konstantinos; Themistocleous, Marinos

    2015-01-01

    Longstanding Healthcare Information Systems (HIS) integration challenges drove healthcare organisations to invest in new paradigms like Service Oriented Architecture (SOA). Yet, SOA holds challenges of its own, with SOA Governance surfacing on the top. This research depicts the development......, grounded in the normative literature and further developed to include healthcare aspects. The proposition is tested in a large Greek hospital utilising qualitative methods and the findings presented herein. This proposal aims to pinpoint attributes and guidelines for SOA Governance Process, required...

  8. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  9. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  10. Making System Dynamics Cool II : New Hot Teaching and Testing Cases of Increasing Complexity

    NARCIS (Netherlands)

    Pruyt, E.

    2010-01-01

    This follow-up paper presents several actual cases for testing and teaching System Dynamics. The cases were developed between April 2009 and January 2010 for the Introductory System Dynamics courses at Delft University of Technology in the Netherlands. They can be used for teaching and testing

  11. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  12. The universe of ANA testing: a case for point-of-care ANA testing.

    Science.gov (United States)

    Konstantinov, Konstantin N; Rubin, Robert L

    2017-12-01

    Testing for total antinuclear antibodies (ANA) is a critical tool for diagnosis and management of autoimmune diseases at both the primary care and subspecialty settings. Repurposing of ANA from a test for lupus to a test for any autoimmune condition has driven the increase in ANA requests. Changes in ANA referral patterns include early or subclinical autoimmune disease detection in patients with low pre-test probability and use of negative ANA results to rule out underlying autoimmune disease. A positive result can lead to further diagnostic considerations. Currently, ANA tests are performed in centralized laboratories; an alternative would be ANA testing at the clinical point-of-care (POC). By virtue of its near real-time data collection capability, low cost, and ease of use, we believe the POC ANA has the potential to enable a new paradigm shift in autoimmune serology testing.

  13. Joining of metals to structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sistiaga, J M; Salvador, J M

    1988-01-01

    A wide review is made on metal-ceramics joining by brazing, mainly by active metal containing brazing filler alloys and solid state welding that is diffusion welding and hot isostatic pressure (HIP). Both the basic aspects of the processes and the mechanisms involved are considsered. At last, different joint testing ands evaluation procedures are presented. (Author)

  14. Joining of metals to structural ceramics

    International Nuclear Information System (INIS)

    Sistiaga, J.M.; Salvador, J.M.

    1988-01-01

    A wide review is made on metal-ceramics joining by brazing, mainly by active metal containing brazing filler alloys and solid state welding that is diffusion welding and hot isostatic pressure (HIP). Both the basic aspects of the processes and the mechanisms involved are considered. At last, different joint testing and evaluation procedures are presented. (Author)

  15. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  16. Spherical symmetry as a test case for unconstrained hyperboloidal evolution

    International Nuclear Information System (INIS)

    Vañó-Viñuales, Alex; Husa, Sascha; Hilditch, David

    2015-01-01

    We consider the hyperboloidal initial value problem for the Einstein equations in numerical relativity, motivated by the goal to evolve radiating compact objects such as black hole binaries with a numerical grid that includes null infinity. Unconstrained evolution schemes promise optimal efficiency, but are difficult to regularize at null infinity, where the compactified Einstein equations are formally singular. In this work we treat the spherically symmetric case, which already poses nontrivial problems and constitutes an important first step. We have carried out stable numerical evolutions with the generalized BSSN and Z4 equations coupled to a scalar field. The crucial ingredients have been to find an appropriate evolution equation for the lapse function and to adapt constraint damping terms to handle null infinity. (paper)

  17. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  18. Situation testing: the case of health care refusal.

