WorldWideScience

Sample records for ceramic waste form

  1. Vitreous ceramic waste form for waste immobilization

    International Nuclear Information System (INIS)

    Vitreous ceramic waste forms are being developed to complement glass waste forms in supporting DOE's environmental restoration efforts. The vitreous ceramics are composed of various metal oxide crystalline phases embedded in a silicate glass matrix. The vitreous ceramics are appropriate final waste forms for waste streams that contain large amounts of scrap metals and elements with low solubilities in glass, and have low-flux contents. Homogeneous glass waste forms are appropriate for wastes with sufficient fluxes and low metal contents. Therefore, utilization of both glass and vitreous ceramics waste forms will make vitrification technology applicable to the treatment of a much larger range of radioactive and mixed wastes. The controlled crystallization in vitreous ceramics resulted in formation of durable crystalline phases and durable residual glass matrix. The durable crystalline phases in vitreous ceramics included Ca3(PO4)2, magnetite (Fe2+Ni,Mn)Fe3+2O4, hibonite Ca(Al,Fe,Zr,Cr)12O19, baddeyelite ZrO2, zirconolite CaZrTi,O, and corundum Al2O3, which are thermodynamically more stable than normal glasses and are also less soluble in water than glasses. The durable glassy matrix in vitreous ceramics is due to the enrichment of silica and alumina during the crystallization process of vitreous ceramic formation. The vitreous ceramics showed exceptional long-term chemical durability and the processability of vitreous ceramics were also demonstrated at both bench- and pilot-scale. This paper briefly describes the use of vitreous ceramics for treating sample mixed wastes with high contents of either Cr, Fe, Zr, and Al, or alkalis

  2. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  3. Rietveld analysis of ceramic nuclear waste forms

    Energy Technology Data Exchange (ETDEWEB)

    White, T.J. [Univ. of South Australia, Ingle Farm (Australia); Mitamura, H. [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1994-12-31

    Powder X-ray diffraction patterns were collected from three titanate waste forms - a calcine powder, a prototype ceramic without waste, and a ceramic containing 10 wt% JW-A simulated waste - and interpreted quantitatively using the Rietveld method. The calcine consisted of fluorite, pyrochlore, rutile, and amorphous material. The prototype waste form contained rutile, hollandite, zirconolite and perovskite. The phase constitution of the JW-A ceramic was freudenbergite, loveringite, hollandite, zirconolite, perovskite and baddeleyite. Procedures for the collection of X-ray data are described, as are assumptions inherent in the Rietveld approach. A selection of refined crystal data are presented.

  4. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  5. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  6. Dissolution of tailored ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Dissolution experiments on polyphase, high alumina tailored ceramic nuclear waste forms developed for the chemical immobilization of Savannah River Plant nuclear waste are described. Three forms of leach tests have been adopted; bulk samples conforming to the Materials Characterization Center Static Leach Test (MCC-1), a powdered sample leach test, and a leach test performed on transmission electron microscope thin foil samples. From analysis of these tests the crystalline phases that preferentially dissolve on leaching and the product phases formed are identified and related to the tailoring and processing schemes used in forming the ceramics. The thin foil sample leaching enables the role of intergranular amorphous phases as short-circuit leaching paths in polyphase ceramics to be investigated

  7. Preparation techniques for ceramic waste form powder

    International Nuclear Information System (INIS)

    The electrometallurgical treatment of spent nuclear fuels result in a chloride waste salt requiring geologic disposal. Argonne National Laboratory (ANL) is developing ceramic waste forms which can incorporate this waste. Currently, zeolite- or sodalite-glass composites are produced by hot isostatic pressing (HIP) techniques. Powder preparations include dehydration of the raw zeolite powders, hot blending of these zeolite powders and secondary additives. Various approaches are being pursued to achieve adequate mixing, and the resulting powders have been HIPed and characterized for leach resistance, phase equilibria, and physical integrity

  8. Radiation effects in ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    This paper reports on alpha-decay event damage (a particle and recoil-nucleus) that results in atomic-scale disorder which causes changes in the molar volume, corrosion rate, stored energy, mechanical properties, and macrostructure of ceramics. These changes particularly of volume and corrosion rate, have critical implications for the long-term durability of nuclear waste forms, such as the polyphase. Ti-based ceramic Synroc. This paper reviews data on actinide-bearing (U and Th) phases of great age (>100 m.y.) found in nature and compares these results to observation on actinide-doped phases (Pu and Cm) of nearly equivalent α-decay doses. Of particular interest is evidence for annealing of radiation damage effects over geologic periods of time under ambient conditions

  9. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake, E-mail: jake.amoroso@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James C. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lin, Ye; Chen, Fanglin [University of South Carolina, Columbia, SC 29208 (United States); Su, Dong [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brinkman, Kyle S. [Clemson University, Clemson, SC 29634 (United States)

    2014-11-15

    Highlights: • We explored the feasibility of melt processing multiphase titanate-based ceramics. • Melt processing produced phases obtained by alternative processing methods. • Phases incorporated multiple lanthanides and transition metals. • Processing in reducing atmosphere suppressed un-desirable Cs–Mo coupling. • Cr partitions to and stabilizes the hollandite phase, which promotes Cs retention. - Abstract: Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction–oxidation (Redox) conditions suppressed undesirable Cs–Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  10. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Science.gov (United States)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  11. Ceramic waste form qualification using results from witness tubes

    International Nuclear Information System (INIS)

    A ceramic waste form has been developed to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The ceramic waste form is prepared in a hot isostatic press (HIP). The use of small, easily fabricated HIP capsules called witness tubes has been proposed as a practical way to obtain representative samples of ceramic waste form material for process monitoring, waste form qualification, and archiving. Witness tubes are filled with the same material used to fill the corresponding HIP can, and are HIPed along with the HIP can. Relevant physical, chemical, and performance (leach test) data are analyzed and compared. Differences between witness tube and HIP can materials are shown to be statistically insignificant, demonstrating that witness tubes do provide ceramic waste form material representative of the material in the corresponding HIP can.

  12. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  13. Challenges in Modeling the Degradation of Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin

    2011-09-01

    We identify the state of the art, gaps in current understanding, and key research needs in the area of modeling the long-term degradation of ceramic waste forms for nuclear waste disposition. The directed purpose of this report is to define a roadmap for Waste IPSC needs to extend capabilities of waste degradation to ceramic waste forms, which overlaps with the needs of the subconsinuum scale of FMM interests. The key knowledge gaps are in the areas of (i) methodology for developing reliable interatomic potentials to model the complex atomic-level interactions in waste forms; (ii) characterization of water interactions at ceramic surfaces and interfaces; and (iii) extension of atomic-level insights to the long time and distance scales relevant to the problem of actinide and fission product immobilization.

  14. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  15. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  16. Tailored ceramic consolidation forms for ICPP waste compositions

    International Nuclear Information System (INIS)

    This paper reports a polyphase tailored ceramic developed for the consolidation of simulated ICPP (Idaho Chemical Processing Plant)-type high Zr content high-level waste (HLW) calcines. The ceramic is specifically designed to provide chemically stable host phases for each species present in the HLW and to maximize waste volume reduction through high loadings and form density. The ceramic is designed for a 73 wt% waste loading with a density of 3.35 ± 0.05 (g/cm3). The major phase in the ceramic is a high-silica glass, which contains the neutron poison boron as well as the majority of the nonrefractory species in the waste. The primary crystalline phases are calcium fluoride, calcium-yttrium stabilized cubic zirconia, a hexagonal apatite type silicate containing the plutonium simulant Ce, and a Cd metal phase. Minor phases include zircon, zirconolite, and a sphene-type. Leaching testing and microscopic analysis shows the ceramic form to be chemically durable, with only the glass phase showing any detectable dissolution in deionized water at 90 degrees C

  17. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  18. Consolidated waste forms: glass marbles and ceramic pellets

    Energy Technology Data Exchange (ETDEWEB)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes.

  19. Analytical electron microscopy study of radioactive ceramic waste forms

    International Nuclear Information System (INIS)

    A ceramic waste form has been developed to immobilize the halide high-level waste stream from electrometallurgical treatment of spent nuclear fuel. Analytical electron microscopy studies, using both scanning and transmission instruments, have been performed to characterize the microstructure of this material. The microstructure consists primarily of sodalite granules (containing the bulk of the halides) bonded together with glass. The results of these studies are discussed in detail. Insight into the waste form fabrication process developed as a result of these studies is also discussed

  20. Scale up issues involved with the ceramic waste form : ceramic-container interactions and ceramic cracking quantification.

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O' Holleran, T.; Riley, W. P., Jr.

    1999-05-03

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits.

  1. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ming; Kossoy, Anna; Jarvinen, G. D.; Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Brinkman, Kyle; Fox, Kevin M.; Amoroso, Jake; Marra, James C.

    2014-02-03

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (~1–5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  2. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Science.gov (United States)

    Tang, Ming; Kossoy, Anna; Jarvinen, Gordon; Crum, Jarrod; Turo, Laura; Riley, Brian; Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1-5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  3. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 10000C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm3, depending upon the formulation. Major phases are CaF2, CaZrTi207, CaTiO3, monoclinic ZrO2, and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO2, CaO, and SiO2) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U238. The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO2. Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF2, Al203, and ZrSi04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  4. Crystallization behavior during melt-processing of ceramic waste forms

    Science.gov (United States)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.; Marra, James C.; Amoroso, Jake

    2016-05-01

    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2.

  5. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  6. Radiation and Thermal Stability of Murataite Ceramics Nuclear Waste Forms

    Science.gov (United States)

    Lian, J.; Yudintsev, S. V.; Stefanovsky, S. V.

    2006-05-01

    The wide range of complex nuclear wastes requires a variety of robust hosts for long-term storage during disposal. Wastes with high actinide and iron concentrations have generated intense interest in murataite ceramics as a candidate waste form due to its four distinct cation sites as well as cation vacancies. Critical to this application is the radiation stability of the waste host. We have determined both the radiation and thermal stabilities of murataite ceramics using in situ observations in a transmission electron microscope during ion bombardment at the Electron Microscopy Center at Argonne National Laboratory. A central issue for structural stability is radiation damage-induced crystalline-to-amorphous transformation that may result in macroscopic swelling, cracking and phase decomposition. Such a response would lead to a significant change in chemical durability and release of incorporated radionuclides. We found that, murataite ceramics are susceptible to ion beam induce ordered-disordered transition and amorphization. The ion dose required for amorphization was determined as a function of temperature and the degree of initial structural disorder. The upper temperature limit for amorphization of murataites was determined to be in the range of 860 K to 1060 K for 1 MeV Kr2+ ion irradiation. Decrease of the susceptibility to irradiation induced amorphization for disordered murataite, suggests that the amorphization susceptibility depends, in part, on the initial degree of intrinsic disorder prior to irradiation. The thermal stability of murataite polytypes was studied by in-situ TEM observation. Phase decomposition with the precipitation of Fe-rich nanocrystals was induced in the murataite structure. The phase decomposition and nanocrystal formation have no significant effects on the radiation resistance of murataite ceramics used as potential host phases for the immobilization of actinides.

  7. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  8. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Scales, Charlie R.; Maddrell, Ewan R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom); Hobbs, Jeff [Sellafield Limited, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)

    2013-07-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  9. The Ceramic Waste Form Process at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Priebe

    2007-05-01

    The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all the transuranic metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is ground and then dried in a mechanically-fluidized dryer. The salt and zeolite are mixed in a V-mixer and heated to 500°C to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form.

  10. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ming, E-mail: mtang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kossoy, Anna; Jarvinen, Gordon [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crum, Jarrod; Turo, Laura; Riley, Brian [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al{sub 2}O{sub 3} and TiO{sub 2} were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1–5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  11. Performance evaluation of pyrochlore ceramic waste forms by single pass flow through testing

    Science.gov (United States)

    Zhao, P.; Bourcier, W. L.; Esser, B. K.; Shaw, H. F.

    2000-07-01

    Titanate-based ceramic waste forms for the disposal of nuclear wastes have been the subjects of numerous studies over the past decades. In order to assess the performance of this ceramic in a potential Yucca Mountain high-level waste (HLW) repository, it is necessary to understand the kinetics and mechanisms of corrosion of the ceramic under repository conditions. To this end, we are conducting single pass flow-through (SPFT) dissolution tests on ceramics relevant to Pu disposition.

  12. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  13. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  14. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A. [Argonne National Lab., IL (United States)

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  15. Immobilization of fission products in phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL) is developing chemically bonded phosphate ceramics (CBPCs) to treat low-level mixed wastes, particularly those containing volatiles and pyrophorics that cannot be treated by conventional thermal processes. This work was begun under ANL''s Laboratory Directed Research and Development funds, followed by further development with support from EM-50''s Mixed Waste Focus Area

  16. Process considerations for hot pressing ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Spray calcined simulated ceramic nuclear waste powders were hot pressed in graphite, nickel-lined graphite and ZrO2-lined Al2O3 dies. Densification, initial off-gas, waste element retention and pellet-die interactions were evaluated. Indicated process considerations and limitations are discussed. 15 figures

  17. The Ceramic Waste Form Process at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ken Bateman; Stephen Priebe

    2006-08-01

    The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form (MWF). The CWF is a composite of sodalite and glass, which stabilizes the active fission products (alkali, alkaline earths, and rare earths) and transuranic (TRU) elements. Reactive metal fuel constituents, including all the TRU metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically-fluidized dryer to about 0.1 wt% moisture and ground to a particle-size range of 45µ to 250µ. The salt and zeolite are mixed in a V-mixer and heated to 500°C for about 18 hours. During this process, the salt occludes into the structure of the zeolite. The salt-loaded zeolite (SLZ) is cooled and then mixed with borosilicate glass frit with a comparable particle-size range. The SLZ/glass mixture is transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including: particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation, This paper is intended to provide the current status of the CWF process focusing on the adaptation to pressureless consolidation. Discussions will include impacts of particle size on final waste form and the pressureless consolidation cycle. A model will be presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.

  18. A Fabrication of Salt-Loaded Ceramic Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Guk; Lee, Jae-Hee; Kim, Hwan-Yong; Lee, Sung-Ho; Kim, In-Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The waste salts such as molten LiCl salt from an oxide fuel reduction process and molten LiCl-KCl eutectic salt from an electro refining process must meet the acceptance criteria for a disposal in geological repository. Two of the more important criteria in waste form containing chloride salts are known to be leach resistance and waste form durability. According to US Argonne National Laboratory (ANL), a ceramic waste form (CWF), which was prepared by pressureless consolidation (PC) of eutectic LiCl-KCl salt loaded zeolite (SLZ), has as a good quality as that of high level radioactive waste (HLW) glass. ANL has developed the CWF fabrication method as follows: The eutectic LiCl-KCl salt recovered from the electorefiner is size-reduced to facilitate occlusion in zeolite by crushing and grinding under an argon atmosphere. The crushed salt is mechanically mixed with dried zeolite 4A in a V-mixer at a salt loading about 10 mass % then heated to about 723 K for 16 h to occlude salt within the zeolite cages. And the SLZ is then mixed with a borosilicate binder glass in a V-mixer (without heating) at a 3:1 mass ratio. The mixture is loaded into fill cans the processed at about 1188 K for about 72 h. As the mixture is heated above about 1123 K during the encapsulating step, the SLZ converts to the mineral sodalite, Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2}, which incorporates most of the occluded salt into its structure. The glass becomes sufficiently fluid during bonded sodalite material referred to as the CWF, which contains 8 mass % salt. We also developed the CWR fabrication technology for a waste LiCl salt from an electrolytic reduction process (ACP; advanced spent fuel conditioning process). A melting point of the LiCl salt is higher than that of the eutectic LiCl-KCl salt, therefore, a crystalline behavior during producing CWF is somewhat different from that of ANL. Therefore, the changes of immobilization media, which had been started from zeolite A, for the

  19. Thermophysical Properties of Multiphase Borosilicate Glass-Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Andrew T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Ming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rouxel, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-22

    Multiphase borosilicate glass-ceramics represent one candidate to contain radioactive nuclear waste separated from used nuclear fuel. In this work, the thermophysical properties from room temperature to 1273 K were investigated for four different borosilicate glass-ceramic compositions containing waste loadings from 42 to 60 wt% to determine the sensitivity of these properties to waste loading, as-fabricated microstructure, and potential evolutions in microstructure brought about by temperature transients. The thermal expansion, specific heat capacity, thermal diffusivity, and thermal conductivity are presented. The impact of increasing waste loading is shown to have a small but measurable effect on the thermophysical properties between the four compositions, contrasted to a much greater impact observed when transitioning from predominantly crystalline to amorphous systems. Thermal cycling below 1273 K was not found to measurably impact the thermophysical properties of the compositions investigated here.

  20. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  1. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  2. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Science.gov (United States)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  3. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  4. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 10400C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  5. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  6. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  7. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  8. Process description and plant design for preparing ceramic high-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-02-25

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes.

  9. Development of a ceramic waste form for high-level waste disposal

    International Nuclear Information System (INIS)

    A ceramic waste form is being developed by Argonne National Laboratory (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel. The halide, alkaline earth, alkali, transuranic, and rare earth fission products are stabilized in zeolite which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The mineral sodalite is formed in the HIP from the zeolite precursor. The process, from starting materials to final product, is relatively simple. An overview of the processing operations is given. The metrics that have been developed to measure the success or completion of processing operations are developed and discussed. The impact of variability in processing metrics on the durability of the final product is presented

  10. Immobilization of 99Tc in low-temperature phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Radionuclides such as 99Tc are by-products of fission reactions in high-level wastes. Technetium poses a serious environmental threat because it is easily oxidized into its highly leachable pertechnetate form. Magnesium potassium phosphate ceramics have been developed to treat 99Tc that has been separated and eluted from simulated high-level tank wastes by sorption processes. Dense and hard ceramic waste forms were fabricated by acid-base reactions between mixtures of magnesium oxide powders and wastes, and acid phosphate solutions. Standard leaching tests, such as ANS 16.1 and the Product Consistency Test, were conducted on the final waste forms to establish their performance. The fate of the contaminants in the final waste forms was established with scanning electron microscopy techniques. In addition, stability of the waste forms in aqueous environments was evaluated by long-term water immersion tests

  11. Erosion of magnesium potassium phosphate ceramic waste forms.

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K. C.

    1998-11-20

    Phosphate-based chemically bonded ceramics were formed from magnesium potassium phosphate (MKP) binder and either industrial fly ash or steel slag. The resulting ceramics were subjected to solid-particle erosion by a stream of either angular Al{sub 2}O{sub 3} particles or rounded SiO{sub 2} sand. Particle impact angles were 30 or 90{degree} and the impact velocity was 50 m/s. Steady-state erosion rates, measured as mass lost from a specimen per mass of impacting particle, were dependent on impact angle and on erodent particle size and shape. Material was lost by a combination of fracture mechanisms. Evolution of H{sub 2}O from the MKP phase appeared to contribute significantly to the material loss.

  12. Commercial high-level-waste management: options and economics. A comparative analysis of the ceramic and glass waste forms

    Energy Technology Data Exchange (ETDEWEB)

    McKisson, R.L.; Grantham, L.F.; Guon, J.; Recht, H.L.

    1983-02-25

    Results of an estimate of the waste management costs of the commercial high-level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20-year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. The estimated total cost (capital and operating) of the management in the ceramic form is $2.0 billion, and that of the glass form is $4.0 billion. Waste loading and waste form density are the driving factors in that the low-waste loading (25%) and relatively low density (3.1 g/cm/sup 3/) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm/sup 3/) characteristic of the glass form requires several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm/sup 3/. The minimum-cost ceramic waste form has a 60 wt. % waste loading of commercial high-level waste and requires 25 years storage before emplacement in basalt with delayed backfill. Because of the process flexibility allowed by the availability of the high-waste loading of the ceramic form, the intermediate-level liquid waste stream can be mixed with the high-level liquid waste stream and economically processed and emplaced. The cost is greater by $0.3 billion than that of the best high-level liquid waste handling process sequence ($2.3 billion vs $2.0 billion), but this difference is less than the cost of the separate disposal of the intermediate-level liquid waste.

  13. Commercial high-level-waste management: options and economics. A comparative analysis of the ceramic and glass waste forms

    International Nuclear Information System (INIS)

    Results of an estimate of the waste management costs of the commercial high-level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20-year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. The estimated total cost (capital and operating) of the management in the ceramic form is $2.0 billion, and that of the glass form is $4.0 billion. Waste loading and waste form density are the driving factors in that the low-waste loading (25%) and relatively low density (3.1 g/cm3) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm3) characteristic of the glass form requires several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm3. The minimum-cost ceramic waste form has a 60 wt. % waste loading of commercial high-level waste and requires 25 years storage before emplacement in basalt with delayed backfill. Because of the process flexibility allowed by the availability of the high-waste loading of the ceramic form, the intermediate-level liquid waste stream can be mixed with the high-level liquid waste stream and economically processed and emplaced. The cost is greater by $0.3 billion than that of the best high-level liquid waste handling process sequence ($2.3 billion vs $2.0 billion), but this difference is less than the cost of the separate disposal of the intermediate-level liquid waste

  14. Method of making nanostructured glass-ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  15. Microstructural characterization of glass and ceramic simulated waste forms

    International Nuclear Information System (INIS)

    The microstructures of three nonradioactive glass samples simulating three Hanford process waste forms were characterized. Two samples of iodine sodalite which simulate the fixation of radioactive iodine were also characterized. X-ray diffraction, electron microscopy + x-ray energy dispersive spectrometry, and electron microprobe analysis were used in the characterization

  16. MODELING SOLIDIFICATION-INDUCED STRESSES IN CERAMIC WASTE FORMS CONTAINING NUCLEAR WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Charles W. Solbrig; Kenneth J. Bateman

    2010-11-01

    The goal of this work is to produce a ceramic waste form (CWF) that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state 915 C to form a sodalite glass matrix, and solidifying for long-term storage. Less long term leaching is expected if the solidifying cooling rate doesn’t cause cracking. In addition to thermal stress, this paper proposes that a stress is formed during solidification which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution at the time of solidification causes the stress and the dome. The dome height, “the length deficit,” produces an axial stress when the solid returns to room temperature with the inherent outer region in compression, the inner in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress theory, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.

  17. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  18. Hydrothermal interaction of a ceramic waste form with basalt

    International Nuclear Information System (INIS)

    The behavior of crystalline supercalcine-ceramic in the presence of basalt was investigated under mild hydrothermal conditions at 100, 200, and 3000C with a pressure of 300 bars. Both the solid phases and solution concentrations of the interaction products of basalt and supercalcine-ceramic were characterized. At 1000C, no alteration products could be detected in experiments involving supercalcine-ceramic and basalt. The solution analyses for elements specific to the supercalcine-ceramic did not indicate any significant differences between the treatments with and without basalt, suggesting little or no interaction between basalt and supercalcine-ceramic at this temperature. At 3000C, several solid alteration/interaction products were identified. These products included two phases, pollucite and scheelite, originally incorporated into the ceramic formulation but which reformed with different bulk chemical compositions. In addition, isolated crystals of unidentified K (+-Ba) aluminosilicate phases were observed. Solution analyses of these runs did not indicate any significant differences between the treatments of supercalcine-ceramic with and without basalt, except that the Sr concentration decreased in the presence of basalt. Similar behavior was noted earlier, when basalt and SrZrO3 experiments were conducted. Alteration products and solution concentrations at 2000C lie intermediate between the 1000 and 3000C results

  19. Immobilization of fission products in low-temperature ceramic waste forms

    International Nuclear Information System (INIS)

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics (CBPCs) for use in solidifying and stabilizing low-level mixed wastes. The focus of this work is development of CBPCs for use with fission-product wastes generated from high-level waste (HLW) tank cleaning or other decontamination and decommissioning activities. The volatile fission products such as Tc, Cs, and Sr removed from HLW need to be disposed of in a low-temperature immobilization system. Specifically, this paper reports on the solidification and stabilization of separated 99Tc from Los Alamos National Laboratory's complexation-elution process. Using rhenium as a surrogate form technetium, we fabricated CBPC waste forms by acid-base reactions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with 35 wt.% waste loading. Standard leaching tests such as ANS 16.1 and PCT were conducted on the final waste forms. In addition, stability of the waste forms in aqueous environments was evaluated by long-term water-immersion tests

  20. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  1. Cold Crucible Induction Melter Studies for Making Glass Ceramic Waste Forms. A Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Benefiel, Bradley [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Archibald, Kip [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez, Carmen P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutledge, Veronica [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhu, Zihua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-23

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (~1/4 scale) cold crucible induction meter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  2. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    Science.gov (United States)

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  3. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod, E-mail: jarrod.crum@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Maio, Vince [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID (United States); McCloy, John [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Scott, Clark [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID (United States); Riley, Brian [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Benefiel, Brad [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID (United States); Vienna, John [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Archibald, Kip [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID (United States); Rodriguez, Carmen [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Rutledge, Veronica [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID (United States); Zhu, Zihua; Ryan, Joe; Olszta, Matthew [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States)

    2014-01-15

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  4. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Maio, Vince [Idaho National Laboratory (INL), Idaho Falls, ID (United States); McCloy, John [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Scott, Clark [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Riley, Brian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benefiel, Brad [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Vienna, John [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Archibald, Kip [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Rodriguez, Carmen [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rutledge, Veronica [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhu, Zihua [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ryan, Joe [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Olszta, Matthew [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (approximately 1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  5. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    International Nuclear Information System (INIS)

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (approximately 1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology

  6. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    International Nuclear Information System (INIS)

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology

  7. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  8. Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms

    Science.gov (United States)

    Clark, B. M.; Tumurugoti, P.; Sundaram, S. K.; Amoroso, J. W.; Marra, J. C.; Brinkman, K. S.

    2014-12-01

    Hollandite-rich ceramic waste forms have been demonstrated to exhibit high durability while simultaneously accommodating a wide range of radionuclides in their matrices. This paper presents preliminary results on the preparation and characterization of ceramic waste forms prepared by two different methods—melt processing and spark plasma sintering (SPS). Both processes resulted in similar phase assemblages but exhibited different microstructures depending on processing method. The SPS samples exhibited fine-grained (<1 µm) and dispersed phases, whereas the melt-processed sample contained larger grains (10-20 µm) of specific phases. Additional data will need to be collected on the aqueous leaching durability and radiation resistance to evaluate each processing method for waste form performance.

  9. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129I, 85Kr and 14C. (author). 104 refs., 9 tabs., 5 figs

  10. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  11. Hot-pressed barium sulphate ceramic waste forms for direct immobilization of medium level Magnox waste

    International Nuclear Information System (INIS)

    A possible method of treatment for Magnox cladding waste is by dissolution in nitric acid and precipitation of barium sulphate-based floc with which radioactive ions are co-precipitated. The floc could then be immobilized in a matrix material such as cement or bitumen to give the waste form, or alternatively can be converted directly into a waste form by hot pressing. This paper describes the direct conversion of barium sulphate floc, containing simulated radwaste, into a synthetic, ceramic version of the natural mineral barite by a hot-pressing route. By variation of the parameters pressure, temperature and time, optimum conditions for consolidation of the floc to > 90% theoretical density on a laboratory scale are found to be 22.5 MPa, 9000C for 10 minutes. Using a pressure of 15 MPa, at 9000C for 30 min., hot-pressed billets of BaSO4 have been made on a 5 kg scale. In going from the magnox waste to the hot-pressed barium sulphate a volume reduction factor approx. 18 is achieved. The principal phases in the product are found to be BaSO4, MgO and Fe3O4, and the degree of consolidation achieved depends on the MgO content. The leaching behaviour of the hot-pressed materials in 1000C, 3 day Soxhlet tests also depends on the MgO content, and on the consequent level of open porosity. If there is porosity accessible to the leach water, MgO at the internal surfaces is converted to Mg(OH)2, which deposits within the pores, and a weight gain is registered in the Soxhlet test. If, however, there is no open porosity, a weight loss occurs, and leach rates approx. 4 x 10-7 kg/m2/sec are found. In contrast, pure BaSO4, hot-pressed to similar densities, shows no variation in leaching behaviour over a wide range of open porosities, and gives Soxhlet leach rates approx. 8 x 10-8 kg/m2/sec. 6 figures, 2 tables

  12. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 {approx} 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature ({approx} 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms.

  13. Technical Progress Report on Single Pass Flow Through Tests of Ceramic Waste Forms for Plutonium Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Roberts, S; Bourcier, W

    2000-12-01

    This report updates work on measurements of the dissolution rates of single-phase and multi-phase ceramic waste forms in flow-through reactors at Lawrence Livermore National Laboratory. Previous results were reported in Bourcier (1999). Two types of tests are in progress: (1) tests of baseline pyrochlore-based multiphase ceramics; and (2) tests of single-phase pyrochlore, zirconolite, and brannerite (the three phases that will contain most of the actinides). Tests of the multi-phase material are all being run at 25 C. The single-phase tests are being run at 25, 50, and 75 C. All tests are being performed at ambient pressure. The as-made bulk compositions of the ceramics are given in Table 1. The single pass flow-through test procedure [Knauss, 1986 No.140] allows the powdered ceramic to react with pH buffer solutions traveling upward vertically through the powder. Gentle rocking during the course of the experiment keeps the powder suspended and avoids clumping, and allows the system to behave as a continuously stirred reactor. For each test, a cell is loaded with approximately one gram of the appropriate size fraction of powdered ceramic and reacted with a buffer solution of the desired pH. The buffer solution compositions are given in Table 2. All the ceramics tested were cold pressed and sintered at 1350 C in air, except brannerite, which was sintered at 1350 C in a CO/CO{sub 2} gas mixture. They were then crushed, sieved, rinsed repeatedly in alcohol and distilled water, and the desired particle size fraction collected for the single pass flow-through tests (SPFT). The surface area of the ceramics measured by BET ranged from 0.1-0.35 m{sup 2}/g. The measured surface area values, average particle size, and sample weights for each ceramic test are given in the Appendices.

  14. Plutonium-238 alpha-decay damage study of the ceramic waste form.

    Energy Technology Data Exchange (ETDEWEB)

    Frank, S M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Barber, T L [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Cummings, D G [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; DiSanto, T [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Esh, D W [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; Giglio, J J [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Goff, K M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Johnson, S G [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Kennedy, J R [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Jue, J-F [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Noy, M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; O' Holleran, T P [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Sinkler, W [UOP LLC, 25 E Algonquin Road, Des Plaines, IL 60017

    2006-03-27

    An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with {sup 238}Pu which has a much greater specific activity than {sup 239}Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10{sup 18} alpha-decays/gram of material. An equivalent time period for a similar dose of {sup 239}Pu would require approximately 1100 years. After four years of exposure to {sup 238}Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the {sup 238}Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) {sup 238}Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell

  15. HIPed Tailored Ceramic Waste Forms for the Immobilization of Cs, Sr and Tc

    Energy Technology Data Exchange (ETDEWEB)

    Melody L. Carter; Martin W. A. Stewart; Eric R. Vance; Bruce D. Begg; Sam Moricca; Julia Tripp

    2007-09-01

    The Advanced Fuel Cycle Initiative is developing advanced technologies to allow for the safe and economical disposal of waste from nuclear reactors. An important element of this initiative is the separation of key radionuclides . One of the systems being developed to separate key radionuclides is the UREX+1 process. The Tc and Cs/Sr solutions from UREX+1 process will require treatment and solidification for managed storage. This paper illustrates the benefits of HIPed tailored ceramic waste forms, to provide for the immobilization of separated Cs, Sr and Tc. Experimental data are presented for a Cs and Sr-bearing hollandite-rich tailored ceramic prepared with 12 wt% waste (on an oxide basis). Normalized MCC-1 type leach testing at 90oC for 28 days revealed extremely low Cs and Sr release rates of 0.003 and 0.004 g/m2/day respectively. Experimental data on the immobilization of Tc in titanate ceramics containing up to 40wt% TcO2 are also be presented.

