WorldWideScience

Sample records for ceramic technology project

  1. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  2. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  3. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  4. Ceramic Technology Project database: March 1990 summary report. DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-07-01

    This report is the fifth in a series of semiannual data summary reports on information being stored in the Ceramic Technology Project (CTP) database. The overall system status as of March 31, 1990, is summarized, and the latest additions of ceramic mechanical properties data are given for zirconia, silicon carbide, and silicon nitride ceramic mechanical properties data, including some properties on brazed specimens.

  5. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  6. Ceramic Technology Project database: March 1990 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-07-01

    This report is the fifth in a series of semiannual data summary reports on information being stored in the Ceramic Technology Project (CTP) database. The overall system status as of March 31, 1990, is summarized, and the latest additions of ceramic mechanical properties data are given for zirconia, silicon carbide, and silicon nitride ceramic mechanical properties data, including some properties on brazed specimens.

  7. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  8. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  9. Ceramic Technology Project. Semiannual progress report, April 1991--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  10. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  11. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    Science.gov (United States)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  12. Ceramic Technology Project data base: September 1992 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1993-06-01

    Data presented in this report represent an intense effort to improve processing methods, testing methods, and general mechanical properties (rupture modulus, tensile, creep, stress-rupture, dynamic and cyclic fatigue, fracture toughness) of candidate ceramics for use in advanced heat engines. This work was performed by many facilities and represents only a small part of the data generated by the Ceramic Technology Project (CTP) since 1986. Materials discussed include GTE PY6, GN-10, NT-154, NT-164, SN-260, SN-251, SN-252, AY6, silicon nitride combined with rare-earth oxides, Y-TZP, ZTA, NC-433, NT-230, Hexoloy SA, MgO-PSZ-to-MgO-PSZ joints, MgO-PSZ-to-cast iron, and a few whisker/fiber-reinforced ceramics. Information in this report was taken from the project`s semiannual and bimonthly progress reports and from final reports summarizing the results of individual studies. Test results are presented in tabular form and in graphs. All data, including test rig descriptions and material characterizations, are stored in the CTP data base and are available to all project participants on request. The objective of this report is to make available the test results from these studies but not to draw conclusions from those data.

  13. Ceramic Technology Project database: September 1990 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  14. Report on the planning workshop on cost-effective ceramic machining. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1991-11-01

    A workshop on ``Cost Effective Ceramic Machining`` (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee`s opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

  15. Ceramic Technology Project. Semiannual progress report for April 1993 through September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. The work described in this report is organized according to the following WBS project elements: Project Management and Coordination; Materials and Processing; Materials Design Methodology; Data Base and Life Prediction; and Technology Transfer. This report includes contributions from all currently active project participants. Separate abstracts were prepared for the 47 projects reported here.

  16. Ceramic Technology Project, semiannual progress report for October 1993 through March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1994-09-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. In July 1990, the original plan was updated through the estimated completion of development in 1993. The original objective of the project was to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. The direction of the Ceramic Technology Project is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned.

  17. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  18. Development of adherent ceramic coatings to reduce contact stress damage of ceramics. Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, S.F.; Selverian, J.H.; O`Neil, D. [GTE Labs., Inc., Waltham, MA (United States)

    1992-11-01

    Strongly adherent coatings were deposited on reaction bonded Si{sub 3}N{sub 4} (RBSN), sintered SiC (SSC), and HIP`ed Si{sub 3}N{sub 4} (HSN) and using a newly developed chemical vapor deposition (CVD) process. Performance of the coating was assessed by oxidation, strength and contact stress testing. A new method was developed to experimentally determine the strength and Weibull modulus of thin brittle films on ceramic substrates. A significant portion of the study was devoted to numerical modeling of the coatings in order to understand the contributions of residual stress as different coating materials and thicknesses were combined. Coating designs were further analyzed by simulating the crack growth behavior in multilayer films while accounting for the interface fracture mechanics. This work has shown that the Al{sub 2}0{sub 3+}ZrO{sub 2} composite coating developed in this program can provide resistance to oxidation and contact stress. Commercial application of the composite coating has been successfully demonstrated by useof the Al{sub 2}0{sub 3+}ZrO{sub 2} composite as a protective coating on a Si{sub 3}N{sub 4} cutting tool.

  19. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  20. Superconductors and novel ceramics for future communication technologies. Project: Cooler and cryotechnology. Final report

    International Nuclear Information System (INIS)

    The project involved the production of a 6W rate at 77K stirling chiller for a HTS telecommunication experiment on the 'International Space Station' (project partner Bosch Telecom) and the production of a prototype long-lived stirling pulsed tube chiller of 10W rate at 77K for future applications in telecommunication. The projected was terminated prematurely. The following results were obtained: 1. The low-capacity chiller 'Mono-Kaltfinger' (stirling cold finger with displacement piston) achieved up to 5.3% COP at 80 K. 2. The chilling capacity was 10 W at 80 K for a maximum compressor uptake of 250 W. 3. An efficient pulsed tube chiller was constructed, as well as 4. A long-lived compressor with flexure bearings. (orig.)

  1. Ceramic Technology Project database: September 1990 summary report. [SiC, SiN, whisker-reinforced SiN, ZrO-toughened aluminas, zirconias, joints

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  2. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  3. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  4. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  5. Actively Cooled Ceramic Composite Nozzle Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I Project demonstrated the capability of the Pyrowave? manufacturing process to produce fiber-reinforced ceramics (FRCs) with integral metal features,...

  6. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  7. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  8. Ceramic technology for the investment casting industry

    International Nuclear Information System (INIS)

    The development of the ceramic shell system used in investment casting is described along with a number of other ceramic related techniques which have led to the establishment of the process at the forefront of metal forming technology. A number of raw material requirements are examined along with improvements in property measurement techniques at the system's operating temperature. The shells were investigated using x-ray diffraction. 13 refs., 18 figs., 5 tabs

  9. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  10. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  11. Enabling Technologies for Ceramic Hot Section Components

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  12. Advanced Turbine Technology Applications Project (ATTAP). 1944 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report summarizes work performed in development and demonstration of structural ceramics technology for automotive gas turbine engines. At the end of this period, the project name was changed to ``Ceramic Turbine Engine Demonstration Project``, effective Jan. 1995. Objectives are to provide early field experience demonstrating the reliability and durability of ceramic components in a modified, available gas turbine engine application, and to scale up and improve the manufacturing processes for ceramic turbine engine components and demonstrate the application of these processes in the production environment. The 1994 ATTAP activities emphasized demonstration and refinement of the ceramic turbine nozzles in the AlliedSignal/Garrett Model 331-200[CT] engine test bed in preparation for field testing; improvements in understanding the vibration characteristics of the ceramic turbine blades; improvements in critical ceramics technologies; and scaleup of the process used to manufacture ceramic turbine components.

  13. Development of hi-tech ceramics fabrication technology

    International Nuclear Information System (INIS)

    There are some ceramic materials being used in the nuclear energy such as nuclear fuel, coolant pump seals, tritium breeder materials, a high temperature absorber, and the solid electrolyte for recovering tritium. In addition, lots of researches recently have been conducted on the development of highly functional ceramics such as highly efficient shielding materials, functional graded materials and radioactive isotopes-separating materials. Therefore, one of the objectives of this project is to develop ultra-fine and pure powder manufacturing technology. Tritium breeder materials, LiAlO2, Li2ZrO3 and Li2TiO3 were made with a combustion process of mixed fuels that is developed indigenously in this project. Additionally, this study also focused on the development of promising low temperature electrolytes of ceria. By using the ceria powder made by the combustion process of GNP was investigated their sinterability and the electrolytic characteristics. (author). 167 refs., 74 tabs., 91 figs

  14. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  15. Lithium reprocessing technology for ceramic breeders

    Science.gov (United States)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Saito, Minoru; Tatenuma, Katuyashi; Kainose, Mitsuru

    1995-03-01

    Lithium ceramics have been receiving considerable attention as tritium breeding materials for fusion reactors. Reprocessing technology development for these materials is proposed to recover lithium, as an effective use of resources and to remove radioactive isotopes. Four potential ceramic breeders (Li 2O, LiAlO 2, Li 2ZrO 3 and Li 4SiO 4) were prepared in order to estimate their dissolution properties in water and various acids (HCl, HNO 3, H 2SO 4, HF and aqua regia). The dissolution rates were determined by comparing the weight of the residue with that of the starting powder (the weight method). Recovery properties of lithium were examined by the precipitation method.

  16. Study of Different Ceramic Substrates Technologies under High Temperature Cycles

    OpenAIRE

    Dupont, L.; KHATIR,Z; Lefebvre, S.; Bontemps, S.

    2006-01-01

    This study focuses on the behaviour of ceramic substrates for power semiconductor packaging purpose under extremely high temperature cycles. The paper presents experimental results on different test vehicles including different technological ceramic substrates under very high temperature cycles. Test vehicles have been realised by APT Europe. They include different ceramic materials soldered on AlSiC base plate, DCB with AlN and Al2O3 ceramic substrates with and without dimples and different ...

  17. SOLID-STATE CERAMIC LIGHTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Brown

    2003-06-01

    Meadow River Enterprises, Inc. (MRE) and the New York State College of Ceramics at Alfred University (NYSCC) received a DOE cooperative agreement award in September 1999 to develop an energy-efficient Solid-State Ceramic Lamp (SSCL). The program spanned a nominal two(2) year period ending in February of 2002. The federal contribution to the program totaled $1.6 million supporting approximately 78% of the program costs. The SSCL is a rugged electroluminescent lamp designed for outdoor applications. MRE has filed a provisional patent for this ''second generation'' technology and currently produces and markets blue-green phosphor SSCL devices. White phosphor SSCL devices are also available in prototype quantities. In addition to reducing energy consumption, the ceramic EL lamp offers several economic and societal advantages including lower lifecycle costs and reduced ''light pollution''. Significant further performance improvements are possible but will require a dramatic change in device physical construction related to the use of micro-powder materials and processes. The subject ''second-generation'' program spans a 27 month period and combines the materials and processing expertise of NYSCC, the manufacturing expertise of Meadow River Enterprises, and the phosphor development expertise of OSRAM Sylvania to develop an improved SSCL system. The development plan also includes important contributions by Marshall University (a part of the West Virginia University system). All primary development objectives have been achieved with the exception of improved phosphor powders. The performance characteristics of the first generation SSCL devices were carefully analyzed in year 1 and a second generation lamp was defined and optimized in year 2. The provisional patent was ''perfected'' through a comprehensive patent application filed in November 2002. Lamp efficiency was improved more than 2:1.

  18. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    OpenAIRE

    Christian Ritzberger; Elke Apel; Wolfram Höland; Arnd Peschke; Volker M. Rheinberger

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate...

  19. Rare earths in ceramic materials technology

    International Nuclear Information System (INIS)

    Rare earth elements are mainly exploited for electronic devices, but far from negligible is their importance in materials for structural applications, i.e. for their mechanical properties, useful in modern technologies. For example, widely renown is the role of rare earth oxides in the study of zirconia (zirconium dioxide, ZrO2), by far the most interesting ceramic material for structural applications. Among rare earth oxides, ceria (cerium dioxide, CeO2) has played a fundamental role because at room temperature it stabilizes the tetragonal phase of zirconia, which is the most interesting phase from a mechanical point of view. In this presentation the main characteristics of the system CeO2-ZrO2 are outlined, along with the mechanical properties of binary alloys of the two oxides; these properties are evaluated as a function of their composition and microstructure. Some of these alloys exhibited behaviour completely unexpected for ceramic materials, e.g. the Shape Memory Effect (SME) and the Gorsky Effect. (orig.)

  20. Manufacturing technologies for nanocomposite ceramic structural materials and coatings

    International Nuclear Information System (INIS)

    The new material class of ceramic nanocomposites, containing at least one phase in nanometric dimension, has achieved special interest in previous years. While earlier research was focused on materials science and microstructural details in laboratory scale the subject of developing suitable manufacturing technologies in technical scale is the challenge for the manufacturing engineer. The same high-performance features which make the nanocomposite materials so interesting in their properties are absolutely detrimental if it comes to production of these materials. Extreme hardness, toughness and abrasion resistance make the state of the art cutting-and-machining operations extremely cost intensive so that, from a manufacturing point of view, true near-net-shape manufacturing is mandatory to accomplish reasonable cost targets. Ceramic feedstocks with both, high solid content to reduce shrinkage and warping and stable processing conditions are required to accomplish this aim of near-net-shape processing. Stable and reproducible processing conditions, e.g. favourable rheological properties for injection moulding are essentials for the manufacturing engineer. These prerequisites of ceramic production technologies cannot be reached with pure nanopowders in the 10-20 nm range but materials with a micro-nano architecture can fulfill these requirements, using a mixture of a submicron-sized matrix in the 100-200 nm range and smaller nanosized additives in <20% content which contribute the desired functionality. By using these micro-nanocomposites near-net-shape ceramic forming technologies such as injection moulding, gel casting and slip casting have been developed which lead to high-performance materials at affordable production cost. Advanced surface technologies include nanoceramic coatings made by thermokinetic deposition processes. Modern ceramic processing, i.e. spray drying leads to fine granulated nanopowders with appropriate flowability for subsequent APS plasma or

  1. Ceramic technology report. Semi-annual progress report, April 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1995-06-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Energy Efficiency and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  2. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    Science.gov (United States)

    Rossner, W.