    Science.gov (United States)

    Després, C; Couralet, P-E

    2011-04-01

    Situation testing to assess physicians' refusal to provide healthcare is increasingly used in research studies. This paper aims to explain the relevance and limits of this method. Conducted in 2008-2009, this study was designed to assess the rate of healthcare refusal among several categories of private practitioners toward patients covered by the French public means-tested complementary health insurance (CMUc) when they requested a first appointment by phone. The other objectives were to study the determinants of healthcare refusal and assess the method. The study was conducted on a representative sample of Paris-based dentists and physicians in five categories: general practitioners, medical gynecologists, ophthalmologists, radiologists, and dentists. The method was based on two protocols. In the first scenario, an actor pretended to be a CMUc beneficiary and, in the second one, he did not give information about his health coverage but hinted at a low socioeconomic status. The two protocols were compared and procedures checking the relation between refusal and CMUc coverage were implemented in each of them. In the scenario in which the patient declared being a CMUc beneficiary, the results showed different refusal rates depending on the type of practitioner, physician, or dentist, their specialty, and whether or not, they charge more than the standard set fee. In the second scenario, refusal rates were much lower. The comparison of the two protocols seems to confirm the existence of discrimination based on CMUc affiliation rather than patients' socioeconomic status. The discussion presents the limits of situation testing, which remains an experimental instrument because it does not observe reality but reveals behaviors in situation. The findings cannot be extrapolated and are limited in time. The statistical analysis is only valid if the procedure followed is precise and applied consistently using a preset scenario. In addition, the discriminatory nature of the

  19. Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversion.

    Science.gov (United States)

    Dong, Huan; Mukinay, Tatiana; Li, Maojun; Hood, Richard; Soo, Sein Leung; Cockshott, Simon; Sammons, Rachel; Li, Xiaoying

    2017-01-01

    In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO 2 rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.

  20. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  1. Generating custom test plans for CASE{sup *}Dictionary 5.0

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, K.D. [Boeing Computer Services, Richland, WA (United States)

    1994-04-01

    Most database development organizations use a formal software development methodology that requires a certain amount of formal testing. The amount of formal testing that will be performed will vary from methodology to methodology and from site to site. If a very detailed formal test plan is required for each module in a system, the work involved to produce the test plan can be tedious and costly. After a system has been designed and developed using Oracle*CASE, there is much useful information in the CASE*Dictionary repository. If this information could be tied to specific test requirements, a test plan could be generated automatically, saving much time and resources. This paper shows how CASE*Dictionary can be used to store test plan information that can then be used to generate a specific test plan for each module based on it`s detailed data usage.

  2. 30 CFR 250.523 - How long do I keep records of casing pressure and diagnostic tests?

    Science.gov (United States)

    2010-07-01

    ... and diagnostic tests? 250.523 Section 250.523 Mineral Resources MINERALS MANAGEMENT SERVICE... casing pressure and diagnostic tests? Records of casing pressure and diagnostic tests must be kept at the field office nearest the well for a minimum of 2 years. The last casing diagnostic test for each casing...

  3. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network.

    Science.gov (United States)

    Albero, Alberto; Pascual, Agustín; Camps, Isabel; Grau-Benitez, María

    2015-10-01

    The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness.

  5. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  6. Experimental investigation on shrinkage and surface replication of injection moulded ceramic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2014-01-01

    Ceramic moulded parts are increasingly being used in advanced components and devices due to their unprecedented material and performance attributes. The surface finish, replication quality and material shrinkage are of immense importance for moulded ceramic parts intended for precision applications....... The current paper presents a thorough investigation on the process of ceramic moulding where it systematically characterizes the surface replication and shrinkage behaviours of precision moulded ceramic components. The test parts are moulded from Catamold TZP-A which is Y2O3-stabilised ZrO2 having widespread...... distribution for the moulded ceramic parts is presented....

