WorldWideScience

Sample records for ceramics near-critical grain

  1. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  2. Density and critical current of metal-sheathed superconducting YBa2Cu3Oy ceramics deformed by hydroextrusion and subsequent drawing-rolling

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Gnesin, B.A.; Snegirev, A.A.

    1994-01-01

    The critical-current density j c in ceramic superconductors is strongly dependent on texture, which is determined by the orientation of ceramic grains with respect to the specimen axes and by the misalignment between grains. Y ceramics with prolate grains aligned parallel to the long axis of the specimen were obtained by melt solidification. Such ceramics exhibited j c = 18500 A/cm 2 at 77 K in zero magnetic field. Texturing was also achieved by rolling Ag-sheathed powder of superconducting ceramics. This method ensured critical current densities (2-7) x 10 3 A/cm 2 in Y, Bi, and Tl ceramics. In flat ceramic samples, the grains of a superconducting phase were oriented in such a way that the crystallographic c axis was perpendicular to the rolling plane. In this work, the authors studied the effect of rolling deformation on the current-carrying capacity j c and density p of metal-sheathed YBa 2 Cu 3 O y ceramics that were first subjected to hydroextrusion and drawing at ∼20, 550, and 700 degrees C. The data obtained for j c and p were compared with the texture factor

  3. High temperature microplasticity of fine-grained ceramics

    International Nuclear Information System (INIS)

    Lakki, A.; Schaller, R.

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short range motion of lattice defects, such as dislocations and grain boundaries. The energy loss (''mechanical loss'') associated with such motion can be measured by using the technique of mechanical spectroscopy. Moreover, at the onset of plasticity (''microplasticity''), long range irrecoverable motion of defects contributes to additional mechanical loss. Mechanical loss spectra may then give an insight into mechanisms operating at the transition between anelastic and plastic deformation. As an illustration, the spectra of three fine-grained ceramics (Si 3 N 4 , ZrO 2 , Al 2 O 3 ) are presented. In all cases, anelastic relaxation phenomena (peak and background) have been observed at high temperature (> 1200 K), bearing a close relation with creep behaviour. Their analysis permits to distinguish between different types of microstructrual elements: bulk regions of amorphous intergranular phase at triple points, grain boundaries separated by a thin glassy film and ''clean'' grain boundaries. (orig.)

  4. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Science.gov (United States)

    Holsgrove, Kristina M.; Kepaptsoglou, Demie M.; Douglas, Alan M.; Ramasse, Quentin M.; Prestat, Eric; Haigh, Sarah J.; Ward, Michael B.; Kumar, Amit; Gregg, J. Marty; Arredondo, Miryam

    2017-06-01

    Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3-PbTiO3-CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  5. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Directory of Open Access Journals (Sweden)

    Kristina M. Holsgrove

    2017-06-01

    Full Text Available Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC, is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3–PbTiO3–CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  6. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  7. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    International Nuclear Information System (INIS)

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  8. Grain growth kinetics for B2O3-doped ZnO ceramics

    Directory of Open Access Journals (Sweden)

    Yuksel Berat

    2015-06-01

    Full Text Available Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning mechanism in the liquid phase sintering.

  9. Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Eric W.; Hilmas, Gregory E., E-mail: ghilmas@mst.edu; Fahrenholtz, William G.

    2016-07-18

    Zirconium diboride ceramics produced using commercial ZrB{sub 2} powders, and milled with zirconium diboride grinding media, were fabricated by hot-pressing at temperatures of 2100–2200 °C with hold times of 30–120 min. This ZrB{sub 2} exhibits no additional impurities typically introduced by milling with grinding media of differing composition. Microstructure analysis revealed grain sizes ranging from ~25 to ~50 µm along with ~3 vol% porosity. Flexure strength ranged from 335 to 400 MPa, elastic modulus from 490 to 510 GPa, fracture toughness from 2.7 to 3.2 MPa m{sup ½}, and hardness from 13.0 to 14.4 GPa. Strength limiting flaws were identified as surface grain pullout induced by machining. Elastic modulus and hardness were found to increase with decreasing porosity. Compared to the fine grained ceramics typically reported, large grain zirconium diboride ceramics exhibit higher than expected room temperature strengths.

  10. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  11. Grain growth kinetics of textured-BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    3Department of Physics and Materials Science, City University of Hong Kong, Hong Kong ... Abstract. Textured BaTiO3 (BT) ceramics were fabricated by templated grain growth method. Effects of ... approaches to improve electrical properties of lead-free ceramics. ... modification methods to enhance the piezoelectric pro-.

  12. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  13. Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties

    International Nuclear Information System (INIS)

    Mori, Rintaro; Nakashima, Koichi; Fujii, Ichiro; Wada, Satoshi; Hayashi, Hiroshi; Nagamori, Yoshitaka; Yamamoto, Yuichi

    2011-01-01

    The Barium titanate (BaTiO 3 , BT) [110] grain-oriented ceramics along [110] direction were prepared by a templated grain growth (TGG) method. The [110] oriented BT platelike particles (t-BT) were used as template particles. The relationship between poling treatment program and piezoelectric constant was investigated. The change in the poling conditions did not greatly influence domain size and the piezoelectric constant. The relationship between piezoelectric properties and domain size in BT grain-oriented ceramics was investigated. The smaller domain size was required to increase the piezoelectric constant.

  14. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  15. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  16. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    Science.gov (United States)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  17. Enhanced ionic transport in fine-grained scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdala, Paula M.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina); Custo, Graciela S. [Gerencia de Area Seguridad Nuclear y Ambiente, Gerencia Quimica, Departamento Quimica Analitica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Constituyentes 1499 (B1650KNA) San Martin, Pcia. de Buenos Aires (Argentina)

    2010-06-01

    In this work, the transport properties of fine-grained scandia-stabilized zirconia ceramics with low Si content have been investigated. These materials were prepared from ZrO{sub 2}-6 mol% Sc{sub 2}O{sub 3} nanopowders synthesized by a nitrate-lysine gel-combustion route. High relative densities and excellent electrical properties were obtained, even for sintering temperatures as low as 1350 C. Our electrochemical impedance spectroscopy study showed that both the volume fraction of grain boundaries and the specific grain-boundary conductivity are significantly enhanced with decreasing grain size, resulting in a higher total ionic conductivity. (author)

  18. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  19. Grain-size effects on thermal properties of BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    decreasing grain size. Furthermore, the Curie temperature shifts to lower temperature with decreasing grain size. Keywords. Nanocrystalline ceramics; thermal properties; size effect. 1. Introduction. BaTiO3 has been widely used in the electronic industry for its high dielectric constant and low losses above room temperature ...

  20. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  1. Numerical study of the grain growth and the thermal properties of ceramics

    International Nuclear Information System (INIS)

    Shahtahmasebi, N.; Shariaty ghleno, A.M.; Hosaini, M.

    2000-04-01

    The physical properties of ceramics strongly depends on the grain size, which itself depends on the sintering process. In this work we propose a model for sintering based on the gross features known experimental and the preform numerical study

  2. Sol-gel synthesis and characterization of fine-grained ceramics in the alumina-titania system

    Energy Technology Data Exchange (ETDEWEB)

    Otterstein, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)], E-mail: otterstein@physik1.uni-rostock.de; Karapetyan, G. [Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock (Germany); Nicula, R. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); Stir, M. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); National Institute for Materials Physics, 105b Atomistilor Strasse, P.O.B. MG7, 077125 Bucharest-Magurele (Romania); Schick, C. [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Burkel, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)

    2008-02-05

    Fine-grained ceramics of the Al{sub 2}O{sub 3}-TiO{sub 2} system were synthesised by reactive sintering of sol-gel precursors (Al- and Ti-alkoxides). The thermal behaviour of the as-prepared xerogels was examined by thermal analysis and X-ray powder diffraction. Preliminary results concerning powder consolidation into bulk ceramic parts using spark plasma sintering (SPS) are discussed.

  3. Preparation and characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under A High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Kita, T; Kondo, S; Takei, T; Kumada, N; Nakashima, K; Fujii, I; Wada, S [Material Science and Technology, Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan); Suzuki, T S; Uchikoshi, T; Sakka, Y [National Institute for materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miwa, Y; Kawada, S; Kimura, M, E-mail: swada@yamanashi.ac.jp [Murata Manufacturing Co., Ltd. 2288 Ooshinohara, Yasu, Shiga 520-2393 (Japan)

    2011-10-29

    Barium titanate (BaTiO{sub 3}) grain-oriented ceramics were prepared using electrophoresis deposition (EPD) method under high magnetic field of 12 T. First, BaTiO{sub 3} nanoparticles with high c/a ratio of 1.008 and size of 84 nm were prepared by two-step thermal decomposition method with barium titanyl oxalate nanoparticles. Using the BaTiO{sub 3} slurry, BaTiO{sub 3} nanoparticle accumulations were prepared by EPD method under high magnetic field. After binder burnout, the accumulations were sintered and BaTiO{sub 3} grain-oriented ceramics were prepared. Moreover, dielectric properties of their ceramics were investigated

  4. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-01-01

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  5. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics

    International Nuclear Information System (INIS)

    Wang, Siwei; Zhang, Lei; Zhang, Lingling; Brinkman, Kyle; Chen, Fanglin

    2013-01-01

    Ultra-fine grained dense BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) ceramics have been successfully prepared via a two-step sintering method. Co-precipitation method has been adopted to prepare nano-sized BZCYYb precursors with an average particle size of 30 nm. By controlling the sintering profile, an average grain size of 184 nm was obtained for dense BZCYYb ceramics via the two-step sintering method, compared to 445 nm for the conventional sintered samples. The two-step sintered BZCYYb samples showed less impurity and an enhanced electrical conductivity compared with the conventional sintered ones. Further, the two-step sintering method was applied to fabricate anode supported solid oxide fuel cells (SOFCs) using BZCYYb as the electrolyte, resulting in dense ultrafine-grained electrolyte membranes and porous anode substrates with fine particles. Due to the reduced ohmic as well as polarization resistances, the maximum power output of the cells fabricated from the two-step sintering method reached 349 mW m −2 at 700 °C, significantly improved from 172 mW cm −2 for the conventional sintered cells, suggesting that two-step sintering method is very promising for optimizing the microstructure and thus enhancing the electrochemical performances for barium cerate based proton-conducting SOFCs.

  6. Novel gelforming process for near net shape ceramic component production

    International Nuclear Information System (INIS)

    Franks, G.V.; Johnson, S.B.; Dunstan, D.E.

    2000-01-01

    A novel gelforming process for producing near-net shape ceramic components has been developed. A low viscosity, high volume fraction, ceramic suspension containing a small amount of bio-polymer is poured or injected into a mould. The suspension is gelled within the mould by a temperature activated crosslinking mechanism. The rheological behaviour of the body within the mould is changed from liquid-like to solid-like in a short period of time. The wet mechanical strength of the gelled bodies is sufficient to allow the body to be demoulded and handled without damaging the component. Near net shapes of complex geometry are formed in this way. The wet green body is then dried and densified using traditional methods. Potentially this process can be used to produce inexpensive reliable high strength ceramic components quickly and safely. Copyright (2000) The Australian Ceramic Society

  7. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  8. Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions

    Science.gov (United States)

    Rueschhoff, Lisa

    rheological modification and improved green body strength. Test bars formed via this process were sintered to high densities (up to 97% TD) without the use of external pressure, and had complete conversion to the desirable beta-Si3N4 phase with high flexural strengths up to 700 MPa. The specimen sets with the smallest average pore size on the fracture surface (77 mum) had the highest average flexural strengths of 573 MPa. The hardness of all specimens was approximately 16 GPa. The water-based suspensions, ease and low cost of processing, and robust mechanical properties obtained demonstrate this as a viable process for the economical and environmentally friendly production of Si3N4 parts. Finally, additive manufacturing was also used as a method to overcome ceramic forming difficulties and to create near-net shaped dense components via room-temperature direct ink writing. In this processes, highly loaded aqueous alumina suspensions were extruded in a layer-by-layer fashion using a low-cost syringe style 3D printer. With alumina as a model material, the effect of solids loading on rheology, specimen uniformity, density, microstructure, and mechanical properties was studied. All suspensions contained a polymer binder ( 5 vol.%), dispersant, and 51 to 58 vol.% alumina powder. Rheological measurements indicated all suspensions to be yield-pseudoplastic, and both yield stress and viscosity were found to increase with increasing alumina solids loading. Shear rates ranging from 19.5 to 24.2 s-1, corresponding to viscosities of 9.8 to 17.2 Pa·s, for the 53 - 56 vol.% alumina suspensions were found to produce the best results for the 1.25 mm tip employed during writing. All parts were sintered to greater than 98% of true density, with grain sizes ranging from 3.2 to 3.7 mum. The average flexure strength, which ranged from 134 to 157 MPa, was not influenced by the alumina solids loading. In limited study, additive manufacturing of silicon nitride suspensions stabilized with a WRA has

  9. Compression deformation of WC: atomistic description of hard ceramic material

    Science.gov (United States)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  10. Surface and grain boundary modifications of YBa2Cu3O7-δ ceramics by plasma-enhanced fluorination

    International Nuclear Information System (INIS)

    Magro, C.; Heintz, J.M.; Etourneau, J.; Tressaud, A.; Cardinaud, C.; Turban, G.; Hudakova, N.

    1994-01-01

    The radiofrequency plasma technique involving mixtures of CF 4 + O 2 gases has been applied to the treatment of high T c superconducting oxides (YBa 2 Cu 3 O 7-δ ). The investigation of the various experimental parameters of the process has shown that the improvement of the critical current density J c mainly depends on the inlet precursor composition CF 4 + τ % O 2 , on the total pressure, and on the reaction time. The presence of fluorine in the bulk of the ceramics has been observed from electron microprobe analysis, together with an increase of the open-quotes Cu 3+ close quotes content. The plasma enhanced fluorination (PEF) treatment improves the superconducting properties of the materials: both values of the resistivity in the normal state and of the superconducting transition width are reduced and the critical transition temperature is improved of about 1 K. Mechanisms of interaction between the reactive species of the plasma and YBa 2 Cu 3 O 7-δ ceramics have been proposed through detailed angle resolved X-ray photoelectron spectroscopic analyses. At the surface of the outer grains, the plasma treatment removes (OH) - and (CO 3 ) 2- species contained in the degradation layer and gives rise to a fluoride-rich layer. In the bulk of the material the occurrence of metal-fluorine bonds in the superconducting phase has to be assumed. Moreover, interactions between atomic fluorine and grain boundaries result in an improvement of intergranular magnetic behavior, according to a.c. susceptibility measurements. An increase of the oxidation state of copper has also been detected, confirming the oxidizing effect of the plasma treatment

  11. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  12. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  13. Grain fracture model and its application to strength evaluation in engineering ceramics

    Science.gov (United States)

    Hoshide, Toshihiko

    1993-02-01

    A new model of cracking process in ceramics is developed assuming the fracture of the grain just ahead of a flaw, such as a crack or a notch, during the loading process, prior to the final unstable fracture. Based on the grain fracture model, a simulation was carried out to explain the anomalous behavior of small flaws and the notch width effect, which were reported by Evans and Langdon (1976) and Hoshide et al. (1984) and by Bertolotti (1973) and Pabst et al. (1982), respectively. It is shown that the analytical relations of the new model can explain the experimental results for both situations.

  14. Improved dielectric properties and grain boundary response in neodymium-doped Y_2_/_3Cu_3Ti_4O_1_2 ceramics

    International Nuclear Information System (INIS)

    Liang, Pengfei; Yang, Zupei; Chao, Xiaolian

    2016-01-01

    Rare earth element neodymium was adopted to refine grain and in turn increase the volume of grain boundary of Y_2_/_3Cu_3Ti_4O_1_2 ceramics, which could strongly increase the resistance of grain boundary. Proper amount of Nd substitution in Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics could significantly depress the low-frequency dielectric loss. When the doping level is 0.06 and 0.09, the samples exhibited a relatively low dielectric loss (below 0.050 between 0.3 and 50 kHz) and high dielectric constant above 11000 over a wide frequency range from 40 Hz to 100 kHz. Based on the ε′-T plots, dielectric relaxation intensity was substantially weakened by Nd doping so that the temperature stability of dielectric constant was improved obviously. The correlations between low-frequency dielectric loss and the resistance of grain boundary were revealed. After Nd doping, the activation energies for the conduction behavior in grain boundaries were significantly enhanced, and the activation energies for the dielectric relaxation process in grain boundaries were slightly influenced. - Highlights: • Significant decrease in dielectric loss of Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics was realized. • The enhanced grain boundary density is responsible for the lowered dielectric loss. • Nd doping could improve the temperature stability of dielectric constant. • Oxygen vacancies contribute to conduction and relaxation process of grain boundaries.

  15. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  16. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  17. Ho2O3 additive effects on BaTiO3 ceramics microstructure and dielectric properties

    Directory of Open Access Journals (Sweden)

    Paunović Vesna

    2012-01-01

    Full Text Available Doped BaTiO3-ceramics is very interesting for their application as PTCR resistors, multilayer ceramic capacitors, thermal sensors etc. Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt% Ho, were investigated regarding their microstructural and dielectric characteristics. The samples were prepared by the conventional solid state reaction and sintered at 1320° and 1380°C in an air atmosphere for 4 hours. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope (SEM equipped with EDS system. SEM analysis of Ho/BaTiO3 doped ceramics showed that in samples doped with a rare-earth ions low level, the grain size ranged from 20-30μm, while with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2- 10μm. Dielectric measurements were carried out as a function of temperature up to 180°C. The low doped samples sintered at 1380°C, display the high value of dielectric permittivity at room temperature, 2400 for 0.01Ho/BaTiO3. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss low and modified Curie-Weiss low the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (γ were calculated. The obtained value of γ pointed out that the specimens have almost sharp phase transition. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  18. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Liu Jing; Shen Zhijian; Yan Haixue; Reece, Michael J.; Kan Yanmei; Wang Peiling

    2007-01-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d 33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 deg. C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d 33 above the permittivity peak, T m , show that the BLT ceramic has relaxor-like behavior

  19. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  20. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    Science.gov (United States)

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the

  1. Disposal criticality analysis for the ceramic waste form from the ANL electrometallurgical treatment process - Internal configurations

    International Nuclear Information System (INIS)

    Lell, R. M.; Agrawal, R.; Morris, E. E.

    2000-01-01

    Criticality safety issues for disposal of the ANL ceramic waste were examined for configurations within the waste package. Co-disposal of ceramic waste and DOE spent fuel is discussed briefly; co-disposal of ANL ceramic and metal wastes is examined in detail. Calculations indicate that no significant potential for criticality exists until essentially all of the important neutron absorbers are flushed from the degraded ceramic waste. Even if all of the neutron absorbers are removed from the ceramic waste rubble, the package remains far subcritical if the blended salts used in ceramic waste production have an initial U-235 enrichment below 40%

  2. Grain boundary defect compensation in Ti-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaojun; Deng, Jianming; Liu, Saisai; Yan, Tianxiang; Fang, Liang; Liu, Laijun [Guilin University of Technology, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and Engineering, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, Guilin (China); Peng, Biaolin [Guangxi University, School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic Astrophysics, Nanning (China); Jia, Wenhao [Shanghai Getong Enterprise Co., Ltd., Shanghai (China); Mei, Zaoming [Henan LiHeng Building Materials Co., Ltd., Zhengzhou (China); Su, Hongbo [Henan Province Product Quality Supervision and Inspection Center, Zhengzhou (China)

    2016-09-15

    Giant dielectric ceramics Ba(Nb{sub 0.5}Fe{sub 0.5-x}Ti{sub x})O{sub 3} (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε') of dielectric permittivity and dielectric loss (tan δ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε') of all these samples displays a high value (∝6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti{sup 4+}-doped Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} ceramics. (orig.)

  3. Superplasticity in Fine-Grained Ceramics

    Science.gov (United States)

    1994-01-31

    Stabilized, Tetragonal Zirconia," Acta Metall. Mater., 39(12), (1991), pp. 3227-3236. 10. B. Kellett, P. Carry, and A. Mocellin , "Extrusion of Tet-ZrO2...F. Wakai, S. Sakaguchi, and H. Kato, J. Ceram. Soc. Jap., 94, 72 (1986). 8. B. Kellett, P. Carry, and A. Mocellin , J. Amer. Ceram. Soc., 74, 1922

  4. Critical currents in polycrystalline Y Ba2Cu3O7-x: Self-field and grain size dependence

    International Nuclear Information System (INIS)

    Babic, E.; Prester, M.; Dobrac, D.; Marohnic, Z.; Nazar, P.; Stastny, P.; Matacotta, F.C.

    1991-10-01

    The variation of critical currents (I c ) and their distributions (CCD) with thickness (t) has been investigated for two high quality YBa 2 Cu 3 O 7-x samples with different average grain size (AG≅10 and 30 μm for samples S 1 and S 2 respectively) in the temperature range 78-90K and in the applied magnetic field H c ) for S 1 initially increased but later on leveled off on reducing the thickness, whereas for S 2 remained essentially unchanged even after three-fold reduction in thickness. Since the other parameters related to macroscopic homogeneity have not changed on reducing the thickness of the samples, the variations of J c are interpreted in terms of thickness and grain size dependent self-field effects. The same model explains well the changes of CCD curves with thickness and may also explain the variation of J c with the grain size, as reported recently for ceramic YBaCuO samples. (author). 18 refs, 7 figs, 2 tabs

  5. Electrostatic forces on grains near asteroids and comets

    Directory of Open Access Journals (Sweden)

    Hartzell Christine

    2017-01-01

    Full Text Available Dust on and near the surface of small planetary bodies (e.g. asteroids, the Moon, Mars’ moons is subject to gravity, cohesion and electrostatic forces. Due to the very low gravity on small bodies, the behavior of small dust grains is driven by non-gravitational forces. Recent work by Scheeres et al. has shown that cohesion, specifically van der Waals force, is significant for grains on asteroids. In addition to van der Waals cohesion, dust grains also experience electrostatic forces, arising from their interaction with each other (through tribocharging and the solar wind plasma (which produces both grain charging and an external electric field. Electrostatic forces influence both the interactions of grains on the surface of small bodies as well as the dynamics of grains in the plasma sheath above the surface. While tribocharging between identical dielectric grains remains poorly understood, we have recently expanded an existing charge transfer model to consider continuous size distributions of grains and are planning an experiment to test the charge predictions produced. Additionally, we will present predictions of the size of dust grains that are capable of detaching from the surface of small bodies.

  6. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  7. The use of thermally stimulated depolarization currents to study grain growth in ceramic thorium dioxide

    International Nuclear Information System (INIS)

    Muccillo, R.; Campos, L.L.

    1979-01-01

    Depolarization Current Spectra resulting from the destruction of the thermoelectret state in polycrystalline ThO 2 samples have been detected in the temperature range 100K-350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances in the bulk of the specimens with trapping at grain boundaries. Moreover the density of charge carriers released from trapping sites, upon heating the cooled previously dc biased specimen decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic oxides. (Author) [pt

  8. The influence of vortex pinning and grain boundary structure on critical currents across grain boundaries in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Miller, D. J.

    1998-01-01

    We have used studies of single grain boundaries in YBCO thin films and bulk bicrystals to study the influence of vortex pinning along a grain boundary on dissipation. The critical current density for transport across grain boundaries in thin films is typically more than an order of magnitude larger than that measured for transport across grain boundaries in bulk samples. For low disorientation angles, the difference in critical current density within the grains that form the boundary can contribute to the substantial differences in current density measured across the boundary. However, substantial differences exist in the critical current density across boundaries in thin film compared to bulk bicrystals even in the higher angle regime in which grain boundary dissipation dominates. The differences in critical current density in this regime can be understood on the basis of vortex pinning along the boundary

  9. Development of helium porosity near-by grain boundaries in nickel-carbon alloys

    International Nuclear Information System (INIS)

    Reutov, I.V.; Reutov, V.F.

    1995-01-01

    The peculiarities of development of helium porosity near grain boundaries in nickel with 0.002-0.065 at.% carbon uniformly doped with helium up to 2·10 -2 at.% in the process of post-irradiation isothermal annealing at 800 deg C for 1-50 hours are studied. It is stated that at this annealing temperature intensive nucleation and growth of bubbles are observed in near-boundary region whose width grows both with increase of annealing time and carbon content. The TEM studies have shown that in near-boundary zone itself the process of bubble growth is non-uniform: bubble size increases and their density decreases as the distance from grain boundary is increased. The effect observed is discussed from the point of view of formation of two zones with different level of swelling in a grain (near-by boundary and matrix) and consequently, hydrostatic stress as well conditioning the flux of vacancies and helium-vacancy complexes from matrix to grain boundary. 8 refs., 5 figs

  10. Modelling for near-surface interaction of lithium ceramics and sweep-gas by use of cellular automation

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.; Yamaguchi, K.

    2003-01-01

    Tritium release from the lithium ceramics as a fusion reactor breeder material is strongly affected by the composition of the sweep-gas as result of its influences with the material's surface. The typical surface processes which play important roles are adsorption, desorption and interaction between vacancy site and the constituents of the sweep-gas. Among a large number of studies and models, yet it seems to be difficult to model the overall behaviour of those processes due to its complex time-transient nature. In the present work the coarse grained atomic simulation based on the Cellular Automaton (CA) is used to model the dynamics of near-surface interaction between Li 2 O surface and sweep-gas that is consisting of a noble gas, hydrogen gas and water vapour. (author)

  11. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation.

    Science.gov (United States)

    Zhang, Fei; Vanmeensel, Kim; Batuk, Maria; Hadermann, Joke; Inokoshi, Masanao; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-04-01

    Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  13. Kinetics of Grain Growth in 718 Ni-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Huda Z.

    2014-10-01

    Full Text Available The Haynes® 718 Ni-base superalloy has been investigated by use of modern material characterization, metallographic and heat treatment equipment. Grain growth annealing experiments at temperatures in the range of 1050 – 1200 oC (1323–1473K for time durations in the range of 20 min-22h have been conducted. The kinetic equations and an Arrhenius-type equation have been applied to compute the grain-growth exponent n and the activation energy for grain growth, Qg, for the investigated alloy. The grain growth exponent, n, was computed to be in the range of 0.066-0.206; and the n values have been critically discussed in relation to the literature. The activation energy for grain growth, Qg, for the investigated alloy has been computed to be around 440 kJ/mol; and the Qg data for the investigated alloy has been compared with other metals and alloys and ceramics; and critically analyzed in relation to our results.

  14. Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Vesna Paunović

    2010-12-01

    Full Text Available La/Mn codoped BaTiO3 with different La2O3 content, ranging from 0.1 to 5.0 at% La, was investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all investigated samples. The samples were sintered at 1320°C and 1350°C for two hours. Microstructural studies were done using SEM and EDS analysis. The fine-grained microstructure was obtained even for low content of La. The appearance of secondary abnormal grains with serrated features along grain boundaries was observed in 1.0 at% La-BaTiO3 sintered at 1350°C. Nearly flat permittivity-temperature response was obtained in specimens with 2.0 and 5.0 at% La. Using the modified Curie-Weiss law a critical exponent γ and C’were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO3 and great departure from the Curie-Weiss law for low doped ceramics.

  15. Estimation of grain boundary diffusivity in near-α titanium polycrystals

    International Nuclear Information System (INIS)

    Brockman, Robert A.; Pilchak, Adam L.; John Porter, W.; John, Reji

    2011-01-01

    The role of enhanced grain boundary diffusivity in high-temperature diffusion of interstitial elements through metals is widely recognized but poorly characterized in most materials. This paper summarizes an effort to estimate grain boundary diffusivity of oxygen in a near-α titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, by explicitly incorporating microstructure obtained from electron backscatter diffraction into an analytical model. Attention is focused on near-surface diffusion behavior contributing to the rapid ingress of oxygen and possible crack initiation in high-temperature environments.

  16. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    International Nuclear Information System (INIS)

    Azlan Abdul Rahman; Nasri Abdul Hamid; Abdul Aziz Mohamed; Mohd Shahrul Nizam Abdullah; Samsul Isman; Hidayah Zainal

    2013-01-01

    Full-text: For practical applications of high-temperature superconductor ceramics, the compounds must be able to sustain extreme mechanical stress and external magnetic field. Bi-2212 superconductor is one of the existing superconductors that are commonly used in various applications. Improvement in the microstructure enhanced the connectivity of the adjacent grains within the superconducting grains, and as such improved the mechanical strength of the ceramics. The ability of the superconductor ceramics to sustain superconducting properties in external magnetic field is also required. The compounds must be able to maintain high transport critical current density (Jc) in magnetic field. Another potential application of superconductors is at the nuclear facilities. Thus, study on the impact of radiation exposure on the mechanical and superconducting properties is very important to gauge the viability of superconductor ceramics in such environment. In this study, the mechanical and superconducting properties between exposure and non-irradiated samples are compared. Characterization will be done by the temperature dependence on electrical resistance measurements, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and measurements of transport critical current (Jc) dependence on temperature in magnetic field. (author)

  17. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  18. Near net shape, low cost ceramic valves for advanced engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Pidria, M.; Merlone, E.; Parussa, F. [Fiat Research Centre, Orbassano (Italy); Handelsman, J.; Gorodnev, A. [Ceracom Materials Ltd., Yavneh (Israel)

    2003-07-01

    Future gasoline and diesel engines with electro-hydraulic or electro-mechanical valve control systems require the development of lighter valves to achieve the best results in terms of increased performances, lower fuel consumption and overall efficiency. Ceramic materials can adequately satisfy the required mechanical and thermal properties, nevertheless they still lack as far as manufacturing costs are concerned. Objective of the work was the development of a low-cost forming and sintering process, to produce near-net shape ceramic valves thus requiring very low finishing operations and significantly minimizing material waste. Between available technical ceramic materials, silicon nitride has been chosen to replace conventional steels and Ni-based alloys for the exhaust valves application. The work was then devoted to (i) the selection of the best starting materials composition, taking into account the requirements of a cost effective and high volume production, (ii) the development of an innovative pressure-injection molding process to produce near-net shape parts via a thermosetting feedstock and (iii) the optimization of a proper pressure-less sintering route to obtain cost-competitive, real scale components with adequate final density and mechanical properties. (orig.)

  19. Grain boundaries and defects in superconducting Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Ramesh, R.; Bagley, B.G.; Tarascon, J.M.; Green, S.M.; Rudee, M.L.; Luo, H.L.