    2011-05-01

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  3. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    International Nuclear Information System (INIS)

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  4. Development of hi-tech ceramics fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Park, Ji Yeon; Kim, Sun Jai; Jung Choong Hwan; Oh, Seok Jin

    1997-07-01

    There are some ceramic materials being used in the nuclear energy such as nuclear fuel, coolant pump seals, tritium breeder materials, a high temperature absorber, and the solid electrolyte for recovering tritium. In addition, lots of researches recently have been conducted on the development of highly functional ceramics such as highly efficient shielding materials, functional graded materials and radioactive isotopes-separating materials. Therefore, one of the objectives of this project is to develop ultra-fine and pure powder manufacturing technology. Tritium breeder materials, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} were made with a combustion process of mixed fuels that is developed indigenously in this project. Additionally, this study also focused on the development of promising low temperature electrolytes of ceria. By using the ceria powder made by the combustion process of GNP was investigated their sinterability and the electrolytic characteristics. (author). 167 refs., 74 tabs., 91 figs

  5. Ceramic Technology. Art Education: 6688.02.

    Science.gov (United States)

    Marinaccio, Louis M.

    For information on the Visual Arts Education Curriculum of which this is one course, see SO 007 721. In this course students study ceramic material, form, and decoration, historically and technically, and demonstrate competencies in preparing clay bodies and ceramic glazes. Course content is outlined in those areas. Special sections of the guide…

  6. Faience: the ceramic technology of ancient Egypt

    OpenAIRE

    Sparavigna, Amelia Carolina

    2012-01-01

    Faiences are ancient Egyptian ceramic materials, considered as "high-tech" products. The paper discussed the method by which the faiences were produced and the application of SEM and Raman spectroscopy to their analysis

  7. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  8. Fabrication of porous silicon nitride ceramics using binder jetting technology

    Science.gov (United States)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  9. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  10. Development of Fabrication Technology for Ceramic Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Lee, Y. W.; Na, S. H.; Kim, Y. G.; Jung, C. Y.; Kim, S. H.; Lee, S. C.; Son, D. S

    2006-04-15

    annular (U,Ce)O{sub 2} pellet - Fabrication technology of IMF pellet - Derivation of the improvement methods of the pellet characteristics from SimMOX analysis. The great performance of KAERI MOX of which has been irradiating in HALDEN reactor is a fact in support of the capability of our unique technology. It is a fundamental technology which can be applied to improve fuel performance and safety and to fabricate a new type of fuel for next generation as well. The database constructed with the unique technology supplies how to fabricate a fuel pellet which has a given density, grain size and pore distribution. Man power, time schedule and budget can be saved by using this technology in a workshop or a research group as reducing the repetition of trial and error. The superiority of the mill developed by the unique technology was proved by an on the spot test in a fuel production workshop. The workshop plans to apply this mill to fabricate a burnable poison fuel pellet or to recover scrap powder. The glove box technology can be used in a nuclear fuel company or in a relative workshop in order to enhance the work safety and the efficiency. To achieve both mixing homogeneity and sinterability of a powder mixture is a key technology to fabricate high burnup MOX, IMF or SimMOX pellet. This project developed a milling machine and a powder treatment technology, obtained a patent for the technology. This technology can be used in a general ceramic plant as well as a nuclear fuel field to improve quality and productivity.

  11. The Information Technology Project

    OpenAIRE

    Smirnov Andrei

    2016-01-01

    The author raises the question of suitable use of different software in construction. Currently, there are several design techniques using computer technology. The various stages of the project require their parameters and software settings. Comparison of programs is fundamental in this work. The author also raises the question of the unification of all the software and the possible establishment of an absolute tool for the design in the future.

  12. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Directory of Open Access Journals (Sweden)

    Christian Ritzberger

    2010-06-01

    Full Text Available The main properties (mechanical, thermal and chemical and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  13. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  14. Separators - Technology review: Ceramic based separators for secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C. [Technische Universität Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg (Germany); Schilm, Jochen [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstraße 28, 01277 Dresden (Germany); Leisegang, Tilmann [Fraunhofer-Technologiezentrum Halbleitermaterialien THM, Am St.-Niclas-Schacht 13, 09599 Freiberg (Germany)

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic

  15. Separators - Technology review: Ceramic based separators for secondary batteries

    International Nuclear Information System (INIS)

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  16. Continuous Fiber Ceramic Composite (CFCC) Program. Inventory of federally funded CFCC R&D projects

    Energy Technology Data Exchange (ETDEWEB)

    Richlen, S. [USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States). Office of Industrial Technologies; Caton, G.M.; Karnitz, M.A.; Cox, T.D. [Oak Ridge National Lab., TN (United States); Hong, W. [Institute for Defense Analyses, Alexandria, VA (United States)

    1993-05-01

    Continuous Fiber Ceramic Composites (CFCC) are a new class of materials that are lighter, stronger, more corrosion resistant, and capable of performing at elevated temperatures. This new type of material offers the potential to meet the demands of a variety of industrial, military, and aerospace applications. The Department of Energy Office of Industrial Technologies (OIT) has a new program on CFCCs for industrial applications and this program has requested an inventory of all federal projects on CFCCs that relate to their new program. The purpose of this project is to identify all other ongoing CFCC research to avoid redundancy in the OIT Program. The inventory will be used as a basis for coordinating with the other ongoing ceramic composite projects. The inventory is divided into two main parts. The first part is concerned with CFCC supporting technologies projects and is organized by the categories listed below. (1) Composite Design; (2) Materials Characterization; (3) Test Methods; (4) Non-Destructive Evaluation; (5) Environmental Effects; (6) Mechanical Properties; (7) Database Life Prediction; (8) Fracture/Damage; and (9) Joining. The second part has information on component development, fabrication, and fiber-related projects.

  17. Transformational Tools and Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Transformational Tools and Technologies (TTT) Project advances state-of-the-art computational and experimental tools and technologies that are vital to aviation...

  18. Fundamentals of technology project management

    CERN Document Server

    Garton, Colleen

    2012-01-01

    Designed to provide software engineers, students, and IT professionals with an understanding of the fundamentals of project management in the technology/IT field, this book serves as a practical introduction to the subject. Updated with information on how Fundamentals of Project Management integrates with and complements Project Management Institute''s Project Management Body of Knowledge, this collection explains fundamental methodologies and techniques while also discussing new technology, tools, and virtual work environments. Examples and case studies are based on technology projects, and t

  19. Fusion technology projects

    International Nuclear Information System (INIS)

    The protection of the first wall by ceramic coatings against melting by plasma disruptions, was studied by computational heat transfer analysis. The compilation of a European Fusion File of nuclear data in its first version is presented. A specific contribution is the revision of the lead cross sections for (n,n1), (n,2n) and (n,3n) reactions. The activations of neutron flux monitors for the JET neutron diagnostics system were recalculated using a 3D model of the torus and its D-shaped plasma. Calculations of nuclear heating and radiation damage parameters were performed for the lithium-lead blanket concept in the NET-II torus geometry, using a simplified blanket model. Results of low cycle fatigue and tensile testing of the reference heat of stainless steel 316 L is reported. The latter including the effect of a HFR-irradiation to 5 dpa and 40 appm helium. The design of a 12 Tesla niobium-tin insert coil for the SULTAN test facility is presented, including the start of its conductor development. The next step will be the development of a 32 kA (11 Tesla) conductor for the toroidal field coils of NET, as regulated under magnet system studies. The results are presented of two EXOTIC experiments: irradiation of ceramic lithium compounds for tritium breeding. (Auth.)

  20. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  1. Sol-gel technology applied to glass and crystalline ceramics

    International Nuclear Information System (INIS)

    Fixation of high level and transuranium radioactive waste in glass or alternative ceramic forms requires remotely operable processes and equipment, and sol-gel technology developed for reactor fuel refabrication appears to be applicable. Advantages of the sol-gel process are absence of dust, easy pneumatic transfer and sampling of either liquids or free-flowing solid microspheres, excellent sinterability, and equipment amenable to remote operation because of mechanical simplicity. Synthetic rock microspheres and pellets containing up to 25% simulated defense waste have been prepared by the sol-gel process. 26 refs

  2. Silicon nano-carbide in strengthening and ceramic technologies

    Science.gov (United States)

    Rudneva, V. V.; Galevsky, G. V.; Kozyrev, N. A.

    2015-09-01

    Technological advantages and conditions of new quality assurance of coatings and products, provided by silicon nano-carbide, have been ascertained in the course of composite electrodeposition of coatings, structural ceramics patterning, and surface hardening of steels via electro-explosive alloying. Silicon nano-carbide has been recommended to be used as a component of wear and corrosion resistant chromium carbide electrodeposited coatings, which can be operated at high temperatures and used for strengthening tools and equipment including those with a complex microrelief of functional surfaces. Silicon nano-carbide as a component of composite “silicon carbide - boron - carbon” can be applied to produce ceramic half products via solid phase sintering in argon under pressure of 0.1 MPa and temperature 2273 K. Application of silicon nano-carbide in technology of tool steel surface hardening via electroexplosive alloying ensures obtaining of a high micro-hard, wear and heat resistant shielding layer which is about 20 μm deep.

  3. Additive Manufacturing Technology Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D Printing In Zero-G (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling...

  4. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  5. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting...

  6. Fusion technology projects

    International Nuclear Information System (INIS)

    The current status of the European Fusion File project (EFF) is reviewed. Some new tools for the nuclear-data evaluation and the processing are discussed. A method description and users manual for the toroidal-geometry neutronic program system FURNACE has been published. Calculations with FURNACE have been started to obtain the effective tritium breeding ratio and the distribution of the nuclear heat for the 17 Li 83 Pb blanket in the NET II torus geometry. The results of several experiments are reported: tensile tests on vanadium alloy V5%Ti doped with boron; creep embrittlement of stainless steel type 316; critical current test of a composite niobium-tin superconductor

  7. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology

    OpenAIRE

    Bachhav, Vinay Chila; Aras, Meena Ajay

    2011-01-01

    PURPOSE Ceramics have a long history in fixed prosthodontics for achieving optimal esthetics and various materials have been used to improve ceramic core strength. However, there is a lack of information on how color is affected by fabrication procedure. The purpose of this study was to evaluate the effects of various dentin ceramic thicknesses and repeated firings on the color of zirconium oxide all-ceramic system (Lava™) fabricated using CAD/CAM technology. MATERIALS AND METHODS Thirty disc...

  8. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  9. Development of manufacturing technologies for hard optical ceramic materials

    Science.gov (United States)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  10. Characterization of ceramics and semiconductors using nuclear techniques. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    With the aim of promoting research and facilitating more extensive application of nuclear techniques for material development, the IAEA established in 1994 a Co-ordinated Research Project (CRP) on Characterization of Ceramics and Semiconductors using Nuclear Techniques. This publication reviews and summarizes recent developments in this field and includes an assessment of the current status and trends in nuclear techniques in characterization of inorganic materials of technological importance. The TECDOC presents new achievements on ceramic superconductor behaviour under neutron induced defects, optimization of structure of mineral gels,m low temperature preparation of fine particles of ferrites, crystal luminescence of ceramic composites with improved plastic properties, thin film defects and detoxification of asbestos. The investigation of chemical composition, phase transitions and magnetic properties of ferrites by Moessbauer spectroscopy is largely developed. The document includes 18 individual contributions, each of them has been indexed and provided with an abstract

  11. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  12. Ocean Information Technology Pilot Project

    OpenAIRE

    Vladymyrov, Vladimir

    2005-01-01

    The Ocean Information Technology Project was conceived to be “a major, concerted effort with an efficient and effective, comprehensive data and information management system as the goal. We are seeking a 21st Century solution that takes advantage of leading technology and methods. The data and management system will be user driven and, in this case, the users will comprise a mix of ocean science, non-ocean science, operational agencies, commercial and private enterprise users, and the general...

  13. An accelerated technique for a ceramic-pressed-to-metal restoration with CAD/CAM technology.

    Science.gov (United States)

    Lee, Ju-Hyoung

    2014-11-01

    The conventional fabrication of metal ceramic restorations depends on an experienced dental technician and requires a long processing time. However, complete-contour digital waxing and digital cutback with computer-aided design and computer-aided manufacturing (CAD/CAM) technology can overcome these disadvantages and provide a correct metal framework design and space for the ceramic material. PMID:24952883

  14. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  15. Development of ceramic-reinforced photopolymers for SLA 3D printing technology

    Science.gov (United States)

    Yun, Ji Sun; Park, Tae-Wan; Jeong, Young Hun; Cho, Jeong Ho

    2016-06-01

    Al2O3 ceramic-reinforced photopolymer samples for SLA 3D printing technology were prepared using a silane coupling agent (VTES, vinyltriethoxysilane). Depending on the method used to coat the VTES onto the ceramic surface, the dispersion of ceramic particles in the photopolymer solution was remarkably improved. SEM, TEM and element mapping images showed Al2O3 particles well wrapped with VTES along with well-distributed Al2O3 particles overall on the cross-sectional surfaces of 3D-printed objects. The tensile properties (stress-strain curves) of 3D-printed objects of the ceramic-reinforced photopolymer were investigated as a function of the Al2O3 ceramic content when it ranged from 0 to 20 wt%. The results demonstrate that an Al2O3 ceramic content of 15 wt% resulted in enhanced tensile characteristics.

  16. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  17. NASA/CARES dual-use ceramic technology spinoff applications

    Science.gov (United States)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  18. Ceramic Oxygen Generator for Carbon Dioxide Electrolysis Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I proposal (Topic X9.01), NexTech Materials, Ltd. proposes to develop a high efficiency ceramic oxygen generation system which will separate O2...

  19. Extreme Environment Ceramic-to-Metal Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will demonstrate the feasibility of large ceramic to metal joints/seals that can tolerate extreme environments. The immediate...