  16. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  17. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  18. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  19. Terahertz Time-Domain Spectroscopy for In Situ Monitoring of Ceramic Nuclear Waste Forms

    Science.gov (United States)

    Clark, Braeden M.; Sundaram, S. K.

    2016-10-01

    The use of terahertz time-domain spectroscopy (THz-TDS) is presented as a non-contact method for in situ monitoring of ceramic waste forms. Single-phase materials of zirconolite (CaZrTi2O7), pyrochlore (Nd2Ti2O7), and hollandite (BaCs0.3Cr2.3Ti5.7O16 and BaCs0.3CrFeAl0.3Ti5.7O16) were characterized. The refractive index and dielectric properties in THz frequencies demonstrate the ability to distinguish between these materials. Differences in processing methods show distinct changes in both the THz-TDS spectra and optical and dielectric properties of these ceramic phases. The temperature dependence of the refractive index and relative permittivity of pyrochlore and zirconolite materials in the range of 25-200 °C is found to follow an exponential increasing trend. This can also be used to monitor the temperature of the ceramic waste forms on storage over extended geological time scales.

  20. Terahertz Time-Domain Spectroscopy for In Situ Monitoring of Ceramic Nuclear Waste Forms

    Science.gov (United States)

    Clark, Braeden M.; Sundaram, S. K.

    2016-06-01

    The use of terahertz time-domain spectroscopy (THz-TDS) is presented as a non-contact method for in situ monitoring of ceramic waste forms. Single-phase materials of zirconolite (CaZrTi2O7), pyrochlore (Nd2Ti2O7), and hollandite (BaCs0.3Cr2.3Ti5.7O16 and BaCs0.3CrFeAl0.3Ti5.7O16) were characterized. The refractive index and dielectric properties in THz frequencies demonstrate the ability to distinguish between these materials. Differences in processing methods show distinct changes in both the THz-TDS spectra and optical and dielectric properties of these ceramic phases. The temperature dependence of the refractive index and relative permittivity of pyrochlore and zirconolite materials in the range of 25-200 °C is found to follow an exponential increasing trend. This can also be used to monitor the temperature of the ceramic waste forms on storage over extended geological time scales.

  1. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dandeneau, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL[13], simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performance and properties. Table 1 lists the samples studied.

  2. Disposition of excess plutonium using ''off-spec'' MOX pellets as a sintered ceramic waste form

    International Nuclear Information System (INIS)

    The authors describe a potential strategy for the disposition of excess weapons plutonium in a way that minimizes (1) technological risks, (2) implementation costs and completion schedules, and (3) requirements for constructing and operating new or duplicative Pu disposition facilities. This is accomplished by an optimized combination of (1) using existing nuclear power reactors to ''burn'' relatively pure excess Pu inventories as mixed oxide (MOX) fuel and (2) using the same MOX fuel fabrication facilities to fabricate contaminated or impure excess Pu inventories into an ''off-spec'' MOX solid ceramic waste form for geologic disposition. Diversion protection for the SCWF to meet the ''spent fuel standard'' introduced by the National Academy of Sciences can be achieved in at least three ways. (1) One can utilize the radiation field from defense high-level nuclear waste by first packaging the SCWF pellets in 2- to 4-L cans that are subsequently encapsulated in radioactive glass in the Defense Waste Processing Facility (DWPF) glass canisters (a ''can-in-canister'' approach). (2) One can add 137Cs (recovered from defense wastes at Hanford and currently stored as CsCl in capsules) to an encapsulating matrix such as cement for the SCWF pellets in a small hot-cell facility and thus fabricate large monolithic forms. (3) The SCWF can be fabricated into reactor fuel-like pellets and placed in tubes similar to fuel assemblies, which can then be mixed in sealed repository containers with irradiated spent nuclear fuel for geologic disposition

  3. USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Bateman; Charles W. Solbrig

    2006-07-01

    The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas

  4. Tungsten bronze-based nuclear waste form ceramics. Part 1. Conversion of microporous tungstates to leach resistant ceramics

    Science.gov (United States)

    Luca, Vittorio; Griffith, Christopher S.; Drabarek, Elizabeth; Chronis, Harriet

    2006-11-01

    The effective immobilization of Cs + and/or Sr 2+ sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials has been achieved by heating in air at temperatures in the range 500-1000 °C. Crystalline powdered HTB materials formed by heating at 800 °C displayed leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. If the Cs-loaded HTB sorbents were pressed into pellets prior to calcination, ceramic monoliths could be prepared with negligible Cs volatilization losses. Heating to temperatures in excess of 1250 °C under dynamic air flow resulted in the melting of the sorbent to form phase assemblages consisting of millimetre-sized crystals of bronzoid phases. Up to 5 wt% mass loss was observed for small scale samples of melted materials under dynamic air flow. Both the calcined and melted bronzoid waste forms are multiphase ceramics in which Cs + remains bound within, and appears to stabilize, the hexagonal bronze phase, even after complete melting at 1300 °C. The leachability of Sr from the phases prepared by heating appears to be somewhat worse than that of Cs. Saturation of the HTB adsorbents with lanthanide elements (Nd, La, Ce) gave rise to cubic bronze phases in which we propose that the lanthanides substitute at the tungsten or molybdenum sites rather than the tunnel positions. The lanthanides were rather easily leached from the calcined phases in 0.1 M HNO 3 at 150 °C.

  5. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  6. Zirconolite-rich titanate ceramics for immobilisation of actinides - Waste form/HIP can interactions and chemical durability

    Science.gov (United States)

    Zhang, Y.; Stewart, M. W. A.; Li, H.; Carter, M. L.; Vance, E. R.; Moricca, S.

    2009-12-01

    Zirconolite-based titanate ceramics containing U plus Th or Pu have been prepared. The final consolidation to produce a dense monolithic waste form was carried out using hot isostatic pressing (HIPing) of the calcined materials within a stainless steel can. The ceramics were characterised and tested for their overall feasibility to immobilise impure Pu or separated actinide-rich radioactive wastes. As designed, tetravalent U and Pu are mainly incorporated in a durable zirconolite phase, together with Gd or Hf added as neutron absorbers. The interaction of the waste form with the HIP can was also examined. No changes in the U valences or the U/Pu-bearing phase distributions were observed at the waste form-HIP can interface.

  7. Leaching mechanisms in polyphase ceramic high-level nuclear waste forms

    International Nuclear Information System (INIS)

    The crystalline phases of ceramics developed for defense high-level nuclear waste dissolve by surface reaction-controlled mechanisms that, at high undersaturations, give dissolution rates linear in time. The effective back reactions are the precipitation of less-soluble reaction products. Reaction rates in acid regimes increase proportionally to hydrogen ion activity and are slowest in near-neutral regimes. In general the dissolution rates follow the Arrhenius equation, most with similar activation energies. Ceramic phases such as spinel, zirconolite, and magnetoplumbite are highly insoluble and dissolution rates can be measured only in strongly acid regimes. Nepheline is the common host phase for silica and alkali in most defense waste ceramics and is by far the least resistant mineral. Nepheline and some amorphous phases are preferentially leached from grain boundaries. In some ceramics this process continues until all nepheline has been removed. In others, such as the RSC-S29 defense waste ceramic, nepheline dissolution slows after a time, indicating that physical microencapsulation by the more resistant phases in the ceramic can limit leaching

  8. The precision of product consistency tests conducted with a glass-bonded ceramic waste form

    Science.gov (United States)

    Ebert, W. L.; Lewis, M. A.; Johnson, S. G.

    2002-09-01

    The product consistency test (PCT) that is used for qualification of borosilicate high-level radioactive waste (HLW) glasses for disposal can be used for the same purpose in the qualification of the glass-bonded sodalite ceramic waste form (CWF). The CWF was developed to immobilize radioactive salt wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuels. An interlaboratory study was conducted to measure the precision of PCTs conducted with the CWF for comparison with the precision of PCTs conducted with HLW glasses. The six independent sets of triplicate PCT results generated in the study were used to calculate the intralaboratory and interlaboratory consistency based on the concentrations of Al, B, Na, and Si in the test solutions. The results indicate that PCTs can be conducted as precisely with the CWF as with HLW glasses. For example, the values of the reproducibility standard deviation for Al, B, Na, and Si were 1.36, 0.347, 3.40, and 2.97 mg/l for PCT with CWF. These values are within the range of values measured for borosilicate glasses, including reference HLW glasses.

  9. Comparative transportation risk assessment for borosilicate-glass and ceramic forms for immobilization of SRP Defense waste

    International Nuclear Information System (INIS)

    It is currently planned to immobilize the SRP high-level nuclear waste in solid form and then ship it from SRP to a federal repository. This report compared transportation operations and risks for SRP high-level waste in a borosilicate glass form and in a ceramic form. Radiological and nonradiological impacts from normal transport and from potential accidents during transit were determined using the Defense Waste Process Facility Environmental Impact Statement (DWPF EIS) as the source of basic data. Applicable regulations and some current regulatory uncertainties are also discussed

  10. Cold pressed and sintered barium sulphate ceramic waste forms for direct immobilisation of medium level Magnox waste

    International Nuclear Information System (INIS)

    The cold pressing and sintering behaviour of barium sulphate ceramic waste forms for direct immobilisation of medium level Magnox waste is described. Pellets having a density of 3.7 g cm-3 and containing 11.5 v/o open porosity were obtained by first cold pressing at 120 MPa and then sintering at 1300 deg C for 8 h. The leach rate derived from weight losses in Soxhlet tests were 0.5 to 3.5 x 10-7 kg m-2 sec-1. They are similar to the values obtained for hot pressed barium sulphate floc having only 0.7 to 4.0 v/o open porosity. Unlike single phase ceramic materials where at constant temperature, density is found to be dependent on time, the sintering behaviour of barium sulphate floc was observed to have a short initial period where density was time dependent but then became independent of time (i.e. no further increase of density occurred irrespective of sintering time at a constant temperature). (author)

  11. X-ray absorption fine structure of aged, Pu-doped glass and ceramic waste forms

    Science.gov (United States)

    Hess, N. J.; Weber, W. J.; Conradson, S. D.

    1998-04-01

    X-ray absorption spectroscopic (XAS) studies were performed on three compositionally identical, Pu-doped, borosilicate glasses prepared 15 years ago at different α-activities by varying the 239Pu/ 238Pu isotopic ratio. The resulting α-activities ranged from 1.9×10 7 to 4.2×10 9 Bq/g and have current, accumulated doses between 8.8×10 15 to 1.9×10 18 α-decays/g. Two ceramic, polycrystalline zircon (ZrSiO 4) samples prepared 16 years ago with 10.0 wt% Pu was also investigated. Varying the 239Pu/ 238Pu isotopic ratio in these samples resulted in α-activities of 2.5×10 8 and 5.6×10 10 Bq/g and current, accumulated doses of 1.2×10 17 and 2.8×10 19 α-decays/g. The multicomponent composition of the waste forms permitted XAS investigations at six absorption edges for the borosilicate glass and at three absorption edges for the polycrystalline zircons. For both waste forms, analysis of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectra indicates that the local environment around the cations exhibits different degrees of disorder as a result of the accumulated α-decay dose. In general, cations with short cation-oxygen bonds show little effect from self-radiation whereas cations with long cation-oxygen bonds show a greater degree of disorder with accumulated α-decay dose.

  12. Radiation stability of ceramic waste forms determined by in situ electron microscopy and He ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    White, T.J. [Univ. of South Australia, Ingle Farm (Australia); Mitamura, H.; Hojou, K.; Furuno, S. [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1994-12-31

    The radiation stability of polyphase titanate ceramic waste forms was studied using analytical transmission electron microscopy, in combination with in situ irradiation by 30 keV He{sup +} ions, followed by staged annealing. Two experiments were conducted. In the first, a reconnaissance investigation was made of the stabilities of the synthetic minerals hollandite, zirconolite, and perovskite when subjected to a total dose of 1.8 x 10{sup 17} He{sup +} cm{sup {minus}2}. It was found that all phases amorphized at approximately the same rate, but perovskite recovered its structure more rapidly and at lower temperatures than the other phases. In particular, annealing for 10 minutes at 1000{degrees}C was sufficient for perovskite to completely regain its crystallinity, while zirconolite and hollandite were only partially restored by these conditions. In the second experiment, the response of a thin hollandite crystal to irradiation was examined by selected area electron diffraction. At a dose of 1.5 x 10{sup 15} He{sup +} cm{sup {minus}2} its incommensurate superstructure was disrupted, but even at a dose of 3 x 10{sup 16} He cm{sup {minus}2} the hollandite subcell was largely intact. For this dose, total recovery was achieved by annealing for 1 minute at 1000{degrees}C.

  13. Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions

    Science.gov (United States)

    Zhang, Yingjie; Li, Huijun; Moricca, Sam

    2008-07-01

    A pyrochlore-structured titanate ceramic has been studied in respect of its overall feasibility for immobilisation of impure actinide-rich radioactive wastes through the hot isostatic pressing (HIPing) technique. The resultant waste form contains mainly pyrochlore (˜70%), rutile (˜14%) as well as perovskite (˜12%), hollandite (˜2%) and brannerite (˜1%). Optical spectroscopy confirms that uranium (used to simulate Pu) exists mainly in the stable pyrochlore-structured phase as tetravalent ions as designed. The stainless steel/waste form interactions under HIPing conditions (1280 °C/100 MPa/3 h) do not seem to change the actinide-bearing phases and therefore should have no detrimental effect on the waste form.

  14. Crystalline Ceramic Waste Forms: Report Detailing Data Collection In Support Of Potential FY13 Pilot Scale Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S.; Amoroso, J.; Marra, J. C.; Fox, K. M.

    2012-09-21

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to summarize the data collection in support of future melter demonstration testing for crystalline ceramic waste forms. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. The principal difficulties encountered during processing of the ?reference ceramic? waste form by a melt and crystallization process were the incomplete incorporation of Cs into the hollandite phase and the presence of secondary Cs-Mo non-durable phases. In the single phase hollandite system, these issues were addressed in this study by refining the compositions to include Cr as a transition metal element and the use of Ti/TiO{sub 2} buffer to maintain reducing conditions. Initial viscosity studies of ceramic waste

  15. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    Energy Technology Data Exchange (ETDEWEB)

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M. [University of Nevada - Las Vegas, Howard R. Hughes College of Engineering, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States); Hartmann, Thomas [University of Nevada - Las Vegas, Harry Reid Canter, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  16. Applications of High Energy Ion Beam Techniques in Environmental Science: Investigation Associated with Glass and Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Shutthanandan, V; Zhang, Yanwen

    2006-02-01

    High energy ion beam capabilities including Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) have been very effectively used in environmental science to investigate the ion exchange mechanisms in glass waste forms and the effects of irradiation in glass and ceramic waste forms in the past. In this study, RBS and NRA along with SIMNRA simulations were used to monitor the Na depletion and D and 18O uptake in alumina silicate glasses, respectively, after the glass coupons were exposed to aqueous solution. These results show that the formation of a reaction layer and an establishment of a region where diffusion limited ion exchange occur in these glasses during exposure to silica-saturated solutions. Different regions including reaction and diffusion regions were identified on the basis of the depth distributions of these elements. In the case of ceramics, damage accumulation was studied as a function of ion dose at different irradiation temperatures. A sigmoidal dependence of relative disorder on the ion dose was observed. The defect dechanneling factors were calculated for two irradiated regions in SrTiO? using the critical angles determined from the angular yield curves. The dependence of defect dechanneling parameter on the incident energy was investigated and it was observed that the generated defects are mostly interstitial atoms and amorphous clusters. Thermal recovery experiments were performed to study the damage recovery processes up to a maximum temperature of 870 K.

  17. Stability of ceramic waste forms in potential repository environments: a review

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R. J.; Palmer, R. A.

    1982-03-31

    Most scenarios for geologic disposal of high-level nuclear waste include the eventual intrusion of groundwater into the repository. Reactions in the system and eventual release of the radionuclides, if any, will be controlled by the chemistry of the groundwater, the surrounding rock, the waste form, and any engineered barrier materials that are present, as well as by the temperature and pressure of the system. This report is a compilation and evaluation of the work completed to date on interactions within the waste-form/host-rock/groundwater system at various points in its lifetime. General results from leaching experiments are presented as a basis for comparison. The factors involved in studying the complete system are discussed so that future research may avoid some of the oversights of past research. Although relatively little hard data on prototype waste-form/repository-system interactions exist at this time, the available data and their implications are discussed. Sorption studies and models for predicting radionuclide migration are also presented, again with a study of the factors involved.

  18. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization

    Science.gov (United States)

    Pet'kov, Vladimir; Asabina, Elena; Loshkarev, Vladimir; Sukhanov, Maksim

    2016-04-01

    We have summarized our data and literature ones on the thermophysical properties and hydrolytic stability of Sr0.5Zr2(PO4)3 compound as a host NaZr2(PO4)3-type (NZP) structure for immobilization of 90Sr-containing radioactive waste. Absence of any polymorphic transformations on the temperature dependence of its heat capacity between 7 and 665 K is caused by the stability of crystalline Sr0.5Zr2(PO4)3. Calculated values of thermal conductivity coefficients at zero porosity in the range 298-673 K were 1.86-2.40 W·m-1 K-1. The compound may be classified as low thermal expanding material due to its average linear thermal expansion coefficient. Study of the hydrolytic stability in acid and alkaline media has shown that the relative mass fraction of Sr2+ ions, released into aggressive leaching media, didn't exceed 1% of the mass of sample. Soxhlet leaching studies have shown substantial resistance towards the release of Sr2+ ions into distilled water. Feeble sinterability constrains practical applications of NZP substances, that is why known in literature methods of Sr0.5Zr2(PO4)3 dense ceramics obtaining have been reviewed.

  19. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A.; Knox, L. [Argonne National Lab., Argonne, IL (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the {open_quotes}problem{close_quotes} DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization.

  20. Long-term behaviour of TRU-waste-bearing ceramics Task 3 Characterization of radioactive waste forms a series of final reports (1985-89) No 16

    International Nuclear Information System (INIS)

    The aluminium-silicate ceramic matrix KAB 78, developed for the Immobilization of TRU wastes, has been doped with 20 wt% of Pu(238)O2, in order to irradiate the matrix by the same α-dose over a period of three years, as accumulated within a storage time of about 100 000 years, when loaded with the real TRU waste. The Pu(238)-doped ceramic KAB 78 was investigated, by means of ceramographic methods, while the accumulated α-dose increased up to 8.33 E 9 Gy (9.4 E 18 α-decays/g). Special attention was directed to the development of the microstructure, the crystalline state and the lattice constants of the matrix phases, as well as to stored energy, as a function of the accumulated α-dose. The lattice constants of the matrix phases corundum and mullite were found to be only slightly enlarged. Any sign of metamictization beginning has not been detected. Changes in the micro-structure have not occurred and the amount of stored energy has been determined to be less than 11 J/g. In order to study the corrosion behaviour of the Pu(238)-doped ceramic and ceramics loaded with real dissolver residues, leach tests were performed over a period of 214 days, using either Q-brine or Dl-water of up to 2000C. Leach rates, based on the total α-activity were found to be slightly higher, when leaching the Pu(238)-doped ceramics. Reaction zones of 150 up to 600 μm thickness were formed, with a significant decrease of Si, whereas the concentrations of Al and Pu remained unaffected

  1. Evidence of Technetium and Iodine from a Sodalite-Bearing Ceramic Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Snyder, Michelle MV; Brown, Christopher F.; Pierce, Eric M.

    2016-03-01

    Current plans for nuclear waste vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) lack the capacity to treat all of the low activity waste (LAW) that is not encapsulated in the vitrified product. Several technologies are being considered to treat the excess LAW. One such technology is Fluidized Bed Steam Reforming (FBSR). The FBSR process results in a granular product composed of feldspathoid mineral phases that immobilize the major components in the LAW as well as other contaminants of concern (COCs), with Tc and I expected to be present in sodalite cages formed during the process. In order to meet compressive strength requirements at the Hanford Integrated Disposal Facility (IDF), the granular product may be encapsulated in a monolith. To demonstrate the ability of the technology to serve the mission of managing excess LAW, Single Pass Flow-Through (SPFT) tests have been performed on non-radioactive granular materials and granular materials encapsulated in a geopolymer binder produced at the engineering- and bench-scale as well as a granular product produced at the bench scale with actual Hanford tank waste. SPFT tests were conducted at 40 °C for durations up to 2 months with a flow-through solution buffered at pH 9. The forward reaction rate of the non-radioactive mineral product dissolution based on Si release for the granular product was measured to be (6.2 ± 2.1) × 10-4 g/m2d for the engineering-scale product and (13 ± 4.9) × 10-4 g/m2d for the bench-scale product. The resulting non-radioactive monoliths showed forward reaction rates based on Si release of (3.4 ± 1.1) × 10-4 g/m2d for the engineering-scale material and (4.2 ± 1.5) × 10-4 g/m2d for the bench-scale material demonstrating that encapsulation of the FBSR granular product in a monolith does not significantly alter the performance of the material. Finally, an FBSR granular product created at the bench scale using actual Hanford LAW gave similar release values

  2. The stability under irradiation of hollandite ceramics, specific radioactive cesium-host waste forms

    International Nuclear Information System (INIS)

    Investigations are currently performed on matrices for the specific immobilization of long-lived radionuclides such as fission products resulting from an enhanced reprocessing of spent fuel. Hollandite (nominally BaA2Ti6O16), one of the phases constituting SYNROC, receives renewed interest as specific Cs host wasteform. The radioactive cesium isotopes decay involves the emission of β particles, γ rays and the transmutation of Cs to stable Ba ions. This study deals with the synthesis of hollandite ceramics by oxide route and single crystals by a flux method having the BaxCsy(Al,Fe)2x+yTi8-2x-yO16 composition type (l≤x≤1.28; 0≤y≤0.28). The influence of the hollandite chemical composition on the hollandite structure and microstructure is studied. To estimate the hollandite radiation resistance, external electron irradiation experiments, simulating the β particles emitted by radioactive cesium, were carried on single phase materials. The radiation effects were characterized by electron paramagnetic resonance (EPR) and Moessbauer spectroscopy. (authors)

  3. Experimental Determination of the Speciation, Partitioning, and Release of Perrhenate as a Chemical Surrogate for Pertechnetate from a Sodalite-Bearing Multiphase Ceramic Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL; Lukens, Wayne W [Lawrence Berkeley National Laboratory (LBNL); Fitts, Jeffrey P [Princeton University; Tang, Guoping [ORNL; Jantzen, C M [Savannah River National Laboratory (SRNL)

    2013-01-01

    A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk x-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion

  4. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.; Jantzen, Carol. M.; Tang, G.

    2013-12-01

    A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion

  5. Leaching of a zirconolite ceramic waste-form under proton and He{sup 2+} irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tribet, M.; Toulhoat, N. [Univ. de Lyon, Univ. Lyon1, CNRS/IN2P3, UMR5822, Inst. de Physique Nucleaire de Lyon (IPNL), Villeurbanne (France); Moncoffre, N.; Jegou, C. [CEA/DEN/DTCD/SECM, Bagnols sur Ceze (France); Leturcq, G. [CEA/DEN/DRCP/SCPS, Bagnols sur Ceze (France); Corbel, C. [CEA/DSM/DRECAM/LSI, Ecole Polytechnique, Palaiseau (France); Toulhoat, P. [Univ. Lyon, Univ. Lyon1, CNRS/ISA, UFR de Chimie Biochimie, Villeurbanne (France)

    2008-07-01

    In the hypothesis of a nuclear waste geological disposal, zirconolite is a candidate host material for minor tri- and tetra-valent actinides arising from enhanced nuclear spent fuel reprocessing and partitioning. Its chemical durability has been studied here under charged particle-induced radiolysis (He{sup 2+} and proton external beams) to identify possible effects on dissolution rates and mechanisms in pure water. Two experimental geometries have been used to evaluate the influence of the following parameters: solid irradiation and total deposited energy. Results on the evolution of the elemental releases due to the enhanced dissolution of the zirconolite surface during charged particle-induced irradiation of water are presented. Under radiolysis, elemental releases are first kinetically controlled. When the titanium and the zirconium releases reach (or exceed) their corresponding hydroxide solubility limits, the zirconolite dissolution becomes thermodynamically controlled. (orig.)

  6. Tungsten bronze-based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics

    Science.gov (United States)

    Griffith, Christopher S.; Sebesta, Ferdinand; Hanna, John V.; Yee, Patrick; Drabarek, Elizabeth; Smith, Mark E.; Luca, Vittorio

    2006-11-01

    Conversion of a granular molybdenum-doped, hexagonal tungsten bronze (MoW-HTB)-polyacrylonitrile (PAN) composite adsorbent to a leach resistant ceramic waste form capable of immobilizing adsorbed Cs + and Sr 2+ has been achieved by heating in air at temperatures in the range 600-1200 °C. Thermal treatment of the Cs- and Sr-loaded composite material at 1000 °C was sufficient to invoke a 60% reduction in volume of the composite while still retaining its spherical morphology. Cs-133 MAS NMR studies of this sample suite at 9.4 T and 14.1 T showed that multiple Cs sites are present throughout the entire thermal treatment range. Scanning electron microscopy investigations of the phase assemblages resulting from thermal treatment demonstrated that the full complement of Cs, and the majority of Sr, partitions into HTB phases (A 0.16-0.3MO 3; A = Cs +, Sr 2+ and Na +; M = Mo, W). The potentially reducing conditions resulting from the removal of the PAN matrix or the presence of high concentrations of Na + relative to either Cs + or Sr 2+ does not retard the formation of the high temperature HTB phases. The fraction of Cs + and Sr 2+ leached from the tungstate phase assemblages was superior or comparable with cesium hollandite (Cs 0.8Ba 0.4Ti 8O 18; f = ≈8 × 10 -5; rate = <1.2 × 10 -4 g/m 2/day) and strontium titanate (SrTiO 3; f = 3.1 × 10 -3; rate = 2.63 × 10 -4 g/m 2/day), respectively, using a modified PCT test in Millipore water at 90 °C. Furthermore, where aggressive leaching conditions were employed (0.1 M HNO 3; 150 °C; 4 days), the tungstate phase assemblages displayed leach resistance almost two orders of magnitude greater than the reference phases.

  7. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    International Nuclear Information System (INIS)

    Highlights: • Multiphase ceramic waste form is composed of primarily of nepheline, nosean, and sodalite. • Rhenium is in the 7+ oxidation state and has partitioned to a mixed Re-bearing sodalite phase. • Mechanism of corrosion for the multiphase matrix is similar to other silicate minerals. • A mixed-anion sodalite phases controls Re release in the multiphase waste forms. - Abstract: A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 °C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination

  8. Tungsten bronze-based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate-polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S. [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Sebesta, Ferdinand [Czech Technical University in Prague, Department of Nuclear Chemistry, Brehova 7, 115 19 Prague 1 (Czech Republic); Hanna, John V. [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Yee, Patrick [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Drabarek, Elizabeth [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Smith, Mark E. [Department of Physics, University of Warwick, Gibbett Hill Road, Coventry CV47AL (United Kingdom); Luca, Vittorio [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: vlu@ansto.gov.au

    2006-11-30

    Conversion of a granular molybdenum-doped, hexagonal tungsten bronze (MoW-HTB)-polyacrylonitrile (PAN) composite adsorbent to a leach resistant ceramic waste form capable of immobilizing adsorbed Cs{sup +} and Sr{sup 2+} has been achieved by heating in air at temperatures in the range 600-1200 deg. C. Thermal treatment of the Cs- and Sr-loaded composite material at 1000 deg. C was sufficient to invoke a 60% reduction in volume of the composite while still retaining its spherical morphology. Cs-133 MAS NMR studies of this sample suite at 9.4 T and 14.1 T showed that multiple Cs sites are present throughout the entire thermal treatment range. Scanning electron microscopy investigations of the phase assemblages resulting from thermal treatment demonstrated that the full complement of Cs, and the majority of Sr, partitions into HTB phases (A{sub 0.16-0.3}MO{sub 3}; A = Cs{sup +}, Sr{sup 2+} and Na{sup +}; M = Mo, W). The potentially reducing conditions resulting from the removal of the PAN matrix or the presence of high concentrations of Na{sup +} relative to either Cs{sup +} or Sr{sup 2+} does not retard the formation of the high temperature HTB phases. The fraction of Cs{sup +} and Sr{sup 2+} leached from the tungstate phase assemblages was superior or comparable with cesium hollandite (Cs{sub 0.8}Ba{sub 0.4}Ti{sub 8}O{sub 18}; f = {approx}8 x 10{sup -5}; rate = <1.2 x 10{sup -4} g/m{sup 2}/day) and strontium titanate (SrTiO{sub 3}; f = 3.1 x 10{sup -3}; rate = 2.63 x 10{sup -4} g/m{sup 2}/day), respectively, using a modified PCT test in Millipore water at 90 deg. C. Furthermore, where aggressive leaching conditions were employed (0.1 M HNO{sub 3}; 150 deg. C; 4 days), the tungstate phase assemblages displayed leach resistance almost two orders of magnitude greater than the reference phases.

  9. Demonstration of an approach to waste form qualification through simulation of liquid-fed ceramic melter process operations

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, P.W.; Kuhn, W.L.; Peters, R.D.; Pulsipher, B.A.

    1986-07-01

    During fiscal year 1982, the US Department of Energy (DOE) assigned responsibility for managing civilian nuclear waste treatment programs in the United States to the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL). One of the principal objectives of this program is to establish relationships between vitrification process control and glass quality. Users of the liquid-fed ceramic melter (LFCM) process will need such relationships in order to establish acceptance of vitrified high-level nuclear waste at a licensed federal repository without resorting to destructive examination of the canisters. The objective is to be able to supply a regulatory agency with an estimate of the composition, durability, and integrity of the glass in each waste glass canister produced from an LFCM process simply by examining the process data collected during the operation of the LFCM. The work described here will continue through FY-1987 and culminate in a final report on the ability to control and monitor an LFCM process through sampling and process control charting of the LFCM feed system.

  10. Synthesis of Multiphase SYNROC Powders as a High Level Radioactive Waste Ceramic Forms by a Solution Combustion Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Min; Jung, Soo-Ji; Kim, Yeon-Ku; Jung, Choong-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    These minerals have the capacity to accept nearly all of the elements present in the high-level nuclear waste (radwaste) produced during the reprocessing of spent nuclear fuel rods of nuclear reactors. Synroc minerals can accommodate up to 20 wt% (as oxide) of radwaste in their crystal lattices as dilute solid solutions. Synroc-B refers to the waste free composition, proposed for the immobilization of nuclear wastes generated in the commercial nuclear power plants, while the waste-loaded synroc is called synroc-C. The oxide-route (solid state reaction) with high temperatures and long sintering times is the most known process to form a solid solution. However, the synthesis of nano powders using an exothermic redox reaction between nitrate and organics in an aqueous solution has been reported. Most of the high-level radioactive wastes forms were dissolved in nitric acid, and therefore the solution combustion synthesis (hereafter called SCS) which uses all of the metal nitrates as reactant materials is a very promising process to immobilize the radioactive metal element wastes in the form of solid solutions. During the combustion, a significant volume of gas evolved and the high temperature inherent to the highly exothermic nature led to fine and homogeneous well-crystallized powder within a short reaction time. The following conclusions were obtained by comparing the combustion synthesis with the oxide route synthesized Synroc-B powders. With Oxide route synthesized synthesis through a wet ball milling and with a calcination temperature at 1100 .deg. C, the synthesized particles do not match the Synroc-B composition. It was determined to be a heterogeneous particle size showed about 1μm. However, Synroc-B particles prepared by combustion synthesis showed all Hollandite, Zirconolite, Perovskite and Rutile structures having a configuration of the complete Synroc-B at a calcination temperature of 1100 .deg. C.