    1990-01-01

    Defects and structural interfaces in superconducting Bi-Sr-Ca-Cu-O have been characterized by transmission electron microscopy. The superconducting phase exhibits frequent variations in the stacking sequence (polytypoids). Dislocations, observed inside the grains, either introduce or accommodate the shear in the a-b plane and the local composition fluctuations. In general, the grains exhibit a platelike morphology with the a-b plane as the grain boundary plane. Grain boundaries along the short edge are generally disordered, whereas those near the long edge generally have a thin layer of the lower T c polytypoid. Coherent intragranular boundaries are also observed

  20. Effect of Bi2O3 and Nb2O5 addition on the electrical properties of grain boundaries of SnO2 ceramics

    International Nuclear Information System (INIS)

    Gouvea, D.; Kobori, M.H.; Las, W.C.; Santilli, C.V.; Varela, J.A.

    1990-01-01

    Grain boundary phenomena in SnO 2 ceramics are widely explored in gas sensor fabrication. On the other hand, the high electronic mobility in the conduction band and the energy gap width of 3,5 eV are characteristics which can lead to the formation of an intergranular potential barrier similar to those encountered in ceramic varistors. In this work, the Nb 2 O 5 and Bi 2 O 3 influence on the electrical transport mechanisms through grain boundaries in SnO 2 ceramics was investigated. The samples were characterized by measuring the electrical conductivity as a function of electric field for temperatures from 25 0 C to 200 0 C. The results were analyzed by models which are based on phenomena that occur at interfaces between semiconducting materials. (author) [pt

  1. Positron annihilation lifetime spectroscopy in application to nanostructured glasses and ceramics

    OpenAIRE

    Klym, Halyna; Kostiv, Yuriy

    2017-01-01

    Modified nanostructured Ge-Ga-Se chalcogenide glasses and oxide MgO-Al2O3 ceramics were investigated using positron annihilation lifetime spectroscopy. It was shown that crystallization process in 80GeSe2-20Ga2Se3 glasses annealed at 380°C for 25 and 50 h indicates specific free-volume transformation. It is established that water vapor modifies defects located near grain boundaries in MgO-Al2O3 ceramics sintered at 1300 °C, the process being accompanied by void fragmen...

  2. Grain-size effect in BaTiO.sub.3./sub. ceramics: study by far infrared spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ostapchuk, Tetyana; Petzelt, Jan; Savinov, Maxim; Buscaglia, V.; Mitoserius, L.

    2006-01-01

    Roč. 79, 6-7 (2006), s. 361-373 ISSN 0141-1594 R&D Projects: GA ČR GP202/06/P219; GA ČR GA202/04/0993 Institutional research plan: CEZ:AV0Z10100520 Keywords : barium titanat * nanocrystalline ceramics * infrared reflectivity * permittivity * grain-size effect * soft-mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2006

  3. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  4. Microstructural evolution during the synthesis of bulk components from nanocrystalline ceramic powder, part II: microstructure and properties

    International Nuclear Information System (INIS)

    Ajaal, T. T.; Metak, A. M.

    2004-01-01

    Part I of this review, published in 5 /4th of Al-Nawah magazine, was devoted to the synthetic techniques used in the production processes of a bulk components of nanocrystalline materials. In this part, the microstructural evolution and its effect on the materials properties will be detailed. Minimizing grain growth and maximizing densification during the sintering stage of the ultrafine particles as well as the homogeneous densification in pressureless sintering, grain growth and rapid rate pressureless sintering will be discussed. Ceramics are well known for their high strength at elevated temperatures, as well as the extreme brittleness that prevents their application in many critical components. However, researchers have found that brittleness can be overcome by reducing particle sizes to nanometer levels. These fine grain structures are believed to provide improved ductility the individual grains can slide over one another without causing cracks. In addition, nanophase ceramics are more easily formed than their conventional counterparts, and easier to machine without cracking or breaking. Shrinkage during sintering is also greatly reduced in nanophase ceramics, and they can be sintered at lower temperatures than conventional ceramics. As a result, nanophase ceramics have the potential to deliver an ideal combination of ductility and high-temperature strength, allowing increased efficiency in applications ranging from automobile engines to jet aircraft. This part of the review covers the microstructural evolution during the synthetic process of nanocrystalline ceramic materials and its effects on the materials properties.(author)

  5. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    Science.gov (United States)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  6. Microstructural and dielectrical characterization of Ho doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Marjanović Miloš

    2014-01-01

    Full Text Available The Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt % Ho, were investigated regarding their microstructural and dielectric characteristics. Doped BaTiO3 were prepared using conventional solid state reaction and sintered at 1380°C for four hours. SEM analysis of Ho/BaTiO3 doped ceramics showed that the low doped samples exhibit mainly fairly uniform and homogeneous microstructure with the grain size ranged from 20-40 μm. In the samples with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2-10 μm. Measurements of dielectric properties were carried out as a function of temperature up to 180 °C at different frequencies. The samples doped with 0.01wt % of Ho, exhibit the high value of dielectric permittivity (εr = 2160 at room temperature. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss law and modified Curie-Weiss law the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (g were calculated. The Curie temperature of doped samples were ranged from 128 to 130°C. The Curie constant for all series of samples decrease with increase of dopant concentration and the lowest values were observed on samples doped with 0.01 wt % of holmium. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057: Directed synthesis, structure and properties of multifunctional materials i br. TR 32026

  7. Grain growth kinetics and electrical properties of lanthanum modified lead zirconate titanate (9/65/35) based ferroelectric ceramics

    International Nuclear Information System (INIS)

    Roca, R. Alvarez; Guerrero, F.; Botero, E. R.; Garcia, D.; Eiras, J. A.; Guerra, J. D. S.

    2009-01-01

    The influence of the microstructural characteristics on the dielectric and electrical properties has been investigated for Nd 3+ doped lanthanum modified lead zirconate titanate ferroelectric ceramics, obtained by the conventional solid-state reaction method, by taking into account different sintering conditions. The grain growth mechanism has been investigated and a cubic-type grain growth law was observed for samples with grain size varying from 1.00 up to 2.35 μm. The porosity and grain size dependences of the phase transition parameters, such as the maximum dielectric permittivity and its corresponding temperature (ε m and T m , respectively) were also investigated. The ac conductivity analyses followed the universal Jonscher law. The behavior of the frequency exponent (s) was analyzed through the correlated barrier hopping model. Both ac and dc conductivity results have been correlated with the observed microstructural features

  8. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods

    Science.gov (United States)

    Palmero, Paola

    2015-01-01

    Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029

  9. Ascertaining Grain Scale Effects Of Seismic Or Aseismic Stimulation Upon Strength Of Near Surface Geological Materials

    Directory of Open Access Journals (Sweden)

    Bilal Hassan

    2017-02-01

    Full Text Available Certain peculiarities of inelastic nonlinearity of unconsolidated near surface periodically stressed granular media contributed at micro- scale are investigated to ascertain possible anomalous time dependent strength behavior macro-effects with geotechnicalgeo-environmental implications. Comparative examination of ultrasonic P- and S-wave repeatable displacement response wave-forms in time records and spectra of pulse stimulated both confined dry and fully saturated ceramic grains analogue endorsable by pertinent theory is performed. Examination is primarily aimed at both understanding connectivity of louder response generated by seemingly unobtrusive quieter seismic and aseismic events in granular sediments. Secondarily results impart an enhanced conceptual substantiation of some previously disseminated andor published results. The results hint certain persistive time and frequency restricted occurrences vouching vital insights. It could be unambiguously clarified that subtle acoustic emission andor stick-slip type micro events in stimulated i.e. seismic or aseismic unconsolidated granular sediments do occur. When spread over time andor space their cumulated effect may be capable of altering granular material macro strength behavior. It is clearly deducible from resonant type spectral results that material fragmentation or force chain formation type phenomenon occurs possibly due to macro-scale friction mobilization by grain-scale events. It is further speculated that invisible high frequency events may irreversibly alter grain-scale surface properties andor intergranular friction as pseudo enhanced elasticity type effect more elusive with saturation. An assessment of an examined temporal distribution of grain-scale stick-slip type events when stimulated by P- and S-wave modes is posited to be non-identical. The former as if is retardation associated while the latter relaxation type in a characteristic sense. Presented result forms combined not

  10. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  11. The production of grain oriented lanthanum titanate (La2Ti2O7) ceramics by uniaxial hot-forging process for improved fracture toughness

    International Nuclear Information System (INIS)

    Ceylan, Ali

    2008-01-01

    The layered-structural ceramics, such as lanthanum titanate (La 2 Ti 2 O 7 ), have been known for their good electrical and optical properties at high frequencies and temperatures. However, few studies have been conducted on the mechanical properties of these ceramics. The interest in ceramic hot-forging (HF) has been greatly increased recently due to the enhancement in fracture toughness via bridging effect of oriented grains. In this study, grain oriented lanthanum titanate was produced by the hot-forging process. The characterizations of the samples were achieved by density measurement, scanning electron microscopy (SEM), optical microscopy, X-ray diffraction (XRD), Vickers indentation and three-point bending test. According to X-ray diffraction patterns, the orientation factor (f) was found to be 0.73 for certain hot-forging conditions resulting an improved fracture toughness. The improved fracture toughness of La 2 Ti 2 O 7 (3.2 MPa m 1/2 ) reached to the value of monolithic alumina (Al 2 O 3 ) between 3 and 4 MPa m 1/2

  12. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  13. CRITICAL INDICATORS IN MECHANIZED HARVEST GRAINS AND FIBER

    Directory of Open Access Journals (Sweden)

    E. Boeing

    2017-10-01

    Full Text Available Due to the growth in grain production and intensification of production systems losses are inevitable. The harvest as the last operation performed in the field requires better attention. Although the origins are varied and losses occur both before and during harvesting, approximately 80% of them occur by mechanisms of action of the harvester cutting platform. It is necessary to know the causes of losses, whether physical or physiological operational. Thus, the objective was to conduct a survey of potential losses and / or environmental factors that affect machinery and effectively and should be prioritized in a management program in order to raise the efficiency of harvesting. From the collected data determined if the potential of critical failures through the method of analysis and failure mode effects, using a questionnaire listed with the selected quality indicators. It was concluded that in the mechanical harvesting of cotton harvested product loss and impurity had insusceptible rates be prioritized goals in the management of the production process. While the grain crop (soybean / corn moisture grain and grain breaks are still the main causes in the loss of quality of the product, stressing the importance of harvesters in improving the characteristics at harvest in order to minimize qualitative grain losses.

  14. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  15. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  16. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  17. Investigation of the thermophysical properties of oxide ceramic materials at liquid-helium temperatures

    International Nuclear Information System (INIS)

    Taranov, A. V.; Khazanov, E. N.

    2008-01-01

    The main regularities in the transport of thermal phonons in oxide ceramic materials are investigated at liquid-helium temperatures. The dependences of the thermophysical characteristics of ceramic materials on their structural parameters (such as the grain size R, the grain boundary thickness d, and the structure of grain boundaries) are analyzed. It is demonstrated that, in dense coarse-grained ceramic materials with qR>>1 (where q is the phonon wave vector), the grain boundaries and the grain size are the main factors responsible for the thermophysical characteristics of the material at liquid-helium temperatures. A comparative analysis of the thermophysical characteristics of optically transparent ceramic materials based on the Y 3 Al 5 O 12 (YAG) and Y 2 O 3 cubic oxides synthesized under different technological conditions is performed using the proposed criterion

  18. Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium

    International Nuclear Information System (INIS)

    Le, G.M.; Godfrey, A.; Hansen, N.; Liu, W.; Winther, G.; Huang, X.

    2013-01-01

    The effect of grain size on deformation microstructure formation in the near-micrometre grain size regime has been studied using samples of aluminium prepared using a spark plasma sintering technique. Samples in a fully recrystallized grain condition with average grain sizes ranging from 5.2 to 0.8 μm have been prepared using this technique. Examination in the transmission electron microscope of these samples after compression at room temperature to approximately 20% reduction reveals that grains larger than 7 μm are subdivided by cell block boundaries similar to those observed in coarse-grained samples, with a similar dependency on the crystallographic orientation of the grains. With decreasing grain size down to approx. 1 μm there is a gradual transition from cell block structures to cell structures. At even smaller grain sizes of down to approx. 0.5 μm the dominant features are dislocation bundles and random dislocations, although at a larger compressive strain of 30% dislocation rotation boundaries may also be found in the interior of grains of this size. A standard 〈1 1 0〉 fibre texture is found for all grain sizes, with a decreasing sharpness with decreasing grain size. The structural transitions with decreasing grain size are discussed based on the general principles of grain subdivision by deformation-induced dislocation boundaries and of low-energy dislocation structures as applied to the not hitherto explored near-micrometre grain size regime

  19. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  20. Advantageous grain boundaries in iron pnictide superconductors

    Science.gov (United States)

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  1. Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Directory of Open Access Journals (Sweden)

    Walter Per-Ole

    2004-11-01

    Full Text Available Abstract Background Slow crack growth can be described in a v (crack velocity versus KI (stress intensity factor diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. Methods We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly disappeared. Results We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. Conclusion The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness, which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials

  2. Structure and grain coarsening during the processing of engineering ceramics

    International Nuclear Information System (INIS)

    Shaw, N.J.

    1987-11-01

    Studies have been made of three ceramic systems (Al 2 O 3 , Y 2 O 3 /MgO, and SiC/C/B), both to explore a surface area/density diagram approach to examining the coarsening processes during sintering and to explore an alternative coarsening parameter, i.e., the grain boundary surface area (raising it at a given value of the density) and not the pore surface area; therefore, pinning of the grain boundaries by solid-solution drag is the only function evidenced by these results. The importance of such pinning even at densities as low as 75% of theoretical is linked to the existence of microstructural inhomogeneities. The early stages of sintering of Y 2 O 3 powder have been examined using two techniques, BET surface area analysis and transmission electron microscopy. Each has given some insight into the process occurring and, used together, have provided some indication of the effect of MgO on coarsening during sintering. Attempts to further elucidate effects of MgO on the coarsening behavior of Y 2 O 3 by the surface area/density diagram approach were unsuccessful due to masking effects of contaminating reactions during sintering and/or thermal etching. The behavior of the undoped SiC which only coarsens can be clearly distinguished by the surface area/density diagram from that of SiC/C/B which also concurrently densifies. Little additional information was obtainable by this method due to unfavorable sample etching characteristics. The advantages, disadvantages, and difficulties of application of these techniques to the study of coarsening during sintering are discussed

  3. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    2015-11-01

    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  4. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  5. Diffusion of transmutation isotope in YBaCuO ceramics

    International Nuclear Information System (INIS)

    Malkovich, R.Sh.

    2005-01-01

    The diffusion of a transmutation isotope generated in YBaCuO ceramics irradiated by high-energy charged particles is mathematically analyzed. The model is based on the assumption that copper isotope atoms created in subsurface layers of ceramic grains segregate at the grain boundaries in the course of subsequent annealing and then rapidly diffuse via intergranular regions in depth of the material and penetrate into the bulk of grains [ru

  6. Production of defect-poor nanostructured ceramics of yttria-zirconia

    NARCIS (Netherlands)

    Sagel-Ransijn, C.D.; Sagel-Ransijn, C.D.; Winnubst, Aloysius J.A.; Kerkwijk, B.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    For the production of nanostructured ceramics of yttria-zirconia four powders differing in agglomerate strength, agglomerate size and crystallite size are compared. An ultra-fine-grained ceramic with a final density of 98% and a grain size of 0.18 μm could be produced from a hydrothermally

  7. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  8. Sintering and annealing effects on undoped yttria transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Letue, Laetitia; Petit, Johan, E-mail: johan.petit@onera.fr; Ritti, Marie-Hélène; Lalanne, Sylvie; Landais, Stéphane

    2017-06-15

    Transparent yttrium oxide (Y{sub 2}O{sub 3}) ceramics were processed by several densifications steps without any doping species. The green bodies were obtained by the aqueous way and sintered at high temperature under vacuum and then under high pressure. We studied the effects of different sintering cycles and air annealing at different steps of the process on the density and the grain growth. We also focused on the reaction between yttria ceramics and BN-coated graphite crucible which occurs during HIP. We noted that a low heating rate and two annealing steps are necessary to improve our samples’ transparency. - Highlights: • The quality of transparent ceramics is compared with the tested process parameters. • Air annealing is critical when using a carbon environment in the process. • Intra-granular pores, and so the final transparency, are directly linked to the sintering heating rates.

  9. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  10. Dense cermets containing fine grained ceramics and their manufacture

    International Nuclear Information System (INIS)

    King, H.L.

    1986-01-01

    This patent describes a method of producing a ceramic-metal composite (cermet) containing boride-oxide ceramic having components of a first metal boride and a second metal oxide, which ceramic is in mixture in the cermet with elemental metal of the second metal, wherein the cermet is produced by sintering a reaction mixture of the first metal oxide, boron oxide and the elemental second metal. The improvement consists of: combining for the reaction mixture; A. (a) first metal oxide; (b) boron oxide; (c) ceramic component in very finely divided form; and (d) elemental second metal in very finely divided form and in an amount of at least a 100 percent molar excess beyond that amount stoichiometrically required to produce the second metal oxide during sintering; and B. sintering the reaction mixture in inert gas atmosphere

  11. Effect of superconducting transition on microcreep of high-TC ceramics

    International Nuclear Information System (INIS)

    Soldatov, V.P.; Natsik, V.D.; Chajkovskaya, N.M.

    1991-01-01

    Influence of N-S and S-N transition on microplastic deformation kinetics of YBa 2 Cu 3 O 7-δ ceramic samples by there deformation in liquid nitrogen under microscreep conditions is studied. Superconductivity disruption in the sample was achieved by critical value currents. It is shown, that N-S transition increases creep rate,whereas S-N transition slows it down. Microplastic deformation rate by sample state change may very by two-eight times. Influence of heat expansion on creep kinetics as probable associated effect is analyzed. Assumption is expressed, that stimulated transition effect on microplastic deformation of ceramic samples is related to change of their electron state in the area of Josephson contacts between grains

  12. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  13. Grain characterization and milling behaviour of near-isogenic lines differing by hardness.

    Science.gov (United States)

    Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V

    2006-12-01

    Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.

  14. Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth

    Science.gov (United States)

    Yilmaz, Huseyin

    2002-01-01

    Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of single

  15. Grain size dependence of wear in ceramics

    International Nuclear Information System (INIS)

    Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-01-01

    Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies

  16. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  17. Simulation of the d.c. critical current in superconducting sintered ceramics

    International Nuclear Information System (INIS)

    Riedinger, R.; Habig, P.; Hlil, E.K.; Arnaud, M.; Boulesteix, C.

    1990-01-01

    The new superconducting high-T c sintered ceramics can be described in some case as a lattice of interconnected rods, in other cases as a more or less random packing of parallelepiped crystallites; their size is about a few microns. The d.c. critical current at zero voltage of such a material is not related to the critical current of the bulk material, but to its granular structure. Indeed, the critical current between two adjacent cells is governed by the critical current of the weak link between them; this link behaves within some limits as a Josephson junction, the critical current of which is known. For our present problem, the system can be modeled as a lattice of Josephson junctions. We present here results for the d.c. critical current at zero voltage of lattices of identical Josephson junctions in two dimensions. The influence of the finiteness of size of the sample is examined. The relationship with normal conductivity simulations and percolation is discussed

  18. Fiscal 1996 report on the R and D result of industrial science and technology. R and D synergy ceramics (R and D on synergy ceramics); 1996 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (synergy ceramics no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper summarizes the general survey mainly conducted by FCRA (Fine Ceramics Research Association) in fiscal 1996, and the joint research results with some universities, from some R and D on synergy ceramics. Silicon nitride based ceramics expressed the same high thermal conductivity as metal by seed crystal addition, grain growth control and orientation control of sheet lamination. For its practical use, study was made on control factors of material, formation and sintering. Ca2Y2Si2O9 single crystal was prepared by float-zone method to determine its crystal structure. No volume change due to high-temperature phase transition as thermal expansion was found. In carbothermal reduction- nitridation of SiO2, addition of Si3N4 seed powder increased a reaction rate and formed uniform particles with an isotropic shape. An average particle size was dependent on the size and number of fine particles in seed powder. Addition of both Si3N4 and Fe compound could change a particle shape from a spherical grain to an elongated grain. A spherical Fe-Si metal grain was found on the tip of an elongated grain. 66 refs., 73 figs., 13 tabs.

  19. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  20. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Shpotyuk, O; Hadzaman, I [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Ingram, A [Opole University of Technology, 75 Ozimska str., Opole, 45370 (Poland); Filipecki, J, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Institute of Physics of Jan Dlugosz University, 13/15 Armii Krajowei, 42201, Czestochowa (Poland)

    2011-04-01

    The new transition-metal manganite Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  1. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Klym, H; Shpotyuk, O; Hadzaman, I; Ingram, A; Filipecki, J

    2011-01-01

    The new transition-metal manganite Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  2. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  3. In-situ transmission electron microscopy study of glissile grain boundary dislocation relaxation in a near Σ = 3 {1 1 1} grain boundary in copper

    International Nuclear Information System (INIS)

    Couzinie, J.P.; Decamps, B.; Boulanger, L.; Priester, L.

    2005-01-01

    An in-situ annealing experiment has been performed on an intergranular dislocation configuration composed only of glissile grain boundary dislocations observed in a near Σ = 3 {1 1 1} grain boundary in copper. Relaxation phenomena are not obvious than those predicted by theoretical models. Upon annealing, glissile intergranular dislocations are shown to overcome dislocation obstacles by node movement leading to a decrease of the total grain boundary energy

  4. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  5. Machinability of IPS Empress 2 framework ceramic.

    Science.gov (United States)

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  6. INFLUENCE OF REOXIDATION ON SILICA-CONTAINING BARIUM TITANATE CERAMICS FOR PTCR THERMISTORS PREPARED BY TAPE CASTING

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2016-03-01

    Full Text Available Silica-containing barium-rich BaTiO₃ ceramics for thermistors with a positive temperature coefficient of resistance are prepared by a tape-casting technique. The ceramics are sintered in a reducing atmosphere at low temperatures of 1175-1225°C. The influences of reoxidation are investigated after the reduced ceramics are reoxidized in air at 700-900°C. An anomalous correlation is illustrated between room temperature resistivity and reoxidation temperature. The anomaly results from the ferroelectricity rebuilding mechanism, which includes the spontaneous polarization theory and the ferroelectricity degradation caused by oxygen vacancies. The acceptor-state densities are estimated from the temperature-dependent resistivity. A critical temperature of 750-800°C is concluded for the grain boundary reoxidation.

  7. Critical state in the Y-Ba-Cu-O ceramics

    International Nuclear Information System (INIS)

    Artemov, A.N.; Grishin, A.M.; Korenivskii, V.N.; Ulyanov, A.N.; Khokhlov, V.A.

    1990-01-01

    This paper reports on the temperature and field dependences of the Y-Ba-Cu-O ceramics susceptibility studied both experimentally and theoretically. These dependence have been used to reconstruct the temperature dependence of the critical current (j c (T) = j c (O)(1 - T/T c1 ) 3/2 , J c (O) = 340 A/cm 2 , T c1 = 94.6 K) and the distribution of the granules with respect to the superconducting transition temperature (with the maximum at T c2 = 95.3 K and ΔT = 1.1 K). Within the critical state concept diamagnetic response of the granular superconductors at fundamental and multiple frequencies has been calculated. The calculation results are in good agreement with the experimentally obtained susceptibility dependences and explain the different dependences of the diamagnetic response on the magnitude of the d.c. field and the amplitude of a.c. field

  8. The effect of secondary abnormal grain growth on the dielectric properties of La/Mn co-doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Živković Lj.M.

    2006-01-01

    Full Text Available La/Mn-codoped BaTiO3 systems, obtained by solid state reactions, were investigated regarding their microstructure characteristics and ferroelectric properties. Different concentrations of La2O3 were used for doping, ranging from 0.1 to 5.0 at% La, while a content of Mn was constant at 0.05 at%. For all samples sintered below the eutectic temperature (1332°C, a uniform microstructure was formed with average grain size from 1-3 μm. The appearance of secondary abnormal grains with (111 double twins grains with curved or faceted grain boundaries were observed in La/Mn BaTiO3 ceramics after sintering at temperatures above the eutectic temperature. All sintered samples exhibited a high electrical resistivity. Better dielectric performances were obtained for low doped samples (0.1 at% La sintered at 1350°C. For samples with La content above 1.0 at% a lower value in dielectric permittivity at higher sintering temperature is due to secondary abnormal grain growth, and to the presence of a non-ferroelectric phase rich in La. The Curie constant together with other dielectric parameters were also calculated.

  9. Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} ceramics [A = W, Mo and x = 0, 0.025

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Prasun; Franco, Adolfo Jr. [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil)

    2017-10-15

    The synthesis, micro-structure, spectroscopic, and dielectric properties of SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} [with A=W, Mo and x = 0, 0.025] ceramics were systematically studied. A relative density of ≥98% was obtained for all the samples using a two-step solid state sintering process. XRD images showed that a single phase layered perovskite structure of SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) was formed. The orthorhombic structure with A2{sub 1}am phase group was found up to ∝2.5 at.% substitution of W and Mo into the SBN matrix. SEM revealed the rod-like grain structure similar to the Maxwell-Wagner (MW) parallel plate capacitor model in SBN ceramic, whereas smaller heterogeneous grain structure was observed in W and Mo donor doped ceramics. The initial high value of real and imaginary part of relative permittivity also indicated the presence of interfacial MW relaxation in the SBN ceramics. The experimental data fit well to the theoretical data obtained from MW polarization model in SBN ceramics. The possible origin of the difference of the properties present in the doped sample has been explained based on grain size, orientation, and modification done in the ceramic matrices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment

    International Nuclear Information System (INIS)

    Guenther, R.; Hartig, Ch.; Bormann, R.

    2006-01-01

    Grain refinement of gravity die-cast Mg-alloys can be achieved via two methods: in situ refinement by primary precipitated metallic or intermetallic phases, and inoculation of the melt via ceramic particles that remain stable in the melt due to their high thermodynamic stability. In order to clarify grain refinement mechanisms and optimize possible potent refiners in Mg-alloys, a simulation method for heterogeneous nucleation based on a free growth model has been developed. It allows the prediction of the grain size as a function of the particle size distribution, the volumetric content of ceramic inoculants, the cooling rate and the alloy constitution. The model assumptions were examined experimentally by a study of the grain refinement of (SiC) P in AZ31. Additions of (SiC) P result in significant grain refinement, if appropriate parameters for ceramic particles are chosen. The model makes quantitatively correct predictions for the grain size and its variation with cooling rate

  11. Thermal conductivity of aluminum nitride ceramics. Waermeleitfaehigkeit von Aluminiumnitrid-Keramik

    Energy Technology Data Exchange (ETDEWEB)

    Ruessel, C.; Hofmann, T.; Limmer, G. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Werkstoffwissenschaften 3)

    Aluminium nitride ceramics made by the authors, as well as others produced commercially, mostly using yttrium oxide as an additive, were characterized with respect to their phase and chemical composition, their microstructure, and their thermal conductivity. It was shown that conventional ideas, especially with regard to the correlations between thermal conductivity and the oxygen content and the microstructure, could not withstand a critical examination. Instead, a connection can be seen between the oxygen not bound up in yttrium-aluminum garnet and thermal conductivity. Relatively low thermal conductivities were always observed when yttrium-aluminum garnet was present as a grain-boundary phase; in contrast, high values of thermal conductivity were seen when the yttrium-aluminum garnet was present in the form of isolated grains. (orig.).

  12. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  13. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  14. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  15. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  16. Method of manufacture of single phase ceramic superconductors

    Science.gov (United States)

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  17. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  18. Influence of domain on grain size effects of the dielectric properties of BaTiO3 nanoceramics and nanoparticles

    International Nuclear Information System (INIS)

    Fang Chao; Chen Liangyan; Zhou Dongxiang

    2013-01-01

    The dielectric property of BaTiO 3 nanoparticles and nanoceramics has been studied on the basis of Ginsburg-Landau-Devonshire thermodynamic theory. In this paper, considering nanodomains, Landau coefficients have been written as a function of grain size, and the dielectric constant of the material has been calculated at a variety of temperatures and grain size. The results indicate that with decreasing grain size, the dielectric peak decreases. The two lower dielectric peaks of the orthorhombic-rhombohedral phase and tetragonal-orthorhombic phase move to higher temperature, while cubic-tetragonal phase dielectric peak moves to lower temperature. The dielectric constant of BaTiO 3 ceramics decreases with decreasing grain size. The dielectric constant peak at room temperature is at the grain size which is larger than the critical grain size 17-30 nm. The calculated result is consistent with the experimental data.

  19. Photovoltaic effect in ferroelectric ceramics

    Science.gov (United States)

    Epstein, D. J.; Linz, A.; Jenssen, H. P.

    1982-01-01

    The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv).

  20. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  1. Microstructure characterization of porous microalloyed aluminium-silicate ceramics

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2011-01-01

    Full Text Available Kaolinite and bentonite clay powders mixed with active additives, based on Mg(NO32 and Al(NO32, sintered at high temperatures produce very porous ceramics with microcrystalline and amorphous regions and highly developed metalized surfaces (mainly with magnesium surplus. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. The ceramics samples were characterized by scanning electron microscopy (SEM, energy dispersive spectrometer (EDS, X-ray diffraction analysis (XRD and IR spectroscopy analysis, prior and after treatment in “synthetic water”, i.e. in aqueous solution of arsenic-salt. Grain size distribution for untreated and treated samples was done with software SemAfore 4. It has shown great variety in size distribution of grains from clay powders to sintered samples.

  2. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  3. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  4. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  5. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    Science.gov (United States)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  6. Effects of impurities on PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y J; Kim, H N

    1982-01-01

    The grain growth, dielectric constants, piezoelectric properties, and resistivity of Pb(Zr/sub 0.52/ Ti/sub 0.48/)+0.008La/sub 2/O/sub 3/ (or Nb/sub 2/.O/sub 5/)+xFe/sub 2/O/sub 3/ ceramics have been investigated as a function of Fe/sub 2/O/sub 3/ content. The grain size decreases up to 0.05 (or 0.1) mole % Fe/sub 2/O/sub 3/, but increases in the further region. This can be interpreted as such that the grain growth is not retarded by those impurities when the Fe/sub 2/O/sub 3/ content approaches the La/sub 2/O/sub 3/ (or Nb/sub 2/O/sub 5/) content because of the formation of La/sup 3 +/ (or Nb/sup 5 +/)-Fe/sup 3 +/ ion pairs. The dielectric constant has a maximum at 0.2 mole % Fe/sub 2/O/sub 3/ and decreases as the Fe/sub 2/O/sub 3/ content increases from that composition. The grain size effect is dominant in the variation of dielectric constant up 0.2 mole % Fe/sub 2/O/sub 3/. The resistivity of the ceramics of which the Fe/sub 2/O/sub 3/ content is 0.8 mole % shows the same tendency as that of the pure PZT ceramics, and it can be concluded that complete compensation of the donor and the acceptor has occurred.