  7. FY 1999 project on the development of new industry support type international standards. Standardization of test/evaluation methods of telecommunication use fine ceramics; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Tsushin kikiyo fine ceramics no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As to high frequency/ultra-high frequency band use fine ceramics, the R and D were conducted with the aim of establishing the evaluation method of electric characteristics such as dielectric constants and dielectric losses, and at standardizing and internationally standardizing the principle of the measuring method, preparation method of equipment and test pieces, measuring procedures, etc. The FY 1999 results were summed up. As to the measuring method of electric characteristics, enhancement of measuring accuracy was made for the millimeter wave coaxial exciting cavity resonator method and the Fabry Perot method. Further, field survey was made of the developmental trend of the measuring method in Europe and the U.S. Concerning measuring use standard test pieces, candidate materials were trially manufactured, and the shape/dimension of a part of the candidate materials were determined. As to surface basic properties, effects of surface shape and convex/concave faces of test pieces on characteristic evaluation were studied, and it was made clear that convex/concave faces were greatly influential. In the technical committee, how to proceed with the development was discussed in the first meeting, and evaluation methods and candidate standard substances were selected in the second meeting. (NEDO)

  8. Distributed storage and cloud computing: a test case

    International Nuclear Information System (INIS)

    Piano, S; Ricca, G Delia

    2014-01-01

    Since 2003 the computing farm hosted by the INFN Tier3 facility in Trieste supports the activities of many scientific communities. Hundreds of jobs from 45 different VOs, including those of the LHC experiments, are processed simultaneously. Given that normally the requirements of the different computational communities are not synchronized, the probability that at any given time the resources owned by one of the participants are not fully utilized is quite high. A balanced compensation should in principle allocate the free resources to other users, but there are limits to this mechanism. In fact, the Trieste site may not hold the amount of data needed to attract enough analysis jobs, and even in that case there could be a lack of bandwidth for their access. The Trieste ALICE and CMS computing groups, in collaboration with other Italian groups, aim to overcome the limitations of existing solutions using two approaches: sharing the data among all the participants taking full advantage of GARR-X wide area networks (10 GB/s) and integrating the resources dedicated to batch analysis with the ones reserved for dynamic interactive analysis, through modern solutions as cloud computing.

  9. Field Tested Service Oriented Robotic Architecture: Case Study

    Science.gov (United States)

    Flueckiger, Lorenzo; Utz, Hanz

    2012-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.

  10. Melting of glass by direct induction heating in ceramic container

    International Nuclear Information System (INIS)

    Ooka, Kazuo; Oguino, Naohiko; Kawanishi, Nobuo

    1981-01-01

    The direct induction melting, a process of glass melting by high frequency induction heating, was found to be the effective way of glass melting, especially desirable for the vitrification of High Level Radioactive Liquid Wastes, HLLW. A test instrument in the cold level was equipped with a high frequency oscillator of 65 kW anode output. The direct induction melting was successfully performed with two frequencies of 400 kHz and 3 MHz, and the operation conditions were determined in the five cases of ceramic pot inner diameters of 170, 200, 230, 280 and 325 mm. The start-up of the direct induction melting was carried out by induction heating using a silicon carbide rod which was inserted in raw material powders in the ceramic pot. After the raw material powders partly melted down and the direct induction in the melt began, the start-up rod was removed out of the melt. At this stage, the direct induction melting was successively performed by adjusting the output power of the oscillator and by supplying the raw materials. It was also found that the capacity of this type of melting was reasonably large and the operation could be remotely controlled. Both applied frequencies of 400 kHz and 3 MHz was found to be successful with this melting system, especially in the case of lower frequency which proved more preferable for the in-cell work. (author)

  11. Application of microtomography and image analysis to the quantification of fragmentation in ceramics after impact loading

    Science.gov (United States)

    Forquin, Pascal; Ando, Edward

    2017-01-01

    Silicon carbide ceramics are widely used in personal body armour and protective solutions. However, during impact, an intense fragmentation develops in the ceramic tile due to high-strain-rate tensile loadings. In this work, microtomography equipment was used to analyse the fragmentation patterns of two silicon carbide grades subjected to edge-on impact (EOI) tests. The EOI experiments were conducted in two configurations. The so-called open configuration relies on the use of an ultra-high-speed camera to visualize the fragmentation process with an interframe time set to 1 µs. The so-called sarcophagus configuration consists in confining the target in a metallic casing to avoid any dispersion of fragments. The target is infiltrated after impact so the final damage pattern is entirely scanned using X-ray tomography and a microfocus source. Thereafter, a three-dimensional (3D) segmentation algorithm was tested and applied in order to separate fragments in 3D allowing a particle size distribution to be obtained. Significant differences between the two specimens of different SiC grades were noted. To explain such experimental results, numerical simulations were conducted considering the Denoual-Forquin-Hild anisotropic damage model. According to the calculations, the difference of crack pattern in EOI tests is related to the population of defects within the two ceramics. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  12. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  13. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  15. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  16. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  17. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  18. Protonation and structural/chemical stability of Ln{sub 2}NiO{sub 4+δ} ceramics vs. H{sub 2}O/CO{sub 2}: High temperature/water pressure ageing tests