  11. Crichtonite structure type (AM21O38 and A2M19O36) as a host phase in crystalline waste form ceramics

    International Nuclear Information System (INIS)

    Previous studies of ceramic crystalline waste forms, e.g. Synroc, tailored ceramics, and supercalcine, have concentrated on phases which are major constituents in the formulations: zirconolite, pyrochlore, hollandite, perovskite and zircon. These phases usually occur as members of multi-phase assemblages which are required for the incorporation of the wide variety of radionuclide elements present in the waste and the non-radioactive components added during reprocessing and pretreatment. The crichtonite structure (AM21O38 and A2M19O36), based on crystallo-chemical considerations and natural compositional analogues, may effectively incorporate both fission products and actinides. The naturally occurring crichtonite structure types include Sr (crichtonite), Ca and REE (loveringite), Na (landauite), REE and U (davidite), K (mathiasite), Ba (lindsleyite), and Pb (senaite), which are classified based on the dominant, large cations occupying the A-site. The crystal structure contains three types of sites of distinct size, from very large, M0, intermediate (M1, M3, M4, and M5), to small (M2). Numerous coupled substitutions within these cation sites allow for charge balance. Synthesis experiments were completed on the Ba-, Sr-, Ca-, and K-member compositions at 3 GPa and 1,150 C. Low pressure synthesis should be possible, as natural minerals mostly occur in low-P systems. Reaction products were characterized by powder X-ray diffraction, scanning electron microscopy and electron microprobe analysis. In addition to the crichtonite phases, rutile, spinel, perovskite and armacolite were identified as well. The Crichtonite structure type is estimated to accommodate waste loading of up to 30 wt. % PW-4B waste

  12. Densified waste form and method for forming

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  13. Densified waste form and method for forming

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2016-05-17

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  14. Development of polyphase ceramics for the immobilization of high-level Defense nuclear waste

    International Nuclear Information System (INIS)

    The report contains two major sections: Section I - An Improved Polyphase Ceramic for High-Level Defense Nucleation Waste reports the work conducted on titanium-silica based ceramics for immobilizing Savannah River Plant waste. Section II - Formulation and Processing of Alumina Based Ceramic Nuclear Waste Forms describes the work conducted on developing a generic alumina and alumina-silica based ceramic waste form capable of immobilizing any nuclear waste with a high aluminum content. Such wastes include the Savannah River Plant wastes, Hanford neutralized purex wastes, and Hanford N-Reactor acid wastes. The design approach and process technology in the two reports demonstrate how the generic high waste loaded ceramic form can be applied to a broad range of nuclear waste compositions. The individual sections are abstracted and indexed separately

  15. Synthesis of Ceramics in Different Colors from Industrial Waste

    OpenAIRE

    Mihail Doynov; Tsvetan Dimitrov; Maria Kokkori

    2013-01-01

    The synthesis of arsenic-free ceramics from industrial waste is studied. Samples of waste containing siliceous material passed the exploitation leap-guard layer shift reactor whose main oxide is -Al2O3 and, with the addition of natural raw materials and pure oxide, arsenic-free ceramics were synthesized with thermal and electrical properties related to the main phase of spinel group minerals; solid solutions were also formed in the process of synthesis. Insulating properties were established ...

  16. Development of Technology for Immobilization of Waste Salt from Electrorefining Spent Nuclear Fuel in Zeolite-A for Eventual Disposition in a Ceramic Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson; Prateek Sachdev

    2008-04-01

    The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

  17. Coated particle waste form development

    International Nuclear Information System (INIS)

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  18. Glasses and ceramics for immobilisation of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    The U.K. Research Programme on Radioactive Waste Management includes the development of processes for the conversion of high level liquid reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behaviour under storage and disposal conditions have been examined. Methods for immobilising activity from other wastes by conversion to glass or ceramic forms is described. The U.K. philosophy of final solutions to waste management and disposal is presented. (author)

  19. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  20. Hot isostatic pressing of ceramic waste from spent nuclear fuel

    International Nuclear Information System (INIS)

    Argonne National Laboratory has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in electrometallurgical treatment of spent Experimental Breeder Reactor-II fuel. The ceramic waste process culminated with a hot isostatic pressing operation. This paper reviews the installation and operation of a hot isostatic press in a radioactive environment. Processing conditions for the hot isostatic press are presented for non-irradiated material and irradiated material. Sufficient testing was performed to demonstrate that a hot isostatic press could be used as the final step of the processing of ceramic waste for the electrometallurgical spent fuel treatment process

  1. Improved polyphase ceramic for high-level defense waste

    International Nuclear Information System (INIS)

    Modifications of the chemical formulation and processing of the Synroc-D polyphase ceramic for defense waste have been studied to provide greater flexibility with respect to compositional variations in the waste and to improve leach resistance. It has been demonstrated that by applying only that amount of reduction to the waste required to produce uranium in the 4+ state and by using lower consolidation temperatures, an improved ceramic can be formed. The resulting ceramic consolidated at 10400C and 10,000 psi maintanis the Synroc-D zirconolite, perovskite and nepheline phases; however, the two Synroc-D spinel phases are replaced with a single magnetite-type spinel and two additional radiophases, magnetoplumbite, and a cubic murataite-type phase. This modified phase assemblage provides crystalline ost sites for all radionuclides and trace elements in SRP waste, minmizes amorphoous intergranular material, and shows superior leach resistance

  2. Characterisation of Nd-doped calcium aluminosilicate parent glasses designed for the preparation of zirconolite-based glass-ceramic waste forms

    International Nuclear Information System (INIS)

    Zirconolite-based (nominally CaZrTi2O7) glass-ceramics belonging to the SiO2Al2O3-CaO- ZrO3-TiO2 system are good waste forms for the specific immobilisation of actinides. The understanding of their crystallisation processes implies to investigate the structure of the glass. Thus, the environment around Ti, Zr (nucleating agents) and Nd (trivalent actinides surrogate) was characterised in parent glasses. Electron spin resonance (ESR) study of the small amount of Ti3+ occurring in the glass enabled to identify two types of sites for titanium: the main one is of C4v or D4h symmetry. EXAFS showed that Zr occupied a quite well defined 6-7-fold coordinated site with second neighbours which could correspond to Ca/Ti and Zr. Nd environment was probed by optical spectroscopies (absorption, fluorescence), ESR and EXAFS. All these techniques demonstrated that the environment around Nd was very constrained by the glassy network. Notably, Nd occupies a highly distorted 8-9-fold coordinated site in the parent glass. (authors)

  3. Zirconia ceramics for excess weapons plutonium waste

    Science.gov (United States)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  4. Effects of heat treatment and formulation on the phase composition and chemical durability of the EBR-ll ceramic waste form.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. E.; Dietz, N. L.; Janney, D. E.

    2006-01-31

    High-level radioactive waste salts generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor-II will be immobilized in a ceramic waste form (CWF). Tests are being conducted to evaluate the suitability of the CWF for disposal in the planned federal high-level radioactive waste repository at Yucca Mountain. In this report, the results of laboratory tests and analyses conducted to address product consistency and thermal stability issues called out in waste acceptance requirements are presented. The tests measure the impacts of (1) variations in the amounts of salt and binder glass used to make the CWF and (2) heat treatments on the phase composition and chemical durability of the waste form. A series of CWF materials was made to span the ranges of salt and glass contents that could be used during processing: between 5.0 and 15 mass% salt loaded into the zeolite (the nominal salt loading is 10.7%, and the process control range is 10.6 to 11.2 mass%), and between 20 and 30 mass% binder glass mixed with the salt-loaded zeolite (the nominal glass content is 25% and the process control range is 20 to 30 mass%). In another series of tests, samples of two CWF products made with the nominal salt and glass contents were reheated to measure the impact on the phase composition and durability: long-term heat treatments were conducted at 400 and 500 C for durations of 1 week, 4 weeks, 3 months, 6 months, and 1 year; short-term heat treatments were conducted at 600, 700, 800, and 850 C for durations of 4, 28, 52, and 100 hours. All of the CWF products that were made with different amounts of salt, zeolite, and glass and all of the heat-treated CWF samples were analyzed with powder X-ray diffraction to measure changes in phase compositions and subjected to 7-day product consistency tests to measure changes in the chemical durability. The salt loading had the greatest impact on phase composition and durability. A

  5. Ceramic package fabrication for YMP nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K.

    1994-08-01

    The purpose of this work is to develop alternate materials/design concepts to metal barriers for the Nevada Nuclear Waste Storage Investigations Project. There is some potential that site conditions may prove to be too aggressive for successful employment of the metal alloys under current consideration or that performance assessment models will predict metal container degradation rates that are inconsistent with the goal of substantially complete containment included in the NRC regulations. In the event that the anticipated lifetimes of metal containers are considered inadequate, alternate materials (i.e. ceramics or ceramic/metal composites) will be chosen due to superior corrosion resistance. This document was prepared using information taken from the open literature, conversations and correspondence with vendors, news releases and data presented at conferences to determine what form such a package might take. This discussion presents some ceramic material selection criteria, alternatives for the materials which might be used and alternatives for potential fabrication routes. This includes {open_quotes}stand alone{close_quotes} ceramic components and ceramic coatings/linings for metallic structures. A list of companies providing verbal or written information concerning the production of ceramic or ceramic lined waste containers appears at the end of this discussion.

  6. Minimum additive waste stabilization using vitreous ceramics. Progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Vitreous ceramic waste forms are being developed at Pacific Northwest Laboratory to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program to support the US Department of Energy's environmental restoration efforts. These vitreous ceramics are composed of various metal-oxide crystalline phases embedded in a silicate-glass phase. This work extends the success of vitreous ceramic waste forms to treat wastes with both high metal and high alkali contents. Two successful approaches are discussed: developing high-durability alkali-binding crystals in a durable glassy matrix, and developing water-soluble crystals in a durable and continuous glassy matrix. Nepheline-vitreous ceramics were demonstrated for the immobilization of high-alkali wastes with alkali contents up to 21 wt%. The chemical durability of the nepheline-vitreous ceramics is better than the corresponding glasses, especially in over longer times. Vitreous ceramics with Cs2O loading up to 35.4 wt% have been developed. Vitreous ceramic waste forms were developed from 90 and 100% Oak Ridge National Laboratory K-25 pond sludge. Heat treatment resulted in targeted crystal formation of spinels, potassium feldspar, and Ca-P phases. The K-25 pond sludge vitreous ceramics were up to 42 times more durable than high-level environmental assessments (EA) glass. The toxicity characteristics leach procedure (TCLP) concentration of LVC-6 is at least 2,000 times lower than US Environmental Protection Agency limits. Idaho Chemical Process Plant (ICPP) calcined wastes were immobilized into vitreous ceramics with calcine loading up to 88%. These ICPP-vitreous ceramics were more durable than the EA glass by factors of 5 to 30. Vitreous ceramic waste forms are being developed to complement, not to replace, glass waste forms

  7. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  8. Evaluation and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms

  9. Advanced waste forms from spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; McPheeters, C.C.

    1995-12-31

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed.

  10. Alkaline activation of ceramic waste materials

    OpenAIRE

    REIG CERDÁ, LUCÍA; Tashima, M. M.; Soriano, L.; Borrachero, M. V.; Monzó, J.; Payá, J.

    2013-01-01

    Ceramic materials represent around 45 % of construction and demolition waste, and originate not only from the building process, but also as rejected bricks and tiles from industry. Despite the fact that these wastes are mostly used as road sub-base or construction backfill materials, they can also be employed as supplementary cementitious materials, or even as raw material for alkali-activated binders This research aimed to investigate the properties and microstructure of alkali-activated cem...

  11. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic

    International Nuclear Information System (INIS)

    A novel newberyite-rich magnesium-phosphate ceramic, intended for the stabilization of the US Department of Energy's low-level mixed-waste streams, has been developed by an acid-base reaction between magnesium oxide and a phosphoric acid solution. The reaction slurry, formed at room temperature, sets rapidly and forms a lightweight hard ceramic with low open porosity and a high compression strength of ∼ 6,200 psi. It is a composite of stable mineral phases of newberyite, luenebergite, and residual Mg oxide. Using this matrix, the authors developed superior waste forms for a surrogate ash waste stream. The final waste form is a low-permeability structural-quality ceramic, in which hazardous contaminants are chemically fixed and physically encapsulated. The compression strength of the waste form is an order of magnitude higher than the land disposal requirement, even at high waste loading. The high compression strength is attributed to stronger bonds in the waste form that result from participation of ash waste in the setting reactions. Long-term leaching studies show that the waste form is stable in an aqueous environment. The chemically bonded phosphate ceramic approach in this study may be a simple, inexpensive, and efficient method for fabricating high-performance waste forms either for stabilizing waste streams or for developing value-added construction materials from high-volume benign waste streams

  12. Review of radiation effects in solid-nuclear-waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10/sup 3/ to 10/sup 6/ years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references.

  13. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  14. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    International Nuclear Information System (INIS)

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239Pu

  15. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  16. Development of Cordierite Honeycomb Ceramics Using Cordierite Waste

    Science.gov (United States)

    Mongkolkachit, C.; Aungkavattana, P.; Gosuphan, W.; Wasanapiarnpong, T.

    2011-10-01

    Cordierite ceramics (2MgO·2Al2O3·5SiO2) were prepared from cordierite waste from refractory industry. The composition of the mixture composed of 70 wt% cordierite waste powder, 23 wt% talc and 7 wt% alumina mixing with binders, plasticizer, lubricant and water to form ceramic dough. The cordierite samples were sintered at 1250-1350 °C for 2 h. All samples were investigated in terms of phase composition, microstructure, bending strength and thermal expansion coefficient. It was found that the sample sintered at 1300 °C achieved the single phase of cordierite with the bending strength of 21.70 MPa and the lowest thermal expansion coefficient of 2.94×10-6 °C-1 observed in this study.

  17. Synthesis of Ceramics in Different Colors from Industrial Waste

    Directory of Open Access Journals (Sweden)

    Mihail Doynov

    2013-01-01

    Full Text Available The synthesis of arsenic-free ceramics from industrial waste is studied. Samples of waste containing siliceous material passed the exploitation leap-guard layer shift reactor whose main oxide is -Al2O3 and, with the addition of natural raw materials and pure oxide, arsenic-free ceramics were synthesized with thermal and electrical properties related to the main phase of spinel group minerals; solid solutions were also formed in the process of synthesis. Insulating properties were established by successive heating and cooling of the specimen for six cycles. Electrical insulating properties were established by the method of resistance to arcing. The relative density was determined by hydrostatic method and diffusion lines of molecules at the main phase were characterized by X-ray diffraction analysis. The experimental procedures followed in this study allowed mixing on a molecular level due to the small dimensions of the crystallite which in turn explains the relatively high density.

  18. Alternative Waste Forms for Electro-Chemical Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  19. Alternative waste forms: a comparative study

    International Nuclear Information System (INIS)

    A characterization study utilizing comparative tests has been conducted to assess product inertness of alternative waste form materials, having evaluated at this point four basic product types: sintered ceramics, glass ceramics, glass and concrete. The seven specific waste form materials studied represent simulated nuclear waste loading of 5% to 100%, processed between room temperature and 12000C and subjected to characterization tests including phase analysis, microstructure, compression testing, volatility and leach testing. Significant conclusions based upon the results obtained to date are: sintered calcine waste form PW-9 does not retain Na, Mo and Cs when leached 900C and, in fact, does not remain a solid; glass and supercalcine are alike under both hydrous and hydrothermal leach conditions with glass exhibiting a greater retention of sodium and molybdenum, supercalcine having a greater retention of cesium, and both forms approximately equal in strontium retention; volatility measurements indicate that an order of magnitude decrease in volatility occurs when a calcine waste form is incorporated in a crystalline or glassy host; glass 76-68 is superior to supercalcine SPC-5B in retention of volatiles below 11000C because of the high release of Na from SPC-5B, however, as the temperature approaches or exceeds the glass melt temperature, volatile losses of the glass equal or exceed that of SPC-5B; glass 76-68 and supercalcine SPC-5B have high compressive strengths when compared to sintered PW-9 and cement products. This is apparently due to a stronger continuum bond resulting from a glassy matrix or crystalline ingrowth over a simple mechanical agglomeration of particles

  20. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  1. Mixed Waste Focus Area - Waste form initiative

    International Nuclear Information System (INIS)

    The mission of the US Department of Energy's (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI

  2. Pyrochlore based glass-ceramics for the immobilization of actinide-rich nuclear wastes: From concept to reality

    Science.gov (United States)

    Zhang, Y.; Zhang, Z.; Thorogood, G.; Vance, E. R.

    2013-01-01

    Pyrochlore based glass-ceramics have been developed, from concept to reality, for the immobilization of actinide-rich nuclear wastes. Compared with zirconolite based glass-ceramics, they are less sensitive to the processing redox conditions and can double actinide waste loadings thus decreasing volumes of the consolidated waste forms, and subsequently reducing the interim storage and disposal costs. More importantly, they provide an alternative flexible system to tackle radioactive wastes arising from the advanced nuclear reactors.

  3. Chemically bonded phosphate ceramics for radioactive and mixed waste solidification and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, A.S.; Cunnane, J.C.; Singh, D.; Reed, D.T.; Armstrong, S.; Subhan, W.; Chawla, N.

    1993-01-01

    Results of an initial investigation of low temperature setting chemically bonded magnesium ammonium phosphate (MAP) ceramics as waste form materials, for solidification and stabilization of radioactive and mixed waste, are reported. The suitability of MAP for solidifying and encapsulating waste materials was tested by encapsulating zeolites at loadings up to {approximately}50 wt%. The resulting composites exhibited very good compressive strength characteristics. Microstructure studies show that zeolite grains remain unreacted in the matrix. Potential uses for solidifying and stab wastes are discussed.

  4. Chemically bonded phosphate ceramics for radioactive and mixed waste solidification and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, A.S.; Cunnane, J.C.; Singh, D.; Reed, D.T.; Armstrong, S.; Subhan, W.; Chawla, N.

    1993-01-01

    Results of an initial investigation of low temperature setting chemically bonded magnesium ammonium phosphate (MAP) ceramics as waste form materials, for solidification and stabilization of radioactive and mixed waste, are reported. The suitability of MAP for solidifying and encapsulating waste materials was tested by encapsulating zeolites at loadings up to [approximately]50 wt%. The resulting composites exhibited very good compressive strength characteristics. Microstructure studies show that zeolite grains remain unreacted in the matrix. Potential uses for solidifying and stab wastes are discussed.

  5. UK program: glasses and ceramics for immobilization of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    The UK Research Program on Radioactive Waste Management includes the development of processes for the conversion of high-level-liquid-reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behavior under storage and disposal conditions have been examined. Methods for immobilizing activity from other wastes by conversion to glass or ceramic forms are described. The UK philosophy of final solutions to waste management and disposal is presented

  6. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  7. A review of glass-ceramics for the immobilization of nuclear fuel recycle wastes

    International Nuclear Information System (INIS)

    This report reviews the status of the Canadian, German, U.S., Japanese, U.S.S.R. and Swedish programs for the development of glass-ceramic materials for immobilizing the high-level radioactive wastes arising from the recycling of used nuclear fuel. The progress made in these programs is described, with emphasis on the Canadian program for the development of sphene-based glass-ceramics. The general considerations of product performance and process feasibility for glass-ceramics as a category of waste form material are discussed. 137 refs

  8. Research and development of waste forms for geological disposal

    International Nuclear Information System (INIS)

    Ceramics are candidate materials for immobilizing high-level waste (HLW) stemming from the reprocessing of spent fuels. We are proceeding with R and D on two types of ceramic waste form : a polyphase titanate ceramic named Synroc and three kinds of single-phase zirconium ceramics. The effect of self-irradiation damage on the long-term integrity of Synroc due to alpha decay was studied under a cooperative program between JAERI and ANSTO. The hot-pressed polyphase titanate ceramic (10 wt% waste loading) was doped with 244Cm to accumulate a dose of 1.6 x 1018 alpha decays/g. The phase assemblage of the curium-doped titanate ceramic included freudenbergite and loveringite in addition to three main phases: hollandite, perovskite and zirconolite. Accumulation of alpha decays was accompanied by a gradual decrease in density. The change in density was -2.7 % after an equivalent age of 45000 years. The durability of three single-phase zirconium ceramics which contained the appropriate amount of simulated high-level waste elements was examined at 90degC and 150degC in hydrochloric acid or deionized water. The waste forms examined included 10 mol% Y2O3-stabilized ZrO2, La2Zr2O7 with a pyrochlore structure, and CaZrO3 with a perovskite structure. La2Zr2O7 showed excellent durability, and leach rates of all constituents were less than about 10-4 g·m-2·day-1 at 150degC in deionized water. This suggests that La2Zr2O7 is a promising candidate material for immobilization of waste elements from HLW. (J.P.N.)

  9. Gas-pressure forming of superplastic ceramic sheet

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.; Wadsworth, J.

    1993-06-24

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of biaxial gas-pressure forming of several ceramics are given. These include yttria stabilized, tetragonal zirconia (YTZP) a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid YTZP/C103 (ceramic-metal) structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  10. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    Science.gov (United States)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  11. Development of glass-ceramics from combination of industrial wastes together with boron mining waste

    OpenAIRE

    Cicek, Bugra

    2013-01-01

    The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-c...

  12. Review of high-level waste form properties. [146 bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  13. Review of high-level waste form properties

    International Nuclear Information System (INIS)

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison

  14. Evaluation and selection of candidate high-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Bernadzikowski, T. A.; Allender, J. S.; Butler, J. L.; Gordon, D. E.; Gould, Jr., T. H.; Stone, J. A.

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms.

  15. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    International Nuclear Information System (INIS)

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  16. Tungsten bronze-based nuclear waste form ceramics. Part 3: The system Cs 0.3M xW 1- xO 3 for the immobilization of radio cesium

    Science.gov (United States)

    Luca, Vittorio; Drabarek, Elizabeth; Chronis, Harriet; McLeod, Terry

    2006-11-01

    Previous studies in this series have indicated that Cs- and Sr-loaded Mo-doped hexagonal tungsten bronze (MoW-HTB) oxides, either in the form of fine grained powders, or as composite granules, can be converted to leach resistant ceramics at modest temperatures in the range 600-1200 °C. In the present study it has been shown that such waste form ceramics can also be readily prepared through very simple conventional routes involving the blending of cesium nitrate with tungstic acid and other oxide components followed by heating in air. The phase chemistry resulting from the blending of these oxides has been explored. In the Cs 0.3M xW 1- xO 3 compositional system where x = Ti, Zr, Nb and Ta the solid solution limit has been found to be where x = 0.2. For all values of x between 0 and 0.2 mixed phase materials of HTB and WO 3 were obtained and Cs was found associated with HTB phases that are both rich and depleted in M element. At temperatures above about 1000 °C, phase pure HTB compounds in the space group P63/ mcm were obtained. Even when x greatly exceeds 0.2, the additional oxide content did not interfere with the formation of the HTB phase. Durability of the Cs 0.3M xW 1- xO 3 compositions as gauged by the fractional Cs loss in de-mineralized water was lowest when M = Ti and Nb, and greatest when M = Zr. From these results the durability appears intimately linked with the unit cell a-dimension which in turn varies with M cation radius.

  17. Radiation effects in a model ceramic for nuclear waste disposal

    Science.gov (United States)

    Devanathan, Ram; Weber, William J.

    2007-04-01

    The safe immobilization of nuclear waste in geological repositories is one of the major scientific challenges facing humanity today. Crystalline ceramics hold the promise of locking up actinides from nuclear fuel and excess weapons plutonium in their structure thereby isolating them from the environment. This paper presents the atomistic details of radiation damage in a model ceramic, zircon.

  18. Radiation Effects in a Model Ceramic for Nuclear Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram; Weber, William J.

    2007-04-02

    The safe immobilization of nuclear waste in geological repositories is one of the major scientific challenges facing humanity today. Crystalline ceramics hold the promise of locking up actinides from nuclear fuel and excess weapons plutonium in their structure thereby isolating them from the environment. In this paper, we discuss the atomistic details of radiation damage in a model ceramic, zircon.

  19. Leaching of polyphase nuclear waste ceramics: microstructural and phase characterization

    International Nuclear Information System (INIS)

    Alumina-based ceramics are potential materials for storage of nuclear wastes. Static leach tests conducted on ceramic monoliths in deionized water, in simulated silicate, and in brine groundwaters, conforming to Materials Characterization Center standards and an accelerated, microscopic leach test, were used to identify the processes. Dissolution and formation of surface passivation layers are discussed. 40 refs

  20. Dose Evaluation of Pyroprocess Ceramic Waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Dong Hak; Cho, Dong Keun; Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    As the management problem of PWR spent fuel is becoming an hot issue, recycling of PWR spent fuel with Pyroprocess has been researched actively. After Pyroprocess is finished, new types of wastes should be produced inevitably which have very unique characteristics distinguishable from spent fuel. This report has performed the dose calculation in order to investigate the radiological safety of ceramic waste disposal system preliminarily which is one of the radioactive waste produced by Pyroprocess. This research performed the modeling of ceramic waste block, waste can, disposal canister, and disposal system in detail. Dose calculations for each system components has been fulfilled and finally absorbed dose for engineering barrier, bentonite buffer, has been evaluated. Calculation result showed the absorbed dose value is very lower than the standard limits which advanced countries for disposal research have suggested. Eventually, radiological safety for Pyroprocess ceramic waste disposal system is very high

  1. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste. PMID:25188783

  2. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  3. Leaching of polyphase nuclear waste ceramics: microstructural and phase characterization

    International Nuclear Information System (INIS)

    The leaching of complex polyphase nuclear waste ceramics is described in the context of the geochemically established dissolution behavior of the constituent phases. Static leach tests conducted on ceramic monoliths in deionized water, in simulated silicate, and in brine groundwaters, conforming to Materials Characterization Center standards and an accelerated, microscopic leach test, were used to identify the processes. Dissolution and formation of surface passivation layers are discussed in terms of hydrolysis and the adsorption of the metal hydroxocomplexes onto the monolith surface. The factors observed to affect dissolution are pertinent to the leaching of other polyphase nuclear waste ceramics. 11 figures, 1 table

  4. Functional Glasses and Glass-ceramics Derived from Industrial Waste

    OpenAIRE

    Rama Krishna Satish, Chinnam

    2014-01-01

    Wastes from industrial processes and energy generation facilities pose environment and health issues. Diversion of wastes from landfill to favour reuse or recycling options and towards the fabrication of marketable products is of high economic and ecologic interest. Moreover safe recycling of industrial wastes is necessary and even vital to our society because of the increasing volume being generated. Glasses and glass–ceramics (GCs) attract particular interest in waste recycli...

  5. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  6. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  7. DSNF and other waste form degradation abstraction

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Thomas A.

    2000-12-20

    The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix.

  8. [Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].

    Science.gov (United States)

    Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li

    2013-07-01

    The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).

  9. Waste form development/test

    International Nuclear Information System (INIS)

    The main objective of this study is to investigate new solidification agents relative to their potential application to wastes generated by advanced high volume reduction technologies, e.g., incinerator ash, dry solids, and ion exchange resins. Candidate materials selected for the solidification of these wastes include a modified sulfur cement and low-density polyethylene, neither of which are currently employed commerically for the solidification of low-level waste (LLW). As both the modified sulfur cement and the polyethylene are thermoplastic materials, a heated screw type extruder is utilized in the production of waste form samples for testing and evaluation. In this regard, work is being conducted to determine the range of conditions under which these solidification agents can be satisfactorily applied to the specific LLW streams and to provide information relevant to operating parameters and process control

  10. Development of new ceramic materials from the waste of serpentinite and red clay

    International Nuclear Information System (INIS)

    The objective of this work is to develop new ceramic materials using serpentine and glass waste and clay red. The raw materials were characterized through morphological, granulometric, mineralogical and chemical analysis. Six formulations have been developed based on the serpentine and red clay, which three of the six compositions have been adjusted with the addition of residual glass. The ceramic bodies were formed by uniaxial pressing and subjected to burn in an electric oven at temperatures of 1100 ° C, 1200 ° C, 1250 ° C and 1300 ° C. The ceramic samples obtained this way were characterized according to their physical properties (specific mass and linear retraction) and the mechanical (three points bending strength). The final properties varied according to the proportions of raw materials and firing temperature. In general, the different formulations fit the standards for traditional ceramics such as tiles and ceramic blocks. (author)

  11. NNWSI waste form testing program

    International Nuclear Information System (INIS)

    A waste form testing program has been developed to ensure that the release rate of radionuclides from the engineered barrier system will meet NRC and EPA regulatory requirements. Waste form performance testing will be done under unsaturated, low water availability conditions which represent the expected repository conditions. Testing will also be done under conditions of total immersion of the waste form in repository-type water to cover the possibility that localized portions of the repository might contain standing water. Testing of reprocesses waste forms for CHLW and DHLW will use reaction vessels fabricated from Topopah Spring tuff. Chemical elements which are expected to show the highest release rates in the mildly oxidizing environment of the Topopah Spring tuff horizon at Yucca Mountain are Np and Tc. To determine the effect of residual canister material and of corrosion products from the canister/overpack, waste form testing will be done in the presence of these materials. The release rate of all radionuclides which are subject to NRC and EPA regulations will be measured, and the interactive effects of the released radionuclide and the rock reaction vessels will be determined. The testing program for spent fuel will determine the release rate from bare spent fuel pellets and from Zircaloy clad spent fuel where the cladding contains minor defects. A metal testing program for Zircaloy will establish the expected lifetime of the cladding material. Estimation of the state of cladding for fuel presently in reactor pool storage will provide baseline data for Zircaloy containment credit. 9 references, 4 figures

  12. Preparation of glass-ceramic materials from granitic rocks waste

    OpenAIRE

    Gamal A. Khater

    2012-01-01

    Crystallisation of glasses based on the diopside-anorthite eutectic system, containing increased amount (10–50 wt.%) of wollastonite based on granite quarries waste, was investigated for the preparation of cheap technical glass-ceramic materials. Granite quarries waste consisted of about 52 wt.% of the batch constituents depending on composition. The granite quarries waste composition was sometimes modified by adding other ingredients such as dolomite, limestone and Al2O3. Batches were melted...

  13. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    Science.gov (United States)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  14. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  15. A glass-ceramic material for fixation of radioactive waste

    OpenAIRE

    Bozadzhiev L.S.; Georgiev G.T.; Bozadzhiev R.L.

    2011-01-01

    In this article, a starting mixture for the preparation of glass-ceramic material for radioactive waste (RW), consisting of 85-95 mass % basanite and 5-15 mass % oxides of elements in I-VIII group of the Periodical table of elements imitating RW, is proposed. The glass-ceramic material is obtained by melting the starting mixture in air at 1450°C for 1 hour and by further crystallization of the melts at 950°C for 30 minutes. It has been noticed that the texture of the glass-ceramic mater...

  16. Waste glass and fly ash derived glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.D.; Yun, Y.H. [Chonnam National University, Kwangju (Republic of Korea)

    2006-07-15

    Crystallization behavior of a waste-based glass-ceramic was studied by means of X-ray diffraction analysis, and the surface morphological observations and chemical compositions were evaluated by field emission-scanning electron microscopy and energy dispersive X-ray spectrometry. Applying the mechanical milling method, the glass-ceramic was prepared by using fly ash from a thermal power plant mixed with waste glass cullet. Powder mixtures consisting of waste glass powder (70 wt%) and fly ash (30 wt%) were used to make glass-ceramic. Various heat treatment temperatures (900, 925, 950, 975, 1000 and 1025{sup o}C) were used to obtain a glass-ceramic of the optimum crystal phase, mechanical properties and chemical durability. The X-ray diffraction analysis showed that the crystalline phases in the glass-ceramic were diopside (Ca(Mg, Al)(Si, Al){sub 2}O-6), augite (Ca(Mg, Fe)Si{sub 2}O{sub 6}) and wollastonite (CaSiO{sub 3}). The crystallization of an acicular phase in the matrix was achieved in the heat treatment temperature range of 1000-1025{sup o}C, and the acicular type main crystal phase in the glass-ceramic was wollastonite (CaSiO{sub 3}). The heat treatment temperature range (1000-1025{sup o}C) also showed much better mechanical properties.