  20. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  1. Study of The Technological Profile of The Red Ceramic Industry of Alagoas

    Directory of Open Access Journals (Sweden)

    Bruna Pinto de Cerqueira Pedrosa de Oliveira

    2015-06-01

    Full Text Available The red ceramic industry in Brazil is a sector that is growing every year, characterized by the production of ceramic tiles as brick, tile, ceramic blocks, which basically uses, as main raw material, the clay. Due to the constant evolution of mechanization and production increase, plus the emergence of new companies, it is clear that processing techniques as well as technological modernization are key to achieving a higher performance segment of red ceramic process thus winning, this way, the market, about terms of competitiveness and productivity. This time, watching these aspects, the present study aims to analyze the technological landscape of the production process of the Red Ceramic Industry in Alagoas State, with regard to equipment used in the manufacturing steps, checking for the possibility of existing technological levels these industries in Alagoas in its production process, analyzing these, aiming thus conduct a study of the technological profile of the Red Ceramic Industry. The methodology will support the field research through questionnaires with entrepreneurs as well as qualitative bibliographic nature, with content analysis. Thus, the data surveys have indicated the existence of technological levels for this segment, mapping the characteristics of the productive process and its technological profile in the State of Alagoas and can verify in a few steps a possible disharmony. Therefore, by the the analysis of the data allowed the highlight of four steps to the red ceramic production process, these being the extraction of raw materials, the conformation of parts by molding and extrusion, and thermal processes through the final stages of drying and burning, considering the existence of technological levels by analyzing the study of technological profile, with regard to equipment used in the production process of state Red Ceramic Industries.

  2. Project approach helps technology transfer

    International Nuclear Information System (INIS)

    The placing of the contract by the National Power Corporation with Westinghouse for the Philippines nuclear power plant (PNPP-1) is described. Maximised use of Philippine contractors under Westinghouse supervision was provided for. Technology transfer is an important benefit of the contract arrangements, since National Power Corporation project management acquires considerable nuclear plant experience during plant construction through consultation with technical personnel. (U.K.)

  3. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  4. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa2 Cu2O7, XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  5. High Efficiency Axial Deep Creep-Feed Grinding Machining Technology of Engineering Ceramics Materials

    Institute of Scientific and Technical Information of China (English)

    GUO Fang; ZHANG Baoguo; LU Hong; TIAN Xinli; WANG Jianquan; LI Fuqiang

    2012-01-01

    Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials,which is an original method to process the cylindrical ceramics materials or hole along its axis.The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process,and realized high efficiency,low-cost process of engineering ceramics materials.Compared with high speed-deep grinding machining,this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost.In addition,removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed,and the processed part is seldom destroyed,only by adjusting the axial force to control the length of transverse cracks.

  6. Ceramic Technology, Women, and Settlement Patterns in Late Archaic Southwestern Idaho

    OpenAIRE

    Dougherty, Jessica A.

    2014-01-01

    This research employs a sample of archaeological sites from three ecological zones to investigate the mobility strategies of hunter-gatherer groups in Late Archaic southwestern Idaho. The sample sites are organized into site types based on an independent evaluation of site components and existing site records. Ceramic assemblages at each site were analyzed to quantify the investment in ceramic technology, as a proxy for mobility. These measures were then compared to expectations generated fro...

  7. Ceramic waste materials – source for the geopolymer technology

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš; Straka, Pavel; Steinerová, Michaela

    Hammamed: SDST, 2008 - (Darve, F.), s. 735-740 ISBN 978-9973-0-0299-0. [Second Euro Mediterranean Symposium in Advances on Geomaterials and Structures. Hammamet (TN), 05.05.2008-08.05.2008] Institutional research plan: CEZ:AV0Z30460519 Keywords : ceramic waste material * white waters * geopolymer Subject RIV: DM - Solid Waste and Recycling

  8. Reclamation of material from used ceramic moulds applied in the investment casting technology

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2010-07-01

    Full Text Available Investigations on utilisation of reclaimed materials from used ceramic moulds applied in the investment casting technology, are presented in the hereby paper. This reclaim was used as a matrix for the preparation of the test moulds. Rheological properties as well as tensile strength at a room temperature of such ceramic sands were even better than of sands made of fresh components. However, ceramic sands with a reclaimed material exhibited worse properties at higher temperatures. The second direction of utilizing the reclaim was using it as the so-called powder topping when making ceramic moulds (for the IInd and successive layers. Tensile strength values at hightemperatures of moulds made with the reclaim participation were comparable (and in some cases even higher to values of moulds made offresh components (Al2O3. These results encourage the further investigations in this field.

  9. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology

    Science.gov (United States)

    Aras, Meena Ajay

    2011-01-01

    PURPOSE Ceramics have a long history in fixed prosthodontics for achieving optimal esthetics and various materials have been used to improve ceramic core strength. However, there is a lack of information on how color is affected by fabrication procedure. The purpose of this study was to evaluate the effects of various dentin ceramic thicknesses and repeated firings on the color of zirconium oxide all-ceramic system (Lava™) fabricated using CAD/CAM technology. MATERIALS AND METHODS Thirty disc-shaped cores, 12 mm in diameter with a 1 mm thickness were fabricated from zirconium oxide based all ceramic systems (Lava™, 3M ESPE, St Paul, MN, USA) and divided into three groups (n = 10) according to veneering with dentin ceramic thicknesses: as 0.5, 1, or 1.5 mm. Repeated firings (3, 5, 7, or 9) were performed, and the color of the specimens was compared with the color after the initial firing. Color differences among ceramic specimens were measured using a spectrophotometer (VITA Easyshade, VITA Zahnfabrik, Bad Säckingen, Germany) and data were expressed in CIELAB system coordinates. A repeated measures ANOVA and Bonferroni post hoc test were used to analyze the data (n = 10, α=.05). RESULTS L*a*b* values of the ceramic systems were affected by the number of firings (3, 5, 7, or 9 firings) (P<.001) and ceramic thickness (0.5, 1, or 1.5 mm) (P<.001). Significant interactions were present in L*a*b* values between the number of firings and ceramic thickness (P<.001). An increase in number of firings resulted in significant increase in L* values for both 0.5 mm and 1.5 mm thicknesses (P<.01, P=.013); however it decreased for 1 mm thickness (P<.01). The a* values increased for 1 mm and 1.5 mm thicknesses (P<.01), while it decreased for 0.5 mm specimens. The b* values increased significantly for all thicknesses (P<.01, P=.022). As the dentin ceramic thickness increased, significant reductions in L* values (P<.01) were recorded. There were significant increases in both a

  10. Changing Technology and Work: Northern Telecom. CAW Technology Project.

    Science.gov (United States)

    Robertson, David; Wareham, Jeff

    A project to examine the implications of technological change at Northern Telecom consisted of two major components: a technological survey and case study research. A questionnaire that contained more than 90 questions on technological change was distributed through local union technology committee meetings in Brampton, London, Belleville, and…

  11. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. This powerful technology will also...

  12. Ceramic-based fuel technologies: scope and status

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth J [Los Alamos National Laboratory

    2010-12-16

    This presentation is an overview of the approach, status and path forward for ongoing tasks under the ceramic fuel development part of the program. Experimental work is focused on fundamental studies employing depleted urania-based compositions and mixed oxide (MOX) and minor actinide-bearing MOX. Contributions are included from researchers at LANL, ORNL and BNL. The audience for this presentation consists of the various participants in the FCRD program. Those participants include representatives from: DOE-NE, other national laboratories, DOE funded university researchers, DOE funded industry teams, FCRD funded advisors, and occasionally NRC.

  13. Methane LIDAR Laser Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop laser technology intended to meet NASA's need for innovative lidar technologies for atmospheric measurements of methane. NASA and the...

  14. A New Technology of Microcrystallizing Leucite to Reinforce Dental Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Biao; PENG Bin; DUAN Xing-long; QIAN Fa-tang; WU Bo-lin

    2004-01-01

    The key technology and the main mechanism of microcrystallizing leucite to reirforce dentalglass ceramics were investigated. The feedstock powders were selected, mixed according to the ratios of the theoreti-cal composition of leucite, ball - milled, melted at 1600℃ and then cooled to room temperature quickly. Thecooled clinkers were ball - milled again to 4 μm. After cold - isostatic pressure molded and air sintered at 1 500℃for 1 h, the dental glass ceramics were fabricated. They have following characteristics: excellent mechanical prop-erties ( mean compressive strength is 206.6 MPa ), low sintering temperature and good reoccurrence to keep steadyquality.

  15. Management of Innovative Projects through Agile Technology

    OpenAIRE

    Radu Bucea-Manea-Tonis; Rocsana Tonis (Bucea-Manea)

    2014-01-01

    Because of the globalization and the evolution of internet and technologies, nowadays the innovation is associated with open collaboration conducted by a legal framework. The paper analyses the methods that allow a better management for innovative projects and focuses on agile projects within a technological network.

  16. Management of Innovative Projects through Agile Technology

    Directory of Open Access Journals (Sweden)

    Radu Bucea-Manea-Tonis

    2014-09-01

    Full Text Available Because of the globalization and the evolution of internet and technologies, nowadays the innovation is associated with open collaboration conducted by a legal framework. The paper analyses the methods that allow a better management for innovative projects and focuses on agile projects within a technological network.

  17. Mineralogy and technological properties of some kaolin types used in the ceramic industry

    OpenAIRE

    Marcel Benea; Maria Gorea

    2004-01-01

    Three different kaolin types used in ceramic industry were analyzed by different methods in order to obtain a complete mineralogical and technological characterisation. Studies were carried out by using a combination of analyses (XRD, SEM, methylene blue absorption, particle size distribution) of both the bulk sample, and the fine fraction. The main technological characteristics (drying and firing shrinkage, Pfefferkorn plasticity index, rheology, resistance, and colour after firing) of the c...

  18. Smart Gun Technology project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.

    1996-05-01

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness in models of a smart firearm.

  19. Development of fabrication technology for ceramic nuclear fuel

    International Nuclear Information System (INIS)

    The purpose of the study is to develop the fabrication technology of MOX fuel. The researches carried out during the last stage(1997. 4.∼2003. 3.) mainly consisted of ; study of MOX pellet fabrication technology for application and development of characterization technology for the aim of confirming the development of powder treatment technology and sintering technology and of the optimization of the above technologies and fabrication of Pu-MOX pellet specimens through an international joint collaboration between KAERI and PSI based on the fundamental technologies developed in KAERI. Based on the studies carried out and the results obtained during the last stage, more extensive studies for the process technologies of the unit processes were performed, in this year, for the purpose of development of indigenous overall MOX pellet fabrication process technology, relating process parameters among the unit processes and integrating these unit process technologies. Furthermore, for the preparation of transfer of relevant technologies to the industries, a feasibility study was performed on the commercialization of the technology developed in KAERI with the relevant industry in close collaboration

  20. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  1. Improved hyperspectral imaging technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Improved hyperspectral imaging technologies could enable lower-cost analysis for planetary science including atmospheric studies, mineralogical investigations, and...

  2. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. ASAT will create an Advanced Situation...

  3. Development of the Electromagnetic Induction Type Micro Air Turbine Generator Using MEMS and Multilayer Ceramic Technology

    International Nuclear Information System (INIS)

    The miniaturized electromagnetic induction type air turbine generator is described. The micro air turbine generator rotated by the compressed air and generating electricity was fabricated by the combination of MEMS and multilayer ceramic technology. The micro generator consisted of an air turbine and a magnetic circuit. The turbine part consisted of 7 silicon layers fabricated by the MEMS technology. The magnetic circuit was fabricated by the multilayer ceramic technology based on the green sheet process. The magnetic material used in the circuit was ferrite, and the internal conductor was silver. The dimensions of the obtained generator were 3.5x4x3.5 mm. The output power was 1.92 μW. From FEM analysis of the magnetic flux, it was found that leakage of the flux affected the output power.

  4. Wireless Sensor Portal Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum Corporation has demonstrated the feasibility in the Phase I of " A Wireless Sensor Portal Technology" and proposes a Phase II effort to develop a wireless...

  5. Holographic Projection Technology: The World is Changing

    CERN Document Server

    Elmorshidy, Ahmed

    2010-01-01

    This research papers examines the new technology of Holographic Projections. It highlights the importance and need of this technology and how it represents the new wave in the future of technology and communications, the different application of the technology, the fields of life it will dramatically affect including business, education, telecommunication and healthcare. The paper also discusses the future of holographic technology and how it will prevail in the coming years highlighting how it will also affect and reshape many other fields of life, technologies and businesses.

  6. Developing ceramic based technology for the immobilisation of waste on the Sellafield site - 16049

    International Nuclear Information System (INIS)

    National Nuclear Laboratory, in collaboration with the Australian Nuclear Science and Technology Organisation, is developing hot isostatic press (HIP) based ceramic technology for the immobilisation of a diverse range of wastes arising from nuclear fuel processing activities on the Sellafield site. Wasteform compositions have been identified and validated for the immobilisation of these plutonium containing wastes and residues in glass-ceramic and ceramic forms. A full scale inactive facility has been constructed at NNL's Workington Laboratory to support the demonstration of the technology. Validation of the inactive wasteform development using plutonium has been carried out at ANSTO's Lucas Heights facility. A feasibility study has been conducted to evaluate the construction and operation of a plutonium active pilot facility which would demonstrate the immobilisation of actual residues in the NNL Central Lab. This could form the basis of a facility to treat the plutonium wastes and residues in their entirety. The technology is being explored for the immobilisation of additional wastes arising on the Sellafield site taking advantage of the investment already made in skills and facilities. (authors)

  7. Causal Models for Safety Assurance Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fulfillment of NASA's System-Wide Safety and Assurance Technology (SSAT) project at NASA requires leveraging vast amounts of data into actionable knowledge. Models...