    Energy Technology Data Exchange (ETDEWEB)

    Upasen, S. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Batocchi, P.; Mauvy, F. [ICMCB, ICMCB-CNRS-IUT-Université de Bordeaux, 33608 Pessac Cedex (France); Slodczyk, A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Colomban, Ph., E-mail: philippe.colomban@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France)

    2015-02-15

    Highlights: • High temperature/water pressure autoclave is used to study the reaction/corrosion at SOFC/HTSE electrode. • High stability of Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) dense ceramics vs. water pressure is demonstrated. • Protonated rare-earth nickelates retain the perovskite-type structure and their H-content is determined. • Very low laser illumination power is required to avoid RE nickelate phase transition. • Nickelates show increasing stability from La to Pr/Nd vs. CO{sub 2}-rich high temperature water vapor. - Abstract: Mixed ionic-electronic conductors (MIEC) such as rare-earth nickelates with a general formula Ln{sub 2}NiO{sub 4+δ} (Ln = La, Pr, Nd) appear as potential for energy production and storage systems: fuel cells, electrolysers and CO{sub 2} converters. Since a good electrode material should exhibit important stability in operating conditions, the structural and chemical stability of different nickelate-based, well-densified ceramics have been studied using various techniques: TGA, dilatometry, XRD, Raman scattering and IR spectroscopy. Consequently, La{sub 2}NiO{sub 4+δ} (LNO), Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) have been exposed during 5 days to high water vapor pressure (40 bar) at intermediate temperature (550 °C) in an autoclave device, the used water being almost free or saturated with CO{sub 2}. Such protonation process offers an accelerating stability test and allows the choice of the most pertinent composition for industrial applications requiring a selected material with important life-time. In order to understand any eventual change of crystal structure, the ceramics were investigated in as-prepared, pristine state as well as after protonation and deprotonation (due to thermal treatment till 1000 °C under dry atmosphere). The results show the presence of traces or second phases originating from undesirable hydroxylation and carbonation, detected in the near

  19. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  20. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  1. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  2. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  3. Automatic Model-Based Generation of Parameterized Test Cases Using Data Abstraction

    NARCIS (Netherlands)

    Calamé, Jens R.; Ioustinova, Natalia; Romijn, J.M.T.; Smith, G.; van de Pol, Jan Cornelis

    2007-01-01

    Developing test suites is a costly and error-prone process. Model-based test generation tools facilitate this process by automatically generating test cases from system models. The applicability of these tools, however, depends on the size of the target systems. Here, we propose an approach to

  4. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  5. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  6. Strengthening of oxidation resistant materials for gas turbine applications. [treatment of silicon ceramics for increased flexural strength and impact resistance

    Science.gov (United States)

    Kirchner, H. P.

    1974-01-01

    Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.

  7. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  8. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  10. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  11. An Extended Quadratic Frobenius Primality Test with Average and Worst Case Error Estimates

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2003-01-01

    We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t...... for the error probability of this algorithm as well as a general closed expression bounding the error. For instance, it is at most 2-143 for k = 500, t = 2. Compared to earlier similar results for the Miller-Rabin test, the results indicates that our test in the average case has the effect of 9 Miller......-Rabin tests, while only taking time equivalent to about 2 such tests. We also give bounds for the error in case a prime is sought by incremental search from a random starting point....