  7. Improved critical current of YBaCuO thick-films and ceramics by the addition of Ag

    International Nuclear Information System (INIS)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D.

    1991-01-01

    In a series of papers we have discussed the importance of Ag for contacts and analyzed the resistivity, magnetization, critical current density and percolation properties of YBCO-Ag ceramics. This work has been followed by investigation of electrical and structural properties of thick-films containing Ag in their composition. Here we summarize the most important of our results: In YBCO-Ag ceramic compounds, silver fills the intergranular space (voids), improving the YBaCuO compactness and enhancing the critical current density. These properties are mostly enhanced at 10-20% wt% Ag. The reduction in normal-state resistivity can be described well by 3D percolation theory with a critical concentration of ≅20%. In thick films, prepared by spinning YBaCuO powders on a substrate, adding silver (in the form of Ag 2 O) to the powder mixture improves both T c and J c (by up to 50%), as well as resistivity and resistivity slope. The structural properties, like amount of secondary phases and micro-crack density, are also improved by the addition of Ag. (orig.)

  8. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Near-infrared polarization and color of Comet Halley: What can we learn about the grains

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Knacke, R.F.

    1988-01-01

    The near infrared polarization and JHK colors of light scattered by dust grains in comet Halley were measured over a wide range in phase angle and heliocentric distance. Colors were redder than solar with no statistically significant variation with phase angle, heliocentric distance, or pre- and post-perihelion. This suggests that the grain population did not change drastically over time and that the data may be combined and modeled. However, short term variations in visible polarization and dust albedo were seen in Halley. Also, near infrared colors became systematically bluer after the observations were completed. The near infrared colors of Halley fall in the range of those of other comets. The near infrared polarization is similar to the visible polarization of Halley and other comets in showing a negative branch at small phase angles and an approximately linear rise toward positive values at larger phase angles. Mie theory calculations and a size distribution based on spacecraft data were used to model the near infrared polarization and color of comet Halley. Numerous lines of evidence point to the presence of dark, absorbing, probably carbonaceous materials in comets

  10. Interplay of quantum and classical fluctuations near quantum critical points

    International Nuclear Information System (INIS)

    Continentino, Mucio Amado

    2011-01-01

    For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)

  11. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2014-04-08

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  12. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna K.; Darroudi, Taghi; Graff, Jennifer W.; Schwingenschlö gl, Udo; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  13. Genetic dissection of black grain rice by the development of a near isogenic line

    OpenAIRE

    Maeda, Hiroaki; Yamaguchi, Takuya; Omoteno, Motoyasu; Takarada, Takeshi; Fujita, Kenji; Murata, Kazumasa; Iyama, Yukihide; Kojima, Yoichiro; Morikawa, Makiko; Ozaki, Hidenobu; Mukaino, Naoyuki; Kidani, Yoshinori; Ebitani, Takeshi

    2014-01-01

    Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. ‘Koshihikari’, which is a leading variety in Japan. We used Oryza sativa L. ‘Hong Xie Nuo’ as the donor parent and backcrossed with ‘Koshihikari’ four times, resulting in a near isogenic line (NIL) for black g...

  14. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  15. Monte carlo simulation of anisotropic grain growth in liquid phase sintering

    International Nuclear Information System (INIS)

    Han, Yoon Soo; Kim, Do Kyung

    2003-01-01

    One of the key techniques in modern engineering ceramic system is microstructural control of anisotropic grain growth because grain orientation and shape proved to have an influence on mechanic, dielectric and electric behavior of ceramics. But until now, computer simulation for grain growth has not sufficiently addressed to this subject. The reason is that simulation algorithm was laborious because it has to contain mass transfer through liquid phase and especially anisotropic grain growth has to be considered based on interfacial properties in real system. The goal of present study is simulation of anisotropic grain growth in liquid phase by Q-states model. To give anisotropic inherency to grains, constraint on mobility to specific boundaries was applied. For comparison, we measured grain size distribution and deduced grain growth kinetics from relation ship between average grain size and time. As a result, the grain size distribution functions become broader and the peak height decreases as the anisotropy is increased. The growth exponent 0.67 and 0.47 found by linear fitting have slightly different values in comparison with work of Grest et al. but similar is trend to the decrease of exponent with anisotropy

  16. Influence of domain on grain size effects of the dielectric properties of BaTiO{sub 3} nanoceramics and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang Chao, E-mail: yyohjh@sina.com [Department of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Chen Liangyan [Department of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Zhou Dongxiang [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan City Hubei Province 430074 (China)

    2013-01-15

    The dielectric property of BaTiO{sub 3} nanoparticles and nanoceramics has been studied on the basis of Ginsburg-Landau-Devonshire thermodynamic theory. In this paper, considering nanodomains, Landau coefficients have been written as a function of grain size, and the dielectric constant of the material has been calculated at a variety of temperatures and grain size. The results indicate that with decreasing grain size, the dielectric peak decreases. The two lower dielectric peaks of the orthorhombic-rhombohedral phase and tetragonal-orthorhombic phase move to higher temperature, while cubic-tetragonal phase dielectric peak moves to lower temperature. The dielectric constant of BaTiO{sub 3} ceramics decreases with decreasing grain size. The dielectric constant peak at room temperature is at the grain size which is larger than the critical grain size 17-30 nm. The calculated result is consistent with the experimental data.

  17. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Science.gov (United States)

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  18. The effect of abrading and cutting instruments on machinability of dental ceramics.

    Science.gov (United States)

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  19. Reliability Evaluation of Base-Metal-Electrode (BME) Multilayer Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, David (Donghang)

    2011-01-01

    This paper reports reliability evaluation of BME ceramic capacitors for possible high reliability space-level applications. The study is focused on the construction and microstructure of BME capacitors and their impacts on the capacitor life reliability. First, the examinations of the construction and microstructure of commercial-off-the-shelf (COTS) BME capacitors show great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and approximately 0.5 micrometers, which is much less than that of most PME capacitors. The primary reasons that a BME capacitor can be fabricated with more internal electrode layers and less dielectric layer thickness is that it has a fine-grained microstructure and does not shrink much during ceramic sintering. This results in the BME capacitors a very high volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT) and regular life testing as per MIL-PRF-123. Most BME capacitors were found to fail· with an early dielectric wearout, followed by a rapid wearout failure mode during the HALT test. When most of the early wearout failures were removed, BME capacitors exhibited a minimum mean time-to-failure of more than 10(exp 5) years. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically between 10 and 20. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life

  20. Influence of temperature and heat treatment on crack resistance of ceramic tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.; Bega, N.D.

    1983-01-01

    The effect of testing temperature in the range from 20 to 2000 deg C, and recrystallization annealing at 2200 deg C on crack resistance of ceramic tungsten in vacuum, is investigated. The extension diagrams thus obtained have been treated in accordance with the standard technique. The value of the critical crack loading and the stress intensity coefficient have been determined. Structural changes have been controlled with X-ray structural methods. Crack resistance of tungsten increases in the test temperature range from 20 deg C to Tsub(x) which is connected with the increase of mobility of screw components of dislocation loops. At the temperature more than Tsub(x) the plasticity growth of ceramic tungsten takes place simultaneously with grain boundary embrittlement. Recrystallization annealing at 2200 deg C creates the structure resistant to temperature effect; crack resistance being minimum

  1. THE COMPOSITION OF INTERSTELLAR GRAINS TOWARD ζ OPHIUCHI: CONSTRAINING THE ELEMENTAL BUDGET NEAR THE DIFFUSE-DENSE CLOUD TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Poteet, Charles A.; Whittet, Douglas C. B. [New York Center for Astrobiology, Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Draine, Bruce T., E-mail: charles.poteet@gmail.com [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2015-03-10

    We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O are inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.

  2. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  3. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  4. Fractal corrections of BaTiO3-ceramic sintering parameters

    Directory of Open Access Journals (Sweden)

    Mitić V.V.

    2014-01-01

    Full Text Available Morphology of ceramics grains and pores as well as Brownian character of particle dynamics inside ceramics specimen contributes to better understanding of the sintering process. BaTiO3-ceramics, studied in this paper, has light fractal form and it is emanated in three aspects. First, the surface of grains, even in starting green body as well as distribution of grains shows fractal behavior. Second, existence of pores and their distribution follow the rules of fractal geometry. Third, movement of particles inside viscous flow underlies the rule of Brownian motion, which is essentially a fractal category. These three elements, each in its domain influence sintering dynamics, and can be described by dimensionless quantitative factors, αs αp and αm, being normalized to the interval [0,1]. Following sintering process, the associate formulae of Frenkel, Scherer and Mackenzie-Shuttleworth are shown from the angle of view of ceramics fractal dimension changing that approaches to 3. Also, it is shown that the energy balance is not violated after applying fractal correction to quasi equilibrium of the energy emanating from surface area reduction ES and energy adopted by viscous flow Ef .[Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  5. Synthesis of (Zn, Mg)TiO{sub 3}-TiO{sub 2} composite ceramics for multilayer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Wu, S.P., E-mail: chwsp@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Tu, W.P.; Jiao, L.; Zeng, Z.O. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-11-01

    (Zn{sub 0.8}Mg{sub 0.2})TiO{sub 3}-xTiO{sub 2} composite ceramics has been prepared via the solid-phase synthesis method. TiO{sub 2} was employed to tone temperature coefficient of resonant frequency ({tau}{sub f}) and stabilize hexagonal (Zn, Mg)TiO{sub 3} phase. 3ZnO-B{sub 2}O{sub 3} was effective to promote sintering. The movement of grain boundary was obvious because of the liquid phase sintering. The scanning electron microscope (SEM) photographs and energy dispersive spectrometer (EDS) patterns showed that segregation and precipitation of dissociative (Zn, Mg)TiO{sub 3} grains occurred at grain boundary during sintering. SnO{sub 2} was used as inhibitor to prevent the grain boundary from moving. The dielectric behaviors of specimen strongly depended on structural transition and microstructure. We found that 1.0 wt.% 3ZnO-B{sub 2}O{sub 3} doped (Zn, Mg)TiO{sub 3}-0.25TiO{sub 2} ceramics with 0.1 wt.% SnO{sub 2} additive displayed excellent dielectric properties (at 1000 deg. C): {epsilon}{sub r} = 27.7, Q x f = 65,490 GHz (at 6.07 GHz) and {tau}{sub f} = -8.88 ppm deg. C{sup -1}. The above-mentioned material was applied successfully to make multilayer ceramic capacitors (MLCCs), which exhibited an excellent electrical property. The self-resonance frequency (SRF) and equivalent series resistance (ESR) of capacitor decreased with capacitance increasing, and the quality factor (Q) of capacitor reduced as frequency or capacity increased.

  6. Modeling of tritium behavior in ceramic breeder materials

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Tam, S.W.; Johnson, C.E.

    1988-11-01

    Computer models are being developed to predict tritium release from candidate ceramic breeder materials for fusion reactors. Early models regarded the complex process of tritium release as being rate limited by a single slow step, usually taken to be tritium diffusion. These models were unable to explain much of the experimental data. We have developed a more comprehensive model which considers diffusion and desorption from the grain surface. In developing this model we found that it was necessary to include the details of the surface phenomena in order to explain the results from recent tritium release experiments. A diffusion-desorption model with a desorption activation energy which is dependent on the surface coverage was developed. This model provided excellent agreement with the results from the CRITIC tritium release experiment. Since evidence suggests that other ceramic breeder materials have desorption activation energies which are dependent on surface coverage, it is important that these variations in activation energy be included in a model for tritium release. 17 refs., 12 figs

  7. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  8. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    Science.gov (United States)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  9. Corrosion behaviors of ceramics against liquid sodium. Sodium corrosion characteristics of sintering additives

    International Nuclear Information System (INIS)

    Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Yoshida, Eiichi

    1998-01-01

    It has been progressed as the Frontier Materials Research to research and develop ceramics to apply for several components of fast breeder reactor using liquid sodium as coolant instead of metallic materials. Grain boundary of ceramics has peculiar properties compared with matrix because most of ceramics are produced by hardening and firing their raw powders. Some previous researchers indicated that ceramics were mainly corroded at grain boundaries by liquid sodium, and ceramics could not be used under corrosive environment. Thus, it is the most important for the usage of ceramics in liquid sodium to improve corrosion resistance of grain boundaries. In order to develop the advanced ceramics having good sodium corrosion resistance among fine ceramics, which have recently been progressed in quality and characteristics remarkably, sodium corrosion behaviors of typical sintering additives such as MgO, Y 2 O 3 and AlN etc. have been examined and evaluated. As a result, the followings have been clarified and some useful knowledge about developing advanced ceramics having good corrosion resistance against liquid sodium has been obtained. (1) Sodium corrosion behavior of MgO depended on Si content. Samples containing large amount of Si were corroded severely by liquid sodium, whereas others with low Si contents showed good corrosion resistance. (2) Both Y 2 O 3 and AlN, which contained little Si, showed good sodium corrosion resistance. (3) MgO, Y 2 O 3 and AlN are thought to be corroded by liquid sodium, if they contain some SiO 2 . Therefore, in order to improve sodium corrosion resistance, it is very important for these ceramics to prevent the contamination of matrix with SiO 2 through purity control of their raw powders. (author)

  10. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  11. Influence of grain size and upper critical magnetic field on global pinning force of bronze-processed Nb/sub 3/Sn compound

    International Nuclear Information System (INIS)

    Ochiai, S.; Osamura, K.

    1986-01-01

    In order to know the dependency of global pinning force of Nb/sub 3/Sn compound on grain size and upper critical magnetic field, the global pinning force was measured at 3-15 T using bronze-processed multifilamentary composites. The grain size and upper critical magnetic field were varied by two types of annealing treatment: one is the isothermal annealing at 873, 973 and 1073 K up to 1730 ks and another is the two-stage annealing (low temperature annealing to form fine grains at 873 K for 1730 ks + high temperature annealing to raise upper critical magnetic field at 1073 K up to 18 ks). In the case of isothermal annealing treatment, both of grain size and upper critical magnetic field increased with increasing annealing temperature and time except for the annealing treatments at high temperature for prolonged times. In the case of two-stage annealing, both of them increased with second stage annealing time. The increase in grain size led to decrease in the pinning force but the increase in upper critical magnetic field to increase in it. From the analysis of the present data based on the Suenaga's speculation concerning with the density of pinning site and the Kramer's equation, it was suggested that the pinning force is, to a first approximation, proportional to the product of inverse grain size and (1-h)/sup 2/h/sup 1/2/ where h is the reduced magnetic field

  12. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  13. Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed β grains fabricated by laser additive manufacture

    International Nuclear Information System (INIS)

    Zhang, Q.; Chen, J.; Tan, H.; Lin, X.; Huang, W.D.

    2016-01-01

    Laser additive manufacture (LAM) is a novel technique in which metal components can be fabricated layer by layer. In this paper, the effects of solution temperature and cooling rate on microstructure evolution of the LAMed TC21 titanium alloy which containing near equiaxed prior β grains were studied. The LAMed and solution treated samples were investigated by optical microscopy (OM), scanning election microscope (SEM) and X-ray diffractometer (XRD). The results indicate that both the α phase volume fraction and α laths width are affected by the solution temperature and cooling rate. Different microstructure characterization leads to different Vickers hardness values. However, the solution temperatures selected in this study have insignificant effects on the β and α phase texture. The near equiaxed prior β grains exhibits much weaker texture intensity than the typical columnar prior β grains. The comparison of the calculated and measured α phase texture indicates that variant selection occurred during the solution treatment. The martensite α′ phase precipitated during the layer by layer process shows weak variant selection tendency. - Highlights: • LAMed TC21 titanium alloy containing near equiaxed β grains was fabricated. • Near equiaxed β grains exhibit weaker texture intensity than columnar β grains. • The solution treatment below T_β had insignificant effect on α phase texture. • Variant selection occurred during the solution treatment.

  14. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  15. Cosmological implications of Higgs near-criticality.

    Science.gov (United States)

    Espinosa, J R

    2018-03-06

    The Standard Model electroweak (EW) vacuum, in the absence of new physics below the Planck scale, lies very close to the boundary between stability and metastability, with the last option being the most probable. Several cosmological implications of this so-called 'near-criticality' are discussed. In the metastable vacuum case, the main challenges that the survival of the EW vacuum faces during the evolution of the Universe are analysed. In the stable vacuum case, the possibility of implementing Higgs inflation is critically examined.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  16. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  17. Creation of near-infrared emitting optical center related to nickel–silicon impurity complex in nanodiamond grains

    International Nuclear Information System (INIS)

    Tóth, S.; Himics, L.; Koós, M.

    2016-01-01

    Nanodiamond grains having intensive light emission in the near-infrared region even at room temperature carry an important application potential. Advantages of light emitting optical centers formed in nanodiamond grains are the emission concentrated into a narrow band and that they are mostly single photon emitter. Transition metal related impurity centers formed in nanodiamond grains exhibit these favorable properties. In this work we report on the creation of Ni–Si impurity related complex defect center in nanodiamond grains under microwave plasma assisted chemical vapor deposition (MW CVD) growth process. This complex center accounts for the previously undocumented fluorescence system with zero phonon line (ZPL) emission at 865 nm (1.433 eV) and band width of 1.5 nm (2.4 meV) at room temperature. By varying deposition conditions the Ni–Si impurity related complex defect center was formed in nanodiamond grains of 80–200 nm average sizes. Some variation of ZPL peak position and line width have been detected in nanodiamond grains prepared at different conditions, as well as in numerous nanodiamond grains prepared at the same conditions. The variations of local stress field may explain the spread of ZPL spectral parameters.

  18. Creation of near-infrared emitting optical center related to nickel–silicon impurity complex in nanodiamond grains

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, S., E-mail: toth.sara@wigner.mta.hu; Himics, L.; Koós, M.

    2016-08-15

    Nanodiamond grains having intensive light emission in the near-infrared region even at room temperature carry an important application potential. Advantages of light emitting optical centers formed in nanodiamond grains are the emission concentrated into a narrow band and that they are mostly single photon emitter. Transition metal related impurity centers formed in nanodiamond grains exhibit these favorable properties. In this work we report on the creation of Ni–Si impurity related complex defect center in nanodiamond grains under microwave plasma assisted chemical vapor deposition (MW CVD) growth process. This complex center accounts for the previously undocumented fluorescence system with zero phonon line (ZPL) emission at 865 nm (1.433 eV) and band width of 1.5 nm (2.4 meV) at room temperature. By varying deposition conditions the Ni–Si impurity related complex defect center was formed in nanodiamond grains of 80–200 nm average sizes. Some variation of ZPL peak position and line width have been detected in nanodiamond grains prepared at different conditions, as well as in numerous nanodiamond grains prepared at the same conditions. The variations of local stress field may explain the spread of ZPL spectral parameters.

  19. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  20. Contact angle change during evaporation of near-critical liquids

    Science.gov (United States)

    Nikolayev, Vadim; Hegseth, John; Beysens, Daniel

    1998-11-01

    An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling". We report the preliminary results of the numerical simulation of the liquid evaporation by the Boundary Element method.

  1. Investigation of medieval ceramics from Ras by physicochemical methods

    Directory of Open Access Journals (Sweden)

    Zindović Nataša D.

    2008-01-01

    Full Text Available Although early medieval Serbian ceramic is well described by the archeologists and historians, knowledge of the Balkan ceramic production is still limited. Archaeometric study of ceramics provenance, technology of preparation and used pigments as well as influence of neighboring countries and specific characteristics of different workshops has never been performed so far. The detailed knowledge of the micro-chemical and micro-structural nature of an archaeological artifact is critical in finding solutions to problems of restoration, conservation, dating and authentication in the art world. In this work we present results of systematic investigation of pottery shards from archeological site Ras. The term Ras, which signifies both the fortress and the region encompassing the upper course of Raška River, used to be the center of the medieval Serbian state. Both the ceramic body and the polychromatic glaze of the artifacts were studied by a multianalitical approach combining optical microscopy (OM, FT-IR spectroscopy and X-ray fluorescence (XRF. Mineralogical composition of pottery shards has been determined combining results obtained by FT-IR spectroscopy, after deconvolution of the spectra, and XRPD analysis. Firing temperature has been estimated based on the mineralogical composition and positions of Si-O stretching (-1000 cm-1 and banding (-460 cm-1 vibrations. Investigated samples have been classified into two groups based on the mineralogical composition, cross sections and firing temperature. Larger group consists of samples of fine-grained, homogeneous ceramics with firing temperatures bellow 800 °C which indicates imported products. Second, smaller group consists of inhomogeneous ceramics with firing temperatures between 850 and 900 °C produced in the domestic workshops. The obtained results will be used to build up a national database for the compositions of bodies, glazes and pigments.

  2. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  3. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  4. [Research on the aging of all-ceramics restoration materials].

    Science.gov (United States)

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  5. XPS Analysis of Ni and Oxygen in Single-Sintered SrTiO3 Multifunction Ceramic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    XPS analyses have been performed to investigate the chemical conditions of Ni and oxygen on grain surfaces in single-sintered SrTiO3 capacitor-varistor ceramic doped with Nb2O5 and NiO. It is ascertained that Ni is in form of Ni2+ ions, which substitute for Ti4+ ions on grain surfaces during the oxidizing annealing. Moreover, it is confirmed that three kinds of chemically adsorbed oxygen such as O2-, O- and O~ are formed on grain surfaces. It is proposed that these behaviors contribute greatly to the generation of multiple types of grain boundary acceptor states in the ceramic.

  6. Formation and corrosion of a 410 SS/ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X., E-mail: xin.chen@anl.gov [Civil and Materials Engineering Department, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607 (United States); Nuclear Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Ebert, W.L. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Indacochea, J.E. [Civil and Materials Engineering Department, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607 (United States)

    2016-11-15

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. - Highlights: • An alloy/ceramic composite was made to evaluate corrosion at phase boundaries. • Lanthanide oxides and Zr added to 410 steel reacted to form durable zirconates. • Corrosion behavior was evaluated using electrochemical tests and SEM analyses. • Regions of active, passive, galvanic, sensitized, and chemical corrosion observed. • The corrosion current was proportional to relative areas of active alloy phases.

  7. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  8. Dielectric properties of Ga2O3-doped barium iron niobate ceramics

    International Nuclear Information System (INIS)

    Sanjoom, Kachaporn; Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee; Rujijanagul, Gobwute

    2014-01-01

    Ga-doped BaFe 0.5 Nb 0.5 O 3 (Ba(Fe 1-x Ga x ) 0.5 Nb 0.5 O 3 ) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε r > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε r > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Crystallization and properties of a spodumene-willemite glass ceramic

    International Nuclear Information System (INIS)

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  10. Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C

    Science.gov (United States)

    2015-12-01

    word ceramic comes from the Greek word keramos, meaning pottery, but now refers to many classes of materials, including clays , abrasives......these situations, the viscosity of the grain boundary becomes an important factor for the creep rate. 25 When grain elongation accompanies grain

  11. Study of new CaO-SiO/sub 2/-P/sub 2/O/sub 5/CaF/sub 2/ bioactive ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Siddiqi, S.A.; Shah, W.A.

    1997-01-01

    A new bioactive glass ceramic having, composition 48CaO-32SiO/sub 2/-16P/sub 2/O/sub 5/-4CaF/sub 2/ has been developed and studied for its physical and biological properties. Like the natural bone in which spastic particles are reinforced by collagen, in the present glass-ceramic, fine grained ceramic particles embedded in a glass matrix. X-ray diffraction analysis reveals wollastonite and oxyfluorapatite as the crystalline part of the glass-ceramic. Scanning electron microscopy of the samples has been carried out to see the grain size and grain distribution. Bending and compressive strength of the glass ceramic have been carried out to measured and found to be 208.60 m.Pa and 788.61 M.Pa respectively. Growth of apatite layer, which is responsible for bonding the broken part of a natural bone, on a bioactive glass-ceramic in a simulated body fluid has been studied. A small rectangular piece of this glass-ceramic has also been implanted successfully in a dog's tibia. (author)

  12. Chilean flour and wheat grain: tracing their origin using near infrared spectroscopy and chemometrics.

    Science.gov (United States)

    González-Martín, Ma Inmaculada; Wells Moncada, Guillermo; González-Pérez, Claudio; Zapata San Martín, Nelson; López-González, Fernando; Lobos Ortega, Iris; Hernández-Hierro, Jose-Miguel

    2014-02-15

    Instrumental techniques such a near-infrared spectroscopy (NIRS) are used in industry to monitor and establish product composition and quality. As occurs with other food industries, the Chilean flour industry needs simple, rapid techniques to objectively assess the origin of different products, which is often related to their quality. In this sense, NIRS has been used in combination with chemometric methods to predict the geographic origin of wheat grain and flour samples produced in different regions of Chile. Here, the spectral data obtained with NIRS were analysed using a supervised pattern recognition method, Discriminat Partial Least Squares (DPLS). The method correctly classified 76% of the wheat grain samples and between 90% and 96% of the flour samples according to their geographic origin. The results show that NIRS, together with chemometric methods, provides a rapid tool for the classification of wheat grain and flour samples according to their geographic origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    Science.gov (United States)

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  14. AES/STEM grain boundary analysis of stabilized zirconia ceramics

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Kroot, P.J.M.; Burggraaf, A.J.

    1983-01-01

    Semiquantitative Auger Electron Spectroscopy (AES) on pure monophasic (ZrO2)0.83(YO1.5)0.17 was used to determine the chemical composition of the grain boundaries. Grain boundary enrichment with Y was observed with an enrichment factor of about 1.5. The difference in activation energy of the ionic

  15. Neodymium ion diffusion during sintering of Nd : YAG transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Joel P; Kuntz, Joshua D; Soules, Thomas F [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)

    2009-03-07

    Using an electron microprobe, we measured and characterized the Nd{sup 3+} ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminium garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometres to tens of micrometres depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross-sectional area of grain boundaries. (fast track communication)

  16. Physical properties and microstructures of La_{1-{x}}Pr_{{x}}PO_4 monazite-ceramics

    Science.gov (United States)

    Thust, Anja; Hirsch, Antje; Haussühl, Eiken; Schrodt, Nadine; Loison, Lise; Schott, Petra; Peters, Lars; Roth, Georg; Winkler, Björn

    2018-04-01

    Synthetic La_{1-{x}}Pr_{{x}}PO_4 monazite-type powders and ceramics with 0 ≤ x ≤ 1 were analysed by scanning electron microscopy, high-temperature powder X-ray diffraction, dilatometry, and plane wave ultrasound spectroscopy. Ceramics were synthesised in a two-step sintering process at 1273 and 1573 K. Final densities were up to 99.3% of the theoretical densities. Each sample shows a homogeneous distribution of grain sizes, which increase with increasing sintering temperature. Grain sizes also depend on composition, with intermediate compositions yielding the largest grains. In-situ high-temperature powder X-ray diffraction shows that the volumetric thermal expansion coefficients of the monazite powders decrease with increasing Pr content. This behavior is not observed in dilatometry measurements of the bulk samples (ceramics) because their thermal expansion mainly depends on their density. Elastic properties show the same dependence on the density.

  17. Critical currents of Y sub 1 Ba sub 2 Cu sub 3 O sub 7-. delta. ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B V; Obukhov, Yu V [Joint Inst. for Nuclear Research, Low Temperature Physics Dept., Moscow (USSR)

    1991-12-01

    The magnetization measurements on a ceramic YBaCuO sample were carried out. The M(H,T) dependence has demonstrated some peculiarities which we suppose to be connected with H{sub j1}, H{sub j2}, H{sub C1} fields. By analizing the magnetization in the field region between H{sub j1} and H{sub j2} within the frame of the critical state model one can found the dependence of the intergranular critical current density on field and temperature. (orig.).

  18. Scratch-induced deformation in fine- and ultrafine-grained bulk alumina

    International Nuclear Information System (INIS)

    Huang, Lin; Zhang, Zhihui; Zhao, Yonghao; Yao, Wenlong; Mukherjee, Amiya K.; Schoenung, Julie M.

    2010-01-01

    The nanoscratch behavior of two bulk α-alumina samples with 1.3 μm and 290 nm average grain sizes, respectively, was investigated using a nanoindenter in scratch mode, in combination with atomic force and scanning electron microscopy. A ductile to brittle transition was observed in the fine-grained sample, while the ultrafine-grained sample exhibited predominantly ductile deformation with a fish-bone feature indicative of a stick-slip mechanism. These findings suggest that grain refinement can increase the potential for plastic deformation in ceramics.

  19. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  20. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  1. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  2. OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300

    International Nuclear Information System (INIS)

    Andersson, B-G; Potter, S. B.

    2010-01-01

    We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment.

  3. Preparation and study of the critical-mass-free plutonium ceramics with neutron poisons Hf, Gd and Li

    International Nuclear Information System (INIS)

    Timoefeeva, L.F.; Orlov, V.K.; Malyukov, E.E.; Molomin, V.I.; Zhmak, V.A.; Semova, E.A.; Shishkov, N.V.; Nadykto, B.A.

    2002-01-01

    Powder sintering was used to produce homogeneous type oxide ceramics of Pu with Hf, Gd and Li 6 . In all the ceramics, there is the number of neutron poison (Hf, Gd and Li) atoms per plutonium atom needed, according to the physical calculation, for them to be free of critical mass. PuO 2 stabilizers high-temperature modifications of cubic HfO 2 or hexagonal Gd 2 O 3 , however, at the ratio given by the physical calculation, the plutonium is insufficient for their full stabilization. Addition of yttrium oxide as an additive stabilizing the fcc phase of HfO 2 resulted in cubic solid solution (Pu, Hf, Y)O 2-x . Pu/Li/Hf and Pu/Li/Si ceramics produced by sintering of PuO 2 and compound Li 2 HfO 3 or 6 Li 4 SiO 4 powders is characterized with presence of two phases. The method of differential thermal analysis demonstrated the phase stability of (Pu-Hf, Pu-Gd, Pu-Li-Hf) oxide ceramics in the 20-1500degC temperature range. Ceramic (Pu/Li/Si) has several endothermal effects. Tests in boiling water solutions of various composition suggest that the specimens of Pu, Hf oxides and ternary oxides (Pu, Hf, Y)O 2 are less stable in weakly acidic media than in weakly alkaline medium and distilled water. The obtained results were used as a basis to estimate the assumed solid solution region boundaries for binary Hf, Pu and ternary Hf, Pu, Y oxides on the side of HfO 2 . (author)

  4. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  5. Extrinsic coefficient charcterisation of PZT ceramics near the morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Albareda, A.