  8. Key Issues in Global Technological Innovation Projects

    Directory of Open Access Journals (Sweden)

    Roberto Sbragia

    2012-04-01

    Full Text Available This article aimed to identify those issues that were present in global technological innovation projects carried out by Brazilian multinational companies and which performance criterions these undertakings met. We investigated 36 global technological innovation projects from Brazilian multinational enterprises through a web-survey. Findings show that these companies went beyond the traditional iron triangle to evaluate their technological efforts and considered additional performance dimensions such as customer satisfaction, business results, and preparation for the future. Results also show high degree of presence for issues emerging from the industry, moderate degree of presence for issues emerging from both the project and R&D activities, and low degree of presence for issues emerging from the headquarters, the subsidiaries, and the external environment. Further research is needed to find out if and how these issues influenced the performance of the global technological innovation projects studied.DOI:10.5585/gep.v3i1.72

  9. Computer Technology in Construction Project Management

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi

    2014-01-01

    Today, the network information has become a trend al of the industries have to face. For the construction project management, we must fuly master the use of computer information technology, mining its intrinsic value, so that it can promote the construction industry to meet the requirements of the times. This paper demonstrates the main application of computer technology in construction project management in a brief analysis.

  10. Project Management for Business, Engineering, and Technology

    CERN Document Server

    Nicholas, John M

    2008-01-01

    Project Management for Business, Engineering and Technology, 3rd edition is a direct response to the ever-increasing need for better project management. First covering the essential background, from origins and philosophy to methodology, the main bulk of the book is dedicated to the concepts and techniques of practical application, including project initiation and proposals, scope and task definition, scheduling, budgeting, risk analysis, control, project organization and all-important "people" aspects--project leadership, team building, conflict resolution and stress management. The

  11. Characterisation of some Clays Used for Whiteware Ceramics, II. Technological Characterization

    OpenAIRE

    Maria Gorea; Marcel Benea

    2002-01-01

    The paper investigates the mineral composition of four diferent clay types used for whiteware ceramics, correlated to the measured mineralogical and chemical composition, particle size distribution and technological characteristics (plasticity, drying, and firing shrinkage, dry resistance). According to their particle size distribution, the U-II, U-III and ESV3 clay types are almost identically, but the mineralogical composition is different. On the other hand, the CARO clay type has a very s...

  12. Chemical-technological approach to the selection of ceramic materials with predetermined thermistor properties

    Energy Technology Data Exchange (ETDEWEB)

    Plewa, J.; Altenburg, H. [Fachhochschule Muenster, Steinfurt (Germany). SIMa and Supraleiter-Keramik-Kristalle; Brunner, M. [Fachhochschule Koeln (Germany). Elektronische Bauelemente; Shpotyuk, O.; Vakiv, M. [Scientific Research Co. ' ' Carat' ' , Lviv Scientific Research Inst. of Materials, Lviv (Ukraine)

    2002-07-01

    The selection possibilities of quaternary Cu-Ni-Co-Mn oxide system restricted by cubic spinels (CuMn{sub 2}O{sub 4}, MnCo{sub 2}O{sub 4} and NiMn{sub 2}O{sub 4}) for NTC thermistors application were discussed. Phase compositions, microstructural features and electrical properties of the investigated spinel-structured ceramics were studied in tight connection with technological regimes of their sintering. (orig.)

  13. Development and application of ferrite materials for low temperature co-fired ceramic technology

    Science.gov (United States)

    Zhang, Huai-Wu; Li, Jie; Su, Hua; Zhou, Ting-Chuan; Long, Yang; Zheng, Zong-Liang

    2013-11-01

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics.

  14. LFCM [liquid-fed ceramic melter] vitrification technology: Quarterly progress report, January--March 1987

    International Nuclear Information System (INIS)

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs

  15. Monolithic ceramics

    Science.gov (United States)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  16. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  17. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  18. Technology Management on Large Construction Projects

    DEFF Research Database (Denmark)

    Bonke, Sten

    The aim of this text is to discuss and to develop the concept of technology management in relation to the empirical field of construction projects. In the first of the two main sections central theories and their derived assertions concerning technology management criteria are summed up in a...... Fixed Link construction project. Finally on this basis the concluding remarks are pointing to the main theoretical problems and their practical implementations for the introduction of a technology management discipline in construction....... schematic theoretical framework. Hereafter the general characteristics of construction are examined from the point of view of serving as an empirical field for technology management analysis. In the second section the technology management theme is associated with the empirical properties of the Great Belt...

  19. Canadian Fusion Fuels Technology Project activities report

    International Nuclear Information System (INIS)

    The Canadian Fusion Fuels Technology Project was formally established in 1982. The project is directed toward the further development of Canadian capabilities in five major areas: tritium technology, breeder technology, materials technology, equipment development and safety and the environment. The project is funded by three partners - Government of Canada (50%), Ontario Provincial Government (25%) and Ontario Hydro (25%). The fiscal year 1984/85 represents the third year of operation of the project. In 1984/85, 108 contracts were awarded totalling $4 million. Supplementary funding by subcontractors added approximately $1.9 million to the total project value. More than 200 people participated in the technical work involved in the project. Sixteen people were on attachment to foreign facilities for terms ranging from 1 month to 2.5 years. Five patents were applied for including a tritium discrimination monitor, a new radio-chemical tritium separation method, a new variation of fuel cleanup by gas chromatography, a passive tritium permeation system using bimetallic membranes, and a new breeder process using lithium salts dissolved in heavy water

  20. Projection display technologies for the new millennium

    Science.gov (United States)

    Kahn, Frederic J.

    2000-04-01

    Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.

  1. Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sciau, Philippe; Leon, Yoanna; Goudeau, Philippe; Fakra, Sirine C.; Webb, Sam; Mehta, Apurva

    2011-07-06

    We present results of X-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different firing protocols used for their production. Micro-focused XRF elemental mapping, Fe chemical mapping and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics from southern Gaul, and terra Sigillata vessels from Italy and southern Gaul. Pieces from the different workshops and regions showed significant difference in the starting clay material, clay conditioning and kiln firing condition. By contrast, sherds from the same workshop exhibited more subtle differences and possible misfirings. Understanding the precise firing conditions and protocols would allow recreation of kilns for various productions. Furthermore, evolution and modification of kiln design would shed some light on how ancient potters devised solutions to diverse technological problems they encountered.

  2. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  3. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  4. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  5. Development of technologies of nuclear ceramic grade fuel production

    International Nuclear Information System (INIS)

    JSC 'Ulba Metallurgical Plant' has developed and implemented unique technologies of fuel pellets production that allow: 1) regulating the average grain size and grain distribution by sizes within wide ranges by using methods of pellet alloying: from bimodal structure with the grain size of 1-3 μm of fine grain phase and 10-30 μm of coarse grain phase to homogeneous monomodal structure with the average grain size about 20-50 μm. The summary boron equivalent of alloyed pellets not exceed 1.0 μg/gU; 2) regulating pore distribution by sizes (while the homogeneous pore structure is maintained) by adding special pore-forming agents: from monomodal distribution with average pore sizes around 1.5-3.5 μm to bimodal distribution with average size of small pores around 1-3 μm and average size of large pores around 10-50 μm. The principles of microstructure control are based on laws and mechanisms of microstructure revolution at all stages of sintering. For example, the interaction between regular pores and grain boundary is an important element in initiation of grain and pellet density increase. The control over pore mobility allows improving plasticity of pellets through increasing the amount of pores on grain boundaries and creating the conditions for plastic deformation. (authors)

  6. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    OpenAIRE

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2014-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, a...

  7. Project Management for Engineering, Business, and Technology

    CERN Document Server

    Nicholas, John M

    2012-01-01

    There is an ever-growing need for better project management within the disciplines of engineering, business and technology and this new edition is a direct response to that need. By emphasizing practical applications, this book targets the ultimate purpose of project management; to unify and integrate the interests, resources and work efforts of many stakeholders to accomplish the overall project goal. The book encompasses the essential background material, from philosophy to methodology, that is required, before dedicating itself to presenting concepts and techniques of practical application

  8. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    International Nuclear Information System (INIS)

    Alternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr2O3, Fe2O3, and nitric acid (HNO3), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl2O4 and magnesiochromite. These minerals are classified as chromspinelide MgCr1.2Al0.4Fe0.4O4 and alumochromite MgCr1.6Al0.4O4. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature. The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800 degree centigrade 1 h. The ceramic samples synthesized had high density of 1.72-1.93 g/cm3 and large absorption area - 32.93% which is probably due to the high porosity of the sample. (Author)

  9. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    Energy Technology Data Exchange (ETDEWEB)

    Doynov, M.; Dimitrov, T.; Kozhukharov, S.

    2016-05-01

    Alternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, and nitric acid (HNO{sub 3}), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl{sub 2}O{sub 4} and magnesiochromite. These minerals are classified as chromspinelide MgCr{sub 1}.2Al{sub 0}.4Fe{sub 0}.4O{sub 4} and alumochromite MgCr{sub 1}.6Al{sub 0}.4O{sub 4}. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature. The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800 degree centigrade 1 h. The ceramic samples synthesized had high density of 1.72-1.93 g/cm{sup 3} and large absorption area - 32.93% which is probably due to the high porosity of the sample. (Author)

  10. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  11. JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...

  12. NASA's Cryogenic Fluid Management Technology Project

    Science.gov (United States)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  13. Development and application of ferrite materials for low temperature co-fired ceramic technology

    International Nuclear Information System (INIS)

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics. (review - magnetism, magnetic materials, and interdisciplinary research)

  14. Technological and economic update on the nitrate to ammonia and ceramic process

    International Nuclear Information System (INIS)

    The Nitrate to Ammonia and Ceramic (NAC) process, which was developed several years ago at the Oak Ridge National Laboratory (ORNL), still remains relatively unknown. This is despite its simplicity in converting nitrate or nitrite to ammonia gas at high efficiency while forming a very useful hydrated alumina-based solid that binds most metals and nonmetals. Two recent Department of Energy (DOE)-contracted total life-cycle cost analyses, related to treating nitrate-based wastes at Hanford, Savannah River, and Oak Ridge, have shown that the NAC technology is only one-third to one-fourth the cost of vitrification, electroreduction, steam reforming, and plasma arc

  15. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  16. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  17. The New Mexico Technology Deployment Pilot Project: A technology reinvestment project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The New Mexico Technology Deployment Project (NMTDP) has been in operation for slightly more than two years. As one of the original TRP projects, NMTDP had the charter to develop and validate a new model for technology extraction which emphasized focused technology collaboration, early industry involvement, and a strong dual use commercialization and productization emphasis. Taken in total, the first two years of the NMTDP have been exceptionally successful, surpassing the goals of the project. This report describes the accomplishments and evolution of the NMTDP to date and discusses the future potential of the project. Despite the end of federal funding, and a subsequent reduction in level of effort, the project partners are committed to continuation of the project.

  18. Financing innovative technologies in wind projects

    International Nuclear Information System (INIS)

    Methods of market entry and the financing of new technologies were discussed from the perspective of Clipper Windpower, a wind energy company based in the northeastern United States and Canada. Many new technology companies only consider private equity when seeking financing for new product development. However, financing for projects and products is only the first step to market entry. Wind projects are the financial equivalent of a high yield bond with mechanical risk. Many wind power projects with company equity can also be seen as a long term bond with upside in any given year. It is therefore important for wind developers to seek out strategic buyers for both product development and project development, in addition to finding sources of private equity. Clipper Windpower Inc. has developed a partnership with British Petroleum (BP), who hold an equity interest in the company. Both companies are now partnering on projects with Clipper turbines, and firm orders are in place for 2007 and 2008. As a result of the partnership, Clipper now has increased its financial strength in cash flows, balance sheets, and projected revenue. It was concluded that a successful partnership can increase the scale of wind power development, and bring financial sophistication to smaller companies with limited resources. refs., tabs., figs

  19. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  20. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  1. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  2. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai, E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Koyanagi, Takaaki; Hinoki, Tatsuya [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Henager, Charles H. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Ferraris, Monica [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ∼3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Under the more aggressive irradiation conditions (800 °C, ∼5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  3. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai; Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel; Koyanagi, Takaaki; Hinoki, Tatsuya; Henager, Charles H.; Ferraris, Monica

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ~3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Finally, under the more aggressive irradiation conditions (800 °C, ~5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  4. Supporting Project Work with Information Technology

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2015-01-01

    Like so many other institutions, Roskilde University has had to adapt to the new realities brought about by the rapid developments in information and communication technology (ICT). On the whole, ICT tools have proven to be helpful in supporting and developing the work forms on which Roskilde...... University problem-oriented project work is based. However, in implementing and integrating the new technologies in academic practices, a number of challenges have had to be addressed. This chapter discusses four of these challenges. The first is to provide a physical and virtual framework for learning...

  5. Analysis of technology transfer in CDM projects: An update

    International Nuclear Information System (INIS)

    The clean development mechanism (CDM) contributes to technology transfer by financing emission reduction projects using technologies not available in the host countries. This paper provides the most comprehensive analysis of technology transfer in the CDM to-date, covering 3296 registered and proposed projects. Roughly 36% of the projects accounting for 59% of the annual emission reductions claim to involve technology transfer. Technology transfer is more common for larger projects and projects with foreign participants. Technology transfer is very heterogeneous across project types and usually involves both knowledge and equipment. As the number of projects increases, technology transfer occurs beyond the individual projects. This is observed for several of the most common project types in China and Brazil with the result that the rate of technology transfer for new projects in those countries has fallen significantly.

  6. Ceramic glossary

    International Nuclear Information System (INIS)

    This book is a 2nd edition that contains new terms reflecting advances in high technology applications of ceramic materials. Definitions for terms which materials scientists, engineers, and technicians need to know are included

  7. Real options theory: financial-economic assessment of projects in the ceramics industry

    Directory of Open Access Journals (Sweden)

    Léony Luis Lopes Negrão

    2015-09-01

    Full Text Available The present study aimed to evaluate economically the implementation of Clean Development Mechanism in the substitution of non-renewable biomass to renewable biomass in the production process of a red ceramics enterprise. The evaluation intended to show the value of management flexibility, according to adaptations made in the methodology proposed by Copeland & Antikarov (2001, adding to the traditional discounted cash flow the evaluation the Real Options. This procedure follows a routine of essential steps for the analysis of variables that comprises the model and enabled the ordination of the results based both on the Real Options and the present values, including management flexibility evaluation.  It could be concluded that Real Options Theory, and the Option to Delay or Postponement contributed with information that might assist and improve projects investment decisions, since several real-world inherent uncertainties are considered.