  17. Design of ceramic microstructures based on waste materials

    Directory of Open Access Journals (Sweden)

    Robert Rekecki

    2008-12-01

    Full Text Available The progressive changes in ceramic raw materials during firing processes are a complex area. This is partly due to the large number of raw material characteristics, primarily mineral composition, and partly to the relatively inadequate particle distribution in the unfired clay body. The most important starting point is always the optimal raw material composition which should give appropriate physical and mechanical characteristics to the final products after firing processes and should provide an efficient and economical production. The paper analyzes the influence of some additives (fly ashes and waste glass materials on the development of the ceramic roofing tile microstructure during the thermal treatment. The analyzed raw material mixtures were: the standard raw material mixture (from Kanjiza, Northern part of Serbia and the modified one, i.e. the mixture of the standard raw material and corresponding additive. The silica phase obtained during the thermal collapse of the clay minerals in the presence of the glass additive bounded better CaO and MgO components released from the carbonates. The crystalline phases like plagioclases were performed in a considerable quantity and the products with new physical characteristics were formed.

  18. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  19. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  20. Secondary Waste Form Down Selection Data Package – Ceramicrete

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete

  1. XPS Investigation of ceramic matrixes for disposal of long-living radioactive waste products

    OpenAIRE

    Teterin Yury A.; Stefanovskij Serguei V.; Yudintsev Serguei V.; Bek-Uzarov George N.; Teterin Anton Yu.; Maslakov Konstantin I.; Utkin Igor O.

    2004-01-01

    The synthesis of ceramic matrixes for the long-term storage of highly active radionuclide wastes and determination of physical and chemical forms of radionuclides in them is one of the important problems in radioecology. It enables to create purpose fully materials for the long-term storage of radionuclides. In the present work the samples of ceramics [CaCe0.9Ti2O6.8(I) and CaCeTi2O7(II}] formed under various conditions were investigated with the X-ray photo electron spectroscopy. It is neces...

  2. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  3. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    Science.gov (United States)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  4. Shape forming of ceramics via gelcasting of aqueous particulate slurries

    Indian Academy of Sciences (India)

    S Dhara; R K Kamboj; M Pradhan; P Bhargava

    2002-11-01

    Gelcasting is a promising technique for shape forming of bulk dense or porous ceramic, metal structures. The process offers a number of advantages over processes such as slip casting, injection molding in forming complex ceramic shapes. It is shown here that the optimization of slurry rheology, choice of mold material, mold design and the drying conditions have a significant role in the overall success of the process. In this process, components of simple or complex shapes can be produced to near net shape by direct casting. If required complex shapes can also be produced by machining the green gelcast bodies. The process of gelcasting also has a lot of potential in forming highly porous ceramic shapes.

  5. Macroencapsulation of low-level debris waste with the phosphate ceramic process

    International Nuclear Information System (INIS)

    Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy's Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes

  6. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    Science.gov (United States)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  7. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    James A. King; Vince Maio

    2011-09-01

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could

  8. Incipient flocculation molding: A new ceramic-forming technique

    Science.gov (United States)

    Arrasmith, Steven Reade

    Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder

  9. Tailored ceramics

    International Nuclear Information System (INIS)

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  10. Radioactive waste conditioning by way of their introduction into clay base ceramic matrices

    International Nuclear Information System (INIS)

    Conditions for fixation of ash from radioactive wastes burnup, hydroxide pulps formed during precipitation-purification works in radiochemical technology, bottoms from NPPs liquid radioactive wastes evaporation are worked out primarily on simulators. It is shown that ceramics including 30-40% by wastes mass, roasted at the temperature of 1000-1050 deg C gas an apparent density of 2.1-2.5 g/cm3, compression endurance limit of 40-70 MPa and radionuclide leaching rate of 10-6-10-8 g(cm2xday). 9 refs.; 2 figs.; 6 tabs

  11. Low temperature waste form process intensification

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    This study successfully demonstrated process intensification of low temperature waste form production. Modifications were made to the dry blend composition to enable a 50% increase in waste concentration, thus allowing for a significant reduction in disposal volume and associated costs. Properties measurements showed that the advanced waste form can be produced using existing equipment and processes. Performance of the waste form was equivalent or better than the current baseline, with approximately double the amount of waste incorporation. The results demonstrate the feasibility of significantly accelerating low level waste immobilization missions across the DOE complex and at environmental remediation sites worldwide.

  12. Polyphase ceramic for consolidating nuclear waste compositions with high Zr-Cd-Na content

    International Nuclear Information System (INIS)

    The development of dense polyphase tailored ceramic forms for the immobilization of high-level nuclear wastes has been extended to an Idaho Chemical Processing Plant Fluorinel composition. The ceramic was designed to maximize waste loading and subsequent waste volume reduction without sacrificing chemical durability in aqueous environments. The ceramic, fabricated by hot isostatic pressing, consists of four main crystalline phases, calcium fluoride, zirconia, an apatite-structured solid-solution phase, and sphene. The form also contains a designed borosilicate glass phase, a Ni-Cd alloy, and a minor amount of crystalline zircon. The crystalline apatite solid-solution phase is the major host for incorporating the actinide simulants U, Ce, and Y, while the glass phase contains Cs and Sr. The calcium fluoride and sphene phases provide microstructural isolation of the radionuclide-containing phases. Since the glass and crystalline components of the ceramic are not phase compatible at all temperatures, the exact phase content is determined by the tailoring additives, consolidation temperature, and oxidation state control during processing

  13. Formulation and processing of polyphase ceramics for high level nuclear waste

    International Nuclear Information System (INIS)

    Two basic crystalline phase assemblages have been developed for incorporating the full range of Savannah River Plant waste compositions into polyphase ceramic forms. Both phase assemblages provide crystalline host phases, with stable mineral analogues, for all radionuclides in the waste. The first, an alumina based assemblage, immobilizes the radioactive elements in solid solutions of magnetoplumbite and uraninite with the bulk non-radioactive waste elements being present in spinel and nepheline. The second assemblage uses the titanate based zirconolite type fluorite structure and the alumina/iron based magnetoplumbite phases to host the radioactive nuclei with spinel and nepheline, again providing crystalline hosts for the non-radioactive elements. Both phase assemblages can be consolidated to a fine grain ceramic by hot isostatic pressing at 10400C pressures from 20,000 to 30,000 psi. Redox control during processing, just sufficient to reduce uranium to the tetravalent state, is used. 3 figures, 1 table

  14. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; ZHOU Hai; CHEN Qiang; GE Yuanjing; LV Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na2SiO3-NaB4O7-(NaPO3)6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCrl5 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel.

  15. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    Energy Technology Data Exchange (ETDEWEB)

    Vince Maio

    2014-04-01

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  16. Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes

    Energy Technology Data Exchange (ETDEWEB)

    Pincha Torkittikul; Arnon Chaipanich [Chiang Mai University, Chiang Mai (Thailand). Construction Materials Research Unit

    2010-07-15

    The aim of this research work was to investigate the feasibility of using ceramic waste and fly ash to produce mortar and concrete. Ceramic waste fragments obtained from local industry were crushed and sieved to produce fine aggregates. The measured concrete properties demonstrate that while workability was reduced with increasing ceramic waste content for Portland cement concrete and fly ash concrete, the workability of the fly ash concrete with 100% ceramic waste as fine aggregate remained sufficient, in contrast to the Portland cement control concrete with 100% ceramic waste where close to zero slump was measured. The compressive strength of ceramic waste concrete was found to increase with ceramic waste content and was optimum at 50% for the control concrete, dropping when the ceramic waste content was increased beyond 50%. This was a direct consequence of having a less workable concrete. However, the compressive strength in the fly ash concrete increased with increasing ceramic waste content up to 100%. The benefits of using ceramic waste as fine aggregate in concrete containing fly ash were therefore verified.

  17. A glass-ceramic material for fixation of radioactive waste

    Directory of Open Access Journals (Sweden)

    Bozadzhiev L.S.

    2011-01-01

    Full Text Available In this article, a starting mixture for the preparation of glass-ceramic material for radioactive waste (RW, consisting of 85-95 mass % basanite and 5-15 mass % oxides of elements in I-VIII group of the Periodical table of elements imitating RW, is proposed. The glass-ceramic material is obtained by melting the starting mixture in air at 1450°C for 1 hour and by further crystallization of the melts at 950°C for 30 minutes. It has been noticed that the texture of the glass-ceramic material is microgranular. The main mineral is pyroxene, while a mixture phases are magnetite, hematite and residual glass. It was shown that the RW elements are fixed in the pyroxene and partly in the admixture phases.

  18. Distribution and Solubility of Radionuclides and Neutron Absorbers in Waste Forms for Disposition of Plutonium Ash and Scraps, Excess Plutonium, and Miscellaneous Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Denis M. Strachan; Dr. David K. Shuh; Dr. Rodney C. Ewing; Dr. Eric R. Vance

    2002-09-23

    The initial goal of this project was to investigate the solubility of radionuclides in glass and other potential waste forms for the purpose of increasing the waste loading in glass and ceramic waste forms. About one year into the project, the project decided to focus on two potential waste forms - glass at PNNL and itianate ceramics at the Australian Nuclear Science and Technology Organisation (ANSTO).

  19. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  20. Valorization of rice straw waste: an alternative ceramic raw material

    Directory of Open Access Journals (Sweden)

    Á. Guzmán A

    2015-03-01

    Full Text Available In the production of rice a large amount of solid residue is produced, for which alternative utilizations are scarce or are not commonly applied in industry. Rice straw (RS is a waste product of rice harvest that is generated in equal or greater quantities than the rice itself. RS is frequently burned in open air, which makes it a significant source of pollution. In the search for possible uses of RS, it should be noted that its ash (RSA is particularly rich in silica, alkaline and alkaline earth metals and may be used as a source of alkalis and silica for the production of triaxial ceramics. The present research work proposes the production of a ceramic raw material from RS for its use in the fabrication of ceramic materials for the construction industry. Based on the chemical and mineralogical composition of RSA created under different thermal conditions, the most suitable RSA for this purpose was that obtained from treating RS at a temperature of 800 ºC for a time of 2 h. The resulting RSA presented high contents of SiO2 (79.62%, alkaline oxides (K2O (10.53% and alkaline earth oxides (CaO (2.80%. It is concluded that RSA is a new alternative ceramic raw material that can be used as a replacement for the fluxing (mainly feldspar and inert (quartz materials that are used in the production of triaxial ceramics.

  1. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  2. New Fission-Product Waste Forms: Development and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction

  3. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries

    Science.gov (United States)

    Nirmala, G.; Viruthagiri, G.

    The 30 ceramic test samples with the kaolinitic clay and ceramic rejects (in the as-received state and sintered at temperatures 900-1200 °C) were investigated through spectral studies in order to elucidate the possibility of recycling the wastes from the government ceramic industry of Vriddhachalam, Tamilnadu state, South India. A detailed attribution of all the spectroscopic frequencies in the spectra recorded in the 4000-400 cm-1 region was attempted and their assignment to different minerals was accomplished. X-ray diffraction analysis was performed to demonstrate the reliability of IR attributions. The indication of well-ordered kaolinite is by the band at 1115 cm-1 in the raw samples which tends to shift towards 1095 cm-1 in all the fired samples. The peaks at 563 cm-1 and 795 cm-1 can be assigned to anorthite and dickite respectively. The presence of quartz and anorthite is confirmed both by XRD and FTIR. The microstructural observations were done through the SEM images which visualized the vitrification of the fired bricks at higher temperatures. The refractory properties of the samples found through the XRF analysis are also appreciable. The present work suggests that the incorporation of the rejects into the clay mixture will be a valid route for the ceramic industries to reduce the costs of the ceramic process.

  4. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  5. Titanate ceramics for immobilisation of uranium-rich radioactive wastes arising from 99Mo production

    Science.gov (United States)

    Carter, M. L.; Li, H.; Zhang, Y.; Vance, E. R.; Mitchell, D. R. G.

    2009-02-01

    Uranium-rich liquid wastes arising from UO 2 targets which have been neutron-irradiated to generate medical radioisotopes such as 99mTc require immobilisation. A pyrochlore-rich hot isostatically pressed titanate ceramic can accommodate at least 40 wt% of such waste expressed on an oxide basis. In this paper, the baseline waste form composition (containing 40 wt% UO 2) was adjusted in two ways: (a) varying the UO 2 loading with constant precursor oxide materials, (b) varying the precursor composition with constant waste loading of UO 2. This resulted in the samples having a similar phase assemblage but the amounts of each phase varied. The oxidation states of U in selected samples were determined using diffuse reflection spectroscopy (DRS) and electron energy loss spectroscopy (EELS). Leaching studies showed that there was no significant difference in the normalised elemental release rates and the normalised release rates are comparable with those from synroc-C. This demonstrates that waste forms based on titanate ceramics are robust and flexible for the immobilisation of U-rich waste streams from radioisotope processing.

  6. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials. PMID:16784166

  7. Miscellaneous Waste-Form FEPs

    Energy Technology Data Exchange (ETDEWEB)

    A. Schenker

    2000-12-08

    The US DOE must provide a reasonable assurance that the performance objectives for the Yucca Mountain Project (YMP) potential radioactive-waste repository can be achieved for a 10,000-year post-closure period. The guidance that mandates this direction is under the provisions of 10 CFR Part 63 and the US Department of Energy's ''Revised Interim Guidance Pending Issuance of New US Nuclear Regulatory Commission (NRC) Regulations (Revision 01, July 22, 1999), for Yucca Mountain, Nevada'' (Dyer 1999 and herein referred to as DOE's Interim Guidance). This assurance must be demonstrated in the form of a performance assessment that: (1) identifies the features, events, and processes (FEPs) that might affect the performance of the potential geologic repository; (2) examines the effects of such FEPs on the performance of the potential geologic repository; (3) estimates the expected annual dose to a specified receptor group; and (4) provides the technical basis for inclusion or exclusion of specific FEPs.

  8. Preparation of glass-ceramic materials from granitic rocks waste

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2012-06-01

    Full Text Available Crystallisation of glasses based on the diopside-anorthite eutectic system, containing increased amount (10–50 wt.% of wollastonite based on granite quarries waste, was investigated for the preparation of cheap technical glass-ceramic materials. Granite quarries waste consisted of about 52 wt.% of the batch constituents depending on composition. The granite quarries waste composition was sometimes modified by adding other ingredients such as dolomite, limestone and Al2O3. Batches were melted and then casted into glass, which was then subjected to heat-treatment to induce crystallisation. The resulting glass-ceramic materials (heat-treated at 1000 °C for 3 h were mainly composed of diopside, anorthite, wollastonite and mullite. With increasing temperature (to 1050 °C for 3 h, diopside and anorthite transformed into akermanite and mullite. It has been found that increasing the content of the diopside-anorthite eutectic in the batch constituents, resulted in increased bulk crystallisation. Samples were characterised with different techniques including differential thermal analysis, polarizing microscope, X-ray diffraction and indentation microhardness testing. The obtained glass-ceramic materials possess very high hardness, indicating high abrasion resistance, making them suitable for many applications under aggressive mechanical conditions.

  9. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe3O4) and haematite (Fe2O3). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  10. Combined Waste Form Cost Trade Study

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; Steve Piet; Timothy Trickel; Joe Carter; John Vienna; Bill Ebert; Gretchen Matthern

    2008-11-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE.

  11. Characterization of ceramic roof tile wastes as pozzolanic admixture.

    Science.gov (United States)

    Lavat, Araceli E; Trezza, Monica A; Poggi, Mónica

    2009-05-01

    The aim of this work is to study the recycling of tile wastes in the manufacture of blended cements. Cracked or broken ceramic bodies are not accepted as commercial products and, therefore, the unsold waste of the ceramic industry becomes an environment problem. The use of powdered roof tile in cement production, as pozzolanic addition, is reported. The wastes were classified as nonglazed, natural and black glazed tiles. The mineralogy of the powders was controlled by SEM-EDX microscopy, XRD analysis and FTIR spectroscopy. Particle size was checked by laser granulometry. Once the materials were fully characterized, pozzolanic lime consumption tests and Fratini tests were carried out. Different formulations of cement-tile blends were prepared by incorporation of up to 30% weight ratios of recycled waste. The compressive strength of the resulting specimens was measured. The evolution of hydration of the cement-tile blends was analyzed by XRD and FTIR techniques. Vibrational spectroscopy presented accurate evidence of pozzolanic activity. The results of the investigation confirmed the potential use of these waste materials to produce pozzolanic cement. PMID:19124234

  12. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.

  13. Glass-ceramic nuclear waste forms obtained by crystallization of SiO{sub 2}-Al{sub 2}O{sub 3}-CaO-ZrO{sub 2}-TiO{sub 2} glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    Energy Technology Data Exchange (ETDEWEB)

    Loiseau, P. [Laboratoire de Chimie de la Matiere Condensee de Paris (UMR CNRS 7574), Ecole Nationale Superieure de Chimie de Paris (ENSCP, Chimie-ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Caurant, D., E-mail: daniel-caurant@chimie-paristech.f [Laboratoire de Chimie de la Matiere Condensee de Paris (UMR CNRS 7574), Ecole Nationale Superieure de Chimie de Paris (ENSCP, Chimie-ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France)

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi{sub 2}O{sub 7}) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO{sub 2}-Al{sub 2}O{sub 3}-CaO-ZrO{sub 2}-TiO{sub 2} glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO{sub 5} and CaAl{sub 2}Si{sub 2}O{sub 8}, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO{sub 2} precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 {sup o}C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  14. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  15. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  16. Preparation of high performance ceramic tiles using waste tile granules and ceramic polishing powder

    Institute of Scientific and Technical Information of China (English)

    WANG Gong-xun; SU Da-gen

    2008-01-01

    This paper presents an innovative approach to reusing waste tile granules (TG) and ceramic polishing powder (PP) to produce high performance ceramic tiles. We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%. The formulations included a small amount of borax additive of a mass fracton between 0.2%and 1.2%. The effects of these industrial by-products on compressive strength, water absorption and microstructure of the new ceramic tiles were investigated. The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added. Improvement of the compressive strength may be achieved when TG (up to 25.0%)and PP (up to 2.0%) are both used at the same time. In particular, the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux. Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles, resulting in a dense product with high compressive strength and low water absorption.

  17. DWPF waste form compliance plan (Draft Revision)

    International Nuclear Information System (INIS)

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970's, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan

  18. Preliminary evaluation of alternative forms for immobilization of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    An evaluation of available information on eleven alternative solid forms for immobilization of SRP high-level waste has been completed. Based on the assessment of both product and process characteristics, four forms were selected for more detailed evaluation: (1) borosilicate glass made in the reference process, (2) a high-silica glass made from a porous glass matrix, (3) crystalline ceramics such as supercalcine or SYNROC, and (4) ceramics coated with an impervious barrier. The assessment includes a discussion of product and process characteristics for each of the eleven forms, a cross comparison of these characteristics for the forms, and the bases for selecting the most promising forms for further study

  19. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Energy Technology Data Exchange (ETDEWEB)

    Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13.105 years) and beta-radiotoxicity (β-= 292 keV), it is a major concern in the long-term management of spent nuclear fuel.1 In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up.2 In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form.3 Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass.4, 5 In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository.6 Metallic alloys under consideration include Tc-Zr alloys, Tc-stainless-steel alloys and Tc- Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed but efforts to model the behavior of Tc metallic alloys are limited. 7 One parameter that should also be considered in predicting the long-term behavior of the Tc waste form, is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc "99Ru + β-). After a geological period of time, significant amount of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance.

  20. Support for DOE program in mineral waste-form development

    International Nuclear Information System (INIS)

    This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables

  1. XPS Investigation of ceramic matrixes for disposal of long-living radioactive waste products

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2004-01-01

    Full Text Available The synthesis of ceramic matrixes for the long-term storage of highly active radionuclide wastes and determination of physical and chemical forms of radionuclides in them is one of the important problems in radioecology. It enables to create purpose fully materials for the long-term storage of radionuclides. In the present work the samples of ceramics [CaCe0.9Ti2O6.8(I and CaCeTi2O7(II}] formed under various conditions were investigated with the X-ray photo electron spectroscopy. It is necessary for synthesis of ceramic matrixes, for the disposal of the plutonium and others tetravalent actinides. A technique was developed for the determination of cerium oxidation state (Ce3+ and Ce4+ on the basis of the X-ray photo electron spectroscopy spectral structure characteristics. It was established that the sample (I formed at 300 MPa and T = 1400 °C in the air atmosphere contained on the surface two types of cerium ions in the ratio – 63 atomic % of Ce3+ and 37 atomic % of Ce4+, and the sample (II formed at 300 MPa and T= 1300 °C in the oxygen atmosphere contained on its surface two types of cerium ions also, but in the ratio – 36 atomic % of Ce3+ and 64 atomic % of Ce4+. It was established that on the surface of the studied ceramics carbonates of calcium and/or cerium could be formed under influence of the environment that leads to the destruction of ceramics.

  2. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  3. Heat-Resistant Ceramic Pigments on the Base of Waste Vanadium Catalyst and Alumina

    Directory of Open Access Journals (Sweden)

    M. B. Sedelnikova

    2013-01-01

    Full Text Available Ceramic pigments on the base of technogenic silica-containing material—waste vanadium catalyst were obtained in this work. Corundum is identified along with the predominant mullite phase in the composition of pigments. The ions of nickel, chromium, and iron are embedded in the structure if the concentration of the corresponding oxide in the initial mixture does not exceed 10 wt.%. In this case, the oxide is not identified in a free form according to the results of X-ray diffraction analysis. Spinel CoAl2O4 is formed in cobalt pigments. The developed pigments keep the firing temperature up to 1200°C. The obtained pigments may be recommended for ceramic paints and colored glazes for building materials.

  4. A powder metallurgy approach for production of innovative radioactive waste forms

    International Nuclear Information System (INIS)

    The feasibility of producing a single metal-matrix composite form rather than two separate forms consisting of a cast metal alloy ingot (such as Type 316SS + Zr) and a ceramic glass-bonded zeolite Na12(AlO2)12(SiO2)12 has been demonstrated. This powder metallurgy approach consists of mixing the powder of the two separate waste forms together followed by compaction by hot isostatic pressing. Such a radioactive waste form would have the potential advantages of reducing the total waste volume, good thermal conductivity, stability, and surfaces with limited oxide layer formation. 5 refs., 8 figs., 2 tabs

  5. Iodine waste form summary report (FY 2007).

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James Lee; Nenoff, Tina Maria; McMahon, Kevin A.; Gao, Huizhen; Rajan, Ashwath Natech

    2007-11-01

    This new program at Sandia is focused on Iodine waste form development for GNEP cycle needs. Our research has a general theme of 'Waste Forms by Design' in which we are focused on silver loaded zeolite waste forms and related metal loaded zeolites that can be validated for chosen GNEP cycle designs. With that theme, we are interested in materials flexibility for iodine feed stream and sequestration material (in a sense, the ability to develop a universal material independent on the waste stream composition). We also are designing the flexibility to work in a variety of repository or storage scenarios. This is possible by studying the structure/property relationship of existing waste forms and optimizing them to our current needs. Furthermore, by understanding the properties of the waste and the storage forms we may be able to predict their long-term behavior and stability. Finally, we are working collaboratively with the Waste Form Development Campaign to ensure materials durability and stability testing.

  6. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  7. Incorporation of fine steel sludge waste into red ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, C.M.F. [State University of the North Fluminense (UENF), Advanced Materials Laboratory (LAMAV), Av. Alberto Lamego 2000, 28013-602, Campos dos Goytacazes RJ (Brazil)]. E-mail: vieira@uenf.br; Andrade, P.M. [State University of the North Fluminense (UENF), Advanced Materials Laboratory (LAMAV), Av. Alberto Lamego 2000, 28013-602, Campos dos Goytacazes RJ (Brazil); Maciel, G.S. [State University of the North Fluminense (UENF), Advanced Materials Laboratory (LAMAV), Av. Alberto Lamego 2000, 28013-602, Campos dos Goytacazes RJ (Brazil); Vernilli, F. [Chemical Engineering College of Lorena-FAENQUIL, Department of Materials Engineering-DEMAR, Lorena (Brazil); Monteiro, S.N. [State University of the North Fluminense (UENF), Advanced Materials Laboratory (LAMAV), Av. Alberto Lamego 2000, 28013-602, Campos dos Goytacazes RJ (Brazil)

    2006-07-15

    This work has as its objective to evaluate the effect of incorporation of fine steel sludge waste on the properties and microstructure of a kaolinitic clay used to fabricate bricks and roofing tiles. Characterization tests of the steel sludge employed X-ray diffraction, chemical composition, particle size distribution, scanning electron microscopy and DTA/TG analysis. Compositions were prepared with additions of 0, 5, 10 and 20 wt.% waste in a kaolinitic clay from Brazil. To determine the technological properties such as bulk density, linear shrinkage, water absorption and flexural strength, press molded specimens were fired in laboratory furnace at 900 deg. C. The microstructure of the fired specimens was evaluated by SEM and XRD. The results showed that incorporations up to 5 wt.% of fine steel sludge is beneficial to the red ceramic. By contrast, incorporations above 5 wt.% cause deleterious effect on the mechanical strength of the fired specimens.

  8. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.

    Science.gov (United States)

    Shrivastava, O P; Chourasia, Rashmi

    2008-05-01

    A novel concept of immobilization of light water reactor (LWR) fuel reprocessing waste effluent through interaction with sodium zirconium phosphate (NZP) has been established. Such conversion utilizes waste materials like zirconium and nickel alloys, stainless steel, spent solvent tri-butyl phosphate and concentrated solution of NaNO(3). The resultant multi component NZP material is a physically and chemically stable single phase crystalline product having good mechanical strength. The NZP matrix can also incorporate all types of fission product cations in a stable crystalline lattice structure; therefore, the resultant solid solutions deserve quantification of crystallographic data. In this communication, crystal chemistry of the two types of simulated waste forms (type I-Na(1.49)Zr(1.56)Sn(0.02)Fe(0).(28)Cr(0.07)Ni(0.07)P(3)O(12) and type II-Na(1.35)Ba(0.14)Zr(1.56)Sn(0.02)Fe(0).(28)Cr(0.07)Ni(0.07)P(2.86)Si(0.14)O(12)) has been investigated using General Structure Analysis System (GSAS) programming of the X-ray powder diffraction data. About 4001 data points of each have been subjected to Rietveld analysis to arrive at a satisfactory structural convergence of Rietveld parameters; R-pattern (R(p))=0.0821, R-weighted pattern (R(wp))=0.1266 for type I and R(p)=0.0686, R(wp)=0.0910 for type II. The structure of type I and type II waste forms consist of ZrO(6) octahedra and PO(4) tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO(6) octahedra while zirconium octahedra lies on a three-fold rotation axis and is connected to six PO(4) tetrahedra. Though the expansion along c-axis and shrinkage along a-axis with slight distortion of bond angles in the synthesized crystal indicate the flexibility of the structure, the waste forms are basically of NZP structure. Morphological examination by SEM reveals that the size of almost rectangular parallelepiped crystallites varies

  9. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba2+, Sn4+, Fe3+, Cr3+, Ni2+ and Si4+) from light water reactor fuel reprocessing plants

    International Nuclear Information System (INIS)

    A novel concept of immobilization of light water reactor (LWR) fuel reprocessing waste effluent through interaction with sodium zirconium phosphate (NZP) has been established. Such conversion utilizes waste materials like zirconium and nickel alloys, stainless steel, spent solvent tri-butyl phosphate and concentrated solution of NaNO3. The resultant multi component NZP material is a physically and chemically stable single phase crystalline product having good mechanical strength. The NZP matrix can also incorporate all types of fission product cations in a stable crystalline lattice structure; therefore, the resultant solid solutions deserve quantification of crystallographic data. In this communication, crystal chemistry of the two types of simulated waste forms (type I-Na1.49Zr1.56Sn0.02Fe0.28Cr0.07Ni0.07P3O12 and type II-Na1.35Ba0.14Zr1.56Sn0.02Fe0.28Cr0.07Ni0.07P2.86Si0.14O12) has been investigated using General Structure Analysis System (GSAS) programming of the X-ray powder diffraction data. About 4001 data points of each have been subjected to Rietveld analysis to arrive at a satisfactory structural convergence of Rietveld parameters; R-pattern (Rp) = 0.0821, R-weighted pattern (Rwp) = 0.1266 for type I and Rp = 0.0686, Rwp = 0.0910 for type II. The structure of type I and type II waste forms consist of ZrO6 octahedra and PO4 tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO6 octahedra while zirconium octahedra lies on a three-fold rotation axis and is connected to six PO4 tetrahedra. Though the expansion along c-axis and shrinkage along a-axis with slight distortion of bond angles in the synthesized crystal indicate the flexibility of the structure, the waste forms are basically of NZP structure. Morphological examination by SEM reveals that the size of almost rectangular parallelepiped crystallites varies between 0.5 and 1.5 μm. The EDX analysis provides the

  10. SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

    2012-11-26

    This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

  11. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  12. XAF/XANES studies of plutonium-loaded sodalite/glass composite waste forms.

    Energy Technology Data Exchange (ETDEWEB)

    Aase, S. B.; Kropf, A. J.; Lewis, M. A.; Reed, D. T.; Richmann, M. K.

    1999-07-14

    A sodalite/glass ceramic waste form has been developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Simulated waste forms have been fabricated which contain plutonium and are representative of the salt from the electrometallurgical process to recover uranium from spent nuclear fuel. X-ray absorption fine structure spectroscopy (XAFS) and x-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state and form of the plutonium within these waste forms. Plutonium, in the non-fission-element case, was found to segregate as plutonium(IV) oxide with a crystallite size of at least 20 nm. With fission elements present, the crystallite size was about 2 nm. No plutonium was observed within the sodalite or glass in the waste form.

  13. XAF/XANES studies of plutonium-loaded sodalite/glass composite waste forms

    International Nuclear Information System (INIS)

    A sodalite/glass ceramic waste form has been developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Simulated waste forms have been fabricated which contain plutonium and are representative of the salt from the electrometallurgical process to recover uranium from spent nuclear fuel. X-ray absorption fine structure spectroscopy (XAFS) and x-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state and form of the plutonium within these waste forms. Plutonium, in the non-fission-element case, was found to segregate as plutonium(IV) oxide with a crystallite size of at least 20 nm. With fission elements present, the crystallite size was about 2 nm. No plutonium was observed within the sodalite or glass in the waste form

  14. Crystal chemistry of immobilization of fast breeder reactor (FBR) simulated waste in sodium zirconium phosphate (NZP) ceramic matrix

    Energy Technology Data Exchange (ETDEWEB)

    Chourasia, Rashmi [Department of Chemistry, Dr. H.S. Gour University, Sagar 470 003 (India); Shrivastava, O.P., E-mail: dr_ops11@rediffmail.co [Department of Chemistry, Dr. H.S. Gour University, Sagar 470 003 (India); Ambashta, R.D.; Wattal, P.K. [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-02-15

    Fuel from the fast breeder reactor waste is reprocessed and subjected to cooling for a period of about one year. Fission and activation products of the fuel are the major constituents of this waste. Sodium zirconium phosphate (hereafter NZP) has been identified as a potential material for immobilization of long lived heat generating radio nuclides. It was found that most of the elements present in the radioactive waste could be immobilized in this ceramic matrix without significant changes of the three-dimensional framework of the host material. Simulated NZP waste forms synthesized by ceramic route at 1200 deg. C crystallize in the rhombohedral system (space group R-3c). The crystal chemistry of 0-35 wt.% waste loaded NZP waste forms have been investigated using General Structure Analysis System (GSAS) programming of the step analysis powder diffraction data. Rietveld refinement of crystal data on the waste oxide (WO{sub x}) loaded waste forms gives a satisfactory convergence of R-factors. The particle size along prominent reflecting planes ranges between 68 and 141 nm. The polyhedral distortions and effective valence calculations from bond strength data are also reported. Morphological examination by scanning electron microscopy (SEM) reveals that the size of almost rectangular parallelepiped shaped grains varies between 0.2 and 5 mum. The EDX analysis provides analytical evidence of immobilization of effluent cations in the matrix.