    2006-06-01

    Full Text Available PZT ceramics with high piezoelectric coefficients have high extrinsic contributions. This extrinsic behaviour, which is related to the domain wall movement, produces high non-linear effects that are sometimes inconvenient, for example when it increases the losses in power devices. The relation between extrinsic behaviour and non-linearities could be used to provide a good extrinsic characterization of materials in order to optimise the piezoelectric devices. In all cases the physical explanation of the behaviour is sought. The aim of this work is to study the dependence of the linear and non-linear dielectric, piezoelectric and mechanical coefficients on the Ti fraction in PZT ceramic compositions near the morphotropic phase boundary (MPB. The dependence of these coefficients on the defect concentration is also analysed. Hard ceramics belonging to Ferroperm Piezoceramics, with two different acceptor dopant levels, high and low, have been measured.

    Las cerámicas PZT con coeficientes piezoeléctricos elevados poseen contribuciones extrínsecas grandes. Este comportamiento extrínseco, relacionado con el movimiento de las paredes de los dominios, comporta efectos no lineales grandes que no siempre son deseables, por ejemplo, al incrementar las pérdidas de los dispositivos piezoeléctricos. Esta correspondencia entre efectos extrínsecos y no linealidades puede ser utilizada para caracterizar las cerámicas con el fin de optimizar sus propiedades piezoeléctricas. En todos los casos se busca una interpretación física de los resultados obtenidos. El objetivo de este trabajo es el estudio de la dependencia de los coeficientes lineales y no lineales dieléctricos, piezoeléctricos y elásticos con la fracción de Ti en cerámicas PZT con composiciones de Zr-Ti cerca de la transición de fase morfotrópica (MPB. También se analiza la dependencia de estos coeficientes con la concentración de impurezas, utilizando para ello cerámicas de

  6. Basic research in crystalline and noncrystalline ceramic systems. Annual report, August 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The Basic Research Programs in Ceramics sponsored by the US Department of Energy supports a significant fraction of the research effort and graduate student training in ceramics at MIT. Various research activities involving ceramic materials include electrical properties; kinetic studies; defect structures, defect interactions, grain boundaries and surfaces; sintering studies; and mechanical properties

  7. Interaction between dust grains near a conducting wall

    International Nuclear Information System (INIS)

    Ignatov, A.M.

    2003-01-01

    The effect of a conducting electrode on the interaction of dust grains in an ion flow is discussed. It is shown that two grains levitating above the electrode at the same height may attract one another. This results in the instability of a dust layer

  8. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    International Nuclear Information System (INIS)

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  9. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  10. Dielectric properties of Ga{sub 2}O{sub 3}-doped barium iron niobate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoom, Kachaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand); Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Rujijanagul, Gobwute [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand)

    2014-08-15

    Ga-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} (Ba(Fe{sub 1-x}Ga{sub x}){sub 0.5}Nb{sub 0.5}O{sub 3}) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε{sub r} > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε{sub r} > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  12. Fiscal 1997 report of the R and D result of industrial science and technology. R and D on synergy ceramics (development of rational energy use technology); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For rational use of energy resources, the process technology which allows harmonization and multiplication of conflicting characteristics was developed for development of new ceramic system materials. This paper summarizes the result in fiscal 1997. On a structural reaction process among creation technologies of ultra-reliable structure, study was made on structure control and hot-working technology through atmosphere control in ceramics synthesis. On basic technology for analysis and evaluation, study was made on the effect of particle bridging on strengthening and toughening of ceramic materials. Study was also made on a toughness expression mechanism, FEM model analysis of particle bridging, and crack growth resistance of ceramics. On control of solid solution precipitation, new alumina ceramics with high strength, hardness and wear resistance was obtained by transgranularly precipitating nano-size particles from a fine-grain high-density matrix through an improved particle formation process. Its toughness was considerably improved by controlling grain shape and grain boundary structure. A precipitation mechanism was also discussed. 89 refs., 107 figs., 14 tabs.

  13. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  14. Resintering - a novel approach for preparing massive YBa2Cu3O7-δ-ceramics

    International Nuclear Information System (INIS)

    Vuong, N.V.; Raspopina, E.V.

    1996-01-01

    The resintering procedure of YBa 2 Cu 3 O 7-δ -ceramics in 3BaCuO 2 + 2CuO eutectic melt for preparing massive samples is presented. The resintered ceramics is of the single orthorhombic phase YBa 2 Cu 3 O 7-δ and has the volume fraction of the intergrain region reduced from 50 to 5%. The average grain size is twofold increased, the connection between grains is appreciably strengthened. (author). 12 refs., 10 figs., 1 tab

  15. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    International Nuclear Information System (INIS)

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  16. Giant dielectric response in (Sr, Sb) codoped CaCu3Ti4O12 ceramics: A novel approach

    Science.gov (United States)

    Pradhan, M. K.; Rao, T. Lakshmana; Karna, Lipsarani; Dash, S.

    2018-04-01

    The CaCu3Ti4O12 (CCTO) remains as the best material for practical applications due to its high dielectric constant. To improve further the dielectric properties of CCTO to several orders in magnitude, a novel approach is adopted by codoping of Sr, Sb ions. The ceramic samples were fabricated by the conventional solid state route. The structure, morphology and detail dielectric properties were investigated systematically. All the samples crystalizes in a cubic symmetry with Im-3 space group. Sr substituted in Ca site can effectively suppress the grain growth, achieving a fine grained ceramic structure; however the grain size decreased slightly as Sb concentration increased further; whereas the dielectric permittivity of the ceramics increased drastically. The giant dielectric response was considered to be closely related with a reduction in the potential barrier height at grain boundaries (GBs) supported by the reduction in the activation energy for the conduction process.

  17. Fusarium spp. Associated with Field-Grown Grain of Near-Isogenic Low Lignin and Wild-Type Sorghum

    Science.gov (United States)

    Fusarium spp. associated with field-grown grain of near-isogenic low lignin and wild-type sorghum. Deanna Funnell-Harris and Jeff Pedersen, USDA-ARS, Lincoln, NE Previous studies indicated that low lignin brown midrib (bmr) sorghum may be more resistant to Fusarium spp. than wild-type and that phen...

  18. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  19. Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    2016-03-01

    Full Text Available CaCu3Ti4−xYxO12 (0≤x≤0.12 ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.

  20. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  1. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  2. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics

    CERN Document Server

    Damjanovic, D

    1997-01-01

    The contribution from the irreversible displacement of non-180 deg domain walls to the direct longitudinal piezoelectric d sub 3 sub 3 coefficient of BaTiO sub 3 and Pb(Zr, Ti)O sub 3 ceramics was determined quantitatively by using the Rayleigh law. Effects of the crystal structure and microstructure of the ceramics as well as the external d.c. pressure on the domain wall contribution to d sub 3 sub 3 were examined. In barium titanate, this domain wall contribution is large (up to 35% of the total d sub 3 sub 3 , under the experimental conditions used) and dependent on the external d.c. pressure in coarse grained ceramics, and much smaller and independent of the external d.c. pressure in fine-grained samples. The presence of internal stresses in fine-grained ceramics could account for the observed behaviour. The analysis shows that the domain-wall contribution to the d sub 3 sub 3 in lead zirconate titanate ceramics is large in compositions close to the morphotropic phase boundary that contain a mixture of te...

  3. Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel

    International Nuclear Information System (INIS)

    Zhu, Zhixiong; Kuzmikova, Lenka; Li, Huijun; Barbaro, Frank

    2014-01-01

    This study investigated the influence of the inter-critical reheating temperature on the microstructure and mechanical properties of a coarse grained heat affected zone (CGHAZ) in an API 5L grade X70 pipeline steel seam weld. A Gleeble 3500 thermo-mechanical simulator was employed to duplicate particular weld thermal cycles in order to accurately assess specific regions of the weld HAZ. Detailed microstructural analysis, including investigation of the martensite–austenite (M–A) constituent, was performed using optical microscope (OM), scanning electron microscope (SEM) and selective etching techniques. It is shown that the fracture toughness of the CGHAZ is significantly reduced following exposure to a subsequent inter-critical thermal cycle. Fracture toughness gradually improves as the inter-critical temperature is increased, but does not return to the value of the original CGHAZ due to the presence of isolated large M–A particles and coarse microstructure. Significance of M–A particles to the HAZ fracture toughness is first related to the location of particles along prior austenite grain boundaries, followed by the size of individual M–A particles

  4. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  5. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  6. AC Conductivity and Impedance Properties of 0.65Pb(Mg1/3Nb2/3O3-0.35PbTiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Banarji Behera

    2009-01-01

    impedance spectroscopy technique. The impedance and electric permittivity were strongly temperature and frequency dependent. The activation energy, calculated from the temperature dependence of AC conductivity of the ceramics was found to be ∼0.5 eV. The relaxation process in the ceramics was found to be of non-Debye type. The nature of Cole-Cole diagram reveals the contribution of grain (bulk and grain boundary permittivity in the ceramics.

  7. Anisotropy oxidation of textured ZrB2–MoSi2 ceramics

    DEFF Research Database (Denmark)

    Liu, Hai-Tao; Zou, Ji; Ni, De Wei

    2012-01-01

    Oxidation behavior of hot forged textured ZrB2–20vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500°C for exposure time from 0.5 to 12h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forgi...

  8. Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications

    Science.gov (United States)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hadzaman, I.; Hotra, O.; Kostiv, Yu.

    2016-03-01

    Technologically modified spinel MgO-Al2O3 ceramics were prepared from Al2O3 and 4MgCO3·Mg(OH)2·5H2O powders at sintering temperatures of 1200, 1300, and 1400 °C. Free-volume structural effects in MgO-Al2O3 ceramics and their electrophysical properties were studied using combined x-ray diffraction, scanning electron microscopy, Hg-porosimetry, and positron annihilation lifetime spectroscopy. It is shown that increasing of sintering temperature from 1200 to 1400 °C results in the transformation of pore size distribution in ceramics from tri- to bi-modal including open macro- and meso(micro)pores with sizes from ten to hundreds nm and nanopores with sizes up to a few nm. Microstructure of these ceramics is improved with the increase of sintering temperature, which results in decreased amount of additional phases located near grain boundaries. These phase extractions serve as specific trapping centers for positrons penetrating the ceramics. The positron trapping and ortho-positronium decaying components are considered in the mathematical treatment of the measured spectra. Classic Tao-Eldrup model is used to draw the correlation between the ortho-positronium lifetime and the size of nanopores, which is complementary to porosimetry data. The studied ceramics with optimal nanoporous structure are highly sensitive to humidity changes in the region of 31-96% with minimal hysteresis in adsorption-desorption cycles.

  9. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    Science.gov (United States)

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  10. Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications

    Science.gov (United States)

    Sangwan, Kanta Maan; Ahlawat, Neetu; Kundu, R. S.; Rani, Suman; Rani, Sunita; Ahlawat, Navneet; Murugavel, Sevi

    2018-06-01

    Lead free Mn doped barium zirconium titanate ceramic of composition BaZr0.045 (MnxTi1-x)0.955O3 (x = 0.00, 0.01, 0.02) were prepared by solid state reaction method. Tetragonal perovskite structure was confirmed by Rietveld refinement of X-ray diffraction pattern. Analysis of Scanning electron microscope (SEM) micrographs revealed that addition of Mn up to a certain limit accelerates grain growth of BZT ceramic. Static dielectric constant was successfully extended up to high frequencies with an appreciable decrease in dielectric loss about 70% for Mn doped BZT ceramics. The experimental data fitted with Curie Weiss Law and Power Law confirmed first order transition and diffusive behavior of the investigated system. The shifting of Curie temperature (Tc) from 387 K to 402 K indicated tendency for sustained ferroelectricity in doped BZMT ceramics. High value of percentage temperature coefficient of capacitance TCC >10% near Tc was observed for all the compositions and increases with Mn content in pure BZT. At room temperature, BZT modified ceramic corresponding to x = 0.01 composition shows better values of remnant polarization (Pr = 5.718 μC/cm2), saturation polarization (Ps = 14.410 μC/cm2), low coercive field (Ec = 0.612 kV/cm), and highest value of Pr/Ps = 0.396.

  11. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties

    International Nuclear Information System (INIS)

    Factorovich, J.C.; Badino, D.; Cravero, F.; Dominguez, E.

    1997-01-01

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2μ fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author)

  12. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  13. The effect of β grain coarsening on variant selection and texture evolution in a near-β Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Obasi, G.C; Quinta da Fonseca, J. [Manchester Materials Science Centre, The University of Manchester, Grosvenor street, Manchester M13 9PL (United Kingdom); Rugg, D. [Rolls-Royce plc, P.O. Box 31, Derby DE24 8BJ (United Kingdom); Preuss, M., E-mail: michael.preuss@manchester.ac.uk [Manchester Materials Science Centre, The University of Manchester, Grosvenor street, Manchester M13 9PL (United Kingdom)

    2013-08-01

    In the present study, the role of β grain coarsening on α variant selection has been investigated in the near-titanium alloy Ti–21S (Ti–15Mo–3Nb–3Al–0.21Si). The material was first thermomechanically processed in a fully β stabilised condition in order to obtain a fine β grain size before undertaking controlled β grain-coarsening heat treatments. Two different cooling regimes ensured that either all β was retained at room temperature or significant α formation was achieved during cooling with predominant nucleation from β grain boundaries. Detailed electron backscatter diffraction (EBSD) characterisation was carried out on the β quenched and slowly cooled samples in order to compare the predicted α texture based on the β texture measurements assuming no variant selection with the measured α textures. A strong correlation was found between β coarsening and level of variant selection. It was also found that the grain coarsening is driven by the predominant growth of low energy grain boundaries, which strengthen specific β texture components that are part of the 〈1 1 1〉∥ND γ fibre. Finally, it was possible to demonstrate that the strengthened β texture components promote β grain pairs with a common 〈110〉, which is known to enhance variant selection when α nucleates from β grain boundaries.

  14. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  15. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  16. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  17. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  18. Porous ceramics achievement by soybean and corn agricultural waste insertion

    International Nuclear Information System (INIS)

    Valdameri, C.Z.; Ank, A.; Zatta, L.; Anaissi, F.J.

    2014-01-01

    Porous ceramic materials are produced by incorporating organic particles and stable foams. Generally it improves low thermal conductivity, which gives thermal comfort for buildings. The southwest region of Parana state is one of the largest producers of grains in Brazil, this causes the disposal of a large amount of waste in the agricultural processing. This paper presents the characterization of porous ceramics produced from clay minerals and agricultural waste (soybeans and corn). The precursor was characterized by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) techniques. For the ceramic materials produced, characterizations about density, water absorption, tensile strength by diametrical compression strength and flexural strength curves was performed. The results showed high possibility of industrial/commercial application because the ceramic materials were produced from low costs precursors leading to ceramic products with properties of interest in construction. (author)

  19. Mechanical Properties of Ceramics for High Temperature Applications

    Science.gov (United States)

    1976-12-01

    meets another aim of gas turbine ceramics. Temperature measuring by optical pyrometer gives here a reproducibility of approximately 150 C. The...with a similar acoustic impedence to the host material (e.g., certain inclusions, large grains) will be minimal, signal averaging instrumentation

  20. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  1. Comparison of inventory of tritium in various ceramic breeder blankets

    International Nuclear Information System (INIS)

    Nishikawa, M.; Beloglazov, S.; Nakashima, N.; Hashimoto, K.; Enoeda, M.

    2002-01-01

    It has been pointed out by the present authors that it is essential to understand such mass transfer steps as diffusion of tritium in the grain of breeder material, absorption of water vapor into bulk of the grain, and adsorption of water on surface of the grain, together with the isotope exchange reaction between hydrogen in purge gas and tritium on surface of breeder material and the isotope exchange reaction between water vapor in purge gas and tritium on surface, for estimation of the tritium inventory in a uniform ceramic breeder blanket under the steady-state condition. It has been also pointed out by the present authors that the water formation reaction on the surface of ceramic breeder materials at introduction of hydrogen can give effect on behavior of bred tritium and lithium transfer in blanket. The tritium inventory for various ceramic breeder blankets are compared in this study basing on adsorption capacity, absorption capacity, isotope exchange capacity, and isotope exchange reactions on the Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 4 SiO 4 and Li 2 TiO 3 surface experimentally obtained by the present authors. Effect of each mass transfer steps on the shape of release curve of bred tritium at change of the operational conditions is also discussed from the observation at out pile experiment in KUR. (orig.)

  2. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    Science.gov (United States)

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  3. Determination of the inter- and intra-granular critical currents in superconducting YBa2Cu3O7 welds

    International Nuclear Information System (INIS)

    Bozzo, B; Iliescu, S; Bartolome, E; Palau, A; Granados, X; Puig, T; Obradors, X; Amoros, J; Carrera, M

    2005-01-01

    A method for determining simultaneously the inter- and intra-grain critical currents has been developed in welded YBa 2 Cu 3 O 7 (YBCO) ceramics by solving the Inverse Problem for local maps of the magnetic field in the remanent state. From that current distribution, the current density flowing through the superconducting weld as well as the current density circulating inside the grains can be deduced. The method is discussed and it is applied to several examples of YBCO/Ag/YBCO welds. The results obtained show that it is possible to obtain superconducting joints with a quality at the same level as that of the starting material

  4. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  5. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  6. The interaction of a vortex ring with a sloped sediment layer: Critical criteria for incipient grain motion

    Science.gov (United States)

    Munro, R. J.

    2012-02-01

    Experiments were performed to analyse the interaction between a vortex ring and a sloped sediment layer. Attention focussed on interactions under "critical" conditions, in which sediment motion was only just induced by the ring's flow field. Both hydraulically smooth and hydraulically rough bedforms were analysed, using near-spherical monodisperse sediments with relative densities of 1.2 and 2.5 and mean diameters (dp) ranging between 80 and 1087 μm. Measurements of the vortex-ring flow field were obtained, during the interaction, using two-dimensional particle imaging velocimetry. The threshold conditions for incipient sediment motion were analysed in terms of the critical Shields parameter (Nc), defined in terms of the peak tangential velocity measured adjacent to the bed surface. Bed-slope effects were investigated by tilting the sediment layer at various angles between the horizontal and the repose limit for the sediment. In all cases, the propagation axis of the vortex ring was aligned normal to the bed surface. The measured values of Nc were compared with a force-balance model based on the conditions for incipient grain motion on a sloping bed. For hydraulically smooth bedforms, where the bed roughness is small compared to the boundary-layer depth, the model was derived to account for how viscous stresses affect the drag and lift forces acting on the near surface sediment. For hydraulically rough bedforms, where this viscous-damping effect is not present, the model assumes the drag and lift forces scale with the square of the near-bed (inviscid) velocity scale. In both cases, the model predicts that bedforms become more mobile as the bed slope is increased. However, the damping effect of the viscous sublayer acts as a stabilizing influence for hydraulically smooth bedforms, to reduce the rate at which the bed mobility increases with bed slope. The measured values of Nc were in agreement with the trends predicted by this model, and exhibit a transition in

  7. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    Science.gov (United States)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  8. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  9. Dynamic trapping near a quantum critical point

    Science.gov (United States)

    Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli

    2015-02-01

    The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.

  10. Large-scale synthesis of Pb1-xLa xTiO3 ceramic powders by molten salt method

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Yu Ranbo; Liu Guirong; Xing Qifeng

    2006-01-01

    The ferroelectric perovskite type lanthanum doped lead titanate (PLT) ceramic powders were synthesized in one step with the starting materials of PbC 2 O 4 , La 2 O 3 and TiO 2 in NaCl-KCl molten salts in the temperature range of 700-950 deg. C. It was found that molten salt method was a large scale and easy preparation way to produce PLT powders with high dispersity. Tetragonal phase Pb 1-x La x TiO 3 ceramic powders were identified by XRD in the composition range 0 ≤ x ≤ 0.3 and mono-dispersed particles with spheric shape and less than 100 nm size were observed by SEM. The grain sizes of Pb 1-x La x TiO 3 ceramic powders increased with the increase of La content and decreased with calcination temperature. The grain growth progress and the possible reaction mechanism in molten salts and its influencing factors were discussed in this work. The grain growth process was the main influencing factor of the grain size, which depended on the solubility in the flux

  11. Thermal properties of ionic systems near the liquid-liquid critical point.

    Science.gov (United States)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Pérez-Sánchez, Germán; Peleteiro, José; Romaní, Luis

    2011-12-07

    Isobaric heat capacity per unit volume, C(p), and excess molar enthalpy, h(E), were determined in the vicinity of the critical point for a set of binary systems formed by an ionic liquid and a molecular solvent. Moreover, and, since critical composition had to be accurately determined, liquid-liquid equilibrium curves were also obtained using a calorimetric method. The systems were selected with a view on representing, near room temperature, examples from clearly solvophobic to clearly coulombic behavior, which traditionally was related with the electric permittivity of the solvent. The chosen molecular compounds are: ethanol, 1-butanol, 1-hexanol, 1,3-dichloropropane, and diethylcarbonate, whereas ionic liquids are formed by imidazolium-based cations and tetrafluoroborate or bis-(trifluromethylsulfonyl)amide anions. The results reveal that solvophobic critical behavior-systems with molecular solvents of high dielectric permittivity-is very similar to that found for molecular binary systems. However, coulombic systems-those with low permittivity molecular solvents-show strong deviations from the results usually found for these magnitudes near the liquid-liquid phase transition. They present an extremely small critical anomaly in C(p)-several orders of magnitude lower than those typically obtained for binary mixtures-and extremely low h(E)-for one system even negative, fact not observed, up to date, for any liquid-liquid transition in the nearness of an upper critical solution temperature. © 2011 American Institute of Physics

  12. THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS

    Science.gov (United States)

    Xu, Jing; He, Bo; Liu, Han Xing

    It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.

  13. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  14. Structure and grain coarsening during the processing of engineering ceramics. Ph.D. Thesis - Leeds Univ., United Kingdom

    Science.gov (United States)

    Shaw, Nancy J.

    1987-01-01

    Studies have been made of three ceramic systems (Al2O3, Y2O3/MgO, and SiC/C/B), both to explore a surface area/density diagram approach to examining the coarsening processes during sintering and to explore an alternative coarsening parameter, i.e., the grain boundary surface area (raising it at a given value of the density) and not the pore surface area; therefore, pinning of the grain boundaries by solid-solution drag is the only function evidenced by these results. The importance of such pinning even at densities as low as 75% of theoretical is linked to the existence of microstructural inhomogeneities. The early stages of sintering of Y2O3 powder have been examined using two techniques, BET surface area analysis and transmission electron microscopy. Each has given some insight into the process occurring and, used together, have provided some indication of the effect of MgO on coarsening during sintering. Attempts to further elucidate effects of MgO on the coarsening behavior of Y2O3 by the surface area/density diagram approach were unsuccessful due to masking effects of contaminating reactions during sintering and/or thermal etching. The behavior of the undoped SiC which only coarsens can be clearly distinguished by the surface area/density diagram from that of SiC/C/B which also concurrently densifies. Little additional information was obtainable by this method due to unfavorable sample etching characteristics. The advantages, disadvantages, and difficulties of application of these techniques to the study of coarsening during sintering are discussed.

  15. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  16. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  17. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  18. Genetic dissection of black grain rice by the development of a near isogenic line.

    Science.gov (United States)

    Maeda, Hiroaki; Yamaguchi, Takuya; Omoteno, Motoyasu; Takarada, Takeshi; Fujita, Kenji; Murata, Kazumasa; Iyama, Yukihide; Kojima, Yoichiro; Morikawa, Makiko; Ozaki, Hidenobu; Mukaino, Naoyuki; Kidani, Yoshinori; Ebitani, Takeshi

    2014-06-01

    Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. 'Koshihikari', which is a leading variety in Japan. We used Oryza sativa L. 'Hong Xie Nuo' as the donor parent and backcrossed with 'Koshihikari' four times, resulting in a near isogenic line (NIL) for black grains. A whole genome survey of the introgression line using DNA markers suggested that three regions, on chromosomes 1, 3 and 4 are associated with black pigmentation. The locus on chromosome 3 has not been identified previously. A mapping analysis with 546 F2 plants derived from a cross between the black rice NIL and 'Koshihikari' was evaluated. The results indicated that all three loci are essential for black pigmentation. We named these loci Kala1, Kala3 and Kala4. The black rice NIL was evaluated for eating quality and general agronomic traits. The eating quality was greatly superior to that of 'Okunomurasaki', an existing black rice variety. The isogenicity of the black rice NIL to 'Koshihikari' was very high.

  19. Characterization of quartzite waste and their application on red ceramic

    International Nuclear Information System (INIS)

    Babisk, M.P.; Vidal, F.W.H.; Vieira, C.M.F.; Ribeiro, W.S.

    2012-01-01

    The incorporation of industrial waste into red ceramic have been used currently in the search for alternative raw materials, and also seeking for an environmentally friendly waste disposal that pollute. During the process of beneficiation of dimension stone, there are significant losses of material and waste generation, which have been placed inappropriately in nature, with no provision for use or reuse. The quartzite is geologically classified as a metamorphic rock composed almost entirely of quartz grains. The aim of this study is to characterize and evaluate the applicability of quartzite waste in the red ceramic. Incorporations were studied up to 40% by weight of waste in the ceramics body and the results indicated that the residue of quartz is a material with great potential to be used as a component in a red ceramic. (author)

  20. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  1. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  2. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    Science.gov (United States)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  3. High temperature microplasticity of fine-grained Y-TZP zirconia studied by mechanical spectroscopy

    International Nuclear Information System (INIS)

    Donzel, L.; Schaller, R.

    1997-01-01

    Mechanical spectroscopy has been used to study the early stage of the plastic deformation, i.e. the microplasticity of Y-TZP ceramics. Measurements on samples with different grain sizes have shown that the mechanical loss is proportional to the inverse of the square root of the grain size. The existence of a threshold stress has been observed. (orig.)

  4. Effects of Pb concentration on phase, microstructure and electrical properties of Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Lawita, P.; Siriprapa, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2012-01-01

    In this work, effects of Pb-doping concentration on phase, microstructure and electrical properties of bismuth lead lanthanum titanate (Bi 1−x Pb x ) 3.25 La 0.75 Ti 3 O 12 or BPLT ceramics when x = 0, 0.01, 0.03, 0.05, 0.07, 0.09 and 0.1 were investigated. Phase analysis by X-ray diffraction indicated the existence of orthorhombic phase for all BPLT powders and ceramics. Microstructural investigation using scanning electron microscope showed that all ceramics composed mainly of plate-like grains. An increase in PbO doping content reduced not only diameter and thickness of the grains but also density of the ceramics. Electrical conductivity was found to decrease while dielectric constant increased with Pb-doping concentration. Small reduction of remanent polarization and coercive field was observed in Pb-doped samples. - Highlights: ► We prepared bismuth lead lanthanum titanate ceramics by a solid state mixed-oxide method. ► The optimum sintering temperature was found to be 1150 °C. ► BPLT ceramic was identified by X-ray diffraction method to possess an orthorhombic structure. ► All samples shows plate-like morphology with varying grain size and orientation. ► Increasing Pb-doping content tended to decrease electrical conductivity values.

  5. Heterogeneous grain-scale response in ferroic polycrystals under electric field

    DEFF Research Database (Denmark)

    Daniels, John E.; Majkut, Marta; Cao, Qingua

    2016-01-01

    -ray diffraction (3D-XRD) is used to resolve the non-180° ferroelectric domain switching strain components of 191 grains from the bulk of a polycrystalline electro-ceramic that has undergone an electric-field-induced phase transformation. It is found that while the orientation of a given grain relative...... to the field direction has a significant influence on the phase and resultant domain texture, there are large deviations from the average behaviour at the grain scale. It is suggested that these deviations arise from local strain and electric field neighbourhoods being highly heterogeneous within the bulk...

  6. Potential of energetic utilization of grains residual biomass; Potencial de utilizacao energetica de biomassa residual de graos

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna L. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Centro de Tecnologia de Embalagem], e-mail: anna@ital.sp.gov.br; Ambrogi, Vinicius S.; Guerra, Sinclair M.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: ambrogi@fem.unicamp.br, e-mail: sguerra@fem.unicamp.br

    2004-07-01

    The biomass resulting from the rejected parts of grains, as straw and peel of rice, corn, wheat, soy, all great cultivations in the country, has potential to be takes advantage as energy. It was considered that the contribution of this residual biomass is near of 167,8 million GJ/year, value that could be added to the use already established of the cane bagasse for energy purpose (658 million GJ, in 2001). This energy can be used for drying of these same grains (energy expense estimate of 67 million GJ), currently obtained from oil. It can also substitute the fuel oil used in the agricultural section, in the industries of food and beverage, ceramic and textile (sections that consumed 67.822 GJ in 2001). In Sao Paulo state the regions with greater potential to install biomass plants are located in Assis, Avare and Itapeva EDR (regional development office). (author)

  7. Processing and characterizations of BNT-KNN ceramics for actuator applications

    Directory of Open Access Journals (Sweden)

    Mallam Chandrasekhar

    2016-06-01

    Full Text Available BNT-KNN powder (with composition 0.93Bi0.5Na0.5TiO3–0.07K0.5Na0.5NbO3 was synthesized as a single perovskite phase by conventional solid state reaction route and dense ceramics were obtained by sintering of powder compacts at 1100 °C for 4 h. Dielectric study confirmed relaxor behaviour, whereas the microstructure study showed sharp cornered cubic like grains with an average grain size ∼1.15 µm. The saturated polarization vs. electric field (P-E hysteresis loops confirmed the ferroelectric (FE nature while the butterfly shaped strain vs. electric field (S-E loops suggested the piezoelectric nature of the BNT-KNN ceramic samples. Maximum electric field induced strain of ∼0.62% suggested the usefulness of this system for actuator applications.

  8. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.

    Science.gov (United States)

    Zhitomirsky, I

    2002-03-29

    Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.

  9. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Administrator

    Variation in surface roughness properties are also correlated with grain size. Rz ... ceramic product having accurate size and shape with per- fect flatness .... Figure 1. Variation in Ra with temperature: (a) fine, (b) intermediate and (c) coarse.