  8. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  9. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  10. How technology affects project management : A study within Swedish municipalities

    OpenAIRE

    Lundin, Jakob; Lund, Adam

    2016-01-01

    Background  Technology can be of great support for project managers when managing projects, but most empirical research on technological effects in project management has focused on the private sector which have led to that public sector project management is viewed as one of the largest gaps in project management literature.    Purpose  Investigate and describe the main challenges of Swedish municipal project managers’ work with project management and to what extent they incorporate technolo...

  11. Glass-ceramic frits for porcelain stoneware bodies: effects on sintering, phase composition and technological properties

    OpenAIRE

    Zanelli, Chiara; Baldi, Giovanni; Dondi, Michele; Ercolani, Giampaolo; Guarini, Guia; Raimondo, Maria Rosa

    2008-01-01

    In the present work, the effects of glass-ceramic frits (10wt%) added to a porcelain stoneware body in replacement of non-plastic raw materials, were evaluated simulating the tile-making process. Each glass-ceramic frit plays its own peculiar effect on the compositional properties and only some precursors behave as real glass ceramic materials. The positive influence of glass-ceramic precursors in promoting the sintering stands out when temperature onset densification and sintering rate are c...

  12. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, S.J.; Lippert, T.E

    1994-12-01

    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  13. Development of Hi-Tech ceramics fabrication technologies - Development of advanced nuclear materials

    International Nuclear Information System (INIS)

    The objective of the present work is to prepare the foundation of hi-tech ceramics fabrication technologies through developing important processes i.e., tape casting, sol-gel, single crystal growing, compacting and sintering, and grinding and machining processes. Tape casting process is essential to manufacture hard and functional thin plates and structural elements for some composite materials. For the fabrication of spherical mono-sized micropowders of oxides, sol-gel process has widely been used. Piezoelectric elements that are the core parts of the sensors of LPMS (loose part monitoring system) and ALMS (acoustic leakage monitoring system) are used in single crystal forms. Compacting and sintering processes are general methods for fabricating structural parts using powders. Grinding and machining processes are important to achieve the final dimensions and surface properties of the parts. (Author).

  14. Application of advanced large-scale ceramic melter technology for HLLW vitrification

    International Nuclear Information System (INIS)

    This paper outlines the current status and application of KIT-INE's advanced large-scale liquid-fed Joule-heated ceramic melter technology. The design of the major sub-components of the melter is briefly described and the progress addressed. The application of the technique in an industrial-scale facility is illustrated. The construction of this facility is scheduled to start in the year 2012. Also given are technical test results of a waste glass developed for use in this facility which will vitrify high sodium/high sulfur bearing HLLW. The plant has a design throughput of 65 l/h feed corresponding to a glass production rate of about 41 kg/h. (author)

  15. TECHNOLOGICAL PROPERTIES OF RAW CLAY BASED CERAMIC TILES: INFLUENCE OF TALC

    Directory of Open Access Journals (Sweden)

    MOUSTAPHA SAWADOGO

    2014-11-01

    Full Text Available Local clay from Burkina Faso has been used as a basic raw material in the formulation of ceramic tile with a natural talc (0 - 4% wt as a flux. The used sintering temperatures are between 950 and 1100 °C with one hour as hold at heating rate of 5 °C∙min-1. The different technological properties (shrinkage, water absorption and mechanical strength are improved when the sintering temperature exceeds 1000 °C. The mixture with 4% wt of talc provides better properties than the other grades. The tiles obtained at 1050 °C with 4% wt of talc have similar characteristics to those obtained at 1100 °C without talc. An energy gain with a difference of temperature of 50 °C could be made with the use of talc as the adjuvant.

  16. Behaviour of Open Cell Ceramic Foams in Tension

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    Columbus, Ohio, 2011. s. 165-165. [Materials Science and Technology 2011. Conference and Exhibition. 16.10.2011-20.10.2011, Columbus, Ohio] R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : foam ceramics * tensile test * damage quantification Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  17. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC) Technology

    OpenAIRE

    Chen Li; Qiulin Tan; Wendong Zhang; Chenyang Xue; Yunzhi Li; Jijun Xiong

    2014-01-01

    In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC) technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the se...

  18. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  19. Venture Leaders Prize for innovative technology projects

    CERN Multimedia

    2006-01-01

    In co-operation with the GEBERT RÜF FOUNDATION and the Ernest & Young Entrepreneur of the Year Award, venturelab will be presenting the Venture Leaders Prize. The Venture Leaders Prize, which is the new guise of the NETS (New Entrepreneurs in Technology and Science) Prize, will give twenty research entrepreneurs with projects to develop innovative technologies the opportunity to win the chance of participating in a programme to assist them in starting up their companies. The winners will go to spend 10 days in the Boston area (United States) where they will take part in a development programme for their project, which will include an entrepreneurship course, opportunities to meet start-up companies and financing experts, etc. This prize has already spawned many companies such as id Quantique, Selexis or ABMI which have contributed to the economic development of regions, particularly in French-speaking Switzerland. The competition is open to students and scientists from all fields, who would like to s...

  20. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  1. Small Hydropower Research and Development Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, Mo [Near Space Systems, Inc.

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  2. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  3. Communication Strategy in Projects : High Technology Sector Viewpoint

    OpenAIRE

    Alatalo, Ulla

    2012-01-01

    The thesis focuses on high technology product developments projects and their communication. The key idea is to define special features of project management in communication and utilise those in building communication strategy for projects. Reviewed literature emphasizes project management. Other theoretical fields of study are: communication process, communication strategy, project communication management and subcontracting in respect to communication. The research questions have...

  4. A view of microstructure with technological behavior of waste incorporated ceramic bricks.

    Science.gov (United States)

    Nirmala, G; Viruthagiri, G

    2015-01-25

    Production of ceramic bricks from mixtures of ceramic industry wastes (up to 50 wt%) from the area of Vriddhachalam, Cuddalore district, Tamilnadu, India and kaolinitic clay from Thiruvananthapuram district, Kerala were investigated. The firing behavior of the ceramic mixtures was studied by determining their changes in mineralogy and basic ceramic properties such as water absorption, porosity, compressive strength and firing shrinkage at temperatures ranging from 900 to 1200 °C in short firing cycles. The effect of the rejects addition gradually up to 50 wt% was analyzed with the variation of temperature on the mechanical properties and microstructure of the bricks. The highest compressive strength and lowest water absorption is observed for the sample with 40% rejects at 1100 °C which is supported by the results of SEM analysis. The resulting ceramic bricks exhibit features that suggest possibilities of using the ceramic rejects in the conventional brick making methods. PMID:25062052

  5. Evolution of Dental Ceramic from the Platinum Foil to CAD-CAM Technologies: Review

    OpenAIRE

    Isgrò G; Sachs A

    2015-01-01

    New ceramic materials and novel fabrication methods have been developed and introduced in dentistry with the aim to improve the longevity of dental ceramic restorations and to extent their use for more demanding clinical situations like construction of multi units posterior fixed partial dentures (FPDs). Dental ceramics have now reached a stage of development where it is possible to make long-span metal free posterior FPDs. Dentists and dental technicians should have knowledge&...

  6. OCT evaluation of single ceramic crowns: comparison between conventional and chair-side CAD/CAM technologies

    Science.gov (United States)

    Gabor, A.; Jivanescu, A.; Zaharia, C.; Hategan, S.; Topala, F. I.; Levai, C. M.; Negrutiu, M. L.; Sinescu, C.; Duma, V.-F.; Bradu, A.; Podoleanu, A. Gh.

    2016-03-01

    Digital impressions were introduced to overcome some of the obstacles due to traditional impression materials and techniques. The aim of this in vitro study is to compare the accuracy of all ceramic crowns obtained with digital impression and CAD-CAM technology with the accuracy of those obtained with conventional impression techniques. Two groups of 10 crowns each have been considered. The digital data obtained from Group 1 have been processed and the all-ceramic crowns were milled with a CAD/CAM technology (CEREC MCX, Sirona). The all ceramic crowns in Group 2 were obtained with the classical technique of pressing (emax, Ivoclar, Vivadent). The evaluation of the marginal adaptation was performed with Time Domain Optical Coherence Tomography (TD OCT), working at a wavelength of 1300 nm. Tri-dimensional (3D) reconstructions of the selected areas were obtained. Based on the findings in this study, one may conclude that the marginal accuracy of all ceramic crowns fabricated with digital impression and the CAD/CAM technique is superior to the conventional impression technique.

  7. Technology of off-gas treatment for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs

  8. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  9. Technology of off-gas treatment for liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.A.; Goles, R.W.; Peters, R.D.

    1985-05-01

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs.

  10. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li2TiO3 pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA

  11. Nuclear rocket propulsion technology - A joint NASA/DOE project

    Science.gov (United States)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  12. Clean Coal Technology Programs: Completed Projects (Volume 2)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  13. Calorimetric sensitivity and thermal resolution of a novel miniaturized ceramic DSC chip in LTCC technology

    Energy Technology Data Exchange (ETDEWEB)

    Missal, Wjatscheslaw, E-mail: wmissal@gmx.net [Department of Functional Materials, University of Bayreuth, 95440 Bayreuth (Germany); Kita, Jaroslaw [Department of Functional Materials, University of Bayreuth, 95440 Bayreuth (Germany); Wappler, Eberhard [wsk Mess- und Datentechnik GmbH, Gueterbahnhofstr. 1, 63450 Hanau (Germany); Bechtold, Franz [VIA electronic GmbH, Robert-Friese-Str. 3, 07629 Hermsdorf (Germany); Moos, Ralf [Department of Functional Materials, University of Bayreuth, 95440 Bayreuth (Germany)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Unique vertical design of a DSC device manufactured in the low-cost LTCC technology and therefore capable of one-way use. Black-Right-Pointing-Pointer Fully functional DSC device with a size of only 1.5 mm Multiplication-Sign 11 mm Multiplication-Sign 39 mm enabling very low power consumption. Black-Right-Pointing-Pointer Comparable measurement performance as conventional DSC whilst also suitable for mobile thermal analysis. Black-Right-Pointing-Pointer Thermal resolution is 0.12 (TAWN test). Repeatability of the peak area is within 0.3% for indium samples. Black-Right-Pointing-Pointer Calorimetric sensitivity: linear with regard to temperature and independent from sample mass and heating rate in wide ranges. - Abstract: The calorimetric properties of a novel miniaturized ceramic differential scanning calorimeter device (MC-DSC) with integrated heater and crucible are presented. All features of a conventional DSC apparatus (including oven) are integrated into this DSC device of the size 11 mm Multiplication-Sign 39 mm Multiplication-Sign 1.5 mm. The MC-DSC device is suitable for one-way use, since it is fully manufactured in the low-cost planar low temperature co-fired ceramics technology. First characterization of this device is performed using indium, tin and zinc samples. The calorimetric sensitivity at 156.6 Degree-Sign C is 0.24 J/ Degree-Sign C s. It depends linearly on temperature in the range of at least 150 Degree-Sign C and 420 Degree-Sign C. The calorimetric sensitivity is constant up to an enthalpy of fusion of at least {Delta}H = 750 mJ (at 156.6 Degree-Sign C). The thermal analysis of indium in direct contact to the crucible of the chip even reveals a constant calorimetric sensitivity up to an enthalpy of fusion of at least {Delta}H = 1000 mJ. The repeatability of the peak area is within {+-}0.3% (11 mg indium, 10 measurements). The thermal resolution determined using 4,4 Prime -azoxyanisole under TAWN test

  14. Project Mechanisms and Technology Diffusion in Climate Policy - Kyoto project mechanisms and technology diffusion

    International Nuclear Information System (INIS)

    The paper deals with the diffusion of GHG mitigation technologies in developing countries. We develop a model where an abatement technology is progressively adopted by firms and we use it to compare the Clean Development Mechanism (CDM) with a standard Cap and Trade scheme (C and T). In the presence of learning spillovers, we show that the CDM yields a higher social welfare than C and T if the first adopter receives CDM credits whereas the followers do not. This result lends support to the policy proposal of relaxing the CDM additionality constraint for projects which generate significant learning externalities. (authors)

  15. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  16. Post-in-pile research of the ceramic fuel pins, tested in the nitrogen cooled technological channels (NTC)

    International Nuclear Information System (INIS)

    The state of the rod ceramic fuel pins after the short-term (∼760 s) tests in the flux nitrogen cooled technological channels of the IVG.1 reactor is investigated. The high radiation-chemical durability of the carbide and carbide-graphite fuel pins in the conditions of the high-temperature (to 2850 and high-intensive (up to 2·1014 heat neutrons/(cm2·s) reactor irradiation in the nitrogen flux is determined. (author)

  17. Metallurgical traditions under Inka rule: a technological study of metals and technical ceramics from the Aconcagua Valley, Central Chile

    OpenAIRE

    Plaza, M.T.; Martinón-Torres, M.

    2015-01-01

    The spread of the Inka state in the Aconcagua Valley (Central Chile) is thought to have been culturally mediated, avoiding military coercion, and thus leading to different forms of cultural acceptance, resistance or hybridisation. However, there has been no previous attempt to investigate the extent to which these interactions are reflected in the use of metals and metallurgical technologies. Here we present analytical work on metallic artefacts and technical ceramics from Cerro La Cruz and L...