  12. An Extended Quadratic Frobenius Primality Test with Average- and Worst-Case Error Estimate

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2006-01-01

    We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t...... for the error probability of this algorithm as well as a general closed expression bounding the error. For instance, it is at most 2-143 for k = 500, t = 2. Compared to earlier similar results for the Miller-Rabin test, the results indicates that our test in the average case has the effect of 9 Miller......-Rabin tests, while only taking time equivalent to about 2 such tests. We also give bounds for the error in case a prime is sought by incremental search from a random starting point....

  13. An Extended Quadratic Frobenius Primality Test with Average Case Error Estimates

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2001-01-01

    We present an Extended Quadratic Frobenius Primality Test (EQFT), which is related to an extends the Miller-Rabin test and the Quadratic Frobenius test (QFT) by Grantham. EQFT takes time about equivalent to 2 Miller-Rabin tests, but has much smaller error probability, namely 256/331776t for t...... for the error probability of this algorithm as well as a general closed expression bounding the error. For instance, it is at most 2-143 for k = 500, t = 2. Compared to earlier similar results for the Miller-Rabin test, the results indicates that our test in the average case has the effect of 9 Miller......-Rabin tests, while only taking time equivalent to about 2 such tests. We also give bounds for the error in case a prime is sought by incremental search from a random starting point....

  14. Unstandardized Measures: A Cross-Case Analysis of Test Prep in Two Urban

    Science.gov (United States)

    Kesler, Ted

    2013-01-01

    This article presents a cross-case analysis of two fourth-grade teachers' instruction while preparing their students for an English language arts test. Both teachers taught in high-needs urban public schools and were

  15. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  16. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  17. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  19. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  20. Ceramic analysis in Greece

    NARCIS (Netherlands)

    Hilditch, J.

    2016-01-01

    Scientific, analytical or ‘archaeometric’ techniques for investigating ceramic material have been used within archaeology for over 50 years and now constitute an indispensable tool for archaeologists in the Aegean world (see Jones 1986 for a detailed summary of early work in Greece and Italy) and

  1. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  2. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  3. FUMEX cases 1, 2, and 3 calculated pre-test and post-test results

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Vitkova, M; Passage, G; Manolova, M; Simeonova, V [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Scheglov, A; Proselkov, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1994-12-31

    Two versions (modified pre-test and modified post-test) of PIN-micro code were used to analyse the fuel rod behaviour of three FUMEX experiments. The experience of applying PIN-micro code with its simple structure and old conception of the steady-state operation shows significant difficulties in treating the complex processes like those in FUMEX experiments. These difficulties were partially overcame through different model modifications and corrections based on special engineering estimations and the results obtained as a whole do not seem unreasonable. The calculations have been performed by a group from two Bulgarian institutions in collaboration with specialists from the Kurchatov Research Center. 1 tab., 14 figs., 8 refs.

  4. Incidence of tuberculosis and the predictive value of ELISPOT and Mantoux tests in Gambian case contacts.

    Directory of Open Access Journals (Sweden)

    Philip C Hill

    2008-01-01

    Full Text Available Studies of Tuberculosis (TB case contacts are increasingly being utilised for understanding the relationship between M. tuberculosis and the human host and for assessing new interventions and diagnostic tests. We aimed to identify the incidence rate of new TB cases among TB contacts and to relate this to their initial Mantoux and ELISPOT test results.After initial Mantoux and ELISPOT tests and exclusion of co-prevalent TB cases, we followed 2348 household contacts of sputum smear positive TB cases. We visited them at 3 months, 6 months, 12 months, 18 months and 24 months, and investigated those with symptoms consistent with TB. Those who were diagnosed separately at a government clinic had a chest x-ray. Twenty six contacts were diagnosed with definite TB over 4312 person years of follow-up (Incidence rate 603/100,000 person years; 95% Confidence Interval, 370-830. Nine index and secondary case pairs had cultured isolates available for genotyping. Of these, 6 pairs were concordant and 3 were discordant. 2.5% of non-progressors were HIV positive compared to 12% of progressors (HR 6.2; 95% CI 1.7-22.5; p = 0.010. 25 secondary cases had initial Mantoux results, 14 (56% were positive ; 21 had initial ELISPOT results, 11 (52% were positive; 15 (71% of 21 tested were positive by one or the other test. Of the 6 contacts who had concordant isolates with their respective index case, 4 (67% were Mantoux positive at recruitment, 3 (50% were ELISPOT positive; 5 (83% were positive by one or other of the two tests. ELISPOT positive contacts, and those with discordant results, had a similar rate of progression to those who were Mantoux positive. Those negative on either or both tests had the lowest rate of progression.The incidence rate of TB disease in Gambian TB case contacts, after screening for co-prevalent cases, was 603/100,000 person years. Since initial ELISPOT test and Mantoux tests were each positive in only just over half of cases, but 71% were