  10. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  11. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  13. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  14. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    Science.gov (United States)

    Liu, Jun; Liu, Peng; Wang, Jun; Xu, Xiaodong; Li, Dongzhen; Zhang, Jian; Nie, Xinming

    2018-01-01

    In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics. PMID:29565322

  15. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2018-03-01

    Full Text Available In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics.

  16. Random walk analysis of grain motion during superplastic deformation of TZP

    International Nuclear Information System (INIS)

    Okamoto, T; Yasuda, K; Shiota, T

    2009-01-01

    This study focuses on grain motion in TZP (Tetragonal Zirconia Polycrystal) ceramics during superplastic deformation. The specimen was 16 times elongated repeatedly at 1400 0 C in air. The increment of true plastic strain was set to be 2%, and the specimen was deformed up to 30.3% true plastic strain finally. After each deformation, displacement vectors of specified 748 grains were measured from their position vectors determined by FE-SEM micrographs. As a result, the grains move to the tensile loading direction in zigzag way. And also, the zigzag motion changes with plastic strain: The grains move randomly (random walk motion) by the first 15% true plastic strain, and then grain motion becomes spatially uniform gradually. It is related to changes of constraint of surrounding matrix.

  17. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Science.gov (United States)

    An, Jing; Song, Jinpeng; Liang, Guoxing; Gao, Jiaojiao; Xie, Juncai; Cao, Lei; Wang, Shiying; Lv, Ming

    2017-01-01

    The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure. PMID:28772821

  18. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-04-01

    Full Text Available The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure.

  19. Manifestation of Crystal Lattice Distortions in the IR Reflection Spectra of Abrasion-Treated ZnSe Ceramics

    Science.gov (United States)

    Sitnikova, V. E.; Dunaev, A. A.; Mamalimov, R. I.; Pakhomov, P. M.; Khizhnyak, S. D.; Chmel, A. E.

    2017-07-01

    The Fourier IR reflection spectra of ZnSe ceramics prepared by hot pressing (HP), physical vapor deposition (PVD), and PVD combined with hot isostatic pressing (HIP) are presented. The optical constants of polished and dry-ground specimens were used for comparison. The grinding treatment simulated the erosion of the outer surface of optical elements made of zinc selenide under the influence of solid dust particles and deposits. In the polished specimens residual stresses showed up in the IR reflection spectra of the ZnSePVD and ZnSeHIP ceramics, which had well-defined orientation of grains, but were not present in the spectra of the ZnSeHIP ceramics as a result of mutual compensation of the stresses in the randomly oriented grains of the material. The stresses, which appeared as a shift of the absorption bands calculated by the Kramers-Kronig method, increased significantly after abrasive treatment of the specimens. For all the treated ceramics the intensity of the absorption bands resulting from the anharmonicity of the vibrations in the distorted crystal lattice increased by several times. The last effect also depends on the production prehistory of the ceramics.

  20. Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic

    Science.gov (United States)

    Singh, Laxman; Rai, U. S.; Mandal, K. D.; Rai, Alok Kumar

    2013-09-01

    In the present communication, data on magnesium-doped calcium copper titanate CaCu2.90Mg0.10Ti4O12 (CCMTO) electro-ceramic, synthesized by the semi-wet route (SWR), ball-milled route (BMR) and solid-state route (SSR), is characterized by TG-DTA, XRD, SEM, EDX and TEM techniques. XRD confirmed the formation of single phase in CCMTO ceramic. The CuO phase present at grain boundaries in SWR ceramic was shown by the SEM micrograph, which was verified by EDX. The TEM image of SWR ceramic shows nanocrystalline particles in the range 80±20 nm. The value of the dielectric constant of SWR ( ɛ r ˜20091) ceramic is higher than those of BMR and SSR ( ɛ r ˜1247) ceramics at 1 kHz at 450 K. A dielectric relaxation has been observed in the frequency range 100 Hz-100 kHz. The high-temperature dielectric dispersion shows one large low-frequency response and two Debye-type relaxations. The impedance and modulus studies show the highest grain-boundary resistance for BMR ceramic.

  1. Axionic landscape for Higgs coupling near-criticality

    Science.gov (United States)

    Cline, James M.; Espinosa, José R.

    2018-02-01

    The measured value of the Higgs quartic coupling λ is peculiarly close to the critical value above which the Higgs potential becomes unstable, when extrapolated to high scales by renormalization group running. It is tempting to speculate that there is an anthropic reason behind this near-criticality. We show how an axionic field can provide a landscape of vacuum states in which λ scans. These states are populated during inflation to create a multiverse with different quartic couplings, with a probability distribution P that can be computed. If P is peaked in the anthropically forbidden region of Higgs instability, then the most probable universe compatible with observers would be close to the boundary, as observed. We discuss three scenarios depending on the Higgs vacuum selection mechanism: decay by quantum tunneling, by thermal fluctuations, or by inflationary fluctuations.

  2. Impedance spectroscopy of ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.; Cosentino, I.C.; Florio, D.Z. de; Franca, Y.V.

    1996-01-01

    The Impedance Spectroscopy (IS) technique has been used to the study of Th O 2 :Y 2 O 3 , Zr O 2 :La 2 O 3 and Zr O 2 :Y 2 O 3 solid electrolytes. The results show that solid solution has been attained, grain boundaries act as oxygen-ion blockers, and the importance of the IS technique to study phase transformation in ceramics. (author)

  3. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Kim, Sin-Woong; Lee, Sung-Chan; Kim, Min-Soo; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung

    2012-01-01

    Through the low-temperature sintering method, a sintered body with excellent characteristics was produced in an eco-friendly niobate-based piezoelectric ceramic, whose application was low in expectation due to poor sinterability. Li 2 CO 3 was added in excess to (Na 0.49 K 0.45 Li 0.06 )NbO 3 , and ceramics were manufactured using a commercial sintering method. Then, the sinterability and the piezoelectric properties of the specimens containing varying amounts of Li 2 CO 3 were investigated. The microstructure demonstrated the typical abnormal grain growth tendencies with the addition of Li 2 CO 3 , and this was explained through changes in the critical driving force in the interface reaction-controlled nucleation and growth theory. When the specimen had been sintered at 1000 .deg. C for 4 hours in air after the addition of 1.5 mol% Li 2 CO 3 , the sintered body showed outstanding characteristics with a piezoelectric coefficient of 180 pC/N, an electromechanical coupling coefficient of 0.32, and a dielectric constant of 975. These results showed that eco-friendly niobate-based ceramics, whose use in applications was expected to be difficult in spite of their excellent properties, could be used to produce piezoelectric materials with outstanding properties through a commercial low-temperature sintering method using additives.

  4. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Woong; Lee, Sung-Chan; Kim, Min-Soo; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2012-09-15

    Through the low-temperature sintering method, a sintered body with excellent characteristics was produced in an eco-friendly niobate-based piezoelectric ceramic, whose application was low in expectation due to poor sinterability. Li{sub 2}CO{sub 3} was added in excess to (Na{sub 0.49}K{sub 0.45}Li{sub 0.06})NbO{sub 3}, and ceramics were manufactured using a commercial sintering method. Then, the sinterability and the piezoelectric properties of the specimens containing varying amounts of Li{sub 2}CO{sub 3} were investigated. The microstructure demonstrated the typical abnormal grain growth tendencies with the addition of Li{sub 2}CO{sub 3}, and this was explained through changes in the critical driving force in the interface reaction-controlled nucleation and growth theory. When the specimen had been sintered at 1000 .deg. C for 4 hours in air after the addition of 1.5 mol% Li{sub 2}CO{sub 3}, the sintered body showed outstanding characteristics with a piezoelectric coefficient of 180 pC/N, an electromechanical coupling coefficient of 0.32, and a dielectric constant of 975. These results showed that eco-friendly niobate-based ceramics, whose use in applications was expected to be difficult in spite of their excellent properties, could be used to produce piezoelectric materials with outstanding properties through a commercial low-temperature sintering method using additives.

  5. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO_3) ceramics

    International Nuclear Information System (INIS)

    Billah, Masum; Ahmed, A.; Rahman, Md. Miftaur; Mahbub, Rubbayat; Gafur, M. A.; Bashar, M. Shahriar

    2016-01-01

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La_2O_3) doped Barium Titanate (BaTiO_3) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO_3 with 0.3, 0.5 and 0.7 mole% La_2O_3 under different sintering parameters. The raw materials used were La_2O_3 nano powder of ~80 nm grain size and 99.995% purity and BaTiO_3 nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO_3 ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La_2O_3) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La_2O_3 with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La"3"+ concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO_3 ceramics.

  6. X-ray study of residual stress distribution of ground ceramics

    International Nuclear Information System (INIS)

    Sakaida, Yoshihisa; Tanaka, Keisuke; Ikuhara, Yuichi; Suzuki, Kenzi.

    1997-01-01

    The residual stress distribution of ground ceramics was determined from the eigen strain existing in the ground surface. The eigen strain of ground ceramics was tensile, and exponentially decreased with the distance from the surface. The residual stress distribution is given as a superposition of an exponential function of compression and a linear function. It is found that the actual residual stress distribution can be approximated by a compressive exponential function because the magnitude of tensile residual stress is negligibly small compared to the compressive residual stress. In the experiments, the diffraction angle was measured on ground silicon nitride for a wide range of sin 2 ψ using the glancing incidence X-ray diffraction technique. A strong nonlinearity was found in the 2θ-sin 2 ψ diagram at very high ψ-angles. From the analysis of nonlinearity, the residual stress distribution was determined. The residual stress distribution of silicon nitride coincided with the distribution calculated from the eigen strain distribution. Transmission electron microscopy was used to clarify the origin of generation of the residual stress. Both strain contrasts and microcracks were observed below the ground surface ; straight dislocations were also observed within silicon nitride grains near the ground surface. (author)

  7. Characteristics of 1–3-type ferroelectric ceramic/auxetic polymer composites

    International Nuclear Information System (INIS)

    Topolov, V Yu; Bowen, C R

    2008-01-01

    This paper presents modelling and simulation results on 1–3 piezoactive composites comprising a range of ferroelectric ceramics, which are assumed to have variable properties and an auxetic polymer (i.e. a material with a negative Poisson ratio) that improves the hydrostatic piezoelectric response of the composite. Dependences of the effective piezoelectric coefficients and related parameters of the 1–3 composites on the degree of poling, mobility of the 90° domain walls within ceramic grains, on the volume fraction of the ceramic component and on the Poisson ratio of the polymer component have been calculated and analysed. The role of the piezoelectric anisotropy and domain-orientation processes in improving and optimising the effective parameters, piezoelectric activity and sensitivity of 1–3 ferroelectric ceramic/auxetic composites is discussed

  8. Reply to: “A response to some unwarranted criticisms of single-grain dating” by J.K. Feathers

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew Sean; Buylaert, Jan-Pieter

    2017-01-01

    In the note “A response to some unwarranted criticisms of single-grain dating” Feathers raises many issues with both the approach and the conclusions of Thomsen et al. (2016). After careful consideration, we find we disagree with Feather's analysis and conclusions, and stand by the original concl...

  9. Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Balitska, V.; Brunner, M.; Hadzaman, I.; Klym, H.

    2015-01-01

    Thermally-induced electronic relaxation in structurally-modified Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics

  10. Effect of MnO2, Bi2O3, and ZnO additions on the electrical properties of lead zirconate titanate piezo ceramics

    International Nuclear Information System (INIS)

    Klimov, V.V.; Selikova, N.I.; Bronnikov, A.N.

    2006-01-01

    The effect of manganese dioxide additions on the electrical properties of lead zirconate titanate (PZT) piezo ceramics has been investigated. The results demonstrate that, taken alone, manganese dioxide does not ensure the formation of hard PZT. The valence state of manganese in the piezo ceramics is shown to be 4+ if no other dopants are present and 3+ if manganese is introduced in combination with Bi and Zn. Microstructural examination indicates that the grain size of the singly doped ceramics is 5-15 μm, while that of the codoped ceramics is 1-3 μm. The polarization current curves of the piezo ceramics containing manganese, bismuth, and zinc oxides have extra maxima, which points to significant internal fields. The manganese is shown to reside at grain boundaries. The conclusion is made that it is the composition of Mn-containing intergranular phases, rather than the presence of manganese ions, that plays a key role in the formation of hard piezo ceramics [ru

  11. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  12. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

    NARCIS (Netherlands)

    Kamel, T.M.; With, de G.

    2007-01-01

    The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric

  13. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10 -5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10 -9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10 -10 of the soil inventory is absorbed by roots and translocated to grains

  14. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S; Chrisey, Douglas B; Tomozawa, M

    2011-01-01

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr 0.2 Ti 0.80 )O 3 ] 1-x -[(Ba 0.70 Ca 0.30 )TiO 3 ] x (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P s ∼ 3-6 μC cm -2 ) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/ε versus (T) plots revealed ferroelectric DPT behaviour with estimated γ values of ∼1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of ∼47-73 kV cm -1 with an energy density of 0.05-0.6 J cm -3 for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  15. Microstructure characterization and SCG of newly engineered dental ceramics.

    Science.gov (United States)

    Ramos, Nathália de Carvalho; Campos, Tiago Moreira Bastos; Paz, Igor Siqueira de La; Machado, João Paulo Barros; Bottino, Marco Antonio; Cesar, Paulo Francisco; Melo, Renata Marques de

    2016-07-01

    The aim of this study was to characterize the microstructure of four dental CAD-CAM ceramics and evaluate their susceptibility to stress corrosion. SEM and EDS were performed for microstructural characterization. For evaluation of the pattern of crystallization of the ceramics and the molecular composition, XRD and FTIR, respectively, were used. Elastic modulus, Poisson's ratio, density and fracture toughness were also measured. The specimens were subjected to biaxial flexure under five stress rates (0.006, 0.06, 0.6, 6 and 60MPa/s) to determine the subcritical crack growth parameters (n and D). Twenty-five specimens were further tested in mineral oil for determination of Weibull parameters. Two hundred forty ceramic discs (12mm diameter and 1.2mm thick) were made from four ceramics: feldspathic ceramic - FEL (Vita Mark II, Vita Zahnfabrik), ceramic-infiltrated polymer - PIC (Vita Enamic, Vita Zahnfabrik), lithium disilicate - LD (IPS e.max CAD, Ivoclar Vivadent) and zirconia-reinforced lithium silicate - LS (Vita Suprinity, Vita Zahnfabrik). PIC discs presented organic and inorganic phases (n=29.1±7.7) and Weibull modulus (m) of 8.96. The FEL discs showed n=36.6±6.8 and m=8.02. The LD discs showed a structure with needle-like disilicate grains in a glassy matrix and had the lowest value of n (8.4±0.8) and m=6.19. The ZLS discs showed similar rod-like grains, n=11.2±1.4 and m=9.98. The FEL and PIC discs showed the lowest susceptibility to slow crack growth (SCG), whereas the LD and ZLS discs presented the highest. PIC presented the lowest elastic modulus and no crystals in its composition, while ZLS presented tetragonal zirconia. The overall strength and SCG of the new materials did not benefit from the additional phase or microconstituents present in them. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Micromechanics of pressure-induced grain crushing in porous rocks

    Science.gov (United States)

    Zhang, Jiaxiang; Wong, Teng-Fong; Davis, Daniel M.

    1990-01-01

    The hydrostatic compaction behavior of a suite of porous sandstones was investigated at confining pressures up to 600 MPa and constant pore pressures ranging up to 50 MPa. These five sandstones (Boise, Kayenta, St. Peter, Berea, and Weber) were selected because of their wide range of porosity (5-35%) and grain size (60-460 μm). We tested the law of effective stress for the porosity change as a function of pressure. Except for Weber sandstone (which has the lowest porosity and smallest grain size), the hydrostat of each sandstone shows an inflection point corresponding to a critical effective pressure beyond which an accelerated, irrecoverable compaction occurs. Our microstructural observations show that brittle grain crushing initiates at this critical pressure. We also observed distributed cleavage cracking in calcite and intensive kinking in mica. The critical pressures for grain crushing in our sandstones range from 75 to 380 MPa. In general, a sandstone with higher porosity and larger grain size has a critical pressure which is lower than that of a sandstone with lower porosity and smaller grain size. We formulate a Hertzian fracture model to analyze the micromechanics of grain crushing. Assuming that the solid grains have preexisting microcracks with dimensions which scale with grain size, we derive an expression for the critical pressure which depends on the porosity, grain size, and fracture toughness of the solid matrix. The theoretical prediction is in reasonable agreement with our experimental data as well as other data from soil and rock mechanics studies for which the critical pressures range over 3 orders of magnitude.

  17. Rheological properties of ceramic nanopowders in aqueous and nonaqueous suspensions

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Loiko, E.M.

    2003-01-01

    The potential for ceramic nanocomposites to offer significantly enhanced mechanical properties is generally known since the first work of Niihara published in 1991. However achieving these properties needs carefully done colloidal processing, because ceramic nanopowders are naturally prone to agglomeration. The work presented here is concerned with the processing of zirconia/alumina nanocomposites via aqueous and alumina silicon carbide nanocomposites via nonaqueous colloidal route. The effect of pH of aqueous alumina and zirconia suspensions on properties of suspension and centrifuged green bodies was studied. A correlation between surface electric charge of grains (zeta potential)and agglomerate size, viscosity of suspension and porosity of green compacts was found. In the case of nonaqueous route alumina and silicon carbide suspensions in iso-propanol were investigated. Electrostatic surface charge of grains was changed by addition of chloroacetic acid and determined indirectly by the mass of powder deposited on electrode during electrophoresis. Different behaviour of SiC nanopowder than of alumina was observed and mechanism of charge creation is proposed on the base of DLVO theory. The effect of grain charge on preventing agglomeration on the silicon carbide powder is presented on micrographs of sintered nanocomposites. (author)

  18. Critical behaviour of nanocrystalline gadolinium: evidence for random uniaxial dipolar universality class

    International Nuclear Information System (INIS)

    Ferdinand, A; Probst, A-C; Birringer, R; Michels, A; Kaul, S N

    2014-01-01

    We report on how nanocrystal size affects the critical behaviour of the rare-earth metal Gd near the ferromagnetic-to-paramagnetic phase transition. The asymptotic critical behaviour of the coarse-grained polycrystalline sample (with an average crystallite size of L≅100 μm) is that of a (pure) uniaxial dipolar ferromagnet, as is the case with single crystal Gd, albeit the width of the asymptotic critical region (ACR) is reduced. As the grain size approaches ∼30 nm, the ACR is so narrow that it could not be accessed in the present experiments. Inaccessibly narrow ACR for L ∼ 30 nm and continuous increase in the width of the ACR as L decreases from 16 to 9.5 nm basically reflect a crossover to the random uniaxial dipolar fixed point caused by the quenched random exchange disorder prevalent at the internal interfaces (grain boundaries). (paper)

  19. Ion drag force on dust grains in the magnetized edge plasma

    International Nuclear Information System (INIS)

    Matyash, K.; Schneider, R.; Ikkurthi, V.R.; Melzer, A.

    2009-01-01

    A 3-dimensional Particle-Particle Particle-Mesh (P3M) code [K. Matyash, R. Schneider, F. Taccogna, D. Tskhakaya, J. Nucl. Mater. 363-365 (2007) 458] is applied to simulate a small-size (smaller than a Debye length) spherical dust grain confined in the magnetized plasma near the material wall of a tokamak. Plasma particles (electrons and ions) are treated kinetically (Particle-in-Cell with Monte Carlo Collisions (PIC MCC)), which allows to resolve self-consistently the electrostatic sheath in front of the wall. In order to describe accurately the plasma particles' motion close to the dust grain, the PIC technique is supplemented with Molecular Dynamics (MD), employing an analytic electrostatic potential for the interaction with the dust grain. The charging of a spherical, conducting dust grain confined in the sheath potential close to the wall of a tokamak is simulated. A magnetic field normal to the wall was investigated. The ion drag force resulting from dust grain collisions with the streaming ions is calculated. This force is critical for a realistic description of the dust particle dynamics and transport in fusion plasmas.

  20. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  1. Structural and electrical properties of Sm{sup 3+} substituted PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India)], E-mail: 628@ssplnet.org; Thakur, O.P.; Bhattacharya, D.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India); Prakash, Chandra [DRDO Bhawan, DHQ, New Delhi 110 011 (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2009-01-22

    Samarium modified lead zirconate titanate (PSZT: Pb{sub 1-x}Sm{sub x}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3}: x = 0, 0.02, 0.04, 0.06) ceramics were synthesized by solid state ceramic route. XRD shows single-phase formation with rhombohedral structure up to x = 0.04. With Sm-substitution, the grain size first increases up to x = 0.02 and then decreases. A metal/ferroelectric/metal (MFM) structure was made by depositing gold electrode on the flat surfaces for electrical measurements. All samples show normal ferroelectric behaviour, however, a squareness of P-E loop (polarization vs. electric field) was observed to increase with Sm content. Higher electromechanical coupling coefficients (K{sub p} and K{sub t}) have been achieved for the PZT with 6 mol% Sm substitution and having fine grain size.

  2. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  3. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    Science.gov (United States)

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  4. Influence of surfactants on the microstructure of dental zirconia ceramics

    International Nuclear Information System (INIS)

    Il'icheva, A. A.; Michalina, N. A.; Podzorova, L. I.; Pen'kova, O. I.; Kutsev, S. V.; Berezina, S.

    2013-01-01

    This work studies the influence of different surfactants included in the synthesis of precursor powders on the microstructure of ceramic material to search for an optimal agents providing an uniform grain microstructure required for accurate medical products with a high degree of surface cleanliness. (authors)

  5. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  6. Impedance spectroscopy and morphology of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared by soft chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Rout, S.K. [Department of Chemical and Biomolecular Engineering, KAIST (Korea, Republic of); Department of Applied Physics, BIT, Mesra, Ranchi (India)], E-mail: drskrout@gmail.com; Hussian, Ali; Lee, J.S. [School of Materials Science and Engineering University of Ulsan (Korea, Republic of); Kim, I.W. [Department of Physics, University of Ulsan (Korea, Republic of); Woo, S.I. [Department of Chemical and Biomolecular Engineering, KAIST (Korea, Republic of)], E-mail: siwoo@kaist.ac.kr

    2009-05-27

    In this work, we have synthesized polycrystalline SrBi{sub 4}Ti{sub 4}O{sub 15} (SBiT) ceramics by soft chemical method. These ceramics were structurally characterized by analysis of X-ray diffraction (XRD) patterns, indicates that SBiT ceramics present an orthorhombic structure. Scanning electron micrograph shows that the grains exhibit a plate like morphology. Dielectric relaxations of the SBiT ceramics were investigated in the temperature range 100-700 deg. C. Using the Cole-Cole model, an analysis of the dielectric loss with frequency was performed, assuming a distribution of relaxation time. The presence of the peaks in temperature dependent dielectric loss indicates that the hoping of charge carriers is responsible for the relaxation. Impedance studies shows a non-Debye type relaxation, and relaxation frequency shift to higher side with increase in temperature. A significant shift in impedance loss peaks towards higher frequency side indicates conduction in material and favoring the long range motion of mobile charge carriers. The Nyquist plot shows overlapping semicircles, for grain and grain boundary of SBiT ceramics. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated process and the spectra follow the universal power law. The hopping frequency shifts towards higher frequency side with increase of temperature, below which the conductivity is frequency independent. The variation of dc conductivity confirms that the SBiT ceramics exhibits negative temperature coefficient of resistance behavior in high temperature.

  7. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  8. Preparation and microstructure of ZrO2- and LaGaO3-based high-porosity ceramics

    International Nuclear Information System (INIS)

    Kaleva, G.M.; Golubko, N.V.; Suvorkin, S.V.; Kosarev, G.V.; Sukhareva, I.P.; Avetisov, A.K.; Politova, E.D.

    2006-01-01

    The morphology and concentration of pore formers are studied for their effect on the microstructure and gas permeability of porous zirconia- and lanthanum-gallate-based oxygen-ion-conducting ceramics. The results have been used to optimize the preparation conditions and composition of the ceramics. The resultant dense, fine-grained materials have porosities of up to ∼56% [ru

  9. Dielectric, ferroelectric and piezoelectric properties of Nb{sup 5+} doped BCZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Parjansri, Piewpan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Intatha, Uraiwan [School of Science, Mae Fah Luang University, 57100 Chiang Rai (Thailand); Eitssayeam, Sukum, E-mail: sukum99@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand)

    2015-05-15

    Highlights: • Average grain size of BCZT ceramic decreased with the increasing Nb{sup 5+} doping. • Dielectric constant value is enhanced with Nb{sup 5+} doping. • Dielectric loss of BCZT − x Nb{sup 5+} ceramics was less than 0.03 at room temperature (1 kHz). • Piezoelectric coefficient decreased with the increasing Nb{sup 5+} doping. • The relaxation behavior is enhanced with the doping of Nb{sup 5+}. - Abstract: This work investigated the electrical properties of Nb{sup 5+} (0.0–1.0 mol%) doped with Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} while adding 1 mol% of Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} seeds. The mixed powder was ball milled for 24 h, calcined and sintered at 1200 °C for 2 h and 1450 °C for 4 h, respectively. The XRD patterns of the ceramic samples were investigated by X-ray diffraction. The electrical properties of ceramics were measured and the results indicated that all samples show a pure perovskite phase with no secondary phase. Density and average grain size values were in the range of 5.60–5.71 g/cm{sup 3} and 12.62–1.86 μm, respectively. The highest dielectric constant, ϵ{sub r} at room temperature (1 kHz) was 4636 found at 1.0 mol% Nb. The dielectric loss, tan δ was less than 0.03 for all samples at room temperature (1 kHz). Other electrical properties, P{sub r}, d{sub 33} and k{sub p} values were decreased with Nb doped relates to the decreasing grain size in BCZT ceramics. Moreover, the degrees of phase transition diffuseness and relaxation behavior were observed in the higher Nb doping.

  10. The all-ceramic, inlay supported fixed partial denture. Part 1. Ceramic inlay preparation design: a literature review.

    Science.gov (United States)

    Thompson, M C; Thompson, K M; Swain, M

    2010-06-01

    The effect of cavity design is a controversial and underrated factor in the clinical success of ceramic inlays and inlay supported prosthesis. Many articles and studies have been conducted into the advantages and disadvantages of isolated aspects of preparation design, but lacking is a review of the most relevant papers which bring together a consensus on all the critical features. Hence, a review and analysis of cavity depth, width, preparation taper and internal line angles is warranted in our attempts to formulate preparation guidelines that will lead to clinically successful, all-ceramic inlay restorations and ceramic inlay supported prosthesis.

  11. Faraday instability in a near-critical fluid under weightlessness.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  12. Some regularity of the grain size distribution in nuclear fuel with controllable structure

    International Nuclear Information System (INIS)

    Loktev, Igor

    2008-01-01

    It is known, the fission gas release from ceramic nuclear fuel depends from average size of grains. To increase grain size they use additives which activate sintering of pellets. However, grain size distribution influences on fission gas release also. Fuel with different structures, but with the same average size of grains has different fission gas release. Other structure elements, which influence operational behavior of fuel, are pores and inclusions. Earlier, in Kyoto, questions of distribution of grain size for fuel with 'natural' structure were discussed. Some regularity of grain size distribution of fuel with controllable structure and high average size of grains are considered in the report. Influence of inclusions and pores on an error of the automated definition of parameters of structure is shown. The criterion, which describe of behavior of fuel with specific grain size distribution, is offered

  13. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  14. Studies of ZrO2-Y2O3 ceramics properties sintered in conventional and microwave oven

    International Nuclear Information System (INIS)

    Gelfuso, M.V.; Capistrano, D.; Thomazini, D.; Grzebielucka, E.C.; Chinelatto, A.L.; Chinelatto, A.S.A.

    2009-01-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  15. The use of near infrared transmittance kernel sorting technology to salvage high quality grain from grain downgraded due to Fusarium damage

    Directory of Open Access Journals (Sweden)

    Michael E. Kautzman

    2015-03-01

    Full Text Available The mycotoxins associated with specific Fusarium fungal infections of grains are a threat to global food and feed security. These fungal infestations are referred to as Fusarium Head Blight (FHB and lead to Fusarium Damaged Kernels (FDK. Incidence of FDK >0.25% will lower the grade, with a tolerance of 5% FDK for export feed grain. During infestation, the fungi can produce a variety of mycotoxins, the most common being deoxynivalenol (DON. Fusarium Damaged Kernels have been associated with reduced crude protein (CP, lowering nutritional, functional and grade value. New technology has been developed using Near Infrared Transmittance (NIT spectra that estimate CP of individual kernels of wheat, barley and durum. Our objective is to evaluate the technology's capability to reduce FDK and DON of downgraded wheat and ability to salvage high quality safe kernels. In five FDK downgraded sources of wheat, the lowest 20% CP kernels had significantly increased FDK and DON with the high CP fractions having decreased FDK and DON, thousand kernel weights (TKW and bushel weight (Bu. Strong positive correlations were observed between FDK and DON (r = 0.90; FDK and grade (r = 0.62 and DON and grade (r = 0.62. Negative correlations were observed between FDK and DON with CP (r = −0.27 and −0.32; TKW (r = −0.45 and −0.54 and Bu (r = −0.79 and −0.74. Results show improved quality and value of Fusarium downgraded grain using this technology.

  16. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer Inst. for Ceramic Technologies and Sintered Materials, Dresden (Germany); Klaffke, D. [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    1996-05-01

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.

  17. Reliability Evaluation of Base-Metal-Electrode Multilayer Ceramic Capacitors for Potential Space Applications

    Science.gov (United States)

    Liu, David (Donhang); Sampson, Michael J.

    2011-01-01

    Base-metal-electrode (BME) ceramic capacitors are being investigated for possible use in high-reliability spacelevel applications. This paper focuses on how BME capacitors construction and microstructure affects their lifetime and reliability. Examination of the construction and microstructure of commercial off-the-shelf (COTS) BME capacitors reveals great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and 0.5 m, which is much less than that of most PME capacitors. BME capacitors can be fabricated with more internal electrode layers and thinner dielectric layers than PME capacitors because they have a fine-grained microstructure and do not shrink much during ceramic sintering. This makes it possible for BME capacitors to achieve a very high capacitance volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT). Most BME capacitors were found to fail with an early avalanche breakdown, followed by a regular dielectric wearout failure during the HALT test. When most of the early failures, characterized with avalanche breakdown, were removed, BME capacitors exhibited a minimum mean time-to-failure (MTTF) of more than 105 years at room temperature and rated voltage. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically around 12 for a number of BME capacitors with a rated voltage of 25V. This may suggest that the number of grains per dielectric layer is more critical than the

  18. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  19. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  20. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  1. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  2. Near-critical GLUT1 and Neurodegeneration.