  18. Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) Project

    Science.gov (United States)

    Flynn, Kevin; Gubert, Michael

    2005-01-01

    Contents include the following: Exploration systems research and technology program structure. Project objective. Overview of project. Candidate thermal protection system (PS) materials. Definition of reference missions and space environments. Technical performance metrics (TPMs).Testing (types of tests). Conclusion.

  19. Microstructural characterization and influence of manufacturing parameters on technological properties of vitreous ceramic materials

    International Nuclear Information System (INIS)

    Microstructure of vitreous ceramic samples manufactured from kaolinitic-clay and feldspars raw materials from Cameroon was investigated in the range 1150-1250 deg. C by X-ray diffraction and scanning electron microscopy and by measuring some technological properties. Moreover, the simultaneous influence of feldspars content, heating temperature and soaking time on water absorption and firing shrinkage was evaluated by adopting the response surface methodology (Doehlert matrix), using the New Efficient Methodology for Research using Optimal Design (NEMROD) software. The results show that a spinel phase, mullite, glassy phase and some amount of hematite were formed. However, the spinel phase and potassic feldspar, as compared to the sodic one, disappeared at moderate firing temperature and soaking time. Apparently, mullite developed from spinel phase, which is formed from the demixion of metakaolin. On the other hand, it is found that the effects of fluxing content and firing temperature on the measured properties were almost similar and more influent than soaking time. Antagonistic and synergetic interactions existed between the considered parameters, and their importance differed for the considered properties. By using this mathematical tool, suitable operating conditions for manufacturing vitreous bodies were determined.

  20. Microstructural characterization and influence of manufacturing parameters on technological properties of vitreous ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Njoya, D. [Laboratoire de Physico-chimie des Materiaux Mineraux, Departement de Chimie Inorganique, Faculte des Sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon); Laboratoire de Physico-chimie des Materiaux et Environnement, Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, B.P. 2390, Marrakech (Morocco); Hajjaji, M., E-mail: Hajjaji@ucam.ac.ma [Laboratoire de Physico-chimie des Materiaux et Environnement, Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, B.P. 2390, Marrakech (Morocco); Bacaoui, A. [Laboratoire de Chimie Organique Appliquee, Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, B.P. 2390, Marrakech (Morocco); Njopwouo, D. [Laboratoire de Physico-chimie des Materiaux Mineraux, Departement de Chimie Inorganique, Faculte des Sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon)

    2010-03-15

    Microstructure of vitreous ceramic samples manufactured from kaolinitic-clay and feldspars raw materials from Cameroon was investigated in the range 1150-1250 deg. C by X-ray diffraction and scanning electron microscopy and by measuring some technological properties. Moreover, the simultaneous influence of feldspars content, heating temperature and soaking time on water absorption and firing shrinkage was evaluated by adopting the response surface methodology (Doehlert matrix), using the New Efficient Methodology for Research using Optimal Design (NEMROD) software. The results show that a spinel phase, mullite, glassy phase and some amount of hematite were formed. However, the spinel phase and potassic feldspar, as compared to the sodic one, disappeared at moderate firing temperature and soaking time. Apparently, mullite developed from spinel phase, which is formed from the demixion of metakaolin. On the other hand, it is found that the effects of fluxing content and firing temperature on the measured properties were almost similar and more influent than soaking time. Antagonistic and synergetic interactions existed between the considered parameters, and their importance differed for the considered properties. By using this mathematical tool, suitable operating conditions for manufacturing vitreous bodies were determined.

  1. Solid State Electrolyte for Li Battery Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  The fabrication technology developed in this project will aid GRC in advancing  Lithium Ion Batteries (LIB) technology by developing new electrode and...

  2. Nuclear Systems (NS): Technology Demonstration Unit (TDU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA’s Space Technology Mission Directorate. To this end,...

  3. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  4. High Radiation Tolerant Ceramic Voltage Isolator (Non-optical Gate Driver) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Phase I effort is to design, develop and demonstrate a novel solid-state ceramic-based voltage isolator and demonstrate its potential to provide a...

  5. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  6. Reliable Direct Bond Copper Ceramic Packages for High Temperature Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop highly reliable, hermetic, Si3N4 ceramic multichip modules to integrate commercially available SiC power devices to build power...

  7. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  8. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  9. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  10. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  11. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne, CH and P. BRUZZONE / CRPP-EPFL, Zürich, CH The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the...

  12. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne and P. BRUZZONE / CRPP-EPFL, Zürich The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the de...

  13. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC Technology

    Directory of Open Access Journals (Sweden)

    Chen Li

    2014-06-01

    Full Text Available In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the sensitivity membrane is smaller. The proposed sensor also demonstrates a greater responsivity, which reaches as high as 13 kHz/kPa in range of 0–100 kPa. During experiments, the newly fabricated sensor, which is only about 6.5 cm2, demonstrated very good performance: the repeatability error, hysteresis error, and nonlinearity of the sensor are about 4.25%, 2.13%, and 1.77%, respectively.

  14. Studies on development of new functional natural materials from agricultural products - Technology developments for ceramic powders and materials from rice phytoliths

    International Nuclear Information System (INIS)

    Based on an estimation of annual rice production of 5.2 million tons, rice husks by-production reaches to 1.17 million tons per year in Korea. Distinguished to other corns, rice contains a lot of Si; 10-20% by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this first year research, researches of the following subjects were performed; material properties of rice husks, milling of rice husks, acid treatments, oxidations at low and high temperatures, sintering and crystalization of amorphous silica, low temperature carburization, formation of silicon carbide whiskers, and brick lightening method using milled rice husks. 11 tabs., 49 figs., 75 refs. (Author)

  15. Studies on development of new functional natural materials from agricultural products - Technology developments for ceramic powders and materials from rice phytoliths

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kap; Kim, Yong Ik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yoon, Nang Kyu; Seong, Seo Yong [Myongseong Ceramics Com., Taejon (Korea, Republic of); Ryu, Sang Eun [Bae Jae Univ., Taejon (Korea, Republic of); Lee, Jae Chun [Myungji Univ., Seoul (Korea, Republic of)

    1995-08-01

    Based on an estimation of annual rice production of 5.2 million tons, rice husks by-production reaches to 1.17 million tons per year in Korea. Distinguished to other corns, rice contains a lot of Si; 10-20% by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this first year research, researches of the following subjects were performed; material properties of rice husks, milling of rice husks, acid treatments, oxidations at low and high temperatures, sintering and crystalization of amorphous silica, low temperature carburization, formation of silicon carbide whiskers, and brick lightening method using milled rice husks. 11 tabs., 49 figs., 75 refs. (Author).

  16. Ceramic on Metal Substrates Produced by Plasma Spraying for Thick Film Technology

    OpenAIRE

    Lech Pawłowski; Leszek Gołonka

    1983-01-01

    The arc plasma spraying process was applied to obtain ceramic coatings on stainless steel substrates. The outer coatings were formed from pure alumina or alumina + 2 wt. % titania mixture. The nichrome intermediate coating was applied to increase adhesion of ceramic coating to stainless steel. The X-ray analysis, metallographic and SEM investigations of the sprayed coatings were also carried out. The effect of interaction of thick film conductor and resistor compositions was studied. Conducto...

  17. INFLUENCE OF THE CEMENT TYPE ON THE CHARACTERISTICS OF THE MINERAL FOAM APPLICABLE IN FOAMED CERAMIC TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2012-10-01

    Full Text Available The subject of the research is the influence of the type of Portland cement, as well as the nature and concentration of additives that represent electrolytes and polymers, onto the foam stability. The project is implemented within the framework of the research of foamed ceramic. Detailed explanation of the influence pattern is provided. The research performed by the authors has generated the following findings. Besides the rheological properties of the solution, chemical interaction between the mix components must be taken into account in the course of development of the best foamed ceramic mix composition, as chemical processes produce a substantial influence onto the foam stability. Polymer additives based on liquid carbamyde-formaldehyde and polyacrylamide substantially improve the quality of the foam mineralized by the particles of the cement binder. They also assure the foam stability rate sufficient for the formation of a high-quality foamed material.

  18. Propulsive Descent Technologies (PDT): Original Content Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to Mars require landed mass that exceeds the capability of current entry, descent, and landing technology.  New technology and techniques are...

  19. Science and Technology Roadmapping to Support Project Planning

    Energy Technology Data Exchange (ETDEWEB)

    Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

    2001-07-01

    Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

  20. The EIAT project: gender and technology in the Irish context

    OpenAIRE

    Brereton, Bernadette

    2002-01-01

    This thesis examines the gender/technology relation in th e context of the Ennis Information Age Town (EIAT) project and th e Information Age in Ireland. We examine the ways th a t technology impacts on contemporary culture, moulding existing cultural practices and creating new ones. We also examine th e reciprocal impact which culture has on technology, influencing its creation and development. In practice, we consider the ontology of technology (what it is), the pragmatics of technology (wh...

  1. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  2. Xeroradiography: A key to the nature of technological change in ancient ceramic production

    Science.gov (United States)

    Glanzman, William D.; Fleming, Stuart J.

    1986-01-01

    Over the last two decades Industry and Medicine have developed and fully exploited various X-ray techniques, especially xeroradiography. It is only recently, however, that the latter has found significant use in museum-related disciplines, the appeal being that it is nondestructive in its usual mode of application. Though the production of xeroradiographic images has been largely constrained to situations where the X-ray beam incidence is normal to the object's surface — we will illustrate that information recovery is not optimized in that configuration — some valuable data has been gleaned about certain characteristic features of ceramic structure. For example, the frequency, grain structure and gross aspects of rock and mineral inclusions are often radiographically distinct, when their effective atomic number is significantly different from the surrounding clay matrix. (Haematite, muscovite and calcite show up particularly clearly.) Similarly, remnants of organic matter, such as any rice or straw temper that the potter may have added, produce quite distinct images. We have now adapted routine xeroradiographic methods to accurately reconstruct the method of manufacture of individual pottery vessel types from a wide range of past cultural horizons. Adjustments in X-ray exposure settings and angles of incidence, coupled to an internal study of certain vessel forms (using a "thick section" technique that we will describe in detail), has allowed us to identify subtle changes with time in ancient pottery production methods, and has prompted much reassessment of current ideas about technological innovation within several cultures, including those of Bronze Age Jordan and prehistoric Thailand. This paper will summarize the technical aspects of these changes, and consider the past social conditions which may have stimulated them.

  3. RISK MANAGEMENT AND INFORMATION TECHNOLOGY PROJECTS

    Directory of Open Access Journals (Sweden)

    Amine Nehari Talet

    2014-03-01

    Full Text Available IT projects management is not free from risks which are created from various sources of the environment. Thus a comprehensive understanding of these possible risks and creating strategic policies to confront them are one of the fundamental requirements for successful implementation of IT projects. The risks faced during the implementation of IT Projects are not just related to financial aspects. IT Project Managers must embrace these fundamental issues with more holistic view, rather than merely focusing on the financial matters. In order to prevent the potential problems from arising or escalating into bigger magnitude, serious attention must be given to it before the implementation of any IT project. The main focus of this paper is to investigate the impacts of Knowledge Management (KM on Risk Management (RM in IT project implementation process.

  4. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  5. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    OpenAIRE

    Halyna Klym; Ivan Hadzaman; Oleh Shpotyuk

    2015-01-01

    Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH)2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to h...

  6. Assessing the Relationship between Ethical Project Management and Information Technology Project Success

    Science.gov (United States)

    Howell, Byron Winter

    2010-01-01

    The purpose of this quantitative study was to assess the relationship between ethical project management and information technology (IT) project success. The success of IT projects is important for organizational success, but the rate of IT projects is historically low, costing billions of dollars annually. Using four key ethical variables…

  7. Cryogenic MEMS Technology for Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of cryogenic microwave components, such as focal plane polarization modulators, first requires an RF MEMS switching technology that operates...

  8. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  9. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample...

  10. Projects in Polytechnics and Colleges of Technology

    Science.gov (United States)

    Downie, T. C.

    1974-01-01

    Discusses the definition and characteristics of student projects conducted in polytechnics, including evaluation techniques and a description of possible topics. Indicates that the project method is also used in course work leading to the Higher National Certificate and the Graduate Membership of the Royal Institute of Chemistry. (CC)

  11. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  12. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Science.gov (United States)

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  13. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications.

    Science.gov (United States)

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-02-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  14. How is risk assessment performed in international technology projects

    OpenAIRE

    Cardenas Davalos, Alfonso Daniel; Chia Chin Hui, Wendy

    2010-01-01

    In today’s ever changing business landscape, technology and innovation projects play a key role in creating competitive advantages for an organisation. However, many such projects are often hampered by under performance, cost overruns and lower than predicted revenue (Morris and Hough, 1987 and Christoffersen et al, 1992). This seems to indicate the lack of risk management in the way we manage projects. On the other hand, it is impossible to have any projects without risks. Thus, it is essent...

  15. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    Science.gov (United States)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  16. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature manufacturing technology to enable fabrication of single-piece integrally-stiffened launch vehicle structures to replace expensive, heavy, and...

  17. Composite materials based on porous ceramic preform infiltrated by aluminium alloy

    OpenAIRE

    Nagel, A.; A. J. Nowak; M. Kremzer; L.A. Dobrzański

    2007-01-01

    Purpose: The goal of this project is the optimization of manufacturing technology of the ceramic preforms basedon Al2O3 powder manufactured by the pressure infiltration method with liquid metal alloy.Design/methodology/approach: Ceramic preforms were manufactured by the method of sintering of ceramicpowder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the forming factor ofthe structure of canals and pores inside the ceramic agglomerated framework the carbon fibers...

  18. Slot Coupled Patch Array Antenna Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is an antenna array whose beam is controlled digitally. The Phase 1 effort will assess the method needed to achieve the gain, bandwidth, and...

  19. Braided Composite Technologies for Rotorcraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will focus on the development of a new generation of advanced technology for rotorcraft transmission systems. This program will evaluate the...