  5. Mothers Who Kill Their Offspring: Testing Evolutionary Hypothesis in a 110-Case Italian Sample

    Science.gov (United States)

    Camperio Ciani, Andrea S.; Fontanesi, Lilybeth

    2012-01-01

    Objectives: This research aimed to identify incidents of mothers in Italy killing their own children and to test an adaptive evolutionary hypothesis to explain their occurrence. Methods: 110 cases of mothers killing 123 of their own offspring from 1976 to 2010 were analyzed. Each case was classified using 13 dichotomic variables. Descriptive…

  6. Effectiveness of test driven development and continuous integration - a case study

    NARCIS (Netherlands)

    Amrit, Chintan; Meijberg, Yoni

    2018-01-01

    In this article we describe the implementation of hybrid agile practices, namely Test Driven Development (TDD) and Continuous Integration (CI) at a Dutch SME. The quality and productivity outcomes of the case study were compared to a performance baseline set by a reference case, a preceding

  7. Preliminary analysis in a clayey mass aimed at ceramic blocks production: physical and mineralogical characteristics

    International Nuclear Information System (INIS)

    Silva, L.J.M.D. da; Apolonio, T.G.; Salviano, A.F.; Taveira, S.K.A.; Garcia, T.G.C.; Silva, J; Luna, P.A.; Macedo, R.S.

    2016-01-01

    The physical, chemical and mineralogical characterization of the clayey mass are important in determining its properties, allowing a better knowledge of the raw material used in the manufacture of ceramic products. This work aims to characterize the raw material used in the manufacture of ceramic sealing blocks in a ceramic industry. Thus, it was evaluated by laboratory tests the raw material used in the production of ceramic blocks in a ceramics industry in the region of Carnauba dos Dantas, RN. The methodology used in the tests is the same as the IPT, which consists in carrying out the plasticity testing, particle size, chemical analysis and X-ray diffraction. Results indicate that the sample studied by the physical and mineralogical characteristics, has the potential to be applied in the manufacture of red ceramic products for use in construction. (author)

  8. Ceramic media amended with metal oxide for the capture of viruses in drinking water.

    Science.gov (United States)

    Brown, J; Sobsey, M D

    2009-04-01

    Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.

  9. Influence of different post core materials on the color of Empress 2 full ceramic crowns.

    Science.gov (United States)

    Ge, Jing; Wang, Xin-zhi; Feng, Hai-lan

    2006-10-20

    For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration. The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than DeltaE 1.8 between the two ceramic samples. So, DeltaE 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction. When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (DeltaE = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (DeltaE = 2.0), but with opaque covering, the color effect became more clinically satisfactory (DeltaE = 1.8). It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after covering the labial surface of the core with one layer of opaque resin cement.

  10. Huntington's disease predictive testing: the case for an assessment approach to requests from adolescents.

    Science.gov (United States)

    Binedell, J; Soldan, J R; Scourfield, J; Harper, P S

    1996-01-01

    Adolescents who are actively requesting Huntington's predictive testing of their own accord pose a dilemma to those providing testing. In the absence of empirical evidence as regards the impact of genetic testing on minors, current policy and guidelines, based on the ethical principles of non-maleficence and respect for individual autonomy and confidentiality, generally exclude the testing of minors. It is argued that adherence to an age based exclusion criterion in Huntington's disease predictive testing protocols is out of step with trends in UK case law concerning minors' consent to medical treatment. Furthermore, contributions from developmental psychology and research into adolescents' decision making competence suggest that adolescents can make informed choices about their health and personal lives. Criteria for developing an assessment approach to such requests are put forward and the implications of a case by case evaluation of competence to consent in terms of clinicians' tolerance for uncertainty are discussed. PMID:8950670