    Science.gov (United States)

    Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin

    2017-11-01

    Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  4. Low specific-grinding energy machining of ceramics by a laser dressed diamond grinding stone

    International Nuclear Information System (INIS)

    Jodan, K.; Matsumaru, K.; Ishizaki, K.

    2003-01-01

    A laser dressing is an effective dressing method to accomplish efficient ceramic grinding. Since laser dressing achieves protrusion heights of abrasive-grains without grain dislodgment, the number of abrasive-grains in a laser dressed grinding stone (LGS) is higher than that in a mechanically dressed grinding stone (MGS), remaining the initial grain distribution. Thus, the LGS contains higher number of effective cutting edges, and forms higher number of ground grooves on a ground surface than the MGS. Consequently, the LGS can achieve lower specific grinding energy than the MGS. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  5. Ceramic component for M.H.D electrode

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1980-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)

  6. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd [Department of Materials & Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Mahbub, Rubbayat, E-mail: rubayyatm@gce.buet.ac.bd [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Gafur, M. A., E-mail: d-r-magafur@bcsir.gov.bd [Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh); Bashar, M. Shahriar, E-mail: bashar@agni.com [Institute of Fuel Research & Development, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh)

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.

  7. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  8. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing

    Science.gov (United States)

    Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing

    2017-09-01

    Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.

  9. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  10. Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route

    Directory of Open Access Journals (Sweden)

    Pooja Gautam

    2016-12-01

    Full Text Available Bi2/3Cu3Ti4O12 (BCTO ceramic was synthesized by the semi-wet route using metal nitrate solutions and solid TiO2 powder in a stoichiometric ratio. Fourier transform infrared (FTIR study of BCTO precursor powder and calcined ceramic showed the presence of alcoholic functional groups and the stretching band of Ti-O and Cu-O respectively. X-ray diffraction (XRD, scanning electron microscope (SEM and energy dispersive x-ray spectroscopy (EDX were employed to characterize the structure, surface morphology and purity of the sintered BCTO ceramic respectively. X-ray diffraction study confirmed the single phase formation of BCTO ceramic at 1073 K. The average dimension of grains calculated by SEM and AFM was found to be in the range of 0.73±0.2 µm with clear grain boundaries. Magnetic property was investigated over a wide temperature range 2–300 K at a magnetic field of 7 tesla. The Curie temperature was calculated by zero field cooled (MZFC and field cooled (MFC magnetization at 100 Oe applied field which was found to be 125 K. The sintered BCTO ceramic shows high dielectric constant (ε'=2.9×104 at 323 K and 100 Hz.

  11. Structure, dielectric and electrical properties of cerium doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Feng Hongjun; Hou Jungang; Qu Yuanfang; Shan Dan; Yao Guohua

    2012-01-01

    Highlights: ► Rare-earth doped barium zirconate titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. ► Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. ► The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere. - Abstract: Rare-earth doped barium zirconium titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data and the lattice parameters were refined by the Rietveld method. It is found that, integrating with the lattice parameters and the distortion of crystal lattice, there is an alternation of substitution preference of cerium ions for the host cations in perovskite lattice. Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed. High values of dielectric tunability are obtained for cerium doped BZT. Especially, the experimental results on the effect of the contents of rare-earth addition on the resistivity of BZT ceramics were investigated, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere.

  12. Physical and chemical properties of MgO ceramics treated in molten K2SO4 for a long period

    International Nuclear Information System (INIS)

    Iwasa, Mikio; Kose, Saburo; Korenaga, Sadayoshi; Furukawa, Mitsuhiko.

    1978-01-01

    The wall materials of MHD power generating channel are exposed to thermally, physically and chemically severe conditions, so that they have to withstand great damages, especially the attack of seed materials. Several kinds of ceramics proposed as the wall materials have been tested in the simulated MHD environment. In this paper, MgO ceramics were treated in molten K 2 SO 4 , a typical seed material, and the changes in their physical and chemical properties were investigated in comparison with those of Al 2 O 3 ceramics. four kinds of MgO ceramics, three sintered and one electric fused, were immersed in molten K 2 SO 4 at 1300 0 C for the periods up to 1000 h, and weight, volume, surface roughness, bending strength and hardness were measured. The changes in the microstructures and chemical compositions due to the K 2 SO 4 treatment were also investigated. MgO ceramics were attacked by molten K 2 SO 4 only at the grain boundaries on the surface, in contrast at Al 2 O 3 ceramics which were severely damaged to form β-Al 2 O 3 . It was found that SiO 2 and CaO in the grain boundaries had played important roles to the attack of K 2 SO 4 . Generally, the changes in the properties of MgO ceramics by the K 2 SO 4 treatment were very small compared with those of Al 2 O 3 ceramics. It was concluded that MgO ceramics are more stable than Al 2 O 3 ceramics in molten K 2 SO 4 and their properties do not show substantial drops for long periods. (author)

  13. Microstructural, compositional and mechanical properties of the archaeological indigenous ceramics of Caninhas, Sao Paulo,Brazil

    International Nuclear Information System (INIS)

    Nakano, F.P.; Taguchi, S.P.; Ribeiro, R.B.; Rosa, S.J.L.; Bornal, W.G.; Queiroz, C.M.

    2009-01-01

    Archaeological ceramics contain infinity of data about social and cultural indigenous site Caninhas/SP. The ceramics present a gradient of color (ochre to dark gray), when from the surface to the center of the piece, indicating compositional variability caused by inefficient sintering carried out by indigenous peoples. It was analyzed the composition phases by X-rays diffraction (XRD) and mapping by EDS, identifying the illite, quartz and lutecite phases (ochre region) and illite, quartz, hydrated alumina and lutecite phases (dark gray region). The results of EDS confirmed the stages identified by X-rays diffraction and suggesting the presence of roots and scrap of ceramics sintered in the composition of indigenous ceramics, when compared by optical microscope and scanning electron microscope. Vickers hardness identified as fragile and heterogeneous are archaeological ceramics, reaching approximately 203 HV in the grains of silica and 16 HV in the ceramic matrix. (author)

  14. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S [SPECLAB, Department of Physics, University of Puerto Rico, San Juan, PR 00936 (Puerto Rico); Chrisey, Douglas B; Tomozawa, M, E-mail: rkatiyar@uprrp.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States)

    2011-10-05

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr{sub 0.2}Ti{sub 0.80})O{sub 3}]{sub 1-x}-[(Ba{sub 0.70}Ca{sub 0.30})TiO{sub 3}]{sub x} (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P{sub s} {approx} 3-6 {mu}C cm{sup -2}) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/{epsilon} versus (T) plots revealed ferroelectric DPT behaviour with estimated {gamma} values of {approx}1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of {approx}47-73 kV cm{sup -1} with an energy density of 0.05-0.6 J cm{sup -3} for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  15. Observation of distinct, temperature dependent flux noise near bicrystal grain boundaries in YBa2Cu3O7-x films

    DEFF Research Database (Denmark)

    Bukh, K. R.; Jacobsen, Claus Schelde; Hansen, Jørn Bindslev

    2000-01-01

    The characteristics of the magnetic flux noise in high temperature superconducting thin-films of yttrium-barium-copper-oxide (YBa2Cu3O7) in the vicinity of artificial grain boundaries have been studied by means of a low critical temperature superconducting quantum interference device (SQUID...

  16. Determination of size and shape distributions of metal and ceramic powders

    International Nuclear Information System (INIS)

    Jovanovic, DI.

    1961-01-01

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders

  17. Probing dielectric ceramics surface at sub-micrometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito [Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Stradale Primosole 50, 95121 Catania (Italy); Schmidt, Rainer; Sinclair, Derek C, E-mail: patrick.fiorenza@imm.cnr.it [Department of Engineering Materials, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-02-15

    Scanning probe microscopy (SPM) with conductive tips has been used to image the dielectric properties of ceramics with giant permittivity. In particular, measurements in impedance mode of local resistivity allowed to image the permittivity map on polycrystalline materials. Such imaging provides correlation between the dielectric properties and the sample structure, in particular focusing on defects inside the single grains. Great attention has been devoted to the possible artefacts due to surface imperfections, such as huge roughness and/or contamination. A reliable surface investigation has been obtained after the definition of both the physical and geometrical criteria to avoid the artefacts due to both the surface or anomalous tip-sample contact area variation (for instance, in grain boundaries, holes and cracks in the ceramic pills). In particular, the power spectral density (PSD) allows to get access to the different periodic components of the surface roughness. The PSD demonstrated to be a sensitive tool to check the surface conditions after the polishing procedures aimed to the progressive decreasing of surface roughness, in order to reach the SPM limits and to avoid artefacts inducing wrong data interpretation.

  18. Porous SiC ceramics fabricated by quick freeze casting and solid state sintering

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering. Poly (vinyl alcohol (PVA was added as binder and pore morphology controller in this work. The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries. Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics. The solid content of slurries and PVA content varied from 60 to 67.5 wt% and 2–6 wt%, respectively. Besides, the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 °C. Porous SiC ceramics with an average porosity of 42.72%, flexural strength of 59.28 MPa were obtained at 2150 °C from 67.5 wt% slurries with 2 wt% PVA.

  19. New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications

    Science.gov (United States)

    Sharma, Neelakshi; Dalvi, Anshuman

    2018-04-01

    Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.

  20. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  1. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  2. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  3. Ceramics in Restorative and Prosthetic DENTISTRY1

    Science.gov (United States)

    Kelly, J. Robert

    1997-08-01

    This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.

  4. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  5. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  6. Radiation effects on structural ceramics in fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Price, R.J.; Trester, P.W.

    1986-01-01

    Ceramics are required to serve in a conventional role as electrical and thermal insulators and dielectrics in fusion power reactors. In addition, certain ceramic materials can play a unique structural role in fusion power reactors by virtue of their very low induced radioactivity from fusion neutron capture. The aspects of safety, long-term radioactive waste management, and personnel access for maintenance and repair can all be significantly improved by applying the low-activation ceramics to the structural materials of the first-wall and blanket regions of a fusion reactor. Achievement of long service life at high structural loads and thermal stresses on the materials exposed to high-radiation doses presents a critical challenge for fusion. In this paper, we discuss radiation effects on structural ceramics for fusion application

  7. The effects of nanophase ceramic materials on select functions of human mesenchymal stem cells

    Science.gov (United States)

    Dulgar-Tulloch, Aaron Joseph

    2005-11-01

    Modification of the chemistry and surface topography of nanophase ceramics can provide biomaterial formulations capable of directing the functions of adherent cells. This effect relies on the type, amount, and conformation of adsorbed proteins that mediate the adhesion of mesenchymally-descended lineages. The mechanisms driving this response are not yet well-understood and have not been investigated for human mesenchymal stem cells (HMSCs), a progenitor-lineage critical to orthopaedic biomaterials. The present study addressed these needs by examining the in vitro adhesion, proliferation, and osteogenic differentiation of HMSCs as a function of substrate chemistry and grain size, with particular attention to the protein-mediated mechanisms of cell adhesion. Alumina, titania, and hydroxyapatite substrates were prepared with 1500, 200, 50, and 24 (alumina only) nm grain sizes, and characterized with respect to surface properties, porosity, composition, and phase. Adhesion of HMSCs was dependent upon both chemistry and grain size. Specifically, adhesion on alumina and hydroxyapatite was reduced on 50 and 24 (alumina only) nm surfaces, as compared to 1500 and 200 nm surfaces, while adhesion on titania substrates was independent of grain size. Investigation into the protein-mediated mechanisms of this response identified vitronectin as the dominant adhesive protein, demonstrated random protein distribution across the substrate surface without aggregation or segregation, and confirmed the importance of the type, amount, and conformation of adsorbed proteins in cell adhesion. Minimal cell proliferation was observed on 50 and 24 (alumina only) nm substrates of any chemistry. Furthermore, cell proliferation was up-regulated on 200 nm substrates after 7 days of culture. Osteogenic differentiation was not detected on 50 nm substrates throughout the 28 day culture period. In contrast, osteogenic differentiation was strongly enhanced on 200 nm substrates, occurring approximately

  8. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  9. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  10. Microstructural changes in NiFe_2O_4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    International Nuclear Information System (INIS)

    Chauhan, Lalita; Sreenivas, K.; Bokolia, Renuka

    2016-01-01

    Structural properties of Nickel ferrite (NiFe_2O_4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe_2O_4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe_2O_4 ceramics with a uniform microstructure and a large grain size.

  11. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Science.gov (United States)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  12. Study of the grain boundary widening in YBaCuO superconducting ceramics induced by gamma rays

    International Nuclear Information System (INIS)

    Cruz Inclan, Carlos M.; Leyva Fabelo, Antonio

    2001-01-01

    The behavior of the thickness of the weak link with the irradiation dose was explained qualitatively and quantitatively using the migration model of the defects in the superconducting grains stimulated by the action of the gamma rays. The value of the diffusion constant associated with the migration, obtained through this model, results higher than the reported value in the literature. This difference may be associated with a notable reduction in the activation energy of the process. It was demonstrated that the variations induced by the gamma radiation in the transition width and in the critical temperature, measured by transportation methods, do not have any influence in the behavior of the intergrain link with the irradiation doses

  13. Synthesis and electrical characterization of BaZr0.9Ho0.1O3-δ electrolyte ceramic for IT - SOFCs

    Science.gov (United States)

    Saini, Deepash S.; Singh, Lalit K.; Bhattacharya, D.

    2018-04-01

    A cost-effective modified combustion method using citric acid and glycine has recently been developed to synthesize high quality, and nanosized BaZr0.9Ho0.1O3 ceramic powder. BaZr0.9Ho0.1O3-δ ceramic powder was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). XRD pattern of BaZr0.9Ho0.1O3-δ ceramic sintered at 1600 °C has shown that pure phase of BaZr0.9Ho0.1O3-δ with cubic Pm3¯m space group symmetry. The transmission electron microscopic investigation has shown that the particle size of the powder calcined at 1100 °C was in the range 30-80 nm. The FESEM image of sintered pellet at 1600 °C for 4 h reveals porous nature of BaZr0.9Ho0.1O3-δ with 83.7 relative density. Impedance analysis reveal three type relaxations in the temperature range 250 °C to 500 °C as studied at different frequencies over 100 Hz to 1 MHz in air. The grain boundary conductivity of BaZr0.9Ho0.1O3-δ ceramic is found lower then grain (bulk) conductivity due to core-space charge layer behavior in grain boundary.

  14. Control of Grain Boundaries and Defects in Nano-Engineered Transparent Scintillator Ceramics

    Science.gov (United States)

    2013-03-01

    milled   rather   than   mixed   with   a   mortar   and   pestle   before   sintering,   these   particulates   were   not...Technology   for   Advanced  Ceramics  (STAC),  Yokohama,   Japan  (Jun.  2010).     S.  R.  Podowitz,  N.  Haegel,  R

  15. Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids

    Science.gov (United States)

    Patashinski, Alexander Z.; Ratner, Mark A.; Pines, Vladimir

    1996-01-01

    The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.

  16. Contributions to the R-curve behaviour of ceramic materials

    International Nuclear Information System (INIS)

    Fett, T.

    1994-12-01

    Several ceramic materials show an increase in crack growth resistance with increasing crack extension. Especially, in case of coarse-grained alumina this ''R-curve effect'' is caused by crack-face interactions in the wake of the advancing crack. Similar effects occur for whisker reinforced ceramics. Due to the crack-face interactions so-called ''bridging stresses'' are generated which transfer forces between the two crack surfaces. A second reason for an increase of crack-growth resistance are stress-induced phase transformations in zirconia ceramics with the tetragonal phase changing to the monoclinic phase. These transformations will affect the stress field in the surroundings of crack tips. The transformation generates a crack-tip transformation zone and, due to the stress balance, also residual stresses in the whole crack region which result in a residual stress intensity factor. This additional stress intensity factor is also a reason for the R-curve behaviour. In this report both effects are outlined in detail. (orig.) [de

  17. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Zhong [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Tang, Yuanyuan [School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (China); Liu, Chengshuai, E-mail: csliu@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Li, Fangbai [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2017-01-05

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4} spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4}. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr{sub 2}O{sub 3} and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the

  18. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    International Nuclear Information System (INIS)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-01

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr 1.32 Fe 0.19 Al 0.49 O 4 spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that

  19. Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zunping, E-mail: xzp16213@163.com [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qiang, Hua [College of Electromechanical Engineering, Chongqing College of Humanities, Science and Technology, Chongqing 401524 (China); Chen, Yi; Chen, Zhiqian [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2017-04-15

    CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics doped with Y{sub 2}O{sub 3}, ZrO{sub 2}, and (Y{sub 2}O{sub 3}+ZrO{sub 2}) were prepared by the citrate-nitrate combustion derived powders in order to investigate the effect of dopants on the microstructure and electrical properties. The results showed that giant dielectric response was enhanced by co-doping of Y{sup 3+} and Zr{sup 4+} ions at the Ti site. Y{sub 2}O{sub 3} and ZrO{sub 2} additive can inhibit the grain growth. Compared with other samples, (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped ceramics exhibit a dense and homogenous fine-grained microstructure. A much better temperature and frequency stability of dielectric properties were realized in these ceramics. The dielectric loss (tan δ) < 0.05 in the frequency range of 200 Hz–60 kHz at room temperature, and in the temperature range of 15–72 °C at 10 kHz was successfully accomplished in (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped CCTO ceramics. Low tan δ ∼0.039 and high dielectric constant (ε{sub r} ∼10196) were observed at room temperature and 10 kHz for the above ceramic samples, and the characteristic frequency shifts to higher frequency with increasing measuring temperature. The present results indicate that (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doping may improve the dielectric properties and increase the grain boundary resistance of CCTO. - Highlights: • Y and Zr co-doped CCTO exhibits a dense and homogenous fine-grained microstructure. • Y and Zr co-doped CCTO performs a lower dielectric loss in wide-range of frequency. • Temperature and frequency stability of dielectric properties were greatly enhanced.

  20. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  1. Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Institute of Physics, Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42200 Poland (Poland); Balitska, V. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv State University of Vital Activity Safety, 35, Kleparivska Street, Lviv 79007 (Ukraine); Brunner, M. [Fachhochschule Köln/University of Applied Sciences, 2, Betzdorfer Strasse, Köln 50679 (Germany); Hadzaman, I. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Drohobych Ivan Franko State Pedagogical University, 24, I. Franko Street, Drohobych 82100 (Ukraine); Klym, H. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12, Bandera Street, Lviv 79013 (Ukraine)

    2015-02-15

    Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics.

  2. Fabrication and characterization of fully ceramic microencapsulated fuels

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, K.A., E-mail: kurt.terrani@gmail.com [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kiggans, J.O.; Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shimoda, K. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Montgomery, F.C.; Armstrong, B.L.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hunn, J.D. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 Degree-Sign C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  3. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  4. Effect of La2O3 content on wear resistance of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Tingting; ZHOU Jian; WU Bolin; LI Wenjie

    2016-01-01

    In order to improve the wear resistance, a kind of alumina ceramic with good wear resistance was created in an Al2O3-CaCO3-SiO2-MgO-La2O3 (ACSML) system. The effects of La2O3 content on sintering temperature, bulk density, and wear rate were investigated. The wear rate of sample was as low as 0.0393‰. The wear resistance of the sample containing La2O3 has im-proved 43% than that of the sample without La2O3. Appropriate La2O3 doping could inhibit grain growth, enhance density, and purify grain boundary. La2O3 could diffuse into Al2O3 to form a solid solution and react with Al2O3 to form high-aluminum low-lanthanum complex oxides. The combination among Al2O3, the solid solution layer, and the layer of high-aluminum low-lanthanum complex oxides combined closely, which could improve grain boundary cohesion. Besides, the homogeneous distributions of elements made uniform structure. Finally, the wear resistance of alumina ceramic was improved.

  5. Basic research in crystalline and noncrystalline ceramic systems. Annual report, May 1, 1975--April 1, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Activities in research programs on ceramics are reported in sections on electric conductivity and dielectric properties, microstructure and properties, ion transport and diffusion, defect interactions and grain boundary phenomena, and future developments

  6. Cooperative doping effects of Ti and nano-SiC on transport critical current density and grain connectivity of in situ MgB{sub 2} tapes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F., E-mail: PAN.Xifeng@nims.go.jp [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)] [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China); Matsumoto, A.; Kumakura, H. [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, C.H.; Zhao, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China)] [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2011-11-15

    We studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} tape. Ti doping significantly weakens the current dependence of T{sub c} of MgB{sub 2} tapes at self-field, and does not change T{sub c} or slightly increases T{sub c}. Further Ti adding can enhance in-field J{sub c} performance of SiC doped MgB{sub 2} tapes by a factor of 50-100% at 4.2 K and 10 T. Ti addition improves the J{sub c} performance of undoped and SiC doped MgB{sub 2} by modifying their grains connection. By now, nano-SiC powder (20-30 nm) is still the most effective additive for improving upper critical field and critical current density of MgB{sub 2}-based superconducting materials. However, some decomposed carbon aggregates at grain boundaries and results in serious weak-links of MgB{sub 2} grains, and these weak-links limit the further improvement of critical current density, J{sub c} of MgB{sub 2}, especially at lower fields. Ti doping is reported to increase the compactness of MgB{sub 2}, and modify its intergranular coupling by forming ultrathin TiB{sub 2} layer at grain boundaries. In this work, we studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} and the possibility to improve transport J{sub c} of SiC doped MgB{sub 2} by introducing Ti additive. The results suggest the Ti addition can obviously improve J{sub c} of MgB{sub 2} at lower fields and also enhance the J{sub c} of SiC doped MgB{sub 2} by improving their grain connectivity which shows serious intergranular weak-links.

  7. Dating of Chichen Itza ceramics by the method of thermoluminescence

    International Nuclear Information System (INIS)

    Gonzalez M, P.R.; Mendoza A, D.; Cuapio O, L.A.; Ramirez L, A.; Schaaf, P.; Chung, H.

    2005-01-01

    In this work we present some results about thermoluminescent dating of some archaeological ceramic samples belonging to Chichen Itza, Yucatan, Mexico: CH11, CH13, CH14 and CH15. The analysis was realized using the fine grained mode in a Daybreak model 1100 reader Tl System. The radioisotopes that contribute in the accumulate annual dose in ceramic samples ( 40 K, 238 U, 232 Th) were determined by means of techniques such as Energy Dispersive X-ray Spectroscopy (EDS) and Neutron Activation Analysis (NAA), while the artificial irradiation of samples was carried out with a 90 Sr source beta radiation. The resulting mean CH11 ceramic sample was 934 ±45 years old, CH13 was 465 ± 26, CH14 was 888 ± 34 and CH15 was 867 ± 42. These results are in agreement with results obtained through other methods. (Author)

  8. Polycyclic aromatic hydrocarbons in ambient air, surface soil and wheat grain near a large steel-smelting manufacturer in northern China.

    Science.gov (United States)

    Liu, Weijian; Wang, Yilong; Chen, Yuanchen; Tao, Shu; Liu, Wenxin

    2017-07-01

    The total concentrations and component profiles of polycyclic aromatic hydrocarbons (PAHs) in ambient air, surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined. Based on the specific isomeric ratios of paired species in ambient air, principle component analysis and multivariate linear regression, the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion, biomass burning and traffic exhaust. The total organic carbon (TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil. The total concentrations of PAHs in wheat grain were relatively low, with dominant low molecular weight constituents, and the compositional profile was more similar to that in ambient air than in topsoil. Combined with more significant results from partial correlation and linear regression models, the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs. Copyright © 2016. Published by Elsevier B.V.

  9. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  10. Parameters governing tritium extraction rates from lithiated ceramics. The case of lithium aluminate

    International Nuclear Information System (INIS)

    Roth, E.; Botter, F.; Briec, M.; Rasneur, B.; Roux, N.

    1986-10-01

    Significant discrepancies between results of authors comparing tritium extraction rates from different lithiated ceramics are found in the literature. Recent results obtained at C.E.A., principally on lithium aluminates, show that, for a given ceramic, parameters other than textural (grain size, porosity, etc...) may play a predominant role. Enhancements of extraction rates have been induced by adding MgO to the solid or H 2 and CO to the sweep gas, but other factors, probably related to the surface condition of samples, may produce even greater effects. Results of investigations of the influence of exposure to air at given partial pressures of water vapor or of CO 2 show that strict preirradiation procedures must be adopted for preparation, storage and handling of ceramic tritium breeders

  11. Superplasticity in fine-grained ceramics. Final report, 1 July 1993--31 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.

    1994-01-31

    Progress has been summarized in three papers: biaxial gas-pressure forming of a superplastic Al{sub 2}O{sub 3}/YTZP; mechanical properties of a 20 vol% SiC whisker-reinforced yttria-stabilized, tetragonal zirconia composite at elevated temperatures; and gas- pressure forming of ceramic sheet.

  12. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Potanina, Ekaterina, E-mail: ekaterina.potanina@list.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Golovkina, Ludmila, E-mail: golovkina_lyudmila@mail.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Orlova, Albina, E-mail: albina.orlova@inbox.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Nokhrin, Aleksey, E-mail: nokhrin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Boldin, Maksim, E-mail: boldin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Sakharov, Nikita, E-mail: nvsaharov@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation)

    2016-05-15

    Complex oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} with garnet structure and phosphates NdPO{sub 4} and GdPO{sub 4} with monazite structure were obtained by using precipitation methods. Ceramics Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} and NdPO{sub 4} were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330–1390 °C. Leaching rates of elements from ceramics were 10{sup −6}–10{sup −7} g/(cm{sup 2} d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step–to the process of grain boundary diffusion and grain growth. - Highlights: • Powders were obtained by precipitation (sol–gel) method. • Ceramics were sintering by Spark Plasma Sintering method (ρ{sub rel} > 98%); shrinkage time does not exceed 8 min. • The process of ceramics sintering has two-stage character.

  13. Storage of plutonium and nuclear power plant actinide waste in the form of critical-mass-free ceramics containing neutron poisons

    Energy Technology Data Exchange (ETDEWEB)

    Nadykto, B.A. [RFNC-VNIIEF, Nizhni Novgorod Region (Russian Federation)

    2001-07-01

    The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)

  14. Storage of plutonium and nuclear power plant actinide waste in the form of critical-mass-free ceramics containing neutron poisons

    International Nuclear Information System (INIS)

    Nadykto, B.A.

    2001-01-01

    The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)

  15. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter Hot Isostatic Pressing routes

    Energy Technology Data Exchange (ETDEWEB)

    Buchi Suresh, M., E-mail: suresh@arci.res.in; Biswas, P.; Mahender, V.; Johnson, Roy, E-mail: royjohnson@arci.res.in

    2017-01-01

    Hydroxyapatite ceramics synthesized through sonochemical route were processed and densified through ramp & hold (R&H) and Spark Plasma Sintering (SPS) routes. The effect of processing route on the relative density and electrical conductivity were studied. Further, the samples were Hot Isostatically Pressed (HIP) under argon pressure at elevated temperature to further densify the sample. All these samples processed under different conditions were characterized by X-ray diffraction, Scanning Electron Microscopy and AC Conductivity. The samples have exhibited hydroxyapatite phase; however, microstructures exhibited distinctly different grain morphologies and grain sizes. AC impedance spectroscopic measurement was carried out on hydroxyapatite samples processed through different routes and the corresponding spectra were analyzed by the analogy to equivalent circuit involving resistors and capacitors. SPS sintered sample after HIPing has exhibited the highest conductivity. This can be attributed to the higher density in combination with finer grain sizes. Activation energy based on Arrhenius equation is calculated and the prominent conduction mechanism is proposed. - Highlights: • Hot Isostatic Pressing (HIP) of SPS and R&H processed samples has resulted into densities near to theoretical densities • No change in the crystal structure is observed in SPS and R&H samples before and after HIP treatment • SPS processed and HIP treated samples resulted into higher conductivities with smaller grain sizes and grain boundary area.

  16. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  17. Ceramic Technology Project, semiannual progress report for October 1993 through March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1994-09-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. In July 1990, the original plan was updated through the estimated completion of development in 1993. The original objective of the project was to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. The direction of the Ceramic Technology Project is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned.

  18. Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics

    International Nuclear Information System (INIS)

    Filipecki, J; Ingram, A; Klym, H; Shpotyuk, O; Vakiv, M

    2007-01-01

    The water-sensitive positron trapping modes in nanoporous MgAl 2 O 4 ceramics with a spinel structure are studied. It is shown that water-sorption processes in magnesium aluminate ceramics leads to corresponding increase in positron trapping rates of extended defects located near intergranual boundaries. This catalytic affect has reversible nature, being strongly dependent on sorption water fluxes in ceramics. The fixation of all water-dependent positron trapping inputs allow to refine the most significant changes in positron trapping rate of extended defects

  19. Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Filipecki, J [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42201 (Poland); Ingram, A [Opole University of Technology, 75, Ozimska str., Opole, PL 45370 (Poland); Klym, H [Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA 79031 (Ukraine); Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA 79031 (Ukraine); Vakiv, M [Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA 79031 (Ukraine)

    2007-08-15

    The water-sensitive positron trapping modes in nanoporous MgAl{sub 2}O{sub 4} ceramics with a spinel structure are studied. It is shown that water-sorption processes in magnesium aluminate ceramics leads to corresponding increase in positron trapping rates of extended defects located near intergranual boundaries. This catalytic affect has reversible nature, being strongly dependent on sorption water fluxes in ceramics. The fixation of all water-dependent positron trapping inputs allow to refine the most significant changes in positron trapping rate of extended defects.

  20. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  1. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  2. Nanocrystalline, superhard, ductile ceramic coatings for roller-cone bit bearings

    Energy Technology Data Exchange (ETDEWEB)

    Namavar, F.; Colter, P.; Karimy, H. [Spire Corp., Bedford, MA (United States)] [and others

    1997-12-31

    The established method for construction of roller bits utilizes carburized steel, frequently with inserted metal bearing surfaces. This construction provides the necessary surface hardness while maintaining other desirable properties in the core. Protective coatings are a logical development where enhanced hardness, wear resistance, corrosion resistance, and surface properties are required. The wear properties of geothermal roller-cone bit bearings could be further improved by application of protective ceramic hard coatings consisting of nanometer-sized crystallites. Nanocrystalline protective coatings provide the required combination of hardness and toughness which has not been available thus far using traditional ceramics having larger grains. Increased durability of roller-cone bit bearings will ultimately reduce the cost of drilling geothermal wells through increased durability.