  20. Extreme Environment Hybrid Gearbox Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nearly all mechanism applications require some form of gearbox. Wet lubricated gearbox technologies are limited to the relatively narrow temperature ranges of their...

  1. Human Robotic Systems (HRS): Rover Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In FY15, the HRS Rover Technologies will begin design of a prototype rover designed for the lunar surface, begin development of resource efficient navigation...

  2. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  3. Braided Composite Technologies for Rotorcraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase 2 effort will be used to advance the material and design technologies that were explored in the Phase 1 study of hybrid gears. In this hybrid approach,...

  4. The Study on the Corelation between TRIZ Theory and Ceramic Material Technology%TRIZ理论与陶瓷材料技术相关性的研究

    Institute of Scientific and Technical Information of China (English)

    贾孝伟; 冯益华; 石鹏辉; 田园

    2015-01-01

    This paper introduces the main content and development process of TRIZ,and analyzes the advantages of TRIZ theory compared with traditional innovative methods,reviews the development status and trends of composite ceramic technology, self-lubricating ceramic materials technology, multilayer ceramic technology and spark plasma sintering process, microwave sintering process, analyzes the relationship between above ceramic material technologies and 40 inventive principles,object-field model, looks to the future research direction combining ceramic materials technology with TRIZ theory.%介绍了TRIZ理论的主要内容及其发展历程。通过与传统的创新方法进行比较,分析了TRIZ理论的优点。综述了陶瓷材料技术中的复合陶瓷材料技术、自润滑陶瓷材料技术、叠层陶瓷材料技术以及放电等离子烧结工艺和微波烧结工艺的发展现状和发展趋势。比较分析了上述工艺技术与TRIZ理论中40条发明原理、物—场模型之间的关系,展望了未来陶瓷材料技术与TRIZ理论相结合研究的发展方向。

  5. A Survey of Technologies Supporting Virtual Project Based Learning

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone

    2002-01-01

    This paper describes a survey of technologies and to what extent they support virtual project based learning. The paper argues that a survey of learning technologies should be related to concrete learning tasks and processes. Problem oriented project pedagogy (POPP) is discussed, and a framework...... for evaluation is proposed where negotiation of meaning, coordination and resource management are identified as the key concepts in virtual project based learning. Three e-learning systems are selected for the survey, Virtual-U, Lotus Learningspace and Lotus Quickplace, as each system offers different strategies...... for e-learning. The paper concludes that virtual project based learning may benefit from facilities of all these systems....

  6. CNPC Appoints Chief Experts for Important Technological Projects

    Institute of Scientific and Technical Information of China (English)

    Zhao Jianzhong

    2006-01-01

    @@ On June 27th, China National Petroleum Corporation (CNPC) held a public recruitment to appoint chief experts in Beijing for its important technological projects, which is the first time for CNPC to appoint chief managers by the means of competitive recruitment. This recruitment covers four projects, such as drilling, logging, geophysical survey and ground engineering with 15 projects. Of those,there are 8 drilling projects, which make up 50 percent of all the important technological projects for public recruitment. CNPC expects to further boost the chief expert responsibility system and promote the research and development (R&D) of technological project on the basis of the public recruitment. The company completes the recruitment following the procedure of making announcement, conducting competitive recruitment and giving publicity. On July 25th, the appointment ceremony was held by CNPC and 15 experts were awarded the certificates. CNPC is entering a new stage for the implementation of the technology and talent strategy for the 11th Five-Year Plan. What's more, a new management mode is taking shape for the technological project and for the construction of technological personnel pool.

  7. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  8. Success in large high-technology projects: What really works?

    Science.gov (United States)

    Crosby, P.

    2014-08-01

    Despite a plethora of tools, technologies and management systems, successful execution of big science and engineering projects remains problematic. The sheer scale of globally funded projects such as the Large Hadron Collider and the Square Kilometre Array telescope means that lack of project success can impact both on national budgets, and collaborative reputations. In this paper, I explore data from contemporary literature alongside field research from several current high-technology projects in Europe and Australia, and reveal common `pressure points' that are shown to be key influencers of project control and success. I discuss the how mega-science projects sit between being merely complicated, and chaotic, and explain the importance of understanding multiple dimensions of project complexity. Project manager/leader traits are briefly discussed, including capability to govern and control such enterprises. Project structures are examined, including the challenge of collaborations. I show that early attention to building project resilience, curbing optimism, and risk alertness can help prepare large high-tech projects against threats, and why project managers need to understand aspects of `the silent power of time'. Mission assurance is advanced as a critical success function, alongside the deployment of task forces and new combinations of contingency plans. I argue for increased project control through industrial-style project reviews, and show how post-project reviews are an under-used, yet invaluable avenue of personal and organisational improvement. Lastly, I discuss the avoidance of project amnesia through effective capture of project knowledge, and transfer of lessons-learned to subsequent programs and projects.

  9. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  10. Fabrication Technology for X-Ray Optics and Mandrels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a cross-project need for large format aspheric x-ray optics, which, demonstrate exceptionally low periodic surface errors. Available technologies to both...

  11. Picosats for Autonomous Rendezvous and Docking Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the next decade, a host of new technologies and capabilities will be needed by NASA to support Project Constellation. For risk reduction considerations, it is...

  12. Microwave processing of ceramic oxide filaments. Annual report, FY1997

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.

    1998-12-31

    The objective of the microwave filament processing project is to develop microwave techniques to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company. Continuous ceramic filaments are a principal component in many advanced high temperature materials like continuous fiber ceramic composites (CFCC) and woven ceramic textiles. The use of continuous ceramic filaments in CFCC radiant burners, gas turbines, waste incineration, and hot gas filters in U.S. industry and power generation is estimated to save at least 2.16 quad/yr by year 2010 with energy cost savings of at least $8.1 billion. By year 2010, continuous ceramic filaments and CFCC`s have the potential to abate pollution emissions by 917,000 tons annually of nitrous oxide and 118 million tons annually of carbon dioxide (DOE Report OR-2002, February, 1994).

  13. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano; Trillo, Stefano; Kaunga-Nyirenda, Simeon; Lim, Jun; Larkins, Eric; Kristensen, Philip Trøst; Yvind, Kresten; Mørk, Jesper; Dumeige, Yannick; Gay, Mathilde; Colman, Pierre; Combrie, Sylvain; De Rossi, Alfredo

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  14. Electrical Impedance Tomography Technology (EITT) Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  15. Teaching automation technology in student projects

    OpenAIRE

    Jacobs, Marc; Van Dessel, Michel

    2009-01-01

    The Campus De Nayer located near Mechelen (Belgium) offers Master degree programmes at the department of Applied Engineering and Bachelor degree programmes at the department of Technology. The four-year programmes lead to a master degree in the following engineering disciplines: civil construction, land surveying, biochemical engineering, chemical engineering, electromechanical engineering, automotive engineering, electrical engineering (automation, electrical energy) and electronics-ICT. Th...

  16. Incorporating the Technology Roadmap Uncertainties into the Project Risk Assessment

    International Nuclear Information System (INIS)

    This paper describes two methods, Technology Roadmapping and Project Risk Assessment, which were used to identify and manage the technical risks relating to the treatment of sodium bearing waste at the Idaho National Engineering and Environmental Laboratory. The waste treatment technology under consideration was Direct Vitrification. The primary objective of the Technology Roadmap is to identify technical data uncertainties for the technologies involved and to prioritize the testing or development studies to fill the data gaps. Similarly, project management's objective for a multi-million dollar construction project includes managing all the key risks in accordance to DOE O 413.3 - ''Program and Project Management for the Acquisition of Capital Assets.'' In the early stages, the Project Risk Assessment is based upon a qualitative analysis for each risk's probability and consequence. In order to clearly prioritize the work to resolve the technical issues identified in the Technology Roadmap, the issues must be cross- referenced to the project's Risk Assessment. This will enable the project to get the best value for the cost to mitigate the risks

  17. The Role of the Project Management Office on Information Technology Project Success

    Science.gov (United States)

    Stewart, Jacob S.

    2010-01-01

    The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. Assessing critical success factors is another…

  18. Technology, Learning Communities and Young People: The Future Something Project

    Science.gov (United States)

    Herne, Steve; Adams, Jeff; Atkinson, Dennis; Dash, Paul; Jessel, John

    2013-01-01

    The "Future Something Project" ("FSP"), a two-year action research project, was devised to nurture the creative and technological talent of small groups of young people at risk by creating a structured network, mentored and driven by creative professionals exploring innovative ways for the two distinct target groups to work together. The project…

  19. Advances in NASA's Nuclear Thermal Propulsion Technology project

    Science.gov (United States)

    Peecook, Keith M.; Stone, James R.

    1993-01-01

    The status of the Nuclear Thermal Propulsion (NTP) project for space exploration and the future plans for NTP technology are discussed. Current activities in the framework of the NTP project deal with nonnuclear material tests; instrumentation, controls, and health management; turbopumps; nozzles and nozzle extension; and an exhaust plume.

  20. Art and Technology Integration Project: Year 1 Status Report.

    Science.gov (United States)

    Ostler, Elliott; And Others

    This report provides a progress report on the Art and Technology Integration Project (ATI), a partnership of the Westside and Grand Island Public Schools, the Smithsonian Institution's National Museum of American Art (NMAA), and the University of Nebraska at Omaha (UNO). The ATI project focuses on long-range assessment of the integration of the…

  1. Leadership Styles: Perceptions in Information Technology Project Teams

    Science.gov (United States)

    Fune, Roy P.

    2013-01-01

    The purpose of this study was to uncover Information Technology (IT) Project Managers' and IT Professionals' perceptions of effective leadership styles as they apply to project success. There have been prior studies dealing with the differences in perceptions between IT Functional Manager's leadership self-perception versus staff…

  2. Minimal Technologies Application Project: Planning and installation

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Hinchman, R.R.; Severinghaus, W.D.; Johnson, D.O.; Brent, J.J.

    1989-03-01

    Intensive and continuous tactical training during the last 35 years at the Hohenfels Training Area in West Germany has caused the loss of vegetative ground cover and has accelerated soil erosion rates, resulting in extensive environmental damage, safety hazards, and unrealistic training habitats. The objectives of this project are to develop and evaluate revegetation procedures for establishing adequate vegetative cover to control erosion at minimal costs and disruption to training activities. This project involved the development and installation of 12 revegetation procedures that combined four seedbed preparation methods and seeding options with three site-closure periods. In March 1987, the four seedbed preparation/seeding options and closure periods were selected, a study site design and location chosen, and specifications for the revegetation procedures developed. A German rehabilitation contractor attempted the specified seedbed preparation and seeding on the 13.5-ha site in June, but abnormally high rainfall, usually wet site conditions, and lack of adequate equipment prevented the contractor from completing six of the 12 planned procedures. Planning and execution of the project has nonetheless provided valuable information on the importance and use of soil analytical results, seed availability and cost data, contractor equipment requirements, and time required for planning future revegetation efforts. Continued monitoring of vegetative ground cover at the site for the next two years, combined with cost information, will provide necessary data to determine which of the six revegetation procedures is the most effective. These data will be used in planning future rehabilitation efforts on tactical training areas.

  3. Technology, learning communities and young people: The Future Something Project

    OpenAIRE

    Herne, Steve; Adams, Jeff N. P.; Atkinson, Dennis; Dash, Paul; Jessel, John

    2013-01-01

    The Future Something Project (FSP), a two-year action research project, was devised to nurture the creative and technological talent of small groups of young people at risk by creating a structured network, mentored and driven by creative professionals exploring innovative ways for the two distinct target groups to work together. The project practice is located within the new field of Interaction Design and takes a social and critical approach to Art and Design pedagogy. The external research...

  4. Investment Under Uncertainty in Information Technology: Acquisition and Development Projects

    OpenAIRE

    Eduardo S. Schwartz; Carlos Zozaya-Gorostiza

    2003-01-01

    In this paper, we develop two models for the valuation of information technology (IT) investment projects using the real options approach. The IT investment projects discussed in this paper are categorized into development and acquisition projects, depending upon the time it takes to start benefiting from the IT asset once the decision to invest has been taken. The models account for uncertainty both in the costs and benefits associated with the investment opportunity. Our stochastic cost fun...

  5. History of recent science & technology [project website

    OpenAIRE

    Buchwald, Jed Z

    2006-01-01

    The extraordinary scale and the technical and social complexity of modern science and technology pose significant challenges for historians. The skills necessary to comprehend contemporary developments, as well as the vast array of objects that must be examined - ranging from documents through e-mail to video and computer simulations - make it essential to enlist the direct participation of those who were actively engaged in producing them. We have accordingly used the power of the web to...

  6. NDE (nondestructive examination) development for ceramics for advanced heat engines

    Energy Technology Data Exchange (ETDEWEB)

    McClung, R.W. (McClung (R.W.), Powell, TN (USA)); Johnson, D.R. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

  7. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  8. Evaluation of technological properties of clay ceramics with galvanic sludge as raw material

    International Nuclear Information System (INIS)

    This work investigates the possibility to obtain conventional ceramic-based clay added with galvanic sludge, soda-lime and borosilicate glasses. Initially, increasing levels of galvanic sludge in clay were added at 2%, 5%, and 10%, and burned at 900oC, 1000oC, and 1100oC, respectively. Thereafter, the formulations were analyzed with the addition of 2% sludge and contents of 5%, 10%, and 15% for both glasses. These formulations were burned at 1100oC. The ceramic bodies were obtained by uniaxial pressing and characterized, after burning, to flexural strength, water absorption, and linear shrinkage. In addition, the immobilization of hazardous elements present in sludge was evaluated by leaching tests and solubilization. An improvement at the mechanical properties with the addition of glass, especially with the addition of borosilicate glass was observed. Moreover, leaching and solubilization tests showed that the increasing addition of glass led to a reduction of heavy metals

  9. Korea-China Optical Technology Research Centre Project

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Rhee, Y. J.; Jung, D. Y. and others

    2004-06-15

    The main objectives of this project are to establish the international collaboration basis of optical technologies between Korea and China. The combination of the Chinese advanced fundamental technologies with the Korean industrialization and commercialization infrastructures is realized, by ways of exchanging scientists and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to those of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both countries, providing technical advice and suggestions to the optical industries in the two countries is an another goal of this project. The state-of-the-arts of the Chinese technologies such as aerospace engineering, military defence technology, medical technology, laser fusion research, and so on, are known to be far above those of Korean and up to one of the most advanced in the world. Thus it is thought to be necessary that the acquisition of these technologies, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued in order to enhance the levels of Korean technologies in these fields.