  15. Glass-ceramic nuclear waste forms obtained from SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization

    Science.gov (United States)

    Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C.

    2004-10-01

    Glass-ceramic waste forms such as zirconolite (nominally CaZrTi 2O 7) based ones can be envisaged as good candidates for minor actinides or Pu immobilization. Such materials, in which the actinides (or lanthanides used as actinide surrogates) would be preferentially incorporated into zirconolite crystals homogeneously dispersed in a durable glassy matrix, can be prepared by controlled crystallization (nucleation + crystal growth) of parent glasses belonging to the SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 system. In this work we present the effects of the nature of the minor actinide surrogate (Ce, Nd, Eu, Gd, Yb, Th) on the structure, the microstructure and the composition of the zirconolite crystals formed in the bulk of the glass-ceramics. The amount of lanthanides and thorium incorporated into zirconolite crystals is discussed in relation with the capacity of the glass to accommodate these elements and of the crystals to incorporate them in the calcium and zirconium sites of their structure.

  16. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  17. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce+4) as a surrogate for plutonium (Pu+4) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  18. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  19. Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mojtaba; Hashemi, Babak, E-mail: hashemib@shirazu.ac.ir

    2014-04-01

    Soda–lime–silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. - Highlights: • A bioactive glass-ceramic was synthesized using soda–lime–silica waste glass. • Solid-state reaction method was used to synthesize bioactive glass-ceramic. • Ca{sub 2}Na{sub 2}Si{sub 3}O{sub 9} and CaNaPO{sub 4} were formed with a one-step thermal treatment condition. • The amounts of crystalline and amorphous phases influenced the bioactivity. • The sample with a smaller amount of the crystalline phase had a higher bioactivity.

  20. Lysimeter tests of SRP waste forms

    International Nuclear Information System (INIS)

    A field study, estimated to last 10 years, has been started to define leaching and migration rates of radionuclides from typical SRP buried wastes. The study utilizes 42 lysimeters (6-ft or 10-ft diameter by 10-ft deep) which have been charged with soil and waste to simulate burial ground conditions. Eight waste forms were selected for the study, which represent the bulk of the wastes generated at SRP. This report describes the lysimeter design, the physical and radiological characteristics of the wastes, and the experimental approach. Calculations have also been made which predict the migration of various radionuclides in the lysimeter soil. The calculations should provide guidance during the course of the study, and are the basis of recommendations made for collecting and interpreting data so that important parameters of migration can be evaluated

  1. Immobilisation of molybdenum from fuel reprocessing wastes into sodium zirconium phosphate ceramics

    Science.gov (United States)

    Pet'kov, V. I.; Sukhanov, M. V.

    2003-01-01

    A new possibility for the incorporation of molybdenum in sodium zirconium phosphate (NZP) nuclear waste form was examined. The existence of molybdenum containing NZP-type structures was assessed on the basis of crystal chemical principles. New data were deduced for the system Na1-xZr2(PO4)3-x(MoO4)x (0≤x≤1). The stability region for this solid solution having a NZP structure was determined. It was found that molybdenum can be incorporation into NZP-type ceramics without significant changes of the three-dimensional framework structure.

  2. Actinide Waste Forms and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  3. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  4. Reductive capacity measurement of waste forms for secondary radioactive wastes

    Science.gov (United States)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  5. Utilization of kaolin processing waste for the production of porous ceramic bodies.

    Science.gov (United States)

    Menezes, Romualdo R; Brasileiro, Maria I; Santana, Lisiane N L; Neves, Gelmires A; Lira, Helio L; Ferreira, Heber C

    2008-08-01

    The kaolin processing industry generates large amounts of waste in producing countries such as Brazil. The aim of this study was to characterize kaolin processing waste and evaluate its suitability as an alternative ceramic raw material for the production of porous technical ceramic bodies. The waste material was physically and chemically characterized and its thermal behaviour is described. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. Fired samples were microstructurally analysed by X-ray diffraction and scanning electron microscopy. The results indicated that the waste consisted of quartz, kaolinite, and mica, and that ceramic formulations containing up to 66% of waste can be used for the production of ceramics with porosities higher than 40% and strength of about 70 MPa. PMID:18727328

  6. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  7. The features of ceramic materials structure formation when using hard-melting wastes of thermal power stations in charge stock

    Science.gov (United States)

    Skripnikova, Nelli; Yuriev, Ivan; Lutsenko, Alexander; Litvinova, Viktoriya

    2016-01-01

    The paper presents the analysis of aluminum silicate waste generated by thermal power station of the city of Seversk, Tomsk region, Russia. The chemical compositions of aluminum silicate waste are detected and the efficient mixture compositions with the addition of aluminum silicate waste are suggested herein. Ceramic brick structure formation is studied in this paper using X-ray phase and SEM analyses. It is identified that the formed vitreous phase facilitates such strengthening structural modifications as sintering out of pores and shrinkage of unmelted aluminum silicate particles with the following formation of a monolithic product.

  8. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  9. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA's Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities

  10. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  11. Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia

    Science.gov (United States)

    Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David

    2014-05-01

    In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  12. Characterization of radioactive waste forms. Volume 2

    International Nuclear Information System (INIS)

    This document is the second yearbook for Task 3 of the European Communities 1985-89 programme of research on radioactive waste management and disposal carried out by public organizations and private firms in the Community through cost-sharing contracts with the Commission of the European Communities. The report, in two volumes, describes progress made in 1987 within the field of Task 3: Testing and evaluation of conditioned waste and engineered barriers. The first volume of the report covers Item 3.1 Characterization of low and medium level radioactive waste forms and Item 3.5. Development of test methods for quality assurance. The second volume covers Item 3.2: High-level and alpha waste characterization and Item 3.3: Other engineered barriers. Item 3.4 on the round robin study will be treated in a separate report

  13. Characterization of radioactive waste forms. Volume 1

    International Nuclear Information System (INIS)

    This document is the second yearbook for Task 3 of the European Communities 1985-89 programme of research on radioactive waste management and disposal carried out by public organizations and private firms in the Community through costsharing contracts with the Commission of the European Communities. The report, in two volumes, describes progress made in 1987 within the field of Task 3: Testing and evaluation of conditioned waste and engineered barriers. The first volume of the report covers Item 3.1 Characterization of low and medium-level radioactive waste forms and Item 3.5 Development of test methods for quality assurance. The second volume covers Item 3.2: High-level and alpha waste characterization and Item 3.3: Other engineered barriers. Item 3.4 on the round robin study will be treated in a separate report

  14. WRAP 2A Waste Form Qualification Plan

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A. Jr.

    1993-12-31

    WRAP Module 2A is a facility that will serve to treat retrieved, stored, and newly generated contact-handled mixed low level waste (MLLW) at the Department of Energy`s Hanford site near Richland, Washington. The treatment processes to be used are limited to non-thermal processes, defined as processes operating at a temperature less than 500{degree}F. In addition to waste pretreatment and conditioning processes including sorting, size reduction, and homogenization, the final treatment technologies will consist of immobilization, stabilization, and encapsulation to produce final waste forms that are suitable for disposal in compliance with all applicable regulatory requirements. The wide variety of chemical and physical characteristics exhibited by the WRAP 2A feed streams will necessitate the performance of a comprehensive waste form qualification (WFQ) testing program. The WFQ program will provide the technical basis supporting the process selection and will demonstrate that the selected treatment processes produce final waste forms that will meet all applicable regulatory requirements and performance specifications. This document describes the overall WRAP 2A WFQ program.

  15. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Energy Technology Data Exchange (ETDEWEB)

    Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the

  16. EVALUATION OF CHEMICALLY BONDED PHOSPHATE CERAMICS FOR MERCURY STABILIZATION OF A MIXED SYNTHETIC WASTE

    Science.gov (United States)

    This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...

  17. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL`s Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form`s chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs.

  18. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    Energy Technology Data Exchange (ETDEWEB)

    Doynov, M.; Dimitrov, T.; Kozhukharov, S.

    2016-05-01

    Alternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, and nitric acid (HNO{sub 3}), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl{sub 2}O{sub 4} and magnesiochromite. These minerals are classified as chromspinelide MgCr{sub 1}.2Al{sub 0}.4Fe{sub 0}.4O{sub 4} and alumochromite MgCr{sub 1}.6Al{sub 0}.4O{sub 4}. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature. The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800 degree centigrade 1 h. The ceramic samples synthesized had high density of 1.72-1.93 g/cm{sup 3} and large absorption area - 32.93% which is probably due to the high porosity of the sample. (Author)

  19. Stabilization of Fine Sand with Ceramic Tiles Waste as Admixture for Construction of Embankment

    Directory of Open Access Journals (Sweden)

    Kapil Panwar

    2016-08-01

    Full Text Available This paper deals with the stabilization of fine sand with Ceramic Tiles waste as admixture. As the fine sand has very low bearing capacity and compressive strength along with nil cohesion, thus the construction of any structure on fine soil required stabilization. This study discusses the possibility of fine sand stabilization using Ceramic Tile Waste as admixture. Present work has been taken up by addition of 4.75 mm sieve passed and 2.36 mm sieve retained Ceramic Tile Waste as admixture. The varying percentage 2%, 4%, 8% and 12% of ceramic tile waste were mixed with fine sand of different densities 1.50 gm/cc, 1.55 gm/cc and 1.58 gm/cc. All the Direct Shear Tests were conducted at different mix compositions of ceramic tile waste and fine sand of different dry densities as arrived from Standard Proctor Test. Falling-Head Permeability Tests were also performed on different mix compositions. On the basis of the experiments performed, it is determined that the stabilization of fine sand using ceramic tile waste as admixture improves the strength characteristics of the fine sand so that it becomes usable as construction of embankment.

  20. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  1. Properties of SYNROC-D nuclear waste form: a state-of-the-art reivew

    International Nuclear Information System (INIS)

    SYNROC is a titanate-based ceramic waste form being developed to immobilize high-level nuclear reactor wastes. SYNROC-D is a unique variation of SYNROC designed to contain high-level defense wastes, particularly those in storage at the Savannah River Plant (SRP). In this report, we review results from physical property and performance tests on SYNROC-D containing simulated SRP wastes. These results provide a data base for comparing SYNROC-D with other defense waste forms. The test data are grouped into three categories: (1) waste loading, (2) mechanical and thermal properties, (3) leach resistance. We also examine the possible effects of radiation damage on SYNROC during long-term storage in a geologic repository. The test data were collected from a series of SYNROC-D samples prepared as part of a comparative testing program initiated by Savannah River Laboratory. These samples were prepared by conventional ceramic hot-pressing techniques and then characterized by x-ray diffraction, scanning electron microscopy and electron microprobe analysis. Whenever possible, standardized test procedures were used for evaluating the waste form properties. For example, leach rates were measured using the Material Characterization Center's (MCC) standard MCC-1 and MCC-2 tests. 66 references

  2. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  3. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    Science.gov (United States)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2016-05-01

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  4. A view of microstructure with technological behavior of waste incorporated ceramic bricks

    Science.gov (United States)

    Nirmala, G.; Viruthagiri, G.

    2015-01-01

    Production of ceramic bricks from mixtures of ceramic industry wastes (up to 50 wt%) from the area of Vriddhachalam, Cuddalore district, Tamilnadu, India and kaolinitic clay from Thiruvananthapuram district, Kerala were investigated. The firing behavior of the ceramic mixtures was studied by determining their changes in mineralogy and basic ceramic properties such as water absorption, porosity, compressive strength and firing shrinkage at temperatures ranging from 900 to 1200 °C in short firing cycles. The effect of the rejects addition gradually up to 50 wt% was analyzed with the variation of temperature on the mechanical properties and microstructure of the bricks. The highest compressive strength and lowest water absorption is observed for the sample with 40% rejects at 1100 °C which is supported by the results of SEM analysis. The resulting ceramic bricks exhibit features that suggest possibilities of using the ceramic rejects in the conventional brick making methods.

  5. Waste Form Features, Events, and Processes

    Energy Technology Data Exchange (ETDEWEB)

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  6. Development of Glass and Ceramic Matrices for the Immobilization of High-level Radioactive Waste from Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Govindan Kutty, K.V.; Kitheri, Joseph; Asuvathraman, R.; Raja Madhavan, R.; Vasudeva Rao, P.R.; Baldev, Raj [Liquid Metals And Structural Chemistry Division, Indira Gandhi Centre For Atomic Research - IGCAR, Kalpakkam, Tamil Nadu 603 102 (India)

    2009-06-15

    Borosilicate glass is a favoured matrix worldwide for the immobilization of high-level waste (HLW). The HLW from the reprocessing of fast reactor fuels contains higher concentrations of actinide elements and noble metals than that from thermal reactors. These elements have poor solubility in borosilicate glass, leading to phase segregation and consequent loss of chemical durability. Alternate glass and crystalline ceramic matrices thus need to be developed for the long-term disposal of fast reactor HLW. In this context, we have undertaken work on simulated waste forms based on three different systems, viz., iron phosphate glass (IPG), SYNROC, and monazites. IPG is known to be a versatile host matrix for radioactive wastes. An IPG waste form with 20 wt% simulated HLW expected from the FBTR after a burnup of 150 GWD/T, was found to form readily at 1323 K in air. The glass transition temperature of the waste-loaded glass was found to be similar to that of bare IPG. The ease of glass formation and favourable physico-chemical properties make IPG a candidate matrix for fixing radioactive wastes of fast reactor origin. Among the crystalline ceramic matrices for HLW immobilization, SYNROC is a well known system. The flexibility of the conventional titanate phase assemblage to incorporate fast reactor wastes was investigated. SYNROC precursor powders were synthesized using an inexpensive nano-anatase reagent as the main ingredient. High-density simulated waste forms were then fabricated by hot pressing or hot isostatic pressing at 1373-1473 K. Monoliths of near-theoretical density were obtained, and thermophysical and chemical durability measurements were carried out on them. In contrast to the poly-phase SYNROC, monazite is known to be a single-phase orthophosphate waste form. Monazite (CePO{sub 4}) can accommodate widely different elements in its crystal structure due to the irregular oxygen coordination around the metal ions. The phase can be formed at low temperatures

  7. Development of new ceramic materials from the waste of serpentinite and red clay; Desenvolvimento de novos materiais ceramicos a partir de residuo de serpentinito e argila vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Presotto, P., E-mail: petula.presotto@gmail.com [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mymrine, V. [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba, PR (Brazil)

    2012-07-01

    The objective of this work is to develop new ceramic materials using serpentine and glass waste and clay red. The raw materials were characterized through morphological, granulometric, mineralogical and chemical analysis. Six formulations have been developed based on the serpentine and red clay, which three of the six compositions have been adjusted with the addition of residual glass. The ceramic bodies were formed by uniaxial pressing and subjected to burn in an electric oven at temperatures of 1100 ° C, 1200 ° C, 1250 ° C and 1300 ° C. The ceramic samples obtained this way were characterized according to their physical properties (specific mass and linear retraction) and the mechanical (three points bending strength). The final properties varied according to the proportions of raw materials and firing temperature. In general, the different formulations fit the standards for traditional ceramics such as tiles and ceramic blocks. (author)

  8. Nickel immobilization in ceramic matrix admixed with waste nickel hydroxide.

    Science.gov (United States)

    Osińska, Malgorzata; Stefanowicz, Tadeusz; Paukszta, Dominik

    2003-01-01

    WAXS examinations performed with nickel hydroxide samples heated to various temperatures showed that freshly settled wet nickel hydroxide sample contains some amount of crystalline beta-Ni(OH)(2) structure and its share increased when sample was dried during 3 weeks at ambient temperature. However, the share significantly decreased when the sample was dried at 110 degrees C and more so at 250 degrees C. Crystalline phase traces of Ni(OH)(2) disappeared after sample burning at 980 degrees C and instead the distinct presence of crystalline NiO was determined. The above samples were examined for solubility in stoichiometric amount of sulphuric acid diluted with water to pH 1.9 and 2.8. Solubility was determined by measuring nickel ion concentration in leachate by the AAS method. The dissolving rate was found to decrease with the rise of temperature to which the nickel hydroxide samples were heated. The solubility of Ni(OH)(2) sample burnt at 980 degrees C was undetectable during 90 h solubility-testing time likely due to its transformation into sparingly soluble crystalline NiO. The latter is considered to be the reason for effective immobilization of waste nickel hydroxide in ceramic prepared by blending with clay and sintering at 980 degrees C. PMID:14583250

  9. 陶瓷抛光废渣在多孔陶瓷中的应用研究%Application Research of Ceramic Polished Waste in Porous Ceramics

    Institute of Scientific and Technical Information of China (English)

    周锡荣; 刘一军; 潘利敏; 谢志军; 张松竹

    2011-01-01

    以陶瓷抛光废渣为主要原料制备多孔陶瓷,研究了抛光废渣在多孔陶瓷中的影响因素,探讨了多孔陶瓷孔隙率、容重、断裂模数之间的关系.%The porous ceramics is prepared by using ceramic polished waste as the main material in this paper. The factors of the polished waste in the porous ceramics are researched, and the relationship of the porosity, the bulk density and the rupture module in the porous ceramics is discussed.

  10. Ion Selective Ceramics for Waste Separations. Input for Annual Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Spoerke, Erik David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report discusses“Ion-Selective Ceramics for Waste Separations” which aims to develop an electrochemical approach to remove fission product waste (e.g., Cs+ ) from the LiCl-KCl molten salts used in the pyroprocessing of spent nuclear fuel.

  11. A review and discussion of candidate ceramics for immobilization of high-level fuel reprocessing wastes

    International Nuclear Information System (INIS)

    This review discusses and attempts to evaluate 11 of the leading ceramic processes for hosting the high-level and high-level plus medium-level wastes which would arise from the reprocessing of used UO2, (Th,Pu)O2 and (Th,U)O2 fuels. The wasteform materials considered include glass ceramics, supercalcine ceramics, SYNROC ceramics, 'stuffed glass', titanate ceramics, cermets, clay ceramics, cement-based materials and multibarrier wasteforms. Although no attempt has been made to rank these candidates in order of superiority, the conclusion is drawn that, of the materials proposed so far, a glass ceramic appears to be best suited to the Canadian program, taking into account durability in the potential environment of a flooded vault, ability to withstand radiation and transmutation damage without serious loss of durability, ability to accommodate variable waste compositions, and ease of processing and quality control. This conclusion does not necessarily apply to other national waste management programs. However, many of the points raised might be included in any critical assessment of alternative wasteform materials

  12. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    Energy Technology Data Exchange (ETDEWEB)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  13. Evaluation of final waste forms and recommendations for baseline alternatives to grout and glass

    International Nuclear Information System (INIS)

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT ampersand E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT ampersand E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the

  14. Safeguards and retrievability from waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  15. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes

    International Nuclear Information System (INIS)

    Highlights: • ESEM and XRD characterizations have been performed. • Compatibility of these ceramics with the conventional binary Solar Salt is tested at 500 °C. • Tested ceramics have relevant properties to store thermal energy up to 1000 °C. • Feasibility of using ceramics as filler materials in thermocline is demonstrated. - Abstract: This paper demonstrates the feasibility of using several post-industrial ceramics as filler materials in a direct thermocline storage configuration. The tested ceramics, coming from several industrial processes (asbestos containing waste treatment, coal fired power plants or metallurgic furnaces) demonstrate relevant properties to store thermal energy by sensible heat up to 1000 °C. Thus, they represent at low-cost a promising, efficient and sustainable approach for thermal energy storage. In the present study, the thermo-chemical compatibility of these ceramics with the conventional binary Solar Salt is tested at medium temperature (500 °C) under steady state. In order to determine the feasibility of using such ceramics as filler material, Environmental Scanning Electron Microscopy (ESEM) and X-Ray Diffraction (XRD) characterizations have been performed to check for their chemical and structural evolution during corrosion tests. The final objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as structured filler material. Most of the tested ceramics present an excellent corrosion resistance in molten Solar Salt and should significantly decrease the current cost of concentrated solar thermal energy storage system

  16. Preparation of High Performance Green Alumina Ceramic Balls by Roller Production Waste

    Institute of Scientific and Technical Information of China (English)

    ZHONG Lianyun; WU Bolin; ZHANG Lianmeng; ZHANG Guifang

    2008-01-01

    To reuse roller waste as a raw material of high performance green ceramic balls,three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with90% Al2O3 were prepared,and the Al2O3 content of the prepared balls was 75%.It is found that the effect of calcia and magnesia on the wear resistance of ceramic balls is contrast to the accepted one: the wear rate of the ceramic balls prepared in CaO-Al2O3-SiO2 system is the lowest and the wear rate of the ceramic balls prepared in MgO-Al2O3-SiO2 is the highest.The main crystal phase of the ceramic ball is mullite and corundum.The ceramic ball granular is uniform and fine with 4-5 um average size.The pore diameter is about 2 um.The wear way of the ceramic balls is mainly transcrystalline fracture.

  17. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  18. Environmental and economic aspects of using marble fine waste in the manufacture of facing ceramic materials

    Directory of Open Access Journals (Sweden)

    Zemlyanushnov Dmitriy Yur'evich

    2014-09-01

    Full Text Available This work considers economic expediency of using marble fine waste in facing ceramic materials manufacture by three-dimensional coloring method. Adding marble fine waste to the charge mixture reduces the production cost of the final product. This waste has a positive impact on the intensification of drying clay rocks and raw as a whole, which increases production efficiency. Using marble fine waste as a coloring admixture makes it possible to manufacture more environmentally friendly construction material with the use of wastes of hazard class 3 instead of class 4. At the same time, disposal areas and environmental load in the territories of mining and marble processing reduce significantly. Replacing ferrous pigments with manganese oxide for marble fine waste reduces the cost of the final product and the manufacture of facing ceramic brick of a wide range of colors - from dark brown to yellow.

  19. Manganite perovskite ceramics, their precursors and methods for forming

    Energy Technology Data Exchange (ETDEWEB)

    Payne, David Alan; Clothier, Brent Allen

    2015-03-10

    Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.

  20. Application of the coal-mining waste in building ceramics production

    Directory of Open Access Journals (Sweden)

    Vaysman Yakov Iosifovich

    Full Text Available In the process of construction ceramics production a substantial quantity of non-renewable natural resources - clays - are used. One of the ways of science development in building materials production is investigation of the possibility of regular materials production using technogenic waste. Application of coal-mining waste (technogenic raw material in charge composition for production of ceramic products provides rational use of fuel, contributes to implementation of resource saving technologies on construction materials production enterprises. Though science development on revealing new raw material sources should be conducted with account for safety, reliability, technical, ecological and economical sides of the problem, which is especially current. The article deals with the problem of coal-mining waste usage in building ceramics production instead of fresh primary component (clay, fluxes, thinning agents and combustible additives. The interdependence between the density and shrinkage of the ceramic products and the amount and quality of coal-mining waste in its composition was established. The optimal proportion of coal-mining waste and clay in building ceramics production was estimated.

  1. Physical Properties of Ceramic Product prepared Sago Waste and Clay Composite

    OpenAIRE

    ARIPIN; Tani, S.; Mitsudo, S; Saito, T.; IDEHARA, T

    2009-01-01

    In Indonesia, the sago processing industry generates every year huge amount of sago waste, and converting tbis waste into a useful material is possible. lo the present study, physical properties of sago waste and clay composite sample were investigated in order to study the feasibility of reuse this sample as raw material in the producing of ceramics. Firstly, the chemical composition of the sample was characterized. The sample was prepared, milled at time range from 6 to 48 h, and sintered a...

  2. Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics

    OpenAIRE

    Romero, Maximina; Rincón López, Jesús María; Rawlings, Rees D.; Boccaccini, A. R.

    2001-01-01

    The crystallisation behaviour of vitrified industrial waste (fly ash from domiciliary solid waste incineration) was examined by differential thermal analysis, X-ray diffractometry and scanning electron microscopy. It was demonstrated that powder processing route was required to transform the vitrified industrial waste into glass-ceramics products. Time-Temperature-Transformation (TTT) diagrams were drawn for the two main crystalline phases, diopside and wollastonite. The wollastonite existed...

  3. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  4. NDA issues with RFETS vitrified waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, J.; Veazey, G.

    1998-12-31

    A study was conducted at Los Alamos National Laboratory (LANL) for the purpose of determining the feasibility of using a segmented gamma scanner (SGS) to accurately perform non-destructive analysis (NDA) on certain Rocky Flats Environmental Technology Site (RFETS) vitrified waste samples. This study was performed on a full-scale vitrified ash sample prepared at LANL according to a procedure similar to that anticipated to be used at RFETS. This sample was composed of a borosilicate-based glass frit, blended with ash to produce a Pu content of {approximately}1 wt %. The glass frit was taken to a degree of melting necessary to achieve a full encapsulation of the ash material. The NDA study performed on this sample showed that SGSs with either {1/2}- or 2-inch collimation can achieve an accuracy better than 6 % relative to calorimetry and {gamma}-ray isotopics. This accuracy is achievable, after application of appropriate bias corrections, for transmissions of about {1/2} % through the waste form and counting times of less than 30 minutes. These results are valid for ash material and graphite fines with the same degree of plutonium particle size, homogeneity, sample density, and sample geometry as the waste form used to obtain the results in this study. A drum-sized thermal neutron counter (TNC) was also included in the study to provide an alternative in the event the SGS failed to meet the required level of accuracy. The preliminary indications are that this method will also achieve the required accuracy with counting times of {approximately}30 minutes and appropriate application of bias corrections. The bias corrections can be avoided in all cases if the instruments are calibrated on standards matching the items.

  5. Rotary Calciner - Metallic Melter and Slurry - Fed Ceramic Melter for Treatment of High Level Liquid Waste

    International Nuclear Information System (INIS)

    Rotary calciner-metallic melter and slurry-fed ceramic melter are used for treatment of high level liquid waste in the industrial scale. Rotary calciner-metallic melter is operated by induction heating and slurry-fed ceramic melter by Joule heating. Both of melter are compared it’s characteristics of waste-glass composition for process and melter operation, melter materials, life time of melter, treatment of off gas, and power consumption. For melter with Joule heating, electric resistance of waste-glass is 4.8 ohm.cm at temperature 1150 °C. The metal of platinum group is not soluble in the molten waste-glass, so that influence the electric current pass by the molten waste-glass. For melter with induction heating there is not influence of platinum metal group. For melter with Joule heating, the material which contact with waste-glass is monofrax K-3. The outer materials layer i.e MRT-70K, LN-135, AZ-GS, fiber board, and stainless steel 304. The material of melter with induction heating is Inconel-690. The life time of melter with Joule heating is longer than melter with induction heating. From the safety aspect, operation of the both of melter have already successful. Operation cost of slurry-fed ceramic melter is cheaper, but construction and decommissioning cost more expensive than rotary calciner-metallic melter. Based on Indonesia condition, the slurry-fed ceramic melter is more reasonable to be utilized. (author)

  6. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a measure of the chemical durability of a simulated or radioactive monolithic waste form, such as a glass, ceramic, cement (grout), or cermet, in a test solution at temperatures <100°C under low specimen surface- area-to-leachant volume (S/V) ratio conditions. 1.2 This test method can be used to characterize the dissolution or leaching behaviors of various simulated or radioactive waste forms in various leachants under the specific conditions of the test based on analysis of the test solution. Data from this test are used to calculate normalized elemental mass loss values from specimens exposed to aqueous solutions at temperatures <100°C. 1.3 The test is conducted under static conditions in a constant solution volume and at a constant temperature. The reactivity of the test specimen is determined from the amounts of components released and accumulated in the solution over the test duration. A wide range of test conditions can be used to study material behavior, includin...

  7. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  8. Incorporation of sugarcane bagasse ash waste as an alternative raw material for red ceramic

    Directory of Open Access Journals (Sweden)

    K. C. P. Faria

    2013-09-01

    Full Text Available The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA. This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.

  9. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, William [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad A. [Argonne National Lab. (ANL), Argonne, IL (United States); Youker, Amanda [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  10. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  11. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    International Nuclear Information System (INIS)

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice

  12. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    Science.gov (United States)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  13. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production.

    Science.gov (United States)

    Vichaphund, S; Intiya, W; Kongkaew, A; Loykulnant, S; Thavorniti, P

    2012-12-01

    The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing clay ceramics was investigated. To prepared clay-based ceramic, the mixtures of traditional clay and sludge waste (10-30 wt%) were milled, uniaxilly pressed and sintered at a temperature between 1000 and 1200 degrees C. The effect of sludge waste on the properties of clay-based ceramic products was examined. The results showed that the amount of sludge waste addition had an effect on both sinterability and properties of the clay ceramics. Up to 30 wt% of sludge waste can be added into the clay ceramics, and the sintered samples showed good properties. PMID:23437647

  14. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  15. The Addition of Graphite in Battery Waste to a Ceramic Soft Plastic Body

    Directory of Open Access Journals (Sweden)

    Kemal KÖSEOĞLU

    2009-03-01

    Full Text Available In this study, graphite which was found in the battery waste was investigated as an addition of ceramic soft plastic body. In this purpose, graphite was taken out from battery waste. This graphite was added to ceramic raw materials and kneaded with some water. Plastic prepared parts were shaped by hand and shaped parts were dried in the ambient temperature. Dried bodies were fired at 900 oC temperature. Drying and fired shrinkage, water absorption and fired strength of these bodies were studied..

  16. Mechanical behaviour of sustainable concrete with waste ceramic aggregate replacement

    OpenAIRE

    Anderson, DJ; Smith, ST; Au, FTK

    2014-01-01

    Sustainability and material use have been becoming increasingly important in industry and academia in recent years, prompting investigations for ways to improve sustainability in construction materials. Past studies have investigated natural aggregate replacement in concrete with a variety of materials, including recycled concrete, glass, bricks, ceramics, and even automobile tires. These studies have produced varied results. Ceramic materials are a great prospective material for aggregate re...

  17. Laboratory procedures for waste form testing

    Energy Technology Data Exchange (ETDEWEB)

    Mast, E.S.

    1994-09-19

    The 100 and 300 areas of the Hanford Site are included on the US Environmental Protection Agencies (EPA) National Priorities List under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Soil washing is a treatment process that is being considered for the remediation of the soil in these areas. Contaminated soil washing fines can be mixed or blended with cementations materials to produce stable waste forms that can be used for beneficial purposes in mixed or low-level waste landfills, burial trenches, environmental restoration sites, and other applications. This process has been termed co-disposal. The Co-Disposal Treatability Study Test Plan is designed to identify a range of cement-based formulations that could be used in disposal efforts in Hanford in co-disposal applications. The purpose of this document is to provide explicit procedural information for the testing of co-disposal formulations. This plan also provides a discussion of laboratory safety and quality assurance necessary to ensure safe, reproducible testing in the laboratory.

  18. Determination of the Structure of Vitrified Hydroceramic/CBC Waste Form Glasses Manufactured from DOE Reprocessing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheetz, B.E.; White, W. B.; Chesleigh, M.; Portanova, A.; Olanrewaju, J.

    2005-05-31

    The selection of a glass-making option for the solidification of nuclear waste has dominated DOE waste form programs since the early 1980's. Both West Valley and Savannah River are routinely manufacturing glass logs from the high level waste inventory in tank sludges. However, for some wastes, direct conversion to glass is clearly not the optimum strategy for immobilization. INEEL, for example, has approximately 4400 m{sup 3} of calcined high level waste with an activity that produces approximately 45 watts/m{sup 3}, a rather low concentration of radioactive constituents. For these wastes, there is value in seeking alternatives to glass. An alternative approach has been developed and the efficacy of the process demonstrated that offers a significant savings in both human health and safety exposures and also a lower cost relative to the vitrification option. The alternative approach utilizes the intrinsic chemical reactivity of the highly alkaline waste with the addition of aluminosilicate admixtures in the appropriate proportions to form zeolites. The process is one in which a chemically bonded ceramic is produced. The driving force for reaction is derived from the chemical system itself at very modest temperatures and yet forms predominantly crystalline phases. Because the chemically bonded ceramic requires an aqueous medium to serve as a vehicle for the chemical reaction, the proposed zeolite-containing waste form can more adequately be described as a hydroceramic. The hydrated crystalline materials are then subject to hot isostatic pressing (HIP) which partially melts the material to form a glass ceramic. The scientific advantages of the hydroceramic/CBC approach are: (1) Low temperature processing; (2) High waste loading and thus only modest volumetric bulking from the addition of admixtures; (3) Ability to immobilize sodium; (4) Ability to handle low levels of nitrate (2-3% NO{sub 3}{sup -}); (5) The flexibility of a vitrifiable waste; and (6) A process

  19. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  20. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  1. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    Science.gov (United States)

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. PMID:25568090

  2. Advanced waste forms research and development. Final report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Research on supercalcine-ceramics was conducted with the objectives of characterizing the phases and of applying them to fluorine-containing Thorex wastes. This report is concerned with quantitative phase analysis of complex ceramics using x-ray powder diffraction methods and with scanning transmission electron microscopy of these ceramics and its correlation with fluorite structure solid solution phase diagrams

  3. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Frank

    2011-09-01

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomic Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this

  4. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Science.gov (United States)

    Kim, Miae; Heo, Jong

    2015-12-01

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca2Nd8-xCex(SiO4)6O2] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca-silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca-silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10-6 g m-2 for Ce ion and 2.19·10-6 g m-2 for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing.

  5. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    Science.gov (United States)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  6. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  7. Ageing of a phosphate ceramic used to immobilize chloride-contaminated actinide waste

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Brian [AWE plc, Reading (United Kingdom); Donald, Ian W. [AWE plc, Reading (United Kingdom); Fong, Shirley K. [AWE plc, Reading (United Kingdom); Gerrard, Lee A. [AWE plc, Reading (United Kingdom); Strachan, Denis M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-31

    At AWE, we have developed a process for the immobilization of ILW waste containing a significant quantity of chloride with Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed at AWE with Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, wer performed at PNNL where the waste form was found to be resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7 x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD patterns after the samples had experienced an α radiation dose of 4 x 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  8. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-06-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  9. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  10. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  11. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  12. Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products.

    Science.gov (United States)

    Kizinievič, Olga; Balkevičius, Valdas; Pranckevičienė, Jolanta; Kizinievič, Viktor

    2014-08-01

    Large amounts of centrifuging waste of mineral wool melt (CMWW) are created during the production of mineral wool. CMWW is technogenic aluminum silicate raw material, formed from the particles of undefibred melt (60-70%) and mineral wool fibers (30-40%). 0.3-0.6% of organic binder with phenol and formaldehyde in its composition exists in this material. Objective of the research is to investigate the possibility to use CMWW as an additive for the production of ceramic products, by neutralising phenol and formaldehyde existing in CMWW. Formation masses were prepared by incorporating 10%, 20% and 30% of CMWW additive and burned at various temperatures. It was identified that the amount of 10-30% of CMWW additive influences the following physical and mechanical properties of the ceramic body: lowers drying and firing shrinkage, density, increases compressive strength and water absorption. Investigations carried out show that CMWW waste can be used for the production of ceramic products of various purposes.

  13. Waste forms, packages, and seals working group summary

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, N. [Center Antonio, TX (United States); McNeil, M.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.

  14. Immobilization of actinide wastes in ceramics for long-term disposal

    OpenAIRE

    Soe, Khin Soe

    2006-01-01

    Glass can undergo devitrification with time and the incorporation of actinides with their alpha-decay in MeV-range due to compacted alpha-recoiled irradiation over 10^6 years storage leads to expansion and phase transformation of nuclear waste glasses. Moreover, the maximum tolerable amount of actinides that can be incorporated in glass is approximately 5%. The development of ceramics adapted for nuclear-waste immobilization is the focus of this dissertation. The yttria-stabilized zirconia c...

  15. Static And Dynamic Characteristics Of Waste Ceramic Aggregate Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Cichocki Krzysztof

    2015-12-01

    Full Text Available There are multiple obstacles associated both with technology and properties of waste ceramic aggregate concrete preventing its wide production and application. In the research programme these limitations were addressed through utilizing steel fibre reinforcement and the phenomenon of internal curing. After laboratory tests of mechanical properties a numerical analysis of composites in question was conducted.

  16. HOW TO USE SOLID WASTE OF OIL AND GAS INDUSTRY IN CERAMIC BRICKS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Litvinovа T. A.

    2013-10-01

    Full Text Available In this article the recycling problem of solid waste of oil and gas industry is observed. We have developed the bases of resource saving technology for minimizing exhausted sorbents and catalysts pollution with their using as silica-containing additives in raw mix for production of ceramic bricks of standard quality

  17. Characterization of low and medium level radioactive waste forms

    International Nuclear Information System (INIS)

    The work reported was carried out during the first year of the Commission of the European Community's programme on the characterization of low and medium level waste forms. Ten reference waste forms plus others of special national interest have been identified covering PWR, BWR, GCR and reprocessing wastes. The immobilising media include the three main matrices: cement, polymers and bitumen, and a glass. Characterization is viewed as one input to quality assurance of the waste form and covers: waste-matrix compatibility, radiation effects, leaching, microbiological attack, shrinkage and swelling, ageing processes and thermal effects. The aim is a balanced programme of comparative data, predictive modelling and an undserstanding of basic mechanisms

  18. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  19. Physical modeling of contaminant diffusion from a cementious waste form

    International Nuclear Information System (INIS)

    Cementitious materials can be used to immobilize waste materials for disposal. The Westinghouse Hanford Company is pursuing approval of disposal technologies by which hazardous and radioactive wastes are blended or packaged with cementitious materials for disposal. Of significant concern is the mobility of the waste contaminants both from the waste form and in the arid soils of the Hanford Site. A physical model has been developed to study the diffusion of waste contaminants from simulated cementitious waste forms in unsaturated Hanford Site soils. The model can be used to predict cementitious waste form performance in a representative environment, support design of waste management facilities and technologies, and provide data for environmental permitting of proposed treatment and disposal facilities

  20. Alternate nuclear waste forms and interactions in geologic media

    International Nuclear Information System (INIS)

    The primary purposes of the conference on Alternate Nuclear Waste Forms and Interactions in Geologic Media were: First, to provide an opportunity for a review of the status of the research on some of the candidate alternative waste forms; second, to provide an opportunity for comparing the characteristics of alternate waste forms to those of glasses; and third, to stimulate increased interactions between those research groups that were engaged in a more basic approach to characterizing waste forms and those who were concerned with more applied aspects such as the processing of these materials. The motivating philosophy behind this third purpose of the conference was based on the idea that by operating from the soundest possible fundamental base for any of the candidate waste forms, hopefully any future unpleasant surprise - such as that alluded to earlier in the case of glass waste forms - could be avoided. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base

  1. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-01-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

  2. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  3. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    International Nuclear Information System (INIS)

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials

  4. Fundamental thermodynamics of actinide-bearing mineral waste forms. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M.A. [Los Alamos National Lab., NM (US); Ebbinghaus, B.B.

    1998-06-01

    'The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly, understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpy of formation of actinide substituted zircon, zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stability of these materials. This report summarizes work after eight months of a three year project.'

  5. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  6. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Vince Maio

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  7. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  8. Immobilization of Technetium in a Metallic Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Frank; D. D. Keiser, Jr.; K. C. Marsden

    2007-09-01

    Fission-product technetium accumulated during treatment of spent nuclear fuel will ultimately be disposed of in a geological repository. The exact form of Tc for disposal has yet to be determined; however, a reasonable solution is to incorporate elemental Tc into a metallic waste form similar to the waste form produced during the pyrochemical treatment of spent, sodium-bonded fuel. This metal waste form, produced at the Idaho National Laboratory, has undergone extensive qualification examination and testing for acceptance to the Yucca Mountain geological repository. It is from this extensive qualification effort that the behavior of Tc and other fission products in the waste form has been elucidated, and that the metal waste form is extremely robust in the retention of fission products, such as Tc, in repository like conditions. This manuscript will describe the metal waste form, the behavior of Tc in the waste form; and current research aimed at determining the maximum possible loading of Tc into the metal waste and subsequent determination of the performance of high Tc loaded metal waste forms.

  9. 建筑陶瓷行业废弃物物流策略研究%Waste Material Logistics Strategy for Building Ceramic Industry

    Institute of Scientific and Technical Information of China (English)

    唐永洪; 郑树龙

    2014-01-01

    Ceramic waste is generated in ceramics forming, drying, glazing, handling, storage, polishing, ifring and transporting process. Through the implementation of ceramic waste uniifed logistics information platform, Milk Run, outsourcing or main and auxiliary separation strategy can effectively integrate the waste material supply chain logistics and information lfow, promote the development of professional waste logistics enterprises, enhance the professional level of service, and realize the ceramic green production.%陶瓷废料产生于陶瓷生产过程中的成形、干燥、施釉、搬运、烧成、磨边、抛光及贮存、搬运等环节。通过实施构建陶瓷废弃物物流统一信息平台、循环取货(Milk Run)、物流外包等主辅分离策略,可以有效整合废弃物流供应链的物流、信息流等,促进专业化陶瓷废弃物物流业的发展,实现陶瓷绿色生产。

  10. Characterization of granite waste for use in red ceramic; Caracterizacao de residuo de granito para utilizacao em ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, M.C.; Monteiro, S.N.; Vieira, C.M.F., E-mail: mari@uenf.br [Universidade Estadual do Norte Fluminense (UENF/LAMAV), Campos dos Goytacazes, RJ (Brazil). Laboratorio de Materiais Avancados; Borlini, M.C. [Centro de Tecnologia Mineral (CETEM), Cachoeiro de Itapemirim, ES (Brazil). Centro Avancado

    2011-07-01

    This work aims to study the characterization of the granite waste from the city of Santo Antonio de Padua-RJ for the use in red ceramic. The chemical, physical and morphological characterization of the waste was performed by chemical analysis, X-ray diffraction, particle size distribution, thermal analysis and scanning electron microscopy (SEM). The results indicated that this waste is a material with great potential to be used as a component of ceramic body due to its capacity to act as flux during the firing, and to improve the properties of the ceramic when is incorporate. (author)

  11. TRU waste form and package criteria meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-08-01

    The broad subject of the meeting is the overall ERDA TRU waste management program, although the discussions also cover performance criteria for the Waste Isolation Pilot Plant and their implications for the overall TRU program. Separate abstracts were prepared for all ten presentations. (DLC)

  12. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  13. Effects of Clear and Amber Cullet on Physical and Mechanical Properties of Glass-Ceramics Containing Zinc Hydrometallurgy Waste

    Science.gov (United States)

    Hanpongpun, Wilasinee; Jiemsirilers, Sirithan; Thavorniti, Parjaree

    The effect of glass cullet on physical and mechanical properties of glass-ceramics developed from zinc hydrometallurgy waste and glass cullet was investigated. The glass-ceramics were prepared by mixing zinc hydrometallurgy waste with glass cullet through vitrification process. Two difference types of glass cullet (clear and amber cullet) were used. The parent glasses were ground and pressed into bars and sintered at low temperature (850°C) for 2 hours. The obtained glass-ceramics had low porosity. The glass-ceramics with clear cullet exhibited higher density and strength, comparing with the glass-ceramics with amber cullet. The type and the amount of the glass cullet present in the glass-ceramics have strong effect on their properties.

  14. Experimental study on separation of valuable refractory aggregate from investment casting ceramic shell waste

    Institute of Scientific and Technical Information of China (English)

    Ji-gao Li; Yuan-cai Li; Shi-ming Tan

    2016-01-01

    In the present study, a processing technique for recycling investment casting ceramic shel waste was proposed to separate valuable refractory aggregate zircon sand. The microstructure and phase constituents of the shel waste and separation process were investigated. The results show that the characteristics of microstructure and phase constituents of the shel waste can meet the conditions for preferentialy separating zircon sand, and zircon sand can be separated by gravity separation on a shaking table. The separated zircon sand has good shape and high purity, and can be used for the production of castings and other applications.

  15. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.

    Science.gov (United States)

    Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir

    2008-04-01

    This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.

  16. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.

    Science.gov (United States)

    Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir

    2008-04-01

    This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement. PMID:18578160

  17. Experimental study on separation of valuable refractory aggregate from investment casting ceramic shell waste

    Directory of Open Access Journals (Sweden)

    Ji-gao Li

    2016-07-01

    Full Text Available In the present study, a processing technique for recycling investment casting ceramic shell waste was proposed to separate valuable refractory aggregate zircon sand. The microstructure and phase constituents of the shell waste and separation process were investigated. The results show that the characteristics of microstructure and phase constituents of the shell waste can meet the conditions for preferentially separating zircon sand, and zircon sand can be separated by gravity separation on a shaking table. The separated zircon sand has good shape and high purity, and can be used for the production of castings and other applications.

  18. PPLICATION OF COAL MINING WASTE IN THE PRODUCTION OF STRUCTURAL CERAMICS USING AN ECOLOGICALLY FRIENDLY AND RESOURCE SAVING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vaysman Yakov Iosifovich

    2016-03-01

    Full Text Available The article states that the use of spoil heaps (coal mining waste in the production of structural ceramics is expedient. It shows the reduction of negative ecological effects during the life cycle when coal mining waste is used in the initial blend for the production of structural ceramics. It shows that the development of the recommendations for the use of coal mining waste in the production of structural ceramics is an urgent issue as far as the use of coal mining waste in the production of structural ceramics can lead both to the achievement of resource saving and positive ecological effect and to the undesirable decrease of the basic physical and mechanical properties of the final products when the structure of the mix is inappropriate. In order to develop these recommendations the authors have examined the microstructure, mineral composition and physical and mechanical properties of structural ceramics produced with the use of coal mining waste, which effect the consumer properties of the target material. As a result of the research the authors have made the conclusions about the nature and degree of impact of coal mining waste quantity on the physical and mechanical properties of construction ceramics. The comparison of the data received during the measurement of the basic physical and mechanical properties of construction ceramics with the results of the research of microstructure, elemental and mineral composition of the samples has shown their correlation.

  19. Glass ceramic of high hardness and fracture toughness developed from iron-rich wastes

    Institute of Scientific and Technical Information of China (English)

    Weixin HAN

    2009-01-01

    A study has been carried out on the feasibility of using high iron content wastes, gen-erated during steel making, as a raw material for the production of glass ceramic. The iron-rich wastes were mixed and melted in different proportions with soda-lime glass cullet and sand. The devitrification of the parent glasses produced from the different mixtures was investigated using differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The mechanical properties of the glass-ceramic were assessed by hardness and indentation fracture toughness measurement. A glass ce-ramic with mixture of 60 wt pct iron-rich wastes, 25 wt pct sand, and 15 wt pct glass cullet exhibited the best combination of properties, namely, hardness 7.9 GPa and fracture toughness 3.75 MPa.m1/2, for the sake of containing magnetite in marked dendritic morphology. These new hard glass ceramics are candidate materials for wear resistant tiles and paving for heavy industrial floors.

  20. Cerium as a surrogate in the plutonium immobilization waste form

    Science.gov (United States)

    Marra, James Christopher

    In the aftermath of the Cold War, approximately 50 tonnes (MT) of weapons useable plutonium (Pu) has been identified as excess. The U.S. Department of Energy (DOE) has decided that at least a portion of this material will be immobilized in a titanate-based ceramic for final disposal in a geologic repository. The baseline formulation was designed to produce a ceramic consisting primarily of a highly substituted pyrochlore with minor amounts of brannerite and hafnia-substituted rutile. Since development studies with actual actinide materials is difficult, surrogates have been used to facilitate testing. Cerium has routinely been used as an actinide surrogate in actinide chemistry and processing studies. Although cerium appeared as an adequate physical surrogate for powder handling and general processing studies, cerium was found to act significantly different from a chemical perspective in the Pu ceramic form. The reduction of cerium at elevated temperatures caused different reaction paths toward densification of the respective forms resulting in different phase assemblages and microstructural features. Single-phase fabrication studies and cerium oxidation state analyses were performed to further quantify these behavioral differences. These studies indicated that the major phases in the final phase assemblages contained point defects likely leading to their stability. Additionally, thermochemical arguments predicted that the predominant pyrochlore phase in the ceramic was metastable. The apparent metastabilty associated with primary phase in the Pu ceramic form indicated that additional studies must be performed to evaluate the thermodynamic properties of these compounds. Moreover, the metastability of this predominant phase must be considered in assessment of long-term behavior (e.g. radiation stability) of this ceramic.

  1. Stabilization of Dune Sand with Ceramic Tile Waste as Admixture

    Directory of Open Access Journals (Sweden)

    Dr. N. K. Ameta

    2013-09-01

    Full Text Available The Dune-Sand has nil cohesion and thus has a very low compressive strength. The stabilization of Dune-Sand is of prime importance since it can be used for various construction works and highways, airfields and helipads projects. The investigation reported herein presents a study of stabilization of Dune- Sand with Ceramic Tiles Wastage as admixture. All the California Bearing Ratio tests were conducted at maximum dry density and optimum moisture content as arrived from Standard Proctor Test. Direct shear tests were also performed. The main objective of this experimental study was to obtain an economical stabilized mix of ceramic tiles wastage and dune sand so that largely and cheaply available dune-sand be used for various construction purposes.

  2. Design of ceramic microstructures based on waste materials

    OpenAIRE

    Robert Rekecki; Jonjaua Ranogajec

    2008-01-01

    The progressive changes in ceramic raw materials during firing processes are a complex area. This is partly due to the large number of raw material characteristics, primarily mineral composition, and partly to the relatively inadequate particle distribution in the unfired clay body. The most important starting point is always the optimal raw material composition which should give appropriate physical and mechanical characteristics to the final products after firing processes and should provid...

  3. Stabilization of Dune Sand with Ceramic Tile Waste as Admixture

    OpenAIRE

    Dr. N. K. Ameta

    2013-01-01

    The Dune-Sand has nil cohesion and thus has a very low compressive strength. The stabilization of Dune-Sand is of prime importance since it can be used for various construction works and highways, airfields and helipads projects. The investigation reported herein presents a study of stabilization of Dune- Sand with Ceramic Tiles Wastage as admixture. All the California Bearing Ratio tests were conducted at maximum dry density and optimum moisture content as arrived from Standard Proctor Test....

  4. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  5. Method of making nanostructured glass-ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2012-12-18

    A method of rendering hazardous materials less dangerous comprising trapping the hazardous material in nanopores of a nanoporous composite material, reacting the trapped hazardous material to render it less volatile/soluble, sealing the trapped hazardous material, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  6. Leaching from solidified waste forms under saturated and unsaturated conditions

    International Nuclear Information System (INIS)

    The leaching behavior of nitrate ion from a cement based waste form containing low-level radioactive waste was shown to be identical under saturated and unsaturated soil conditions. Only in soils containing less than 2 wt %water did the leach rate decrease. The observation of identical leach rates under saturated and unsaturated conditions is explained by diffusion through the waste form being the limiting step. Diffusion through the soil decreases in very dry soil and the limiting step changes. These laboratory tests were verified by measurements on similar, Portland cement based waste form in a field lysimeter

  7. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  8. The image simulation arithmetic of the degradating process of porous biologic ceramic in life-form

    Institute of Scientific and Technical Information of China (English)

    CHEN Zuo-bing; HUANG Jian-zhong; YAN Yu-hua; LI Shi-pu

    2001-01-01

    @@ It is a complex and difficult task to simulate the degradating process of porous biologic ceramic in life-form by computer. Because the evolvement of crystal' s structure deals with not only the mechanism of many factors, such as crystallography tropism, the reciprocity of wafer, interfacial movement, but also topology geometry mechanism of dimensional padding.

  9. Studies of high-level waste form performance at Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Banba, Tsunetaka; Mitamura, Hisayoshi; Kuramoto, Kenichi; Kamizono, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Inagaki, Yahohiro

    1998-02-01

    The JAERI studies on the properties of the glass and ceramic waste forms, which have been done in the last several years, are described briefly. For the long-term evaluation of glass waste form performance under repository condition, leachability has studied from the standpoints of understanding of alteration layers, effects of groundwater and effects of redox condition using the radioactive or non-radioactive glass samples. The studies revealed that (1) the reactions in the alteration layers, such as crystal growth, continue after the apparent release of elements from the glass almost ceases, (2) under somewhat reducing conditions, Fe dissolves easily into leachates, and hydrated silicate surface layer tends to dissolve more easily with Fe in reduced synthetic groundwater than in deionized water, (3) precipitation of PuO{sub 2}{center_dot}xH{sub 2}O(am) is controlling the leaching of soluble species of Pu under both redox conditions, and the dominant soluble species is Pu(OH){sub 4}{sup 0} under reducing condition. Ceramics are considered as most promising materials for the actinide-rich wastes arising from partitioning and transmutation processes because of their outstanding durability for long term. In the present study, {alpha}-decay damage effects on the density and leaching behavior of perovskite (1 of 3 main minerals forming Synroc) were investigated by an accelerated experiment using the actinide doping technique. A decrease in density of Cm-doped perovskite reaches 1.3% at a dose of 9x10{sup 17} {alpha}-decays{center_dot}g{sup -1}. The leach rate of perovskite increases with an increase in accumulated {alpha}-decay doses. Application of zirconia- and alumina-based ceramics for incorporating actinides was also investigated by inactive laboratory tests with an emphasis on crystallographic phase stability and chemical durability. The yttria-stabilized zirconia is stable crystallographically in the wide ranges of Ce and/or Nd content and have excellent

  10. Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies.

    Science.gov (United States)

    Menezes, Romualdo R; Farias, Felipe F; Oliveira, Maurício F; Santana, Lisiane N L; Neves, Gelmires A; Lira, Helio L; Ferreira, Heber C

    2009-02-01

    In the last few years, mineral extraction and processing industries have been identified as sources of environmental contamination and pollution. The kaolin processing industry around the world generates large amounts of waste materials. The present study evaluated the suitability of kaolin processing waste as an alternative source of ceramic raw material for the production of ceramic tiles and dense mullite bodies. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. The fired samples were microstructurally analysed by X-ray diffraction. The results indicated that ceramic tile formulations containing up to 60% of waste could be used for the production of tiles with low water absorption (approximately 0.5%) and low sintering temperature (1150 degrees C). Mullite formulations with more than 40% of kaolin waste could be used in the production of bodies with high strength, of about 75 MPa, which can be used as refractory materials. PMID:19220996

  11. Minerals as natural analogues for crystalline nuclear waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Giere, R. [Purdue University West Lafayette, Earth and Atmospheric Sciences (United States)

    2000-07-01

    Between the mining of uranium ore (mostly as uraninite) and the final disposal of nuclear waste, there are many processes and steps which together comprise the nuclear fuel cycle. Radioactive waste will be generated as long as nuclear reactors are in operation, but it is also produced by other means, e.g., during certain medical, scientific and industrial procedures. The most dangerous wastes are those resulting from the reprocessing of spent nuclear fuel and from some processes in the production and dismantling of nuclear weapons. A large part of this highly radioactive waste is present as a liquid and thus, its safe isolation from the biosphere requires immobilization of the radionuclides in a durable matrix (waste form). This is a solid which must be resistant to heat, radiation and corrosion over a geologic time scale. Three main categories of waste forms have been developed for the immobilization of radioactive waste, namely glasses, crystalline and multibarrier waste forms. One of the key properties of a nuclear waste form is its chemical durability (or resistance to corrosion), because the waste form represents the primary barrier to radionuclide release. The sciences of mineralogy and petrology have both contributed significantly to the development, characterization and performance assessment of such waste forms. The most important goal of safe nuclear waste disposal is to ensure that practically no radioactive materials reach the biosphere and, ultimately, human beings. Therefore, the design of final repositories is based on an approach that places several obstacles, or barriers, between waste and biosphere, whereby each barrier has a specific role in preventing or delaying migration of radioactive material. This multibarrier concept is different for each type of waste but, for the option of geological disposal, it generally comprises the following five barriers: (1) waste form (contains the actual waste); (2) canister (surrounds waste form; composed of a

  12. Thermal stability testing of low-level waste forms

    International Nuclear Information System (INIS)

    The NRC Technical Position (TP) on Waste Form specifies that waste forms should be resistant to thermal degradation. The thermal cycle testing procedure outlined in the TP on Waste Form was carried out and is believed adequate for demonstrating the thermal stability of solidified waste forms. The inclusion of control samples and the monitoring of sample temperature are recommended additions to the test. An outline for reporting thermal cycling test results is given. To produce a data base on the applicability of the thermal cycling test, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed bed bead resins, and powdered resins each solidified in asphalt, cement and vinyl ester-styrene. Thermal cycling does not significantly affect the compressive strength of the solidified wastes, except powdered resins solidified in cement which disintegrated during the test and bead resins in cement which showed a loss of compressive strength. After temperature cycling, cement solidified bead resins showed areas of spalling and solidified sodium sulfate forms had surface deterioration. Asphalt solidified wastes, except powdered resins, deformed by slumping on temperature cycling. Free liquid was released from vinyl esterstyrene solidifed waste forms as a result of thermal cycling. Dewatered bead and powdered resins were also tested and no free liquid was released on temperature cycling. 11 refs., 12 figs., 4 tabs

  13. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    International Nuclear Information System (INIS)

    Poly-phase waste form which was the mixture of Gd3Fe2Al3O12 and (NixMn1-x)(FeyCr1-y)2O4 was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  14. Preparation and leaching of radioactive INEL waste forms

    International Nuclear Information System (INIS)

    Appreciable quantities of radioactive waste are in storage at the Idaho National Engineering Laboratory (INEL). Plans are being made to convert this waste into durable solid forms for final disposal in a geological repository. Part of the inventory consists of low- and intermediate-level fission, activation, and decay products and transuranic (TRU) wastes, either stored retrievably or buried at the INEL Radioactive Waste Management area. One of the TRU wastes is a sludge from the Department of Energy Rocky Flats Plant, currently stored retrievably in 55-gallon drums. Immobilizing the TRU sludge is the primary concern of the work reported here

  15. Development and characterization of new high-level waste form containing LiCl KCl eutectic salts for achieving waste minimization from pyroprocessing

    International Nuclear Information System (INIS)

    The purpose of this project is to develop new high level waste (HLW) forms and fabrication processes to dispose of active metal fission products that are removed from electrorefiner salts in the pyroprocessing based fuel cycle. The current technology for disposing of active metal fission products in pyroprocessing involves non selectively discarding of fission product loaded salt in a glass-bonded sodalite ceramic waste form. Selective removal of fission products from the molten salt would greatly minimize the amount of HLW generated and methods were developed to achieve selective separation of fission products during a previous I NERI research project (I NERI 2006 002 K). This I NERI project proceeds from the previous project with the development of suitable waste forms to immobilize the separated fission products. The Korea Atomic Energy Research Institute (KAERI) has focused primarily on developing these waste forms using surrogate waste materials, while the Idaho National Laboratory (INL) has demonstrated fabrication of these waste forms using radioactive electrorefiner salts in hot cell facilities available at INL. Testing and characterization of these radioactive materials was also performed to determine the physical, chemical, and durability properties of the waste forms

  16. Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Farmer, J C

    2004-03-31

    Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

  17. Synthesis and sintering of a monazite brabantite solid solution ceramic for nuclear waste storage

    Science.gov (United States)

    Montel, Jean-Marc; Glorieux, Benoit; Seydoux-Guillaume, Anne-Magali; Wirth, Richard

    2006-12-01

    Various geological arguments suggest that monazite can be an interesting waste-form for actinides such as Np, Pu, Cm and Am. We set up a simple procedure for making dense pellets of monazite brabantite solid solution ceramics with composition Ca0.092Th0.092Ce0.089La0.727PO4. It consists of co-milling CaCO3, ThO2, CeO2, La2O3, and NH4H2PO4, 1250 °C calcination, milling, cold-pressing, and sintering at 1450 °C for 4 h. X-ray investigations showed that the reaction scheme from oxides to monazite is complex and involves various P+La-based intermediate compounds. The final density of the the product is around 95% of the theoretical density. The texture is homogeneous with a typical grain of size 5 20 μm. This process is designed to be adapted to hot cells and telemanipulators.

  18. Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won [Korea Atomic Energy Institute, Daejeon (Korea, Republic of)

    2012-09-15

    A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

  19. Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing

    International Nuclear Information System (INIS)

    A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

  20. Investigation of Bio-Inspired Hybrid Materials through Polymer Infiltration of Thermal Spray Formed Ceramic Templates

    Science.gov (United States)

    Flynn, Katherine Claire

    High strength and toughness are often mutually exclusive in engineered materials. This is especially true of ceramics and polymers. Ceramics exhibit high strength and stiffness, but are brittle while polymers are flaw tolerant but prone to deformation at low stresses. Nature overcomes this restriction in materials by strategically combining brittle components with tough organics, leading to materials with both a high strength and toughness. One of the most impressive natural composites is nacre consisting of mainly a brittle mineral phase, 95vol% calcium carbonate (aragonite), and 5vol% biopolymer (a combination of proteins and polysaccahrides). Nature combines constituents with poor macroscale properties and achieves levels that surpass those expected despite being formed of mostly mineral CaCO3 tablets. Interestingly, nacreous assemblies can display a toughness 3,000 times higher than their major constituent, aragonite. Similarities have been observed between nacre and sprayed ceramics in terms of their microstructures and mechanical behavior. Both assemblies follow a design hierarchy and layered organization over several length scales. The mineral phase in nacre has evolved on the microscale and nanometer interlayers of biopolymer bond neighboring tablets. In addition, these tablets have a certain degree of waviness, nanoscale roughness, and mineral bridges thereby further enhancing linkages to one another. These inherent microstructural features significantly improve the mechanical properties of nacreous assemblies. On the other hand, sprayed ceramics are formed from micron sized splats, larger than aragonite nacreous tablets, with comparable (nanoscale) roughness, resulting from grain termination sites. Together these features of sprayed ceramics respond similarly to nacre, showing a great extent of mechanical nonlinearity and hysteresis, which is mostly absent in structural ceramics. Due to the splat-by-splat deposition process, sprayed ceramics contain a

  1. Reference waste forms and packing material for the Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory (LLNL), Livermore, Calif., has been given the task of designing and verifying the performance of waste packages for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. NNWSI is studying the suitability of the tuffaceous rocks at Yucca Mountain, Nevada Test Site, for the potential construction of a high-level nuclear waste repository. This report gives a summary description of the three waste forms for which LLNL is designing waste packages: spent fuel, either as intact assemblies or as consolidated fuel pins, reprocessed commercial high-level waste in the form of borosilicate glass, and reprocessed defense high-level waste from the Defense Waste Processing Facility in Aiken, S.C. Reference packing material for use with the alternative waste package design for spent fuel is also described. 14 references, 8 figures, 20 tables

  2. Recycling of glass fibers from fiberglass polyester waste composite for manufacture glass-ceramic materials

    OpenAIRE

    López Gómez, Félix Antonio; Martín, M. Isabel; García Díaz, Irene; Rodríguez, O.; Alguacil, Francisco José; Romero, M.

    2012-01-01

    This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550˚C for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (≈24 wt%), a gas (≈8 wt%) and a solid residue (≈68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were co...

  3. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  4. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  5. Comparison of glass and crystalline nuclear waste forms

    International Nuclear Information System (INIS)

    Nuclear waste forms may be divided into two broad categories: single phase glasses with minor crystalline components (e.g., borosilicate glasses) and crystalline waste forms, either single phase (e.g., monazite) or polyphase (e.g., SYNROC). This paper reviews the materials properties data that are available for each of these two types of waste forms. The principal data include: physical, thermal and mechanical properties, chemical durability; and radiation damage effects. Complete data are only available for borosilicate glasses and SYNROC; therefore, this comparison focuses on the performance assessment of borosilicate glass and SYNROC

  6. A study on the acceptance criteria of radioactive waste form

    International Nuclear Information System (INIS)

    It is essential to accept well solidified and packaged waste forms for the safety during the operational and post operational phase in the repository, and for this, waste the acceptance criterion is necessary for the distinction of the well solidified and packaged waste form. The objective of this report is to provide the preliminary acceptance criteria to help the later establishment of final acceptance criteria. The following factors were considered for establishing the preliminary waste acceptance criteria. 1) Matrix and waste form characteristics 2) the type of repository and its characteristics 3) establishment procedure of acceptance criteria and its technical background From this study, a qualitative preliminary criterion including the radionuclide contents, surface dose, surface contamination and so on was established. (Author)

  7. Testing and evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    The report describes research by several laboratories on the behaviour, in aqueous and salt environments, of borosilicate glass ceramics proposed for the solidification of nuclear wastes by the European Community. Results were obtained on inactive simulates, doped materials, and on borosilicate glass containing real radioactive waste. The influence of many important parameters were studied: leaching mode, nature of the leachant, pH, pressure, temperature, duration of the treatment, etc. The results of tests lasting for as little as a few hours or for as long as several hundred days, at temperatures up to 2000C or under pressures up to 200 bars, are presented. Numerous analytical techniques (ESCA, EMP, IRR, SEM, etc.) were used to determine the structure and the chemical composition of the altered layer developed by hydration at the glass surface. Information is also given on physical properties of the borosilicate glass: crystallization phase separation, alpha-irradiation stability, mechanical and thermal stability, etc. Finally, preliminary results on the structure and composition of hollandite ceramics are given

  8. Waste form development program. Annual report, October 1982-September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kalb, P.D.; Fuhrmann, M.

    1983-09-01

    This report provides a summary of the work conducted for the Waste Form Development/Test Program at Brookhaven National Laboratory in FY 1983 under the sponsorship of the US Department of Energy's Low-Level Waste Management Program. The primary focus of this work is the investigation of new solidification agents which will provide improved immobilization of low-level radioactive wastes in an efficient, cost-effective manner. A working set of preliminary waste form evaluation criteria which could impact upon the movement of radionuclides in the disposal environment was developed. The selection of potential solidification agents for further investigation is described. Two thermoplastic materials, low-density polyethylene and a modified sulfur cement were chosen as primary candidates for further study. Three waste types were selected for solidification process development and waste form property evaluation studies which represent both new volume reduction wastes (dried evaporator concentrates and incinerator ash) and current problem wastes (ion exchange resins). Preliminary process development scoping studies were conducted to verify the compatibility of selected solidification agents and waste types and the potential for improved solidification. Waste loadings of 60 wt % Na/sub 2/SO/sub 4/, 25 wt % H/sub 3/BO/sub 3/, 25 wt % incinerator ash and 50 wt % dry ion exchange resin were achieved using low density polyethylene as a matrix material. Samples incorporating 65 wt % Na/sub 2/SO/sub 4/, 40 wt % H/sub 3/BO/sub 3/, 20 wt % incinerator ash and 40 wt % dry ion exchange resin were successfully solidified in modified sulfur cement. Additional improvements are expected for both matrix materials as process parameters are optimized. Several preliminary property evaluation studies were performed to provide the basis for an initial assessment of waste form acceptability. These included a two-week water immersion test and compressive load testing.

  9. Waste form development program. Annual report, October 1982-September 1983

    International Nuclear Information System (INIS)

    This report provides a summary of the work conducted for the Waste Form Development/Test Program at Brookhaven National Laboratory in FY 1983 under the sponsorship of the US Department of Energy's Low-Level Waste Management Program. The primary focus of this work is the investigation of new solidification agents which will provide improved immobilization of low-level radioactive wastes in an efficient, cost-effective manner. A working set of preliminary waste form evaluation criteria which could impact upon the movement of radionuclides in the disposal environment was developed. The selection of potential solidification agents for further investigation is described. Two thermoplastic materials, low-density polyethylene and a modified sulfur cement were chosen as primary candidates for further study. Three waste types were selected for solidification process development and waste form property evaluation studies which represent both new volume reduction wastes (dried evaporator concentrates and incinerator ash) and current problem wastes (ion exchange resins). Preliminary process development scoping studies were conducted to verify the compatibility of selected solidification agents and waste types and the potential for improved solidification. Waste loadings of 60 wt % Na2SO4, 25 wt % H3BO3, 25 wt % incinerator ash and 50 wt % dry ion exchange resin were achieved using low density polyethylene as a matrix material. Samples incorporating 65 wt % Na2SO4, 40 wt % H3BO3, 20 wt % incinerator ash and 40 wt % dry ion exchange resin were successfully solidified in modified sulfur cement. Additional improvements are expected for both matrix materials as process parameters are optimized. Several preliminary property evaluation studies were performed to provide the basis for an initial assessment of waste form acceptability. These included a two-week water immersion test and compressive load testing

  10. Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication.

    Science.gov (United States)

    Antolino, Nicholas E; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L; Frecker, Mary I; Mockensturm, Eric M; Adair, James H

    2009-01-01

    Free-standing mesoscale (340 mum x 30 mum x 20 mum) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter ( approximately 400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595

  11. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  12. Glass- and ceramic-grade feldspar from waste

    OpenAIRE

    Mitchell, C J; Evans, E J

    1996-01-01

    In a typical feldspar operation extraction and size reduction may account for 20 to 25% of operating costs. Production of feldspar from feldspathic quarry fines and / or mine tailings would avoid this cost as the material has already been extracted and crushed. Other benefits arise from a reduction in waste treatment and disposal, an increase in the revenue realised per tonne of material extracted and, ultimately, an environmental benefit from a reduction in feldspar mined. Feldspathic wa...

  13. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Simulated zirconia-type calcined waste is pelletized on a 41-cm diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 8000C for 2 hours the pellets are impact resistant and have a leach resistance of 10-4 g/cm2 . day, based on Soxhlet leaching for 100 hours at 950C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  14. Transuranic contaminated waste form characterization and data base

    International Nuclear Information System (INIS)

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report

  15. Transuranic contaminated waste form characterization and data base

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  16. Evolution of 99Tc Species in Cementitious Nuclear Waste Form

    International Nuclear Information System (INIS)

    Technetium (Tc) is produced in large quantities as a fission product during the irradiation of 235U-enriched fuel for commercial power production and plutonium genesis for nuclear weapons. The most abundant isotope of Tc present in the wastes is 99Tc because of its high fission yield (∼6%) and long half-life (2.13x105 years). During the Cold War era, generation of fissile 239Pu for use in America's atomic weapons arsenal yielded nearly 1900 kg of 99Tc at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State. Most of this 99Tc is present in fuel reprocessing wastes temporarily stored in underground tanks awaiting retrieval and permanent disposal. After the wastes are retrieved from the storage tanks, the bulk of the high-level waste (HLW) and lowactivity waste (LAW) stream is scheduled to be converted into a borosilicate glass waste form that will be disposed of in a shallow burial facility called the Integrated Disposal Facility (IDF) at the Hanford Site. Even with careful engineering controls, volatilization of a fraction of Tc during the vitrification of both radioactive waste streams is expected. Although this volatilized Tc can be captured in melter off-gas scrubbers and returned to the melter, some of the Tc is expected to become part of the secondary waste stream from the vitrification process. The off-gas scrubbers downstream from the melters will generate a high pH, sodium-ammonium carbonate solution containing the volatilized Tc and other fugitive species. Effective and cost-efficient disposal of Tc found in the off-gas scrubber solution remains difficult. A cementitious waste form (Cast Stone) is one of the nuclear waste form candidates being considered to solidify the secondary radioactive liquid waste that will be generated by the operation of the waste treatment plant (WTP) at the Hanford Site. Because Tc leachability from the waste form is closely related with Tc speciation or oxidation state in both the simulant and

  17. Valorization of rice straw waste: an alternative ceramic raw material

    OpenAIRE

    Á. Guzmán A; S. Delvasto A; E. Sánchez V

    2015-01-01

    In the production of rice a large amount of solid residue is produced, for which alternative utilizations are scarce or are not commonly applied in industry. Rice straw (RS) is a waste product of rice harvest that is generated in equal or greater quantities than the rice itself. RS is frequently burned in open air, which makes it a significant source of pollution. In the search for possible uses of RS, it should be noted that its ash (RSA) is particularly rich in silica, alkaline and alkaline...

  18. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes.

    Science.gov (United States)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 degrees C/min, increased by about 20% and 30%, respectively. PMID:16730889

  19. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Karamanov, Alexander [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy)]. E-mail: karama@ing.univaq.it; Taglieri, Giuliana [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Ferrante, Fabiola [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy)]. E-mail: pelino@ing.univaq.it

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively.

  20. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs

    International Nuclear Information System (INIS)

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables

  1. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  2. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  3. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  4. Simplex network modeling for press-molded ceramic bodies incorporated with granite waste

    International Nuclear Information System (INIS)

    Extrusion of a clay body is the most commonly applied process in the ceramic industries for manufacturing structural block. Nowadays, the assembly of such blocks through a fitting system that facilitates the final mounting is gaining attention owing to the saving in material and reducing in the cost of the building construction. In this work, the ideal composition of clay bodies incorporated with granite powder waste was investigated for the production of press-molded ceramic blocks. An experimental design was applied to determine the optimum properties and microstructures involving not only the precursors compositions but also the press and temperature conditions. Press load from 15 ton and temperatures from 850 to 1050°C were considered. The results indicated that varying mechanical strength of 2 MPa to 20 MPa and varying water absorption of 19% to 30%. (author)

  5. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  6. Effect of Concrete Waste Form Properties on Radionuclide Migration

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Skinner, De' Chauna J.; Cordova, Elsa A.; Wood, Marcus I.

    2009-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation) the mechanism of contaminant release, the significance of contaminant release pathways, how waste form performance is affected by the full range of environmental conditions within the disposal facility, the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility, the effect of waste form aging on chemical, physical, and radiological properties and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. Numerous sets of tests were initiated in fiscal years (FY) 2006-2009 to evaluate (1) diffusion of iodine (I) and technetium (Tc) from concrete into uncontaminated soil after 1 and 2 years, (2) I and rhenium (Re) diffusion from contaminated soil into fractured concrete, (3) I and Re (set 1) and Tc (set 2) diffusion from fractured concrete into uncontaminated soil, (4) evaluate the moisture distribution profile within the sediment half-cell, (5) the reactivity and speciation of uranium (VI) (U(VI)) compounds in concrete porewaters, (6) the rate of dissolution of concrete monoliths, and (7) the diffusion of simulated tank waste into concrete.

  7. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    International Nuclear Information System (INIS)

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  8. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  9. Raw-materials mixtures from waste of the coal industry for production of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Galpern, E.I. [Scientific-Manufacturing Enterprise ``Ceramics``, Donetsk (Ukraine); Pashchenko, L.V. [Inst. of Physical, Organic and Coal Chemistry of NASU, Donetsk (Ukraine)

    1998-09-01

    The liquidation of waste dumps on the surface of mining enterprises and realization of measures by environment protection of air and aquatic basins are connected to the complex processing of mining mass. The main directions of utilization of mining rocks and coal wastes realized in Ukraine industry are: - filling of mines worked-out area by grouting solutions; - ceramic brick, porous filling materials and binding materials production; - road-making, construction of hydrostructures and industrial objects; - output of concrete items predominantly for using in mining conditions. The peculiarity of wastes using in above-mentioned fields is the possibility of their mass application in quantities commensurable with valumes of their yields. The experience of enterprises work which process mining rocks into building materials by burning method (ceramic brick, porous aggregates of concretes as aggloporite, expanded clay aggregate) has shown that unconstant and, as the rule, exceeding norms content of carbon and sulphur in the rock results to deterioration of products quality and technological factors of production. Unstability of carbon content in raw material makes the burning process hardly operated. Obtained products having residual carbon in the view of coke residue are often characterized by lower physical-mechanical characteristics. (orig./SR)

  10. Technetium Waste Form Development - Progress Report

    International Nuclear Information System (INIS)

    Analytical electron microscopy using SEM and TEM has been used to analyze a ∼5 g. ingot with composition 71.3 wt% 316SS-5.3 wt% Zr-13.2 wt% Mo-4.0 wt% Rh-6.2 wt% Re prepared at the Idaho National Laboratory. Four phase fields have been identified two of which are lamellar eutectics, with a fifth possibly present. A Zr rich phase was found distributed as fine precipitate, ∼10 (micro)m in diameter, often coating large cavities. A Mo-Fe-Re-Cr lamellar eutectic phase field appears as blocky regions ∼30 (micro)m in diameter, surrounded by a Fe-Mo-Cr lamellar eutectic phase field, and that in turn is surrounded by a Zr-Fe-Rh-Mo-Ni phase field. The eutectic phase separation reactions are different. The Mo-Fe-Re-Cr lamellar eutectic appears a result of austenitic steel forming at lower volume fraction within an Mo-Fe-Re intermetallic phase, whereas the Fe-Mo-Cr lamellar eutectic may be a result of the same intermetallic phase forming within a ferritic steel phase. Cavitation may have arisen either as a result of bubbles, or from loss of equiaxed particles during specimen preparation.

  11. Technetium Waste Form Development - Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, David S.; Ermi, Ruby M.; Buck, Edgar C.; Seffens, Rob J.; Chamberlin, Clyde E.

    2009-01-07

    Analytical electron microscopy using SEM and TEM has been used to analyze a ~5 g. ingot with composition 71.3 wt% 316SS-5.3 wt% Zr-13.2 wt% Mo-4.0 wt% Rh-6.2 wt% Re prepared at the Idaho National Laboratory. Four phase fields have been identified two of which are lamellar eutectics, with a fifth possibly present. A Zr rich phase was found distributed as fine precipitate, ~10µm in diameter, often coating large cavities. A Mo-Fe-Re-Cr lamellar eutectic phase field appears as blocky regions ~30µm in diameter, surrounded by a Fe-Mo-Cr lamellar eutectic phase field, and that in turn is surrounded by a Zr-Fe-Rh-Mo-Ni phase field. The eutectic phase separation reactions are different. The Mo-Fe-Re-Cr lamellar eutectic appears a result of austenitic steel forming at lower volume fraction within an Mo-Fe-Re intermetallic phase, whereas the Fe-Mo-Cr lamellar eutectic may be a result of the same intermetallic phase forming within a ferritic steel phase. Cavitation may have arisen either as a result of bubbles, or from loss of equiaxed particles during specimen preparation.

  12. Weathering Effect on 99Tc Leachability from Cementitious Waste Form

    International Nuclear Information System (INIS)

    The mass transfer of contaminants from the solid phase to the waste form pore water, and subsequently out of the solid waste form, is directly related to the number and size distribution of pores as well as the microstructure of the waste form. Because permeability and porosity are controlled by pore aperture size, pore volume, and pore distribution, it is important to have some indication of how these characteristics change in the waste form during weathering. Knowledge of changes in these key parameters can be used to develop predictive models that estimate diffusivity or permeability of radioactive contaminants can be used to develop predictive models that estimate diffusivity or permeability of radioactive contaminants from waste forms for long-term performance assessment. It is known that dissolution or precipitation of amorphous/crystalline phases within waste forms alters their pore structure and controls the transport of contaminants our of waste forms. One very important precipitate is calcite, which is formed as a result of carbonation reactions in cement and other high-alkalinity waste forms. Enhanced oxidation can also increase Tc leachability from the waste form. To account for these changes, weathering experiments were conducted in advance to increase our understating of the long-term Tc leachability, especially out of the cementitious waste form. Pore structure analysis was characterized using both N2 absorption analysis and XMT techniques, and the results show that cementitious waste form is a relatively highly-porous material compared to other waste forms studied in this task, Detailed characterization of Cast Stone chunks and monolith specimens indicate that carbonation reactions can change the Cast Stone pore structure, which in turn may correlate with Tc leachability. Short carbonation reaction times for the Cast Stone causes pore volume and surface area increases, while the average pore diameter decreases. Based on the changes in pore volumes

  13. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  14. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    Science.gov (United States)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  15. PREPARATION OF RECYCLING CERAMIC TILES USING CERAMIC INDUSTRIAL WASTE%利用陶瓷工业废料制备再生陶瓷墙地砖

    Institute of Scientific and Technical Information of China (English)

    王功勋

    2011-01-01

    Recycling ceramic tile was made from raw materials using waste ceramic polishing powder(PP),and waste tiles,and using borax was added as a supplementary flux.Effects of PP sintering property on the strength of recycling ceramic tiles were investigated.Effects of PP on microstructure were detected by SEM tests.Results show that PP is beneficial to improve the sintering property because of its fine particle and glass phase.Strength of recycling ceramic tiles is increased by adding PP and borax compound.In the experimental,borax mass fraction of 0.5%,PP mass fraction of 2% and ceramic tile granule mass fraction of 25%,the strength of recycling ceramic tiles is the highest.This treatment technology features large integrated utilization efficiency for ceramic industrial waste and high strength of recycle ceramic tiles.%以废弃陶瓷抛光砖粉、陶瓷墙地砖烧成废料为原材料,硼砂作辅助熔剂制备再生陶瓷墙地砖,研究陶瓷抛光砖粉的高温烧结性能及其对再生墙地砖强度的影响,采用SEM测试分析陶瓷抛光砖粉对再生陶瓷制品微观结构的影响。结果表明:抛光砖粉含玻璃相、颗粒细小,有利坯体烧结密实;复掺少量抛光砖粉和硼砂,可提高制品强度。在硼砂掺量为0.5%,陶瓷抛光砖粉为2%、烧成废料为25%的实验条件下,所得再生陶瓷制品强度最高。该方法具有陶瓷工业废料的综合利用率高,制得的再生陶瓷制品强度高等特点。

  16. Zirconia-magnesia inert matrix fuel and waste form: Synthesis, characterization and chemical performance in an advanced fuel cycle

    Science.gov (United States)

    Holliday, Kiel Steven

    There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good thermal conductivity and the ceramic has been calculated to conform to current economic and safety standards. This dissertation contributes to the knowledge of zirconia-magnesia as an inert matrix fuel to establish behavior of the material containing a fissile component. First, the zirconia-magnesia inert matrix is synthesized in a dual phase ceramic containing a fissile component and a burnable poison. The chemical constitution of the ceramic is then determined. Next, the material performance is assessed under conditions relevant to an advanced fuel cycle. Reactor conditions were assessed with high temperature, high pressure water. Various acid solutions were used in an effort to dissolve the material for reprocessing. The ceramic was also tested as a waste form under environmental conditions, should it go directly to a repository as a spent fuel. The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested and found to be a promising material for such applications.

  17. Lost mold-rapid infiltration forming: Strength control in mesoscale 3Y-TZP ceramics

    Science.gov (United States)

    Antolino, Nicholas E.

    The strength of nanoparticulate enabled microdevices and components is directly related to the interfacial control between particles and the flaws introduced as these particles come together to form the device or component. One new application for micro-scale or meso-scale (10's microm to 100's microm) devices is surgical instruments designed to enter the body, perform a host of surgeries within the body cavity, and be extracted with no external incisions to the patient. This new concept in surgery, called natural orifice transluminal endoscopic surgery (NOTES), requires smaller and more functional surgical tools. Conventional processing routes do not exist for making these instruments with the desired size, topology, precision, and strength. A process, called lost mold-rapid infiltration forming (LM-RIF), was developed to satisfy this need. A tetragonally stabilized zirconia polycrystalline material (3Y-TZP) is a candidate material for this process and application because of its high strength, chemical stability, high elastic modulus, and reasonably high toughness for a ceramic. Modern technical ceramics, like Y-TZP, are predicated on dense, fine grained microstructures and functional mesoscale devices must also adhere to this standard. Colloid and interfacial chemistry was used to disperse and concentrate the Y-TZP nanoparticles through a very steep, yet localized, potential energy barrier against the van der Waals attractive force. The interparticle interaction energies were modeled and compared to rheological data on the suspension. At high concentrations, the suspension was pseudoplastic, which is evidence that a structure was formed within the suspension that could be disrupted by a shearing force. The LM-RIF process exploits this rheological behavior to fill mold cavities created by photolithography. The premise of the LM-RIF process is to process the particulate material into a dense ceramic body while the unsintered mesoscale parts are supported en masse

  18. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    Science.gov (United States)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  19. Production of glass-ceramics from sewage sludge and waste glass

    Science.gov (United States)

    Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.

    2011-12-01

    In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  20. Production of glass-ceramics from sewage sludge and waste glass

    International Nuclear Information System (INIS)

    In the present study for recycling of sewage sludge and waste glass from JSC 'Valmieras stikla skiedra' treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified – density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 – 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 – 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  1. Advanced waste forms research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, G.J.

    1975-06-11

    Research and development activities on advanced (alternatives to glass) nuclear waste forms are reported. The emphasis is on two phases of the work to give essential background information on supercalcine development. The first is a report of the data obtained in the study of cesium aluminosilicate for Cs and Ru fixation. Research on the compatibility of the phases formed in the complex oxide system made up of waste and additive cations is reported. The phase stability in a number of proposed formulations was determined. (JSR)

  2. Performance testing of waste forms in a tuff environment

    International Nuclear Information System (INIS)

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 105 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  3. Fire testing of fully active medium-level waste forms

    International Nuclear Information System (INIS)

    The effect of heat on packaged intermediate level waste (ILW) has been studied. This was done in order to be able to predict the behaviour of the ILW under accident conditions involving fire during transport or at the repository. In the study, experimental data were obtained and used in the development and validation of theoretical models to describe aspects of the behaviour of the waste form when subjected to heat. The prime objective was to be able to predict the amounts of radioactive materials released from a given incident. Four ILW streams were selected for experimental study. These four were chosen as the minimum that could be studied to provide a set of data that could be used in the prediction of the behaviour of the majority of ILW produced in the UK. Heating experiments were carried out on a small scale using packaged ILW samples made from active wastes or inactive simulants. Data were obtained on temperatures in the waste form, production of volatile materials, carry-forward of solid particulate materials and carry-forward of radionuclides. The results were used, together with data from full-scale experiments with inactive simulant ILW carried out at Winfrith, to develop and validate a theoretical model. This model calculates the temperature profiles within a package of immobilized ILW as a function of the applied heating conditions. The temperature of the waste form is used to predict the release of radioactive materials from the package. 4 refs., 65 figs., 13 tabs

  4. State of the art report on bituminized waste forms of radioactive wastes

    International Nuclear Information System (INIS)

    In this report, research and development results on the bituminization of radioactive wastes are closely reviewed, especially those regarding waste treatment technologies, waste solidifying procedures and the characteristics of asphalt and solidified forms. A new concept of the bituminization method is suggested in this report which can improve the characteristics of solidified forms. Stable solid forms with high leach resistance, high thermal resistance and good compression strength were produced by the suggested bituminization method, in which spent polyethylene from agricultural farms was added. This report can help further research and development of improved bituminized forms of radioactive wastes that will maintain long term stabilities in disposal sites. (author). 59 refs., 19 tabs., 18 figs

  5. State of the art report on bituminized waste forms of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Kook; Shon, Jong Sik; Kim, Kil Jeong; Lee, Kang Moo; Jung, In Ha

    1998-03-01

    In this report, research and development results on the bituminization of radioactive wastes are closely reviewed, especially those regarding waste treatment technologies, waste solidifying procedures and the characteristics of asphalt and solidified forms. A new concept of the bituminization method is suggested in this report which can improve the characteristics of solidified forms. Stable solid forms with high leach resistance, high thermal resistance and good compression strength were produced by the suggested bituminization method, in which spent polyethylene from agricultural farms was added. This report can help further research and development of improved bituminized forms of radioactive wastes that will maintain long term stabilities in disposal sites. (author). 59 refs., 19 tabs., 18 figs

  6. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    Science.gov (United States)

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders. PMID:16343751

  7. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  8. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    Science.gov (United States)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  9. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  10. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  11. Influence of Waste Ceramics on Melting Behavior of Glass-ceramics%废瓷掺料对微晶玻璃熔融结晶的影响

    Institute of Scientific and Technical Information of China (English)

    林少敏; 王勃; 刘贵深

    2011-01-01

    利用瓷土尾矿、废瓷、粉煤灰等工业废料作为主要原料制备微晶玻璃,不仅能够有效解决工业废弃物的环境污染问题,而且能够实现废弃物的资源化利用。在配方设计中,瓷土尾矿、粉煤灰等固体废料的用量可达原料总量的75%以上。但废瓷粉的掺入会破坏微晶玻璃表层的析晶效果,由于废瓷的种类繁多,其化学组成、所含杂质及烧结温度具有很大的差异性,会对微晶玻璃的熔融结晶产生较大影响。%Using industrial wastes and tailings as main raw materials to manufacturing glass-ceramics,not only can solve the problem of environment pollution,but also can realize the resource utilization of waste materials.In the formula design,the dosage of porcelain clay tailings and fly ash can reach more than 75 % of the total amount of raw materials.Waste ceramics powder can destroy the crystal of crystallite glass surface layer.Because of the chemical composition,impurities and sintering temperature of different kind of waste ceramics have great difference,that has great influence on melting behavior of glass-ceramics.

  12. Characteristics of borosilicate waste glass form for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    Basic data, required for the design and the performance assessment of a repository of HLW, suchas the chemical composition and the characteristics of the borosilicate waste glass have been identified according to the burn-ups of spent PWR fuels. The diemnsion of waste canister is 430mm in diameter and 1135mm in length, and the canister should hold less than 2kwatts of heat from their decay of radionuclides contained in the HLW. Based on the reprocessing of 5 years-cooled spent fuel, one canister could hold about 11.5wt.% and 10.8wt.% of oxidized HLW corresponding to their burn-ups of 45,000MWD/MTU and 55,000MWD/MTU, respectively. These waste forms have been recommanded as the reference waste forms of HLW. The characteristics of these wastes as a function of decay time been evaluated. However, after a specific waste form and a specific site for the disposal would be selected, the characteristics of the waste should be reevaluated under the consideration of solidification period, loaded waste, storage condition and duration, site circumstances for the repository system and its performance assessment.

  13. Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

  14. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available

  15. Mixture for solidification of liquid radioactive wastes into stable forms

    International Nuclear Information System (INIS)

    A mixture is proposed for cementing liquid radioactive wastes into chemically stable, mechanically strong, transportable and storable forms. The mixture consists of 60-80 wt.% Portland cement, 5-15 wt.% flue silica dust and 15-25 wt.% zeolitic tuffite. (Z.S.)

  16. The role of chemical reaction in waste-form performance

    International Nuclear Information System (INIS)

    The dissolution rate of waste solids in a geologic repository is a complex function of waste form geometry, chemical raction rate, exterior flow field, and chemical environment. We present here an analysis to determine the stady-state mass transfer rate, over the entire range of flow conditions relevant to geologic disposal of nuclear waste. The equations for steady-state mass transfer with a chemical-reaction-rate boundary condition are solved by three different mathematical techniques which supplement each other. This theory is illustrated with laboratory leach data for borosilicate-glass and a spherical spent-fuel waste form under typical repository conditions. For borosilicate glass waste in the temperature range of 57/degree/C to 250/degree/C, dissolution rate in a repository is determined for a wide range of chemical reaction rates and for Peclet numbers from zero to well over 100, far beyond any Peclet values expected in a repository. Spent-fuel dissolution in a repository is also investigated, based on the limited leach data now available. 10 refs., 4 figs., 1 tab

  17. Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products.

    Science.gov (United States)

    Kizinievič, Olga; Balkevičius, Valdas; Pranckevičienė, Jolanta; Kizinievič, Viktor

    2014-08-01

    Large amounts of centrifuging waste of mineral wool melt (CMWW) are created during the production of mineral wool. CMWW is technogenic aluminum silicate raw material, formed from the particles of undefibred melt (60-70%) and mineral wool fibers (30-40%). 0.3-0.6% of organic binder with phenol and formaldehyde in its composition exists in this material. Objective of the research is to investigate the possibility to use CMWW as an additive for the production of ceramic products, by neutralising phenol and formaldehyde existing in CMWW. Formation masses were prepared by incorporating 10%, 20% and 30% of CMWW additive and burned at various temperatures. It was identified that the amount of 10-30% of CMWW additive influences the following physical and mechanical properties of the ceramic body: lowers drying and firing shrinkage, density, increases compressive strength and water absorption. Investigations carried out show that CMWW waste can be used for the production of ceramic products of various purposes. PMID:24569044

  18. Interaction study between nuclear waste-glass melt and ceramic melter bellow liner materials

    Science.gov (United States)

    Sengupta, Pranesh

    2011-04-01

    Identification of proper materials for plant scale vitrification furnaces, engaged in immobilization of high level nuclear waste has always been a great challenge. Fast degradation of pour spout materials very often cause problem towards smooth pouring of waste-glass melt in canister and damages bellow kept in between. The present experimental study describes the various reaction products that form due to interaction between waste-glass melt and potential bellow liner materials such as copper, stainless steel and nickel based Superalloys (Alloy 690, 625). The results indicate that copper based material has lesser tendency to form adherent glassy layer.

  19. Interaction study between nuclear waste-glass melt and ceramic melter bellow liner materials

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Pranesh, E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-04-15

    Identification of proper materials for plant scale vitrification furnaces, engaged in immobilization of high level nuclear waste has always been a great challenge. Fast degradation of pour spout materials very often cause problem towards smooth pouring of waste-glass melt in canister and damages bellow kept in between. The present experimental study describes the various reaction products that form due to interaction between waste-glass melt and potential bellow liner materials such as copper, stainless steel and nickel based Superalloys (Alloy 690, 625). The results indicate that copper based material has lesser tendency to form adherent glassy layer.

  20. Validation of new ceramic materials from tungsten mining wastes. Mechanical properties; Validacion de nuevos materiales ceramicos a partir de rocas de desecho de mineria. Propiedades mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Duran Suarez, J. A.; Montoya Herrera, J.; Silva, A. P.; Peralbo Cano, R.; Castro-Gomes, J. P.

    2014-07-01

    New ceramic materials obtained from tungsten mining wastes, from region of Beira Interior in Portugal, with no commercial use, responsible for landscape and environmental problems are presented. These preshaped new ceramic products, prepared in a wide thermal range (800 degree centigrade to 1300 degree centigrade) was evaluated by mechanical test, but also was characterized the starting raw materials: tungsten wastes mining and industrial kaolin. Results, which also include a mineralogical characterization of ceramic products and morphologic evaluation of neoformed by scanning electron microscopy, show firstly, the feasibility of converting a large number of these wastes in marketable ceramics. Thanks to the experimentation carried out, the ability to generate ceramic materials is emphasized, without the presence of mineral clay, due to the particular composition of these waste of mining with content of acid, neutral and basic oxides. (Author)

  1. Immobilisation of nuclear waste materials containing different alkali elements into single-phase NZP-based ceramics

    Science.gov (United States)

    Pet'kov, V. I.; Orlova, A. I.; Trubach, I. G.; Asabina, Y. A.; Demarin, V. T.; Kurazhkovskaya, V. S.

    2003-01-01

    A single-phase host matrix based upon the sodium zirconium phosphate (NZP) structure and designed to immobilise commercial nuclear waste was investigated. In comparison with other waste forms the important advantage of the NZP ceramics is its ability to incorporate, at crystallographic levels, alkali elements without significant deterioration of the physical and chemical matrix stability. Studies on the incorporation of different alkali elements into the NZP host structure were performed. Single-phase phosphates corresponding to crystalline solutions (continuous and limited) with a structure similar to NZP were found in the series of compounds with the general formula A1-x+4yA'xE2-y(PO4)3 (y=0, 0.5 and 1, and 0≤x≤1+4y), where A-A' are different alkali elements (Li, Na, K, Rb, and Cs) and E are Ti or Zr. Leaching studies with alkali containing samples revealed reasonable resistance towards the release of the constituents.

  2. Immobilisation of nuclear waste materials containing different alkali elements into single-phase NZP-based ceramics

    International Nuclear Information System (INIS)

    A single-phase host matrix based upon the sodium zirconium phosphate (NZP) structure and designed to immobilise commercial nuclear waste was investigated. In comparison with other waste forms the important advantage of the NZP ceramics is its ability to incorporate, at crystallographic levels, alkali elements without significant deterioration of the physical and chemical matrix stability. Studies on the incorporation of different alkali elements into the NZP host structure were performed. Single-phase phosphates corresponding to crystalline solutions (continuous and limited) with a structure similar to NZP were found in the series of compounds with the general formula A1-x+4yA'xE2-y(PO4)3 (y = 0, 0.5 and 1, and 0 ≤ x ≤ 1+4y), where A-A' are different alkali elements (Li, Na, K, Rb, and Cs) and E are Ti or Zr. Leaching studies with alkali containing samples revealed reasonable resistance towards the release of the constituents. (author)

  3. Testing of high-level waste forms under repository conditions

    International Nuclear Information System (INIS)

    The workshop on testing of high-level waste forms under repository conditions was held on 17 to 21 October 1988 in Cadarache, France, and sponsored by the Commission of the European Communities (CEC), the Commissariat a l'energie atomique (CEA) and the Savannah River Laboratory (US DOE). Participants included representatives from Australia, Belgium, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, The United Kingdom and the United States. The first part of the conference featured a workshop on in situ testing of simulated nuclear waste forms and proposed package components, with an emphasis on the materials interface interactions tests (MIIT). MIIT is a sevent-part programme that involves field testing of 15 glass and waste form systems supplied by seven countries, along with potential canister and overpack materials as well as geologic samples, in the salt geology at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, USA. This effort is still in progress and these proceedings document studies and findings obtained thus far. The second part of the meeting emphasized multinational experimental studies and results derived from repository systems simulation tests (RSST), which were performed in granite, clay and salt environments

  4. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  5. Diffusion-based leaching models for glassy waste forms

    International Nuclear Information System (INIS)

    Most scenarios for the disposal of high-level nuclear wastes assume burial under conditions in which only a limited quantity of groundwater will contact the waste form. In order to model these conditions, it is necessary to describe the release of species from a waste form matrix in contact with a limited volume of leachant in which the concentration of released species is not zero and is itself a function of release rate. Eight leaching models are presented that include the cases of a dissolving and a nondissolving matrix, finite, infinite, and replenished leachant volumes, and a matrix covered by a surface layer with different properties. The equations that describe these models assume a linear concentration profile of the diffusing species within the waste form and apply Fick's first law to obtain the leach rate. In three cases a direct comparison is possible between the solutions of these equations and solutions obtained by use of the diffusion equation derived from Fick's second law. Good agreement is found. The equations given are convenient for use with programmable calculators

  6. Radiation damage studies related to nuclear waste forms

    International Nuclear Information System (INIS)

    Much of the previously reported work on alpha radiation effects on crystalline phases of importance to nuclear waste forms has been derived from radiation effects studies of composite waste forms. In the present work, two single-phase crystalline materials, Gd2Ti2O7 (pyrochlore) and CaZrTi2O7 (zirconolite), of relative importance to current waste forms were studied independently by doping with 244Cm at the 3 wt % level. Changes in the crystalline structure measured by x-ray diffraction as a function of dose show that damage ingrowth follows an expected exponential relationship of the form ΔV/V0 = A[1-exp(-BD)]. In both cases, the materials became x-ray amorphous before the estimated saturation value was reached. The predicted magnitudes of the unit cell volume changes at saturation are 5.4% and 3.5%, respectively, for Gd2Ti2O7 and CaZrTi2O7. The later material exhibited anisotropic behavior in which the expansion of the monoclinic cell in the c0 direction was over five times that of the a0 direction. The effects of transmutations on the properties of high-level waste solids have not been studied until now because of the long half-lives of the important fission products. This problem was circumvented in the present study by preparing materials containing natural cesium and then irradiating them with neutrons to produce 134Cs, which has only a 2y half-life. The properties monitored at about one year intervals following irradiation have been density, leach rate and microstructure. A small amount of x-ray diffraction work has also been done. Small changes in density and leach rate have been observed for some of the materials, but they were not large enough to be of any consequence for the final disposal of high level wastes

  7. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    International Nuclear Information System (INIS)

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with ∼4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services)

  8. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.

    Energy Technology Data Exchange (ETDEWEB)

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

  9. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes

    International Nuclear Information System (INIS)

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices

  10. Novel Ceramic-Polymer Composite Membranes for the Separation of Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Yoram

    2000-06-01

    There is a growing need in the areas of hazardous waste treatment, remediation and pollution prevention for new processes capable of selectively separating and removing target organic species from aqueous steams. Membrane separation processes are especially suited for solute removal from dilute solutions. They have the additional advantage of requiring less energy relative to conventional separation technologies (e.g., distillation, extraction and even adsorption processes). The major difficulty with current membranes is the poor longevity of polymeric membranes under harsh conditions (high temperature, harsh solvents and pH conditions) and the lack of selectivity of ceramic membranes. In our previous work (1996 EMSP project), a first generation of novel polymer-ceramic (PolyCer) composite membranes were developed with the goal of overcoming the above difficulties. The proposed PolyCer membranes are fabricated by a surface-graft polymerization process resulting in a molecular layer of polymer chains which are terminally and covalently anchored to the porous membrane support. The polymer imparts the desired membrane selectivity while the ceramic support provides structural integrity. The PolyCer membrane retain its structural integrity and performance even when the polymer phase is exposed to harsh solvent conditions since the polymer chains are covalently bonded to the ceramic support surface. To date, prototype PolyCer membranes were developed for two different membrane separation processes: (a) pervaporation removal of organics from aqueous systems; and (b) ultrafiltration of oil-in-water emulsions. Pervaporation PolyCer membranes were demonstrated for removal of selected organics (TCE, chloroform and MTBE) from water with permeate enrichment factors as high as 300. While the above results have been extremely encouraging, higher enrichment factors (>1000) should be sought for field applications. The above improvement is feasible by increasing the length and

  11. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  12. Characterization of quartzite waste and their application on red ceramic; Caracterizacao de residuo de quartzitos e sua aplicacao em ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Babisk, M.P.; Vidal, F.W.H., E-mail: mbabisk@cetem.gov.br [Centro de Tecnologia Mineral (CETEM/MCT), Rio de Janeiro, RJ (Brazil); Vieira, C.M.F.; Ribeiro, W.S. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil)

    2012-07-01

    The incorporation of industrial waste into red ceramic have been used currently in the search for alternative raw materials, and also seeking for an environmentally friendly waste disposal that pollute. During the process of beneficiation of dimension stone, there are significant losses of material and waste generation, which have been placed inappropriately in nature, with no provision for use or reuse. The quartzite is geologically classified as a metamorphic rock composed almost entirely of quartz grains. The aim of this study is to characterize and evaluate the applicability of quartzite waste in the red ceramic. Incorporations were studied up to 40% by weight of waste in the ceramics body and the results indicated that the residue of quartz is a material with great potential to be used as a component in a red ceramic. (author)

  13. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    Science.gov (United States)

    Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2009-03-01

    A process for the immobilization of intermediate level waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material has been developed. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed using Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, were performed at PNNL which confirmed the wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu/241Am loaded ceramic at 313 K/28 days gave normalized mass losses of 1.2 × 10-5 g m-2 and 2.7 × 10-3 g m-2 for Pu and Cl, respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD spectra after the samples had experienced an α radiation fluence of 4 × 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  14. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, B.L. [Materials Science Research Division, AWE plc, Aldermaston, Reading (United Kingdom)], E-mail: brian.metcalfe@awe.co.uk; Donald, I.W.; Fong, S.K.; Gerrard, L.A. [Materials Science Research Division, AWE plc, Aldermaston, Reading (United Kingdom); Strachan, D.M.; Scheele, R.D. [Pacific Northwest National Laboratories, Richland, WA (United States)

    2009-03-31

    A process for the immobilization of intermediate level waste containing a significant quantity of chloride using Ca{sub 3}(PO{sub 4}){sub 2} as the host material has been developed. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca{sub 5}(PO{sub 4}){sub 3}Cl] and spodiosite [Ca{sub 2}(PO{sub 4})Cl]. Non-active trials performed using Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, were performed at PNNL which confirmed the wasteform resistant to aqueous leaching. Initial leach trials conducted on {sup 239}Pu/{sup 241}Am loaded ceramic at 313 K/28 days gave normalized mass losses of 1.2 x 10{sup -5} g m{sup -2} and 2.7 x 10{sup -3} g m{sup -2} for Pu and Cl, respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the {sup 239}Pu was replaced with {sup 238}Pu. No changes to the crystalline structure of the waste were detected in the XRD spectra after the samples had experienced an {alpha} radiation fluence of 4 x 10{sup 18} g{sup -1}. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  15. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-03-31

    AWE has developed a process for the immobilization of ILW waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate based phases, chlorapatite, Ca5(PO4)3Cl, and spodiosite, Ca2(PO4)Cl. Non-active trials performed at AWE using samarium as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process using actinide-doped material were performed at PNNL which confirmed the immobilized wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7 x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced by 238Pu. No changes to the crystalline structure of the waste were detected using XRD after the samples had experienced a radiation dose of 4 x 1018 α.g-1. Leach trials showed that there had been an increase in the P and Ca release rates but no change in the Pu release rate.

  16. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    Science.gov (United States)

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (ceramic tiles that have potential for use in a range of industrial applications.

  17. 利用工业废料研制再生陶瓷初探%FUNDAMENTAL RESEARCH ON THE PREPARATION OF RECYCLING CERAMICS USING INDUSTRIAL WASTE

    Institute of Scientific and Technical Information of China (English)

    Nagae Hajime; Suzuki Kazuo; Sugiyama Toyohiko

    2005-01-01

    A technology for recycling industrial wastes as ceramic raw materials was studied for the purpose of attaining closed material circulation and a state of sustainable development. In this report, a development of recycling ceramics, including powder preparation, body preparation, forming, and firing technology, is described. A lowering of firing temperature and a decreasing of firing duration of the ceramics were also studied with the aim of protecting the environment and energy-saving.Many kinds of sintered composites were prepared from powders of industrial wastes, such as ceramic wastes, refuse glass, burned ash, waste clay, Sekidei (waste from alumina production), and coal ash. Physical properties of the sintered bodies were measured to investigate the adequate firing temperature for each composite. An addition of refuse glass to the composite was extremely effective in lowering the firing temperature. One of the practical ceramic bodies obtained in this study is a composite of 80-20% fine powder of ceramic waste, 20-80 % burned waste, and 30% refuse glass. The composite could be formed by dry pressing. After firing at 1100 degrees centigrade, the water absorption and bulk density of the composite were 9.9% and 2.52g/cm3, respectively. Fast firing was applicable to the composite.%为了材料的充分循环,实现可持续发展,研究人员对回收工业废料用做陶瓷原料的技术进行了探索.本文阐述了再生陶瓷的研发状况,介绍了其粉体制备、坯料、配方、成型和烧成工艺,同时还针对节能环保的要求,研究了降低烧成温度和缩短烧成周期的策略.回收废瓷粉、废玻璃粉、燃烧灰烬、废粘土、废赤泥(氧化铝工业废料)和粉煤灰等工业废渣,配成多种陶瓷坯料,并测试了各种坯料配方的物理特性,确定了每种配方的烧成温度.配方中添加废玻璃可以有效地降低烧成温度.研制出的一种再生陶瓷的可行性坯料配方是:80-20%废瓷粉,20

  18. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    International Nuclear Information System (INIS)

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific ''problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs

  19. Thermo Physical Characteristics of Vitrified Tile Polishing Waste for Use in Traditional Ceramics-An Initiative of Cgcri, Naroda Centre

    Science.gov (United States)

    Misra, S. N.; Machhoya, B. B.; Savsani, R. M.

    This paper reports the thermo physical characteristics of Vitrified tile polishing waste materials. As such growing production of vitrified tiles in the country generate large volume of this waste obtained during processing, polishing and cutting of the vitrified tiles to the tune of nearly 10-15 tonnes per day from each plant. The characteristic features of these materials are being studied and investigated to develop suitable technology for finding its gainful use especially in the traditional ceramics. It is known that ceramic as such building materials industry could be a large raw materials consumer and being heterogeneous and thus could utilize this vast quantity as the raw materials. However, the main problem would be it's firing nature as it showed thermal deformation after a particular temperature. Interestingly, the production process of most of the traditional ceramics follows a similar pattern starting from the raw materials processing up to a level of firing. Hence, to suggest suitable utility in the traditional ceramics as raw materials, it was the prime requisite that these waste must be thoroughly studied w. r. t various thermo physical characteristics to make use in this sectors. Hence, the present paper interestingly gone up to various study such as raw materials nature, particle size distribution, chemistry, XRD and DTA study for understanding typical physico chemical properties, and finally thermal properties to make it suitable for use in traditional ceramic industries. The higher fineness of the waste materials indicates its usefulness without extra grinding. The chemistry of typical sludge shows contamination from abrasive particles, sorrel cement bonding materials etc. originated from the polishing wheel and needs special precaution while suggesting use in the ceramic sectors. The firing characteristics of the sludge materials produces a foamy and spongy shapes and this could be the main guiding parameters in selecting the end use of the

  20. Technical viability and development needs for waste forms and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It was not the intent of this session to recommend or advocate any one technology over another.

  1. Analyzing the Technology of Using Ash and Slag Waste from Thermal Power Plants in the Production of Building Ceramics

    Science.gov (United States)

    Malchik, A. G.; Litovkin, S. V.; Rodionov, P. V.; Kozik, V. V.; Gaydamak, M. A.

    2016-04-01

    The work describes the problem of impounding and storing ash and slag waste at coal thermal power plants in Russia. Recovery and recycling of ash and slag waste are analyzed. Activity of radionuclides, the chemical composition and particle sizes of ash and slag waste were determined; the acidity index, the basicity and the class of material were defined. The technology for making ceramic products with the addition of ash and slag waste was proposed. The dependencies relative to the percentage of ash and slag waste and the optimal parameters for baking were established. The obtained materials were tested for physical and mechanical properties, namely for water absorption, thermal conductivity and compression strength. Based on the findings, future prospects for use of ash and slag waste were identified.

  2. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. PMID:24582266

  3. Radiation and transmutation effects relevant to solid nuclear waste forms

    International Nuclear Information System (INIS)

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite

  4. Preliminary waste form characteristics report Version 1.0. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Leider, H.R. [eds.

    1991-10-11

    This report focuses on radioactive waste form characteristics that will be used to design a waste package and an engineered barrier system (EBS) for a suitable repository as part of the Yucca Mountain Project. The term waste form refers to irradiated reactor fuel, other high-level waste (HLW) in various physical forms, and other radioactive materials (other than HLW) which are received for emplacement in a geologic repository. Any encapsulating of stabilizing matrix is also referred to as a waste form.

  5. Waste form characterization and its relationship to transportation accident analysis

    International Nuclear Information System (INIS)

    The response of potential waste forms should be determined for extreme transportation environments that must be postulated for environmental impact analysis and also for hypothetical accident conditions to which packagings and contents must be subjected for licensing purposes. The best approach may be to test materials up to and beyond their failure point; such an approach would establish failure thresholds. Specification of what denotes failure would be defined by existing or proposed regulations or dictated by requirements developed from accident analysis. Responses to physical and thermal insults are the most important for licensing or analysis and need to be thoroughly characterized. Others in need of characterization might be responses to extreme chemical environments and to intense and prolonged radiation exposure. A complete characterization of waste-form responses would be desirable for environments that are considered extreme for transportation accidents but which may be typical for processing or disposal environments. In addition, the characterizations that are performed must be completed in laboratory environments which can be readily correlated to accident environments and must be meaningfully conveyed to a transportation impact analyst. As an example, leaching data as commonly presented are not usable to the analyst and are obtained under conditions that are not directly applicable to conditions of most transportation accidents. Transportation analysts are in need of data useful for calculating environmental impacts and for licensing of packagings. Future waste form development programs and associated decisions should consider the needs of transportation analysts

  6. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, P.W.

    1987-07-01

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs.

  7. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs

  8. Transuranic contaminated waste form characterization and data base

    International Nuclear Information System (INIS)

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies

  9. Description of DWPF reference waste form and canister

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This document describes the reference waste form and canister for the Defense Waste Processing Facility (DWPF). The facility is planned for location at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1983. The reference canister is fabricated of 24-in.-OD 304L stainless steel pipe with a dished bottom, domed head, and lifting and welding flanges on the head neck. The overall canister length is 9 ft 10 in., with a wall thickness of 3/8-in. (schedule 20 pipe). The canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected to ensure that a filled canister with its shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be generally compatible with preliminary assessments of repository requirements. The reference waste form is borosilicate glass containing approximately 28 wt % sludge oxides with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains approximately 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. This composition results in a low average leachability in the waste form of approximately 5 x 10/sup -9/ g/cm/sup 2/-day based on /sup 137/Cs over 365 days in 25/sup 0/C water. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approximately 425 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the Stage 1 and Stage 2 processes. The radionuclide content of the canister is about 150,000 curies, with a radiation level of 2 x 10/sup 4/ rem/hour at 1 cm.

  10. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-21

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous

  11. Activity release from waste packages containing LL and IL waste forms under mechanical and thermal stresses

    International Nuclear Information System (INIS)

    For transport and handling of radioactive waste packages in an underground repository safety assessments are being performed to keep any unacceptable radiation hazards from the operational staff and the population in the site neighborhood. Therefore experiments were carried out to determine source terms for activity release from waste packages containing cemented waste forms in case of heavy mechanical and thermal impacts. Mechanical impact was applied by drop test with a maximum energy input of 3.105 Nm. A special cage construction around the target (reinforced concrete covered by a 80 mm steel plate) allows the collection of the airborne fines with a particle size of < 10 μm by using micro filters in a defined geometry. In addition, in two experiments the particle fraction with an aerodynamic diameter between 1 μm and 20 μm was determined using a cascade impactor. Additional laboratory experiments were performed to determine comparative values for different waste forms. In case of thermal impact, the temperature profiles in the waste forms were measured and the release of added indicators (Cs, Sr, Eu) was determined. Further laboratory experiments were performed with inactive samples to determine the temperature dependence of water release (Thermogravimetric-Analysis)

  12. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba{sup 2+}, Sn{sup 4+}, Fe{sup 3+}, Cr{sup 3+}, Ni{sup 2+} and Si{sup 4+}) from light water reactor fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, O.P. [Department of Chemistry, Dr. H.S. Gour University, Sagar 470003 (India)], E-mail: dr_ops11@rediffmail.com; Chourasia, Rashmi [Department of Chemistry, Dr. H.S. Gour University, Sagar 470003 (India)

    2008-05-01

    A novel concept of immobilization of light water reactor (LWR) fuel reprocessing waste effluent through interaction with sodium zirconium phosphate (NZP) has been established. Such conversion utilizes waste materials like zirconium and nickel alloys, stainless steel, spent solvent tri-butyl phosphate and concentrated solution of NaNO{sub 3}. The resultant multi component NZP material is a physically and chemically stable single phase crystalline product having good mechanical strength. The NZP matrix can also incorporate all types of fission product cations in a stable crystalline lattice structure; therefore, the resultant solid solutions deserve quantification of crystallographic data. In this communication, crystal chemistry of the two types of simulated waste forms (type I-Na{sub 1.49}Zr{sub 1.56}Sn{sub 0.02}Fe{sub 0}.{sub 28}Cr{sub 0.07}Ni{sub 0.07}P{sub 3}O{sub 12} and type II-Na{sub 1.35}Ba{sub 0.14}Zr{sub 1.56}Sn{sub 0.02}Fe{sub 0}.{sub 28}Cr{sub 0.07}Ni{sub 0.07}P{sub 2.=} 8{sub 6}Si{sub 0.14}O{sub 12}) has been investigated using General Structure Analysis System (GSAS) programming of the X-ray powder diffraction data. About 4001 data points of each have been subjected to Rietveld analysis to arrive at a satisfactory structural convergence of Rietveld parameters; R-pattern (R{sub p}) = 0.0821, R-weighted pattern (R{sub wp}) = 0.1266 for type I and R{sub p} = 0.0686, R{sub wp} = 0.0910 for type II. The structure of type I and type II waste forms consist of ZrO{sub 6} octahedra and PO{sub 4} tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO{sub 6} octahedra while zirconium octahedra lies on a three-fold rotation axis and is connected to six PO{sub 4} tetrahedra. Though the expansion along c-axis and shrinkage along a-axis with slight distortion of bond angles in the synthesized crystal indicate the flexibility of the structure, the waste forms are basically of

  13. Radiation damage studies related to nuclear waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.J.; Wald, J.W.; Turcotte, R.P.

    1981-12-01

    Much of the previously reported work on alpha radiation effects on crystalline phases of importance to nuclear waste forms has been derived from radiation effects studies of composite waste forms. In the present work, two single-phase crystalline materials, Gd/sub 2/Ti/sub 2/O/sub 7/ (pyrochlore) and CaZrTi/sub 2/O/sub 7/ (zirconolite), of relative importance to current waste forms were studied independently by doping with /sup 244/Cm at the 3 wt % level. Changes in the crystalline structure measured by x-ray diffraction as a function of dose show that damage ingrowth follows an expected exponential relationship of the form ..delta..V/V/sub 0/ = A(1-exp(-BD)). In both cases, the materials became x-ray amorphous before the estimated saturation value was reached. The predicted magnitudes of the unit cell volume changes at saturation are 5.4% and 3.5%, respectively, for Gd/sub 2/Ti/sub 2/O/sub 7/ and CaZrTi/sub 2/O/sub 7/. The later material exhibited anisotropic behavior in which the expansion of the monoclinic cell in the c/sub 0/ direction was over five times that of the a/sub 0/ direction. The effects of transmutations on the properties of high-level waste solids have not been studied until now because of the long half-lives of the important fission products. This problem was circumvented in the present study by preparing materials containing natural cesium and then irradiating them with neutrons to produce /sup 134/Cs, which has only a 2y half-life. The properties monitored at about one year intervals following irradiation have been density, leach rate and microstructure. A small amount of x-ray diffraction work has also been done. Small changes in density and leach rate have been observed for some of the materials, but they were not large enough to be of any consequence for the final disposal of high level wastes.

  14. Transmission electron microscopy analysis of corroded metal waste forms.

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, N. L.

    2005-04-15

    This report documents the results of analyses with transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (ED) of samples of metallic waste form (MWF) materials that had been subjected to various corrosion tests. The objective of the TEM analyses was to characterize the composition and microstructure of surface alteration products which, when combined with other test results, can be used to determine the matrix corrosion mechanism. The examination of test samples generated over several years has resulted in refinements to the TEM sample preparation methods developed to preserve the orientation of surface alteration layers and the underlying base metal. The preservation of microstructural spatial relationships provides valuable insight for determining the matrix corrosion mechanism and for developing models to calculate radionuclide release in repository performance models. The TEM results presented in this report show that oxide layers are formed over the exposed steel and intermetallic phases of the MWF during corrosion in aqueous solutions and humid air at elevated temperatures. An amorphous non-stoichiometric ZrO{sub 2} layer forms at the exposed surfaces of the intermetallic phases, and several nonstoichiometric Fe-O layers form over the steel phases in the MWF. These oxide layers adhere strongly to the underlying metal, and may be overlain by one or more crystalline Fe-O phases that probably precipitated from solution. The layer compositions are consistent with a corrosion mechanism of oxidative dissolution of the steel and intermetallic phases. The layers formed on the steel and intermetallic phases form a continuous layer over the exposed waste form, although vertical splits in the layer and corrosion in pits and crevices were seen in some samples. Additional tests and analyses are needed to verify that these layers passivate the underlying metals and if passivation can break

  15. Fundamental Science-Based Simulation of Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  16. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  17. Fluorite type phase in nuclear waste ceramics with high zirconia and alumina contents

    Science.gov (United States)

    Muromura, Tadasumi; Hinatsu, Yukio

    1987-12-01

    In waste ceramics with high zirconia and alumina contents, Y 2O 3-stabilized zirconia with fluorite structure is the main host phase for actinide and rare earth elements in high-level radioactive waste (HLW). The reactions between the stabilized zirconia and such typical elements in HLW as Cs, Sr, Ce, Nd and U were examined at 1400°C in 4% H 2 + 96% He . The solubility of SrO in the stabilized zirconia was considerably low (0.3 wt% SrO), and about 30 wt% Nd 2O 3 and 15 wt% Ce 2O 3 were soluble in this phase. A complete solid solution was made between the stabilized zirconia and UO 2. When the mixed oxide (Ce, Nd, U)O 2-x was allowed to react with the stabilized zirconia, a single phase region of the fluorite structure was found in the composition range of 0-18 wt% mixed oxide, and a two-phase region of the fluorite and pyrochlore in the composition range of 18-58 wt% mixed oxide. At the composition with 60 wt% mixed oxide, only the pyrochlore phase was produced. The phase relations of these oxide systems are also discussed.

  18. Naturally occurring crystalline phases: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  19. Naturally occurring crystalline phases: analogues for radioactive waste forms

    International Nuclear Information System (INIS)

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included

  20. Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions

    Science.gov (United States)

    Beauvy, Michel; Dalmasso, Chrystelle; Thiriet-Dodane, Catherine; Simeone, David; Gosset, Dominique

    2006-01-01

    Inert matrices are proposed for advanced nuclear fuels or for the transmutation of the actinides that is an effective solution for the nuclear waste management. The behaviour of inert matrix ceramics like MgO, MgAl2O4 and cubic ZrO2 oxides under irradiation is presented in this study. The alumina Al2O3 has been also studied as a reference for the ceramic materials. These oxides have been irradiated with swift heavy ions at CIRIL/GANIL to simulate the fragment fission effects. The irradiations with the different heavy ions (from S to Pb) with energy between 91 and 820 MeV, have been realised at room temperature or 500 °C. The fluencies were between 5 × 1010 and 5 × 1015 ions/cm2. The polished faces of sintered polycrystalline disks or single crystal slices have been characterized before and after irradiation by X-ray diffraction and optical spectroscopy. The apparent swelling evaluated from surface profile measurements after irradiation is very important for spinel and zirconia, comparatively with those of magnesia or alumina. The amorphisation seems to be at the origin of this swelling, and the electronic stopping power of the ions is the most influent parameter for the irradiation damages. The point defects characterized by optical spectroscopy show a significant amount of damage on the oxygen sub-lattice in the irradiated oxides. F+ centres are present in all irradiated oxides. However, new absorption bands are observed and cation clusters cannot be excluded in magnesia and spinel after irradiation.

  1. Colloid formation during waste form reaction: implications for nuclear waste disposal

    Science.gov (United States)

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; ten Brink, Marilyn Buchholtz

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  2. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  3. Moisture expansion of ceramic tiles produced using kaolin and granite wastes; Expansao por umidade de revestimentos ceramicos incorporados com residuos de granito e caulim

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, A.M.G.D.; Cartaxo, J.M.; Santana, L.N.L; Neves, G.A.; Ferreira, H.C., E-mail: ana.duartemendonca@gmail.com, E-mail: gelmires@dema.ufcg.edu.br, E-mail: lisiane@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande,Campina Grande, PB (Brazil); Menezes, R.R. [Departamento de Engenharia de Materiais, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil)

    2012-04-15

    Moisture expansion (ME) is the term used to describe the expansion of ceramic materials due to the adsorption of water. ME usually occurs slowly and is relatively small, but, it can damage the ceramic tiles adhesion to the underlayment, craze the glaze and lead to the development of cracks on ceramics bricks. In this work kaolin and granite wastes were incorporated in ceramic compositions aiming study their influence on the ME of ceramic tiles. Raw materials were processed and submitted to characterization: physical and mineralogical by laser diffraction particle size analysis, chemical analysis, thermo differential and thermogravimetric analysis and X-ray diffraction. Results showed that kaolin and granite wastes can be incorporated in ceramic composition because display characteristics similar to conventional not plastic ceramic materials, providing satisfactory ME results when compared to the ME limit value of 0.6 mm/m (0.06%) indicated by the ABNT for ceramic tiles. Compositions containing up to 20% of waste can be produced when firing above 1000 deg C. (author)

  4. Inorganic wastes in manufacturing of glass-ceramics. Slurry of phosphorous fertilizer production and oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovsky, A.V.; Mendez-Nonell, J.; Escalante-Garcia, J.I.; Pech-Canul, M.I.; Vargas-Gutierrez, G. [Department of Engineering Ceramics of CINVESTAV-IPN, Unidad Saltillo-Monterrey, km 13.5, Apartado Postal 663, CP 25000, Saltillo, Coahuila (Mexico); Gorokhovsky, V.A.; Mescheryakov, D.V. [Department of Building Materials of Saratov State Technical University, Saratov (Russian Federation)

    2001-11-01

    The use of bicomponent raw material mixtures of industrial wastes to produce pyroxene glass ceramics was investigated. It is shown that oil shale ash from heat power stations can promote the production of crystalline phases and the slurry from phosphorous fertilizer production can provide sufficient concentration of nucleating agents. Mechanical and chemical properties, as well as the structure and crystallization mechanism were characterized. An increase of phosphorous oxide and fluorine concentrations leads to a change of the crystallization mechanism.

  5. Computational and experimental study of atmospheric moisture in ceramic blocks filled with waste fibres in winter season

    Science.gov (United States)

    Stastnik, S.

    2016-06-01

    Development of materials for vertical outer building structures tends to application of hollow clay blocks filled with some appropriate insulation material. Ceramic fittings provide high thermal resistance, but the walls built from them suffer from condensation of air humidity in winter season frequently. The paper presents the computational simulation and experimental laboratory validation of moisture behaviour of such masonry with insulation prepared from waste fibres under the Central European climatic conditions.

  6. 陶瓷废料在建筑材料中的应用进展∗%Progress in Application of Ceramic Waste in Building Materials

    Institute of Scientific and Technical Information of China (English)

    栾向峰; 曹远尼; 肖理红; 彭红建; 谢佑卿

    2015-01-01

    随着社会经济及陶瓷行业的迅猛发展,建筑陶瓷废料日益增多,环境污染也日趋严重,因此陶瓷废料的再利用近年来成为人们关注的焦点。利用陶瓷废料生产建筑材料,既能使资源得到有效利用,又可以减少对环境的污染和破坏。综述了陶瓷废料的分类以及在建筑材料中的应用,重点讨论了利用陶瓷抛光废料制备建筑材料的最新制备工艺,最后展望了陶瓷废料的应用前景,并分析了在陶瓷废料的回收利用中亟待解决的问题。%With the rapid development of social economy and the ceramic industry,building ceramics waste is increasing day by day,the environmental pollution is becoming more serious.Therefore,ceramic waste recycling be-come the focus of attention in recent years.Applying ceramic waste in the production of building materials can make efficient use of resources but also can reduce the pollution and damage to the environment.The classification and appli-cation in building materials of ceramic waste are reviewed in this article,with special focus on the latest manufacturing process and its features about using ceramic polishing waste.Finally the application of ceramic waste is prospected and the problem to be solved in the recycling of ceramic waste is analyzed.

  7. Garnet nuclear waste forms – Solubility at repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A., E-mail: floriec@lanl.gov [EES-14, Los Alamos National Laboratory, NM 87545 (United States); Scott, B.L. [MPA-MSID, Los Alamos National Laboratory, NM 87545 (United States); Xu, H. [EES-14, Los Alamos National Laboratory, NM 87545 (United States); Feller, R.K. [Effect Materials Research Group, BASF Corporation, 500 White Plains Road, Tarrytown, NY 10591 (United States)

    2014-01-15

    Highlights: • Rare-earth elements are a significant waste stream produced by nuclear fuel cycles. • Suitability of garnets as potential waste forms. • Single-crystal X-ray structural refinements for grossular, LuAG and YAG. • Garnets have low solubility, flexible crystal structure to take on large cations. • Demonstrate garnets are potentially robust waste forms for radioactive REE. -- Abstract: Radioactive rare-earth elements (REEs) constitute a significant waste stream produced from modified open and full nuclear fuel cycles. Immobilization of