  3. Producing transparent PLZT ceramics using different synthesis method

    International Nuclear Information System (INIS)

    Dambekalne, M.; Antonova, M.; Livinsh, M.; Kalvane, A.; Plonska, M.; Garbarz-Glos, B.

    2004-01-01

    Full text: Ceramic samples of Pb 1-x La x (Zr 0.65 Ti 0.35 )O 3 (x 8, 9, 10) were prepared from powders being sintered by two methods: 1) peroxohydroxopolimer (PHP), where as precursors were used solutions of inorganic salts TiCl 4 , ZrOCl 4 ·8H 2 O, Pb(NO 3 ) 2 , La(NO 3 ) 3 ·6H 2 O); 2) sol-gel, using as precursors solutions of metal organic salts Pb(COOCH 3 ) 2 ·3H 2 O, La(COOCH 3 ) 3 ·1.5H 2 O, Zr(OCH 2 CH 2 CH 3 ) 4 , Ti(OCH 2 CH 2 CH 3 ) 4 . The thermal regimes for both powders were similar: synthesis at 600 0 C for 2 - 4h, obtaining amorphous nanopowder. Ceramic samples were produced by hot pressing at 1100 - 1200 0 C for 2 - 6h and pressure of 20Mpa.Optical transmittance of ceramic samples from PHP derived powders was higher than that from sol- gel derived. The transparency of poled plates with thickness of 0.3mm (wavelength λ = 630nm) was 67 - 69% and 56 - 59%, respectively. It can be explained by lack of technical support for sol-gel processing in atmosphere of neutral gas, as metal organic precursors are extremely sensitive to moisture of air. X-ray and DTA studies were used for powders. Dielectrics, ferroelectric and optical properties as well as studies of icrostructure were carried out for ceramic samples. The grain size of ceramics produced from PHP powders is 3- 4μ, for sol-gel ceramics less than 1μ

  4. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  5. Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polycarbomethylsilane containing precursors

    International Nuclear Information System (INIS)

    Xu Yunshu; Tanaka, Shigeru

    2003-01-01

    A modified gel-casting method was developed to form the ceramics precursor matrix by using polycarbomehylsilane (PCMS) and SiC powder. The polymer precursor was mixed with SiC powder in toluene, and then the slurry samples were cast into designed shapes. The pre-ceramic samples were then irradiated by 2.0 MeV electron beam generated by a Cockcroft-Walton type accelerator in He gas flow to about 15 MGy. The cured samples were pyrolyzed and sintered into SiC ceramics at 1300degC in Ar gas. The modified gel-casting method leaves almost no internal stress in the pre-ceramic samples, and the electron beam curing not only diminished the amount of pyrolysis gaseous products but also enhanced the interface binding of the polymer converted SiC and the grains of SiC powder. Optical microscope, AFM and SEM detected no visible internal or surface cracks in the final SiC ceramics matrix. A maximum value of 122 MPa of flexural strength of the final SiC ceramics was achieved. (author)

  6. Critical heat flux near the critical pressure in heater rod bundle cooled by R-134A fluid: Effects of unheated rods and spacer grid

    International Nuclear Information System (INIS)

    Chun, Se-Y.; Shin, C.W.; Hong, S. D.; Moon, S. K.

    2007-01-01

    A supercritical-pressure light water reactor (SCWR) is currently investigated as the next generation nuclear reactors. The SCWR, which is operated above the thermodynamic critical point of water (647 K, 22.1 MPa), have advantages over conventional light water reactors in terms of thermal efficiency as well as in compactness and simplicity. Many experimental studies have been performed on heat transfer in the boiler tubes of supercritical fossil fire power plants (FPPs). However, the thermal-hydraulic conditions of the SCWR core are different from those of the FPP boiler. In the SCWR core, the heat transfer to the cooling water occurs on the outside surface of fuel rods in rod bundle with spacers. In addition, the experimental studies in which the critical heat flux (CHF) has been carefully measured near the critical pressure have never yet been carried out, as far as we know. Therefore, we have recently conducted the CHF experiments with a vertical 5x5 heater rod bundle cooled by R- 134a fluid. The purpose of this work is to find out some novel knowledge for the CHF near the critical pressure, based on more careful experiments. The outer diameter, heated length and rod pitch of the heater rods are 9.5, 2000 and 12.85 mm, respectively. The critical power has been measured in a range of the pressure of 2.474.03 MPa (the critical pressure of R-134a is 4.059 MPa), the mass flux 502000 kg/m 2 s, and the inlet subcooling 4084 kJ/kg. For the mass fluxes of not less than 550 kg/m 2 s, the critical power decreases monotonously up to the pressure of about 3.63.8 MPa with increasing pressure, and then fall sharply at about 3.83.9 MPa as if the values of the critical power converge on zero at the critical pressure. For the low mass fluxes of 50 to 250 kg/m 2 , the sharp decreasing trend of the critical power near the critical pressure is not observed. The CHF phenomenon near the critical pressure no longer leads to an inordinate increase in the heated wall temperature such as

  7. Laminar forced convective heat transfer to near-critical water in a tube

    International Nuclear Information System (INIS)

    Lee, Sang Ho

    2003-01-01

    Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed

  8. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  9. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  10. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  11. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  12. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    Science.gov (United States)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  13. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  14. Superconductivity of individual grains and inter-grain boundaries for polycrystalline FeSr2YCu2O6+y

    International Nuclear Information System (INIS)

    Yamaguchi, K.; Hata, Y.; Mochiku, T.; Yasuoka, H.

    2013-01-01

    Polycrystalline FeSr 2 YCu 2 O 6+y was synthesized and its transport and magnetic properties were studied. Diamagnetism was observed below 60 K. Zero resistivity was observed below 38 K under zero magnetic field and below 10 K under 160 kOe. A two-step transition was observed in resistivity measurement due to the superconductivity in individual grains and across inter-grain boundaries. The critical current density in individual grains, J c intra , at 2 K under 1 kOe was deduced 3.4 × 10 5 A/cm 2 from the Bean model. In contrast, the critical current density in inter-grain boundaries, J c inter , at 2 K was 1.7 A/cm 2 in voltage–current measurement. The two-step transition seems to result from the large difference between J c intra and J c inter

  15. Critical incidents and near misses during anesthesia: A prospective audit

    Directory of Open Access Journals (Sweden)

    Pamela Onorame Agbamu

    2017-01-01

    Full Text Available Background: A critical incident is any preventable mishap associated with the administration of anesthesia and which leads to or could have led to an undesirable patients' outcome. Patients' safety can be improved by learning from reported critical incidents and near misses. Materials and Methods: All perioperative critical incidents (excluding obstetrics occurring over 5 months were voluntarily documented in a pro forma. Age of patient, urgency of surgery, grade of anesthetist, and patients' outcome was noted. Results: Seventy-three critical incidents were recorded in 42 patients (incidence 6.1% of 1188 procedures with complete recovery in 88.1% (n = 37 and mortality in 11.9% (n = 5. The highest incidents occurred during elective procedures (71.4%, which were all supervised by consultants, and in patients aged 0–10 years (40.1%. Critical incident categories documented were cardiovascular (41.1%, respiratory (23.25%, vascular access (15.1%, airway/intubation (6.85%, equipment errors (6.85%, difficult/failed regional technique (4.11%, and others (2.74%. The monitors available were: pulse oximetry (100%, precordial stethoscope (90.5%, sphygmomanometer (90.5%, capnography (54.8%, electrocardiogram (31%, and temperature (14.3%. The most probable cause of critical incident was patient factor (38.7% followed by human error (22.5%. Equipment error, pharmacological factor, and surgical factor accounted for 12.9%. Conclusion: Critical incidents can occur in the hands of the highly skilled and even in the presence of adequate monitoring. Protocols should be put in place to avoid errors. Critical incident reporting must be encouraged to improve patients' safety and reduce morbidity and mortality.

  16. Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-δ thin films

    Science.gov (United States)

    Albrecht, J.; Leonhardt, S.; Kronmüller, H.

    2001-01-01

    Low-angle grain boundaries with misorientation angles θ<5° in optimally doped thin films of YBa2Cu3O7-δ are investigated by magneto-optical imaging. By using a numerical inversion scheme of Biot-Savart's law, the critical current density across the grain boundary can be determined with a spatial resolution of about 5μm. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern, it is found that there exists a universal dependency of the grain boundary current on the local flux density. Considering the magnetic vortex-vortex interaction in and in the vicinity of the grain boundary, a model is developed that is able to describe the experimental data.

  17. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  18. Grinding damage assessment on four high-strength ceramics.

    Science.gov (United States)

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a

  19. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  20. Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Fu, Peng; Xu, Zhijun; Chu, Ruiqing; Li, Wei; Wang, Wei; Liu, Yong

    2012-01-01

    Highlights: ► Gd 2 O 3 doped BNKT18 piezoelectric ceramics were designed and prepared. ► The electrical properties of the BNKT18 ceramics are improved with the addition of Gd 2 O 3 . ► The BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 has better electrical properties. -- Abstract: Gd 2 O 3 (0–0.8 wt.%)-doped 0.82Bi 0.5 Na 0.5 TiO 3 –0.18Bi 0.5 K 0.5 TiO 3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd 2 O 3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd 2 O 3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd 2 O 3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd 2 O 3 , and the BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 have the highest piezoelectric constant (d 33 = 137 pC/N), highest relative dielectric constant (ε r = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd 2 O 3 have the highest planar coupling factor (k p = 0.2463).

  1. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  2. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  3. Introduction of artificial pinning centre in {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, P.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Elschner, S. [Hoechst AG, Frankfurt am Main (Germany)] [and others

    1994-12-31

    Considering the phase equilibrium diagram of the system Bi{sub 2}O{sub 3}-SrO-CaO-CuO, single phase {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics have been transformed by a simple annealing procedure into multi phase samples. The transformation results in the formation of second phases and in an increase of the intra grain critical current density at 1 T of five times. This increase is believed to express improved pinning properties of the superconducting crystals. The prepared pinning centres are believed to be e.g. coherent precipitates (Guinier-Preston-zones) within the superconducting crystals.

  4. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  5. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  6. A new look at grain size and load effects in the hardness of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany)

    1998-05-01

    A simple model describes the load effect (size effect) in the hardness, assuming an increasing microplastic deformability, when the further extension of the plastic zone growth and multiplication of pre-existing elements of plasticity are more effective than the generation of new dislocations or twins in the virgin material around the indentation site. The model explains experiments with sintered alumina which indicate a reduced load effect in increasingly fine-grained microstructures due to a grain size effect that is more pronounced at higher testing loads (larger indents) than in the microhardness range. A large difference between the hardness of plastically deformed volumes in single crystals and in polycrystalline microstructures consisting of grains with the same size, respectively, reveals a substantial contribution of the grain boundaries to plastic deformation at the indentation site even at room temperature and even for coarser microstructures. (orig.) 18 refs.

  7. Towards Bright and Fast Lu3Al5O12:Ce,Mg Optical Ceramics Scintillators

    CERN Document Server

    Liu, Shuping; Feng, Xiqi; Vedda, Anna; Fasoli, Mauro; Shi, Yun; Kou, Huamin; Beitlerova, Alena; Wu, Lexiang; D'Ambrosio, Carmelo; Pan, Yubai; Nikl, Martin

    2016-01-01

    The recent advent of Lu 3 Al 5 O 12 :Ce optical ceramics marks a turning point in scintillator material technology. Because of their lower preparation tem-perature, brightness, and robustness such materials can now compete with single crystals. Their further scintillation effi ciency optimization includes the thorough control of the defects responsible for optical and scintillation losses. The choice of sintering agent appears critical to achieve both high optical transparency and scintillation performance. In this work, the optical investi-gations coupled with X-ray absorption near-edge spectroscopy evidence the benefi cial role of MgO sintering agent. Mg 2+ co-dopants in ceramics drive the partial conversion of Ce 3+ to Ce 4+ . The Ce 4+ center, however, does not impair the scintillation performance due to its capability to positively infl uence the scintillation process. The importance of simultaneous application of such co-doping and annealing treatment is also demonstrated. With 0.3 at% Mg, our cer...

  8. Theory of near-critical-angle scattering from a curved interface

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.; Wiscombe, W.J.

    1990-01-01

    A new type of diffraction effect, different from the standard semiclassical ones (rainbow, glory, forward peak, orbiting), takes place near the critical angle for total reflection at a curved interface between two homogeneous media. A theoretical treatment of this new effects is given for Mie scattering, e.g., light scattering by an air bubble in water; it can readily be extended to more general curved interface problems in a variety of different fields (quantum mechanics, acoustics, seismic waves). The relatively slowly-varying Mie diffraction pattern associated with near-critical scattering is obscured by rapid fine-structure oscillations due to interference with unrelated farside contributions. These contributions are evaluated and subtracted from the Mie amplitudes to yield the relevant nearside effects. A zero-order transitional CAM (complex angular momentum) approximation to the nearside amplitude is developed. The most important contributions arise from partial and total reflection, represented by two new diffraction integrals, designated Fresnel-Fock and Pearcey-Fock respectively. Also discussed are the WKB approximation, a known physical optics approximation and a new modified version of this approximation: they are compared with the exact nearside Mie amplitude obtained by numerical partial-wave summation, at scatterer size parameters (circumference/wavelength) ranging from 1,000 to 10,000. (author)

  9. Investigation of inter-grain critical current density in Bi2Sr2CaCu2O8+δ superconducting wires and its relationship with the heat treatment protocol

    Science.gov (United States)

    Pallecchi, I.; Leveratto, A.; Braccini, V.; Zunino, V.; Malagoli, A.

    2017-09-01

    In this work we investigate the effect of each different heat treatment stage in the fabrication of Bi2Sr2CaCu2O8+δ superconducting wires on intra-grain and inter-grain superconducting properties. We measure magnetic critical temperature T c values and transport critical current density J c at temperatures from 4 K to 40 K and in fields up to 7 T. From an analysis of the temperature dependence of the self-field critical current density J c(T) that takes into account weak link behavior and the proximity effect, we study grain boundary (GB) transparency to supercurrents; we also establish a relationship between GB oxygenation in the different steps of the fabrication process and GB transparency to supercurrents. We find that GB oxygenation starts in the first crystallization stage, but it becomes complete in the plateau at 836 °C and in slow cooling stages and is further enhanced in the prolonged post-annealing step. Such oxygenation makes GBs more conductive, thus improving the inter-grain J c value and temperature dependence. On the other hand, from inspection of the T c values in the framework of the phase diagram dome, we find that grains are already oxygenated in the crystallization step up to the optimal doping, while successive slow cooling and post-annealing treatments further enhance the degree of overdoping, especially if carried out in oxygen atmosphere rather than in air.

  10. First-Order Interfacial Transformations with a Critical Point: Breaking the Symmetry at a Symmetric Tilt Grain Boundary

    Science.gov (United States)

    Yang, Shengfeng; Zhou, Naixie; Zheng, Hui; Ong, Shyue Ping; Luo, Jian

    2018-02-01

    First-order interfacial phaselike transformations that break the mirror symmetry of the symmetric ∑5 (210 ) tilt grain boundary (GB) are discovered by combining a modified genetic algorithm with hybrid Monte Carlo and molecular dynamics simulations. Density functional theory calculations confirm this prediction. This first-order coupled structural and adsorption transformation, which produces two variants of asymmetric bilayers, vanishes at an interfacial critical point. A GB complexion (phase) diagram is constructed via semigrand canonical ensemble atomistic simulations for the first time.

  11. Transparent Lu 2 O 3 :Eu ceramics by sinter and HIP optimization

    Science.gov (United States)

    Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2011-09-01

    Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu 2O 3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu 2O 3:Eu showed ˜4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.

  12. Sliding contact fracture of dental ceramics: Principles and validation

    Science.gov (United States)

    Ren, Linlin; Zhang, Yu

    2014-01-01

    Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538

  13. Structure and properties of hot-pressed boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chenko, M S; Tkachenko, IU G; Koval' chuk, V V; Iurchenko, D Z; Satanin, S V [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1990-07-01

    The microstructure and strength of B4C-TiB2-TiO{sub 2} ceramics samples, hot-compacted from a mixture of two types of B4C-TiO2-C powder, are examined. The two types are obtained by combining boric acid with either sucrose or carbon black. The grain-sizes of the two powders are found to be distinctly different from one another both before and after the grinding procedure and the degree of dispersion is not high. The strength tests show 600 MPa, the Vicker's hardness is 34.5 GPa, and the crack resistance coefficient of ceramics containing 15 percent TiB2 by mass is 5 MPa m exp 1/2. The use of soluble boron carbide powder helps achieve higher levels of strength and crack resistance. 5 refs.

  14. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  15. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    Science.gov (United States)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  16. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    International Nuclear Information System (INIS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, M. S.; Song, J. S.

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi 0.5 (Na 0.425 K 0.075 ) TiO 3 (BNKT) ceramic material with platelike Bi 4 Ti 3 O 12 (BiT) were investigated. The platelike Bi 4 Ti 3 O 12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 .deg. C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  17. Lead enrichment in different genotypes of rice grains.

    Science.gov (United States)

    Chen, Gang; Sun, Guo-rong; Liu, Ai-ping; Zhou, Wei-dong

    2008-03-01

    Using environmental scanning electron microscopy and X-ray electron probe microanalysis, the lead content was studied in inner and outer surface of rice glume, surface of caryopsis, center of caryopsis, near aleuronic layer and aleuronic layer in 21 genotypes of rice grains. The results showed that the lead content in different part of 21 genotypes of rice grains changed as inner surface of rice glume > aleuronic layer > near aleuronic layer > surface of caryopsis > outer surface of rice glume > center of caryopsis. There were genetic differences in lead enrichment in different genotypes of rice grains, which reflected as the differences of lead content in the same part and different part of rice grains. In different genotypes of rice grains, there were significant non-linear correlations between lead content in the inner surface of rice glume, center of caryopsis, aleuronic layer and that in the other parts of rice grain. The results also indicated that the lead enrichment in the center of caryopsis regulated by glume and aleuronic layer. In addition, in different genotypes of rice grains, there were differences in regulation of lead enrichment among different parts, which changed non-linearly.

  18. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    Ceramic microfabrication by rapid prototyping process chains ... is nearly impossible, shaping has to be done by a replication step in the green, unfired state. ... This process chain combines the fast and inexpensive supply of master models by ...

  19. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  20. Present state of the controversy about the grain boundary relaxation

    International Nuclear Information System (INIS)

    Povolo, F.; Molinas, B.J.

    1990-04-01

    An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab

  1. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  2. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  3. Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control

    Science.gov (United States)

    Chen, Huanbei; Zhai, Jiwei

    2012-08-01

    Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.

  4. Investigation and optimization of YBa2Cu3O7-δ grain boundaries and coated conductors

    International Nuclear Information System (INIS)

    Held, Rainer Robert Martin

    2010-01-01

    With increasing misorientation angle grain boundaries strongly reduce the critical current density of high temperature superconductors. For this reason costly techniques are used in production of modern Coated Conductors to induce sharp textures in the polycrystalline superconductor layers. In this dissertation measurements of the critical current density of different grain boundary types are presented showing that out-of-plane grain boundaries exhibit, also in applied magnetic fields, much higher critical current densities than expected. In further analysis of the grain boundaries indications for a microstructural reason of the high critical current densities were found. The high critical current densities of the out-of-plane grain boundaries should in fabrication of Coated Conductors allow for a relaxation of the out-of-plane grain alignment requirements and a concomitant cost reduction. In this work also results of a industrial cooperation with Nexans are presented demonstrating that the critical current density of metal-organic deposited grain boundaries and Coated Conductor layers can be increased by selective Calcium-doping. In the experiments selective Calcium-doping most effectively increased the critical current density of weak spots. (orig.)

  5. Alignment of dust grains in ionized regions

    Science.gov (United States)

    Anderson, Nels; Watson, William D.

    1993-01-01

    The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.

  6. Biomass decomposition in near critical water

    International Nuclear Information System (INIS)

    Sinag, Ali; Guelbay, Selen; Uskan, Burcin; Canel, Muammer

    2010-01-01

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K 2 CO 3 , Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  7. Biomass decomposition in near critical water

    Energy Technology Data Exchange (ETDEWEB)

    Sinag, Ali, E-mail: sinag@science.ankara.edu.t [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey); Guelbay, Selen; Uskan, Burcin; Canel, Muammer [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey)

    2010-03-15

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K{sub 2}CO{sub 3}, Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  8. In vitro studies of osteoblasts response onto zinc aluminate ceramic films

    Directory of Open Access Journals (Sweden)

    Marco Antonio Alvarez-Pérez

    2009-01-01

    Full Text Available Zinc based or doped ceramics have shown to be capable of increasing osteoblasts proliferation, biomineralization and bone formation. However, studies regarding the biological applications processes in ZnAl2O4 ceramic films are very scarce. For this reason, the objective of this in vitro study was to investigate the response of osteoblasts cells cultured onto ZnAl2O4 films. Our results showed a good biological response related to attachment and viability, with good cell morphology attached to the semi-spherical grains of the ceramic and the analysis of mineral-like tissue showed a high quantity of mineral deposited and organized as tiny spherical-like nodules attached to nanostructure surface of ZnAl2O4 material films. Based in our results, ZnAl2O4 films stimulated the bioactivity of osteoblasts cells and provide a microenvironment that favors cell differentiation and mineralization processes, suggesting their potential use as osteoconductive coating onto currently orthopedic and dental implants.

  9. Defect distribution in deformed grains of Cu-based alloy polycrystals

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.

    2017-12-01

    The paper presents transmission electron microscopy data on the grain defect structure formed in deformed Cu-Al polycrystals. The data show that the parameters of dislocation substructures vary with distance from grain boundaries and that a hardened zone arises near the grain boundaries and its size depends on the grain size.

  10. ADM guidance-Ceramics: Fracture toughness testing and method selection.

    Science.gov (United States)

    Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich

    2017-06-01

    The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material.

    Science.gov (United States)

    Yan, Yongke; Zhou, Jie E; Maurya, Deepam; Wang, Yu U; Priya, Shashank

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T c ) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% texture) modified PbTiO 3 ceramic that has a high T c (364 °C) and an extremely large g 33 (115 × 10 -3  Vm N -1 ) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g 33 originates from maximized piezoelectric strain coefficient d 33 and minimized dielectric permittivity ɛ 33 in [001]-textured PbTiO 3 ceramics where domain wall motions are absent.

  12. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  13. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  14. Grain size and boundary-related effects on the properties of nanocrystalline barium titanate ceramics

    Czech Academy of Sciences Publication Activity Database

    Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, Ivan; Ostapchuk, Tetyana; Pokorný, Jan; Petzelt, Jan

    2006-01-01

    Roč. 26, - (2006), s. 2889-2898 ISSN 0955-2219 R&D Projects: GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain size * grain boundaries * spectroscopy * dielectric properties * BaTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  15. Composite Laser Ceramics by Advanced Bonding Technology

    Science.gov (United States)

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  16. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  17. Method of producing granulated ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1976-01-01

    For the production of granulated ceramic nuclear fuels with a grain size spectrum as narrow as possible it is proposed to suspend the nuclear fuel powder in a non-aqueous solvent with small content of hydrogen (e.g. chloridized hydrocarbons) while adding a binding agent and then dry it by means of rays. As binding agent polybutyl methane acrylate in dibutyl phthalate is proposed. The method is described by the example of UO 2 -powder in trichloroethylene. The dry granulated material is produced in one working step. (UWI) [de

  18. Microstructural analyses and critical current densities in the high-Tc superconductor system ReBa2Cu3OX, with RE = Y, Sm, Eu, Gd, Dy, Ho

    International Nuclear Information System (INIS)

    Schindler, G.; Seebacher, B.

    1989-01-01

    The authors report on investigations into the impact of the rare earths (RE) as given in the title on the ceramic microstructure and the critical current density j c in the superconductor system REBa 2 Cu 3 O x . With RE = Sm, Eu, or Gd, the material is homogeneous in phase and crystallizes in platelets with maximum sizes of up to 350 μm. Material with RE = Y, Dy, or Ho exhibits grain sizes up to 500 μm, and a low amount of phase inhomogeneities. The critical currents measured are between 25 Acm -2 and 290 Acm -2 at 77 K, without external field. The highest values are found in systems with RE = Eu or Gd. (orig.) [de

  19. Critical fluctuations and the rates of interstate switching near the excitation threshold of a quantum parametric oscillator.

    Science.gov (United States)

    Lin, Z R; Nakamura, Y; Dykman, M I

    2015-08-01

    We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.

  20. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  1. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    International Nuclear Information System (INIS)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-01-01

    Highlights: ► Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. ► The new media ceramics used as fillers in electrobath of micro-electrolysis. ► Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. ► This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers – CCF, and Anode Ceramic-corrosion-cell Fillers – ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 °C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD Cr and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m −3 and 936.3 kg m −3 , 1245.0 kg m −3 and 1420.0 kg m −3 , respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3–4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD cr and cyclohexanone were removed.

  2. Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Muduli, Rakesh; Kumar, Pawan, E-mail: pawankumar@nitrkl.ac.in; Panda, Ranjit Kumar; Panigrahi, Simanchal

    2016-09-01

    In the present study, the effect of heterovalent ion doping on the dielectric and ferroelectric behaviour of AgNbO{sub 3}/AN system was investigated. 0.04 mol of manganese (Mn{sup 4+}) and tungsten (W{sup 6+}) ions of smaller ionic radii were substituted in place of niobium (Nb{sup 5+}) ions in the AN system for generating hole and electron rich compounds, respectively. Better dielectric properties with improved saturation polarisations were observed in the heterovalent ions modified AN ceramics. The relaxation behaviour of the modified AN ceramics was investigated by impedance spectroscopy study and intrinsic grain conduction was found to be dominating in the chosen frequency and temperature ranges. The reduced resistivity of the modified AN ceramics was discussed in terms of calculated activation energy. The significant reduction of the activation energy was proposed as the possible cause of early arrival of relaxation peak in the electron doped AN system. - Highlights: • Holes and electrons doping effect on electrical properties of AN system. • Doping of holes significantly enhanced the ferroelectricity. • Doping of electrons reduced activation energy. • Reduced activation energy was related with grains relaxation process.

  3. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  4. First-principles study of the effects of halogen dopants on the properties of intergranular films in silicon nitride ceramics

    International Nuclear Information System (INIS)

    Painter, Gayle S.; Becher, Paul F.; Kleebe, H.-J.; Pezzotti, G.

    2002-01-01

    The nanoscale intergranular films that form in the sintering of ceramics often occur as adherent glassy phases separating the crystalline grains in the ceramic. Consequently, the properties of these films are often equal in importance to those of the constituent grains in determining the ceramic's properties. The measured characteristics of the silica-rich phase separating the crystalline grains in Si 3 N 4 and many other ceramics are so reproducible that SiO 2 has become a model system for studies of intergranular films (IGF's). Recently, the influence of fluorine and chlorine dopants in SiO 2 -rich IGF's in silicon nitride was precisely documented by experiment. Along with the expected similarities between the halogens, some dramatically contrasting effects were found. But the atomic-scale mechanisms distinguishing the effects F and Cl on IGF behavior have not been well understood. First-principles density functional calculations reported here provide a quantum-level description of how these dopant-host interactions affect the properties of IGF's, with specific modeling of F and Cl in the silica-rich IGF in silicon nitride. Calculations were carried out for the energetics, structural changes, and forces on the atoms making up a model cluster fragment of an SiO 2 intergranular film segment in silicon nitride with and without dopants. Results show that both anions participate in the breaking of bonds within the IGF, directly reducing the viscosity of the SiO 2 -rich film and promoting decohesion. Observed differences in the way fluorine and chlorine affect IGF behavior become understandable in terms of the relative stabilities of the halogens as they interact with Si atoms that have lost one if their oxygen bridges

  5. Sintering temperature and impedance analysis of Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.15}Al{sub 0.03}Fe{sub 0.45}O{sub 4} NTC ceramic prepared by W/O microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo; Zhao, Pengjun; Ma, Renjun [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-12-25

    Highlights: • The ceramics are mainly in spinel phase and cubic cobalt oxide phase. • A perfect sintering temperature of 1450 °C for the Mn–Co–Ni–Mg–Al–Fe–O was proposed. • The NTC characteristic of the ceramics derive from grain boundary resistance R{sub gb}. - Abstract: The Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.5}Al{sub 0.03}Fe{sub 0.45}O{sub 4} negative temperature coefficient (NTC) ceramics derived from nano-particles were sintered at 1380 °C, 1450 °C and 1560 °C, respectively. X-ray diffraction (XRD) result showed that the ceramics sintered at 1380 °C and 1450 °C were mainly in the cubic spinel structure except for a little of tetragonal spinel, and that sintered at 1560 °C was consisted of cubic spinel and cubic cobalt oxide phase. Scanning electron microscopy (SEM) image indicated that the grain size of the ceramic increased sharply when the sintering temperature increased from 1380 °C to 1450 °C, and it changed little when the temperature further increased to 1560 °C, while the porosity was enlarged seriously. Thus a perfect sintering temperature of 1450 °C was proposed. Impedance analysis revealed that the grain resistance R{sub g} showed positive temperature coefficient thermistor characteristic, while the grain boundary resistance R{sub gb} possessed negative temperature coefficient characteristic. Because the grain boundary resistance R{sub gb} was two orders of magnitude larger than the grain resistance R{sub g}, the material thus showed negative temperature coefficient thermistor characteristic.

  6. Growth kinetics of dislocation loops in irradiated ceramic materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Kinoshita, C.

    2002-01-01

    Ceramic materials are expected to be applied in the future fusion reactor as radio frequency (RF) windows, toroidal insulating breaks and diagnostic probes. The radiation resistance of ceramic materials, degradation of the electrical properties and radiation induced conductivity of these materials under neutron irradiation are determined by the kinetics of the accumulation of point defects in the matrix and point defect cluster formation (dislocation loops, voids, etc.). Under irradiation, due to the ionization process, excitation of electronic subsystem and covalent type of interaction between atoms the point defects in ceramic materials are characterized by the charge state (e.g. an F + center, an oxygen vacancy with a single trapped electron) and the effective charge. For the investigation of radiation resistance of ceramic materials for future fusion applications it is very important to understand the physical mechanisms of formation and growth of dislocation loops and voids under irradiation taking into account in this system the effective charge of point defects. In the present paper the physical mechanisms of dislocation loop growth in ceramic material are investigated. For this aim a theoretical model is suggested for the description of the kinetics of point defect accumulation in the matrix taking into account the charge state of the point defects and the effect of an electric field on diffusion migration process of charged point defects. A self-consistent system of kinetic equations describing the generation of electrical fields near dislocation loops and diffusion migration of charged point defects in elastic and electrical fields is formulated. The solution of the kinetic equations allows to find the growth rate of dislocation loops in ceramic materials under irradiation taking into account the charge state of the point defects and the effect of electric and elastic stress fields near dislocation loop on the diffusion processes

  7. Concept of ceramics-free coaxial waveguide

    International Nuclear Information System (INIS)

    Arai, Hiroyuki

    1994-01-01

    A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)

  8. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  9. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  10. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  11. Observation of potential barriers on barium strontium titanate PTCR ceramics by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Manfredini, J.P.; Paulin Filho, P.I.; Gheno, S.M.