  11. Sport-specific fitness testing and intervention for an adolescent with cerebral palsy: a case report.

    Science.gov (United States)

    Kenyon, Lisa K; Sleeper, Mark D; Tovin, Melissa M

    2010-01-01

    This case report describes the development, implementation, and outcomes of a fitness-related intervention program that addressed the sport-specific goals of an adolescent with cerebral palsy. The participant in this case was a 16-year-old African American male with spastic diplegia. The participant joined his high school wrestling team and asked to focus his physical therapy on interventions that would improve his wrestling performance. An examination was performed using the muscle power sprint test, the 10 x 5-m sprint test, strength tests, the 10-m shuttle run test, and the Gross Motor Function Measure. The intervention consisted of interval training, which focused on the demands of wrestling. Scores on all tests and measures were higher after the intervention. The outcomes of this case report seem to support the use of a fitness-related intervention program for addressing the sport-specific goals of an adolescent with cerebral palsy.

  12. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.

    Science.gov (United States)

    McLaren, Edward A; Figueira, Johan

    2015-06-01

    The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.

  13. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  14. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  15. FY 2000 Project of developing international standards for supporting new industries. Standardization of the fine bioceramics testing/evaluation methods; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seitaiyo fine ceramics no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development of the fatigue characteristics of the bioceramics, fatigue and impact-resistance characteristics of the members of these materials, and methods of evaluating their compatibility with a living body, for proposing the international standards. The test results of alumina and zirconia as the bioceramics indicate that their bending fatigue characteristics greatly depend on environmental conditions and frequency, suggesting necessity for the evaluation in the environments which simulate the living body inside. The compression and impact tests are conducted for the artificial femoral heads with a taper. It is found that the simulated body fluid, having the dissociated ion concentration adjusted at the level in the human blood plasma, remains unchanged in the concentration at 36.5 degrees C for 4 weeks; the ion concentration is unaffected by filtration with the aid of the microfilter useful for, e.g., removal of bacteria; and the synthetic apatite has almost the same composition as that for the bones in a living body. It is also suggested that activity of the bioactive ceramics can be evaluated by their ability for forming apatite in the simulated body fluid. (NEDO)

  16. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  17. Testing the Suitability of Mediation of Child Support Orders in Title IV-D Cases

    Science.gov (United States)

    Schraufnagel, Scot; Li, Quan

    2010-01-01

    Objectives: The purpose of this study is to test mediation versus a traditional court process for the establishment or modification of child support orders. The intention is to determine which dispute resolution process is associated with greater client satisfaction and compliance. An auxiliary objective is to test the type of cases which are most…

  18. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  19. Characterization of a red ceramic body used in the manufacture of ceramic bricks in the region of Campos dos Goytacazes, RJ, Brazil

    International Nuclear Information System (INIS)

    Almeida, L.L.P. de; Petrucci, L.J.T.; Pessanha, E.M.; Paixao, L.P.; Maia, F.S.

    2010-01-01

    This work aims at the physical and mineralogical characterization of a ceramic body, used industrially in the manufacture of ceramic bricks in the region of Campos dos Goytacazes. The clay was characterized by chemical composition, X-ray diffraction, dilatometry, differential thermal analysis and gravimetric. We test specimens were obtained by extrusion. The bodies were burned from 750 to 1000 deg C and then it was determined water absorption, linear shrinkage, loss on ignition and modulus of rupture. The results showed that the ceramic body consists mainly of kaolinite, quartz and feldspar is thus suitable for mass production of ceramic bricks in accordance with technical standards. (author)

  20. Class hierarchical test case generation algorithm based on expanded EMDPN model

    Institute of Scientific and Technical Information of China (English)

    LI Jun-yi; GONG Hong-fang; HU Ji-ping; ZOU Bei-ji; SUN Jia-guang

    2006-01-01

    A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.