  10. Korea-China Optical Technology Research Centre Project

    International Nuclear Information System (INIS)

    The main objectives of this project are to establish the international collaboration basis of optical technologies between Korea and China. The combination of the Chinese advanced fundamental technologies with the Korean industrialization and commercialization infrastructures is realized, by ways of exchanging scientists and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to those of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both countries, providing technical advice and suggestions to the optical industries in the two countries is an another goal of this project. The state-of-the-arts of the Chinese technologies such as aerospace engineering, military defence technology, medical technology, laser fusion research, and so on, are known to be far above those of Korean and up to one of the most advanced in the world. Thus it is thought to be necessary that the acquisition of these technologies, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued in order to enhance the levels of Korean technologies in these fields

  11. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  12. Immobilization of fission products in phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products

  13. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  14. Effect of foundry waste content on technological properties of ceramic bricks

    OpenAIRE

    Quijorna, N.; San Miguel, G; A. de Andrés

    2009-01-01

    A change from linear to cyclical production processes, as proposed by Industrial Ecology, is investigated in this paper. The feasibility of introducing Waelz slag (Ferrosita®) into a ceramic manufacturing process had been assessed in previous studies. In this work, the influence of incorporating Waelz slag and a Waelz slag/Moulding sand mix into a clayey matrix has been evaluated through the analysis of the physical and mechanical properties of fired bodies. A mathe...

  15. Didactics, Technology, and Organisation of Project Based Distance Education

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack; Borch, Ole M.; Helbo, Jan

    2005-01-01

    The didactics, technology, and organization of an ICT supported distance engineering Master education are described. A systematic monitoring and evaluation of the basis year has given useful experience, subsequently used for adjustments and improvements. A successful on-campus project organized l......, was constructed. This system, called Uniflex, handles project work, courses, and exchange of information between the administrative coordinator, students and teachers.......The didactics, technology, and organization of an ICT supported distance engineering Master education are described. A systematic monitoring and evaluation of the basis year has given useful experience, subsequently used for adjustments and improvements. A successful on-campus project organized...... learning method applied at Aalborg University has been transferred to the off-campus situation. Experience show that didactic adjustments are required, in particular for obtaining an optimal balance between course and project work. Project collaboration in groups requires communication, synchronous as well...

  16. SUCCESS CONCEPT ANALYSIS APPLIED TO THE INFORMATION TECHNOLOGY PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cassio C. Montenegro Duarte

    2012-05-01

    Full Text Available This study evaluates the concept of success in project management that is applicable to the IT universe, from the classical theory associated with the techniques of project management. Therefore, it applies the theoretical analysis associated to the context of information technology in enterprises as well as the classic literature of traditional project management, focusing on its application in business information technology. From the literature developed in the first part of the study, four propositions were prepared for study which formed the basis for the development of the field research with three large companies that develop projects of Information Technology. The methodology used in the study predicted the development of the multiple case study. Empirical evidence suggests that the concept of success found in the classical literature in project management adjusts to the environment management of IT projects. Showed that it is possible to create the model of standard IT projects in order to replicate it in future derivatives projects, which depends on the learning acquired at the end of a long and continuous process and sponsorship of senior management, which ultimately results in its merger into the company culture.

  17. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  18. Influence of Sintering Temperature on Pore Structure and Electrical Properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna KLYM

    2015-05-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3⋅Mg(OH2⋅5H2O powders at 1200, 1300 and 1400 ºC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increase of preparing temperature from 1200 ºC to 1400 ºC results in transformation of pore size distribution in ceramics from tri- to bi-modal including open macro- and mesopores with the sizes from ten to hundreds nm and nanopores up to a few nm. The studied ceramic elements with electrical resistances ∼(10–2 – 102 MОhm are high humidity sensitive in the region of 30 %– 95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity results in lose sensitivity.

  19. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna Klym

    2015-03-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to hundreds nm and nanopores until to a few nm. The studied ceramic elements with electrical resistances ~ 10-2-102 MОhm are high humidity sensitive in the region of 30-95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to achievement near to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity result in lose sensitivity up to 40-50 %.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5189

  20. Gamma and proton induced degradation in ceramics materials - A proposal for EUROATOM Fusion Project

    International Nuclear Information System (INIS)

    Ceramic materials will play very important roles in developing fusion reactors, where they will be used under heavy irradiation environment (neutrons, gamma-rays, helium and other ions) for substantial periods for the first time. Our programme intends to form a part of the existing on-going ceramics programmes to assess the suitability of SiO2 based materials for both diagnostic and remote handling application. Our proposal focuses on comparison of the ionization and displacement induced damage (influence on the UV and visible optical transmission properties) and on radiation enhanced diffusion of hydrogen isotopes in these materials, in cooperation with CIEMAT Madrid and SCK/CEN Mol. Our irradiation facilities are : IRASM with a 200 kCi Co-60 source, of minimum 2kGray/h, ethanol chlorine benzene and ESR dosimetry - HVEC 8 MV TANDEM protons up to 16 MeV and 200 nA and 600 kV DISKTRON H isotopes up to 600 keV at tens of μA. (authors)

  1. Technology assessment Jordan Nuclear Power Plant Project

    International Nuclear Information System (INIS)

    Preliminary regional analysis was carried out for identification of potential sites for NPP, followed by screening of these sites and selecting candidate sites. Aqaba sites are proposed, where it can use the sea water for cooling: i.Site 1; at the sea where it can use the sea water for direct cooling. ii.Site 2; 10 km to the east of Gulf of Aqaba shoreline at the Saudi Arabia borders. iii.Site 3, 4 km to the east of Gulf of Aqaba shoreline. Only the granitic basement in the east of the 6 km²site should be considered as a potential site for a NPP. Preliminary probabilistic seismic hazard assessment gives: Operating-Basis Earthquake-OBE (475 years return period) found to be in the range of 0.163-0.182 g; Safe Shutdown Earthquake-SSE (10,000 years return period) found to be in the range of 0.333-0.502g. The process include also setting up of nuclear company and other organizational matters. Regulations in development are: Site approval; Construction permitting; Overall licensing; Safety (design, construction, training, operations, QA); Emergency planning; Decommissioning; Spent fuel and RW management. JAEC's technology assessment strategy and evaluation methodology are presented

  2. Environment-Conscious Ceramics (Ecoceramics) Technology Received 2001 R&D 100 Award

    Science.gov (United States)

    Singh, Mrityunjay

    2002-01-01

    Since the dawn of human civilization, there has been a delicate balance between the use of resources as human frontiers expanded and the need to have a minimum influence on the ecosystem. The first 200 years of the industrial revolution essentially solved the problem of production. However, the massive production of goods also generated tremendous amounts of byproducts and wastes. In the new millennium, to sustain a healthy life in harmony with nature, it will be extremely important for us to develop various materials, products, and processes that minimize any harmful influence on the environment. Environment-conscious ceramics (ecoceramics) are a new class of materials that can be fabricated with renewable resources (wood) and wood waste material (wood sawdust). Wood is a "lignocellulosic" material formed by the photosynthetic reaction within the needles or leaves of trees. The photosynthesis process uses sunlight to take carbon dioxide from air and convert it into oxygen and organic materials. Wood has been known to be one of the best and most intricate engineering materials created by nature and known to mankind. In addition, natural woods of various types are available throughout the world. On the other hand, wood sawdusts are generated in abundant quantities by sawmills. Environment-conscious ceramic materials, fabricated via the pyrolysis and infiltration of natural wood-derived preforms, have tailorable properties with numerous potential applications. The experimental studies conducted to date on the development of materials based on biologically derived structures indicate that these materials behave like ceramic materials manufactured by conventional approaches. These structures have been shown to be quite useful in producing porous or dense materials having various microstructures and compositions.

  3. New Technologies in the Payment System Industries: The SEPA Project

    Directory of Open Access Journals (Sweden)

    Armando Calabrese

    2010-01-01

    Full Text Available Problem statement: The Single Euro Payments Area (SEPA project plans to establish an integrated market for extending European integration to retail payments; it aims to provide incentives for using payment systems instead of cash for all micro payments, in order to improve both efficiency and competition in the Euro area. In this study we described the SEPA and its effects on competition and innovation in the payment systems. Moreover, we will discuss the main technological innovations (particularly mobile payments, biometrics payments and smart cards and their impacts on retail payments. Approach: In order to analyze the impact of new technologies on cash usage we employed a mathematical model. This model is an extension of duopolistic competition to three market players; it allows analyzing market changes caused both by SEPA and technological innovations. Results: Our numerical simulations showed that new technologies cause a reduction of cash usage, such as SEPA project states. Conclusion: New payment technologies provided new benefits than the traditional payment systems. These new technologies reduced the transaction times and the logistic costs of cash management; moreover they improve the transactions safety, their easiness and convenience. Such benefits push consumers to use these new payment technologies for micro-payments (pubs and bars, nightclubs, fast food outlets, retail fuel, convenience store and vending machines, thus reducing the use of cash such as SEPA project states.

  4. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  5. Space technology and robotics in school projects

    Science.gov (United States)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics

  6. Development of small ceramic gas turbines for cogeneration

    International Nuclear Information System (INIS)

    Details of the project at NEDO to develop 300 kW ceramic gas turbines with a thermal efficiency of ≥42% at a turbine inlet temperature (TIT) of 1,350oC. The project is part of the 'New Sunshine Projects' promoted by Japan's Agency of Industrial Science and Technology and the Ministry of International Trade and Industry. So far, a thermal efficiency of 37% at a TIT of 1,280oC has been achieved by a basic ceramic gas turbine (CGT). Work to develop pilot CGTs to achieve the final target is being carried out alongside research and development of ceramic parts and improved performance of ceramic components for CGTs. One group of engine and ceramic manufacturers is developing a single shaft regenerative cycle CGT (CGT 301) and a second group a double shaft type (CGT 302). The heat-resistant ceramic parts, nitrogen oxide emissions and performance of these two prototypes are outlined and the properties of the ceramic materials used are indicated. Market estimates and economics are noted

  7. Sol-gel technology applied to crystalline ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    The sol-gel process is being developed for the solidification and isolation of high-level nuclear fuel waste. Three gelation methods are being developed for producing alternative waste forms. These include internal gelation for producing spheres of up to 1 mm diam suitable for coating, external gelation, and water extraction methods for producing material suitable for alternate ceramic processing. In this study internal gelation has been used to produce ceramic spheres of various alternative nuclear waste compositions. A gelation system capable of producing 100-g batches has been assembled and used for development. Waste forms containing up to 70 wt % simulated Savannah River Plant waste have been produced. Dopants such as Cs, Sr, Nd, Ru, and Mo were used in some experiments to observe side waste streams and sintering effects. Synroc microspheres were coated with both low-density carbon, high-density impermeable carbon, high-temperature dense SiC, and SiC deposited at temperatures near 9000C. Other gelation methods and other alternative waste forms are being developed

  8. Disruption of Information Technology Projects: The Reactive Decoupling of Project Management Methodologies

    Science.gov (United States)

    Schmitz, Kurt W.

    2013-01-01

    Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…

  9. Project Tradition and Technology (Project TNT): The Hualapai Bilingual Academic Excellence Program.

    Science.gov (United States)

    Reed, Michael D.; And Others

    Project Tradition and Technology (TNT) at Peach Springs Elementary School (Peach Springs, Arizona) is 1 of 12 programs recognized nationally as an outstanding model of bilingual education by the U.S. Department of Education. Project TNT is a process-oriented curriculum development model that identifies the community's needs and expectations for…

  10. Advanced Turbine Technology (ATTAP) Applications Project. 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-01

    ATTAP activities during the past year included reference powertrain design (RPD) updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. RPD revisions included updating the baseline vehicle as well as the turbine RPD. Comparison of major performance parameters shows that the turbine engine installation exceeds critical fuel economy, emissions, and performance goals, and meets overall ATTAP objectives.

  11. Pipeline cost reduction through effective project management and applied technology

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, A. [TransCanada Pipeline Ltd., Alberta (Canada); Babuk, T. [Empress International Inc., Westwood, NJ (United States); Mohitpour, M. [Tempsys Pipeline Solutions Inc., Vancouver, BC (Canada); Murray, M.A. [National Energy Board of Canada (Canada)

    2005-07-01

    Pipelines are regarded by many as passive structures with the technology involved in their construction and operation being viewed as relatively simple and stable. If such is the case how can there be much room for cost improvement? In reality, there have been many technological and regulatory innovations required within the pipeline industry to meet the challenges posed by ever increasing consumer demand for hydrocarbons, the effects of aging infrastructure and a need to control operating and maintenance expenditures. The importance of technology management, as a subset of overall project management, is a key element of life cycle cost control. Assurance of public safety and the integrity of the system are other key elements in ensuring a successful pipeline project. The essentials of best practise project management from an owner/ operator's perspective are set out in the paper. Particular attention is paid to the appropriate introduction of new technology, strategic procurement practice and material selection, indicating that capital cost savings of up to 15% are achievable without harming life cycle cost. The value of partnering leading