    2011-01-01

    A composition of PTCR ceramic based in barium titanate with isovalent replacement of part of barium by strontium using lanthanum and manganese as additives was investigated. The transition temperature, typical of these materials, was shifted below the room temperature by the presence of strontium, whose behavior was detected by tests of DC resistivity and impedance spectroscopy. The observation of potential barriers at grain boundaries was possible through the technique of electrostatic force microscopy (EFM). The results also showed the presence of space charges in regions inside grains, possibly at subgrain boundaries. (author)

  12. Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS and NEMS

    Science.gov (United States)

    2012-09-03

    described in previous reports [32]. In this experimental technique, the specimen ends are gripped to loadcell and PZT actuator mounted on three dimensional...shown in Figure 3. This was due to the random distribution of columnar grains with different texture where KIC was dependent on one particular grain...Engineering: A, 268 (1-2), pp. 116-126, 1999 [19] C.P. Chen, and M.H. Leipold, "Fracture toughness of silicon", American Ceramics Society Bulletin

  13. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  14. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of humidity sensors. PMID:27916913

  15. Magnetic characteristics of sediment grains concurrently contaminated with TBT and metals near a shipyard in Busan, Korea.

    Science.gov (United States)

    Choi, Jin Young; Hong, Gi Hoon; Ra, Kongtae; Kim, Kyung-Tae; Kim, Kyoungrean

    2014-08-30

    Bottom sediments near shipyards are often susceptible to receiving accidental spills of TBT and metals or their degradation products from hull scraping of antifouling system paints applied prior to 2008, when the AFS Convention 2001 was not in force. We investigated TBT and metal contamination of sediments near the shipyards of a small marina located in Busan, Korea and found that they were highly contaminated with TBT, Cu, and Zn. To better understand the environmental impacts and to make an optimal remediation plan, we characterized individual antifouling fragments in terms of metal and TBT contents, magnetic properties, and grain-size. Coarse-sized individual antifouling fragments exhibited simultaneously high levels of TBT, metals and high magnetic susceptibility, and appeared to be a major source of pollution in the sediment. Therefore, magnetic separation in combination with size-separation appears to be a cost-effective remediation method to remove the TBT and metals from contaminated shipyard sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    Science.gov (United States)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-03-01

    Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  17. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-01-01

    Bi 2 O 3 -doped barium zirconate titanate ceramics, Ba 1-x Bi x (Zr 0.05 Ti 0.95 )O 3 , have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi 3+ substitutes A-site ion, and thereafter with higher Bi 3+ content, it enters the B-site sub lattice. Substitution of Bi 3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  18. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  19. Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

    1994-10-01

    The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

  20. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  1. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  2. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  3. Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics

    Directory of Open Access Journals (Sweden)

    Venkata Sreenivas Puli

    2015-09-01

    Full Text Available Polycrystalline La-doped BaTiO3 (Ba(1-xLax\tTiO3 [x=0,0.0005,0.001,0.003] ceramics (denoted as BTO,BLT1,BLT2,BLT3 were synthesized by conventional solid-state reaction method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Raman spectroscopy. XRD and Raman spectra revealed single-phase tetragonal perovskite crystalline structure. Well-saturated polarization–electric field (P–E hysteresis loops were observed with the measurement frequency of 50 Hz at room temperature and confirmed ferroelectric nature of these ceramics and a high recoverable electrical energy storage density of 0.350 J/cm3 with energy efficiency (n∼9%, which is useful in energy storage capacitor applications. Dielectric studies revealed anomalies around 415–420 K and near the Curie temperature. The latter is attributed to the ferroelectric to paraelectric phase transition. Better dielectric performances were obtained for La-doped samples sintered at 1350°C for 4 h. Grain growth is inhibited with lanthanum (La incorporation into the BTO lattice. Room temperature semiconducting behavior with positive temperature coefficient of resistivity (PTCR behavior at TC is attributed to electron compensation mechanism.

  4. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  5. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    epsilon-eucryptite and show that the transformation nucleation is related to the motion of the tetrahedral units making up the structure. It was revealed that the conduction of Li ions through the structure is also dictated by the tetrahedral unit arrangement and how their positions change with temperature. The critical pressure to obtain the high pressure phase of eucryptite was shown to depend on the grain size. The structure of the high pressure phase was determined with a combination of atomistic modeling and in situ x-ray diffraction experiments.

  6. Ageing of low-firing prehistoric ceramics in hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Petra Zemenová

    2012-03-01

    Full Text Available Remains of a prehistoric ceramic object, a moon-shaped idol from the Bronze Age found in archaeological site Zdiby near Prague in the Czech Republic, were studied especially in terms of the firing temperature. Archaeological ceramics was usually fired at temperatures below 1000 °C. It contained unstable non-crystalline products, residua after calcination of clay components of a ceramic material. These products as metakaolinite can undergo a reverse rehydration to a structure close to kaolinite. The aim of this work was to prove whether the identified kaolinite in archaeological ceramics is a product of rehydration. The model compound containing high amount of kaolinite was prepared in order to follow its changes during calcination and hydrothermal treatment. Archaeological ceramics and the model compound were treated by hydrothermal ageing and studied by XRF, XRD and IR analyses. It was proved that the presence of kaolinite in the border-parts of the archaeological object was not a product of rehydration, but that it originated from the raw materials.

  7. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters

    International Nuclear Information System (INIS)

    Santos, C.

    2011-01-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  8. Small polaron conduction in lead modified lanthanum ferrite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bhargav, K.K.; Ram, S.; Majumder, S.B., E-mail: subhasish@matsc.iitkgp.ernet.in

    2015-07-25

    Highlights: • La{sub 0.8}Pb{sub 0.2}FeO{sub 3} (ε{sub r} ∼ 30,000) shows higher dielectric constant than LaFeO{sub 3} (∼14,000). • Lower A-site dopant content, the dielectric maxima shift to higher temperature. • The frequency dependence of ε{sub r} and tan δ vs. temperature exhibit CDC like behavior. • R{sub g} and R{sub gb} of Pb modified LaFeO{sub 3} follow small polaron hopping conduction model. - Abstract: In the present work we have illustrated the physics of the electrical characteristics of nanocrystalline La{sub 1−x}Pb{sub x}FeO{sub 3,} (0 ⩽ x ⩽ 0.2) powder prepared using auto-combustion synthesis. The effect of lead doping on the dielectric, impedance and ac conductivity characteristics of lanthanum ferrite has systematically been investigated. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. As compared to pure LaFeO{sub 3} ceramics (dielectric constant ∼ 14,000), the dielectric constant is grossly increased (∼30,000) in Pb doped LaFeO{sub 3}. The temperature dependence of dielectric constant of 10.0 at.% Pb doped LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. For La{sub 0.8}Pb{sub 0.2}FeO{sub 3} ceramics, the frequency dependence of the dielectric constant and loss tangent at various temperatures (300–450 K) exhibit typical colossal dielectric constant (CDC) like behavior. From the impedance spectroscopy we have estimated the grain and grain boundary resistance and capacitance of Pb doped LaFeO{sub 3} that follow a small polaron hopping conduction model. Long range movement of the charge carriers govern the CDC behavior.

  9. The effect of the Tom Thumb dwarfing gene on grain size and grain number of wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Gale, M.D.; Flintham, J.E.

    1984-01-01

    The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)

  10. Effects of process variables on the properties of YBa2Cu3O(7-x) ceramics formed by investment casting

    Science.gov (United States)

    Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.

    1993-01-01

    An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.

  11. Small recuperated ceramic microturbine demonstrator concept

    International Nuclear Information System (INIS)

    McDonald, Colin F.; Rodgers, Colin

    2008-01-01

    It has been about a decade since microturbines first entered service in the distributed generation market, and the efficiencies of these turbogenerators rated in the 30-100 kW power range have remained essentially on the order of 30%. In this time frame the cost of fuel (natural gas and oil) has increased substantially, and efforts are now underway to increase the efficiency of microturbines to 40% or higher. Various near-term means of achieving this are underway by utilizing established gas turbine technology, but now based on more complex thermodynamic cycles. A longer-term approach of improving efficiency is proposed in this paper based on the retention of the basic recuperated Brayton cycle, but now operating at significantly higher levels of turbine inlet temperature. However, in small low pressure ratio recuperated microturbines embodying radial flow turbomachinery this necessitates the use of ceramic components, including the turbine, recuperator and combustor. A development approach is proposed to design, fabricate and test a 7.5 kW ceramic microturbine demonstrator concept, which for the first time would involve the coupling of a ceramic radial flow turbine, a ceramic combustor, and a compact ceramic fixed-boundary high effectiveness recuperator. In a period of some three years, the major objectives of the proposed small ceramic microturbine R and D effort would be to establish a technology base involving thermal and stress analysis, design methodology, ceramic component fabrication techniques, and component development, these culminating in the assembly and testing to demonstrate engine structural integrity, and to verify performance. This would provide a benchmark for more confidently advancing to increased size ceramic-based turbogenerators with the potential for efficiencies of over 40%. In addition, the power size of the tested prototype could possibly emerge as a viable product, namely as a natural gas-fired turbogenerator with the capability of

  12. Porous (Ba,SrTiO3 ceramics for tailoring dielectric and tunability properties: Modelling and experiment

    Directory of Open Access Journals (Sweden)

    Roxana E. Stanculescu

    2017-12-01

    Full Text Available 3D Finite Element Method simulations were employed in order to describe tunability properties in anisotropic porous paraelectric structures. The simulations predicted that properties of a ceramic can be tailored by using various levels of porosity. Porous Ba0.6Sr0.4TiO3 (BST ceramics have been studied in order to investigate the influence of porosity on their functional properties. The BST ceramics with various porosity levels have been obtained by solid-state reaction. Lamellar graphite in different concentration of 10, 20 and 35 vol.% was added as sacrificial pore forming agent. The structural, microstructural, dielectric and tunability properties were investigated. By comparison with dense BST ceramic, porous samples present a fracture mode transformation from intragranular to an intergranular fracture and a decrease of grain size. Lower dielectric constants, low dielectric losses, but higher values of tunability than in the dense material were obtained in the porous BST structures as a result of local field inhomogeneity generated by the presence of air pores-ceramic interfaces.

  13. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  14. Crystal phase analysis of SnO2-based varistor ceramic using the Rietveld method

    International Nuclear Information System (INIS)

    Moreira, M.L.; Pianaro, S.A.; Andrade, A.V.C.; Zara, A.J.

    2006-01-01

    A second addition of l mol% of CoO to a pre calcined SnO 2 -based ceramic doped with 1.0 mol% of CoO, 0.05 mol% of Nb 2 O 5 and 0.05 mol% of Cr 2 O 3 promotes the appearance of a secondary phase, Co 2 SnO 4 , besides the SnO 2 cassiterite phase, when the ceramic was sintered at 1350 deg. C/2 h. This was observed using X-ray powder diffraction, scanning electron microscopy and energy dispersive X-ray techniques. Rietveld refinement was carried out to quantify the phases present in the ceramic system. The results of the quantitative analysis were 97 wt.% SnO 2 and 3 wt.% Co 2 SnO 4 . The microstructural analysis showed that a certain amount of cobalt ion remains into cassiterite grains

  15. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Hoffman, John; Draine, B. T.

    2016-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition

  16. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States)

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  17. The Structural Ceramics Database: Technical Foundations

    Science.gov (United States)

    Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.

    1989-01-01

    The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397

  18. Final technical report to Department of Energy, Basic Energy Sciences. ''Oxide ceramic alloys and microlaminates'' (1996-1999) and ''Low temperature processing and kinetics of ceramics and ceramic matrix composites with large interfacial areas'' (1999-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei

    2001-03-26

    We have discovered a novel two-step sintering method that opened up a low temperature processing window within which fully dense nanocrystalline yttrium oxide was obtained with no concurrent grain growth during final-stage sintering. We have developed a new method of processing laminate ceramics using deformation processing in the green state. We have lastly developed a colloidal processing technique to encapsulate biomolecules at ambient, neutral-pH, aqueous conditions.

  19. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics

  20. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  1. Grain-size variations on a longitudinal dune and a barchan dune

    Science.gov (United States)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  2. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    NARCIS (Netherlands)

    Dreccer, M.F.; Schapendonk, A.H.C.M.; Oijen, van M.; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling

  3. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    Science.gov (United States)

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  4. Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2018-03-01

    Full Text Available Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

  5. Muon radiolysis affected by density inhomogeneity in near-critical fluids.

    Science.gov (United States)

    Cormier, P J; Alcorn, C; Legate, G; Ghandi, K

    2014-04-01

    In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.

  6. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  7. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  8. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  9. Grain-size distributions and grain boundaries of chalcopyrite-type thin films

    International Nuclear Information System (INIS)

    Abou-Ras, D.; Schorr, S.; Schock, H.W.

    2007-01-01

    CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 and CuInS 2 thin-film solar absorbers in completed solar cells were studied in cross section by means of electronbackscatter diffraction. From the data acquired, grain-size distributions were extracted, and also the most frequent grain boundaries were determined. The grain-size distributions of all chalcopyrite-type thin films studied can be described well by lognormal distribution functions. The most frequent grainboundary types in these thin films are 60 - left angle 221 right angle tet and 71 - left angle 110 right angle tet (near) Σ3 twin boundaries. These results can be related directly to the importance of {112} tet planes during the topotactical growth of chalcopyrite-type thin films. Based on energetic considerations, it is assumed that the most frequent twin boundaries exhibit a 180 - left angle 221 right angle tet constellation. (orig.)

  10. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  11. Effects of Sr2+ doping on the electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Amrita Singh

    2015-03-01

    Full Text Available The influence of SrTiO3 addition on the microstructure and various electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 (BNTBT6 ceramics, fabricated by a conventional high temperature solid state reaction, was investigated. Analysis of X-ray diffraction patterns revealed the formation of phase pure materials with tetragonal unit cell structure, tetragonality parameter c/a in the interval from 0.9940 to 1.0063 and crystallite sizes ranging from 33–76 nm for addition of 0.2 to 1 wt.% of SrTiO3. SEM studies indicated that Sr2+ doping led to decrease in grain size and non-homogeneity of grain distribution for higher SrTiO3 amount (>0.6 wt.%. Complex impedance, modulus, and conductivity studies indicated the presence of grains and grain boundary contribution, non-Debye type of relaxation and NTCR behaviour of the test ceramic samples. Temperature dependent real part of complex permittivity showed peaks at 475 °C and the dielectric loss tangent showed peaks corresponding to 125 °C and 475 °C for almost all compositions. AC activation energies, computed using Arrhenius relation in the temperature range of 325–500 °C for the BNTBT6 ceramic compositions having SrTiO3 concentration from 0.2 to 1.0 wt.%, were seen to have maximal values at the lowest measurement frequency. Amongst the different chosen doped BNTBT6 ceramic compositions, the composition having 0.6 wt.% of SrTiO3 showed the best ferroelectric and piezoelectric response with maximum value of Pr (8.24 µC/cm2, minimum value of Ec (5.73 kV/mm and maximum d33 value (∼46 pC/N.

  12. Piezoelectric properties of lead-free submicron-structured (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics from nanopowders

    International Nuclear Information System (INIS)

    Pardo, Lorena; García, Alvaro; Brebøl, Klaus; Mercadelli, Elisa; Galassi, Carmen

    2010-01-01

    Submicron-structured (Bi 0.5 Na 0.5 ) 0.94 Ba 0.06 TiO 3 (BNBT6) ceramics were obtained from nanometric powder synthesized by sol–gel auto-combustion at 500 °C. Hot-pressing at low temperatures and a combination of this with recrystallization, still moderate in order to reduce the loss of volatile elements, have been tested. Material properties, including all losses, were determined at the resonances of thin discs using Alemany et al software. Ceramics hot-pressed at 700–800 °C for 2 h have a pseudo-cubic structure, a grain size of a few hundred nanometers and are homogeneous. Both their crystal structure and the lack of sintering prevent their poling. For ceramics hot-pressed at 950 °C for 3 h, Bi or Bi 0.5 Na 0.5 loss, together with low piezoelectric properties (d 33 = 60 pC N −1 , k p = 8.3% and k t = 9.5%), was observed. Recrystallization at 1000 °C-1 h of ceramics hot-pressed at 700 and 800 °C for 2 h keeps the submicron structure, reduces porosity and prevents off-stoichiometry. Mechanical and piezoelectric losses are also reduced and coupling factors increased (k p = 24.6%, k t = 36.4%). The best piezoelectric coefficient obtained in these ceramics (d 33 = 143 pC N −1 ) is comparable with those reported for coarse-grained ceramics

  13. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Yue, Qinyan, E-mail: qyyue58@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Li, Jinze [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. Black-Right-Pointing-Pointer The new media ceramics used as fillers in electrobath of micro-electrolysis. Black-Right-Pointing-Pointer Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. Black-Right-Pointing-Pointer This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 Degree-Sign C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD{sub Cr} and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m{sup -3} and 936.3 kg m{sup -3}, 1245.0 kg m{sup -3} and 1420.0 kg m{sup -3}, respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD{sub cr} and cyclohexanone were removed.

  14. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  15. Synthesis and characterization of ceramics BNO (BiNbO4) added to 10% of CuO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Silva, P.M.O.; Rodrigues Junior, C.A.; Sombra, A.S.B.

    2012-01-01

    The study of the synthesis and structural characterization of ceramic BiNbO4 and behavior of density when added 10% by weight of CuO, with a view to applications in ceramic capacitors, are presented in this work. The BiNbO4 was prepared by conventional ceramic method. The milled powders were calcined for 2 hours at 850 °C for 3 hours and characterized by using a diffractometer Rigaku DMAXB of Co-α radiation. A more detailed characterization by XRD was performed using the program DBWS9807a using the Rietveld refinement of crystal structures, which confirmed the achievement of the α-BNO phase with orthorhombic structure. Were produced buks with the calcined powder, they were sintered at 925 °C. In order to study the grain morphology and distribution of pores in the ceramic body, the surface of the sample by adding 10% of CuO was analyzed by Scanning Electron Microscopy which confirmed a better densification. (author)

  16. Study of parameters of heat treatment in obtaining glass ceramic materials with addition of the industrial waste

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Martins, G.J.M.; Riella, H.G.; Matsinhe, Jonas; Kuhnen, N.C.

    2012-01-01

    The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO 2 - Al 2 O 3 -Li 2 O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)

  17. Corrosion of technical ceramics by molten aluminium

    NARCIS (Netherlands)

    Schwabe, U.; Wolff, L.R.; Loo, van F.J.J.; Ziegler, G.; With, de G.; Terpstra, R.A.; Metselaar, R.

    1989-01-01

    Corrosion investigations on various types of nonoxide technical ceramic materials, two types of silicon nitride (HIPRBSN and RBSN) and two types of silicon carbide (HIPSIC and SiSiC), were carried out in aluminum (Al99.99) melts. HIPRBSN showed nearly no corrosion attack under the most severe

  18. Clinical performance - a reflection of damage accumulation in ceramic dental crowns

    Energy Technology Data Exchange (ETDEWEB)

    Rekow, D.E. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Thompson, V.P. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). New Jersey Dental School

    2001-07-01

    All-ceramic dental crowns have tremendous appeal for patients - their esthetics nearly match those of natural teeth. Unfortunately, the most esthetic materials are brittle and, consequently, are vulnerable to damage relating to shaping which is exacerbated during cyclic loading during normal chewing. Clinical performance of all-ceramic dental prostheses are directly dependent on damage introduced during fabrication and during fatigue loading associated with function. The accumulation of damage results in unacceptably high failure rates (where failure is defined as a complete fracture requiring replacement of the prosthesis). The relation between shaping damage and fatigue damage on clinical performance of all-ceramic dental crowns was investigated. Materials used commercially for all-ceramic crowns and investigated in this study included a series of different microstructures of machinable glass ceramics (Corning), aluminas and porcelains (Vita Zahnfabrik), and zirconia (Norton). As monolithic materials, strong, tough, fatigue-resistant materials are not sufficiently esthetic for crowns. Crowns fabricated from monolithic esthetic materials have high failure rates. Layering ceramics could provide acceptable strength through management of damage accumulation. (orig.)

  19. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties; Arcillas caolinicas de la Patagonia argentina. Relacion entre la mineralogia y las propiedades ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Factorovich, J.C.; Badino, D. [Piedra Grande S.A., Buenos Aires (Argentina); Cravero, F.; Dominguez, E. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Geologia

    1997-12-31

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2{mu} fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author) 5 refs., 2 tabs.

  20. Process of Equiaxed Grains of RE-Al Alloy under Slope Vibration

    International Nuclear Information System (INIS)

    Xie Shikun; Yi Rongxi; Pan Xiaoliang; Zheng Xiaoqiu; Guo Xiuyan

    2010-01-01

    A new technique using slope vibration casting process during heating and isothermal holding period to prepare Al-7Si-2RE alloy has been studied. The small, near-spherical and non-dendritic microstructure with the semi-solid processing requirements has been obtained. Experiments show that the cooling method, pouring process and the convection of melt caused by slope vibration had significant effects on the formation of near-spherical primary gains. The water-cooled copper mold casting with slope vibration at the temperature near liquidus can obtain Al-7Si-2RE alloy with small homogeneous equiaxed grains, the average grain diameter is 48.3 μm, and the average grain roundness is 1.92.

  1. Prototype development and testing of ultrafine grain NZP ceramics. Final report, July 28, 1995--April 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.J.

    1997-08-04

    The goal of this project was to demonstrate that a new low-expanding ceramic (Ca{sub 0.6},Mg{sub 0.4})Zr{sub 4}(PO{sub 4}){sub 6}, hereafter referred to as CMZP, could be used as an exhaust manifold liner in off-road diesel engines and provide improved engine efficiency (by permitting higher engine operating temperature). This study has successfully demonstrated this improvement and further engine testing (and possible manufacturing) is presently underway at Caterpillar Inc. Laboratories. Basically this program involved two subcontracts: one to Virginia Tech to develop sintering procedures for CMZP, and one to Caterpillar, Inc. to develop slip casting procedures for CMZP. Nearly 100kg of CMZP were prepared by MATVA, Inc. and Virginia Tech for use by Caterpillar. Virginia Tech developed detailed sintering procedures for CMZP and Caterpillar developed slip casting procedures and manufactured several exhaust manifold elbows. These elbows have been cast into prototype cylinder heads and have been shown to be acceptable replacements for metal manifolds. (Caterpillar advises that a new component may require up to 6 years of testing and qualification before acceptance as standard diesel engine part).

  2. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  3. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    Science.gov (United States)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  4. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  5. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  6. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  7. Mechanical properties of porous PNZT polycrystalline ceramics

    International Nuclear Information System (INIS)

    Biswas, D.R.; Fulrath, R.M.

    1977-08-01

    Niobium-doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical pores (110 to 150 μm diameter) were introduced by using organic materials in the initial specimen fabrication. The matrix grain size (2 to 5 μm) was kept constant. Small pores (2 to 3 μm diameter) of the order of the grain size were formed by varying the sintering conditions. The effect of porosity on strength was predicted quite well by Weibull's probabilistic approach. The Young's modulus showed a linear relationship with increase in porosity. A decrease in fracture toughness with increase in porosity was also observed. It was found that at equivalent porosities, small pore specimens gave higher strength, Young's modulus and fracture toughness compared to specimens containing large pores. Fracture surface analysis, by scanning electron microscopy, showed fracture originated either at the tensile surface or at the edge of the specimen

  8. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  9. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, Qiang; Zhu, Xiaohong; Xu, Yunhui; Gao, Haobin; Xiao, Yunjun; Liang, Dayun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-01-01

    Highlights: ► Structural properties of Bi 1−x La x FeO 3 ceramics are improved by La 3+ substitution. ► Significant magnetoelectric responses are observed in Bi 1−x La x FeO 3 ceramics. ► T C is lowered while T N is enhanced in the La-doped BiFeO 3 ceramics. ► Much higher dielectric constant is obtained in the La-doped BiFeO 3 ceramics. ► The ferroelectric properties are enhanced in the La-doped BiFeO 3 ceramics. - Abstract: Multiferroic Bi 1−x La x FeO 3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) (represented as B 1−x L x FO) ceramics were prepared using the conventional solid state reaction route. The effects of La 3+ doping on the density, phase structure, morphology, dielectric and ferroelectric properties were investigated. Judging from X-ray diffraction patterns, all the B 1−x L x FO ceramic samples were well crystallized in a pure perovskite phase while the crystal structure changed from rhombohedral to orthorhombic with increasing the La 3+ substitution. SEM observations clearly revealed that the grain size was remarkably decreased by La 3+ doping. As a result, the ferroelectric Curie temperature was lowered in the La-doped ceramics. However, the abnormal dielectric responses near the antiferromagnetic Néel temperature (T N ) demonstrated the existence of remarkable magnetoelectric coupling in the Bi 1−x La x FeO 3 ceramics, and the T N was shown to increase substantially with the increase in La 3+ doping content. It was found that the dielectric permittivity of the ceramics was significantly increased and the dielectric loss was slightly increased with the increase in La 3+ content. The dielectric constant ε r of the Bi 0.85 La 0.15 FeO 3 ceramic at 10 kHz reached as high as 1008, 20 times larger than that for pure BiFeO 3 . In addition, the ferroelectric properties of the B 1−x L x FO ceramics were improved and the remanent polarization was increased by La 3+ doping. This is probably because the A-site doping with more stable La 3+ could

  10. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Manso, B.; Pablos, A. de; Belmonte, M.; Osendi, M. I.; Miranzo, P.

    2014-04-01

    Concentrated ceramic inks based on (SiC) powders, with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densification of the as-produced 3D structures, previously heat treated in air at 600 degree centigrade for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS) furnace. The effects of the amount of sintering additives (7 - 20 wt. %) and the size of the SiC powders (50 nm and 0.5 {mu}m) on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized (SiC) powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink), involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics. (Author)

  11. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  12. The Coarse-Grained/Fine-Grained Logic Interface in FPGAs with Embedded Floating-Point Arithmetic Units

    Directory of Open Access Journals (Sweden)

    Chi Wai Yu

    2008-01-01

    Full Text Available This paper examines the interface between fine-grained and coarse-grained programmable logic in FPGAs. Specifically, it presents an empirical study that covers the location, pin arrangement, and interconnect between embedded floating point units (FPUs and the fine-grained logic fabric in FPGAs. It also studies this interface in FPGAs which contain both FPUs and embedded memories. The results show that (1 FPUs should have a square aspect ratio; (2 they should be positioned near the center of the FPGA; (3 their I/O pins should be arranged around all four sides of the FPU; (4 embedded memory should be located between the FPUs; and (5 connecting higher I/O density coarse-grained blocks increases the demand for routing resources. The hybrid FPGAs with embedded memory required 12% wider channels than the case where embedded memory is not used.

  13. Application of Silicon Nitride (Si3N4 Ceramics in Ball Bearing

    Directory of Open Access Journals (Sweden)

    Wijianto Wijianto

    2016-08-01

    operation up to 1000°C, greater thermal shock resistance, lower density and low thermal expansion. This properties gives some benefit for ball bearing material such as higher running speed, reduce vibration of the shaft, will improve the life time and maintenance cost, lower heat generated, less energy consumption, lower wear rate, reducing noise level and reduce of using lubricant. The sintering methods are used to produce ball bearing from silicon nitride. Some techniques can be applied to increase ceramics strength which are reduce porosity, reduce grain size, reduce surface flaw and proof stressing. The surface finishing of the ceramic bearing is very important because silicon nitride as a brittle material, its strength is limited to the flaw sizes especially the flaw at the surface.

  14. Fabrication and electrical properties of textured strontium(0.53)barium(0.47)niobium(2)oxygen(6) ceramics prepared by templated grain growth

    Science.gov (United States)

    Duran, Cihangir

    Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241

  15. Nonlinear resistivity in a d-wave superconductor YBa{sub 2}Cu{sub 4}O{sub 8} of sub-micron scale grains

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, H; Shoho, T; Kato, Y; Ashida, T; Mito, M; Takagi, S [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Hagiwara, M [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Koyama, K, E-mail: deguchi@tobata.isc.kyutech.ac.jp [Faculty of Integrated Arts and Science, The University of Tokushima 770-8502 (Japan)

    2011-07-20

    The d-wave ceramic YBa{sub 2}Cu{sub 4}O{sub 8} superconductor composed of sub-micron size grains is considered as random Josephson-coupled network of 0 and {pi} junctions and shows successive phase transitions. The upper transition occurs inside each grain at T{sub c1} = 82 K and the lower transition occurs among the grains at T{sub c2} = 66 K. We measured the temperature dependence of the current-voltage characteristics of the ceramic YBa{sub 2}Cu{sub 4}O{sub 8} and derived the linear and nonlinear resistivity. The nonlinear resistivity {rho}{sub 2} and {rho}{sub 4} have finite values between T{sub c1} and T{sub c2} and have the peak at the same temperature T{sub p} = 70 K above T{sub c2}. The result agrees with the theoretical one obtained by Li and DomInguez. They interpreted T{sub p} as the crossover temperature from the normal state phase to a chiral paramagnetic one.

  16. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    Science.gov (United States)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  17. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  18. International Engineering Foundation Conference on the Plastic Deformation of Ceramics

    CERN Document Server

    Brookes, Chris; Routbort, Jules

    1995-01-01

    This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the...

  19. Ceramic Ultra- and Nanofiltration for Municipal Wastewater Reuse

    NARCIS (Netherlands)

    Shang, R.

    2014-01-01

    During the last decade, water reuse has been widely recognized in many regions of the world. Fouling of ceramic membranes, especially hydraulically irreversible fouling, is a critical aspect affecting the operational cost and energy consumption in water treatment plants. In addition, the reverse

  20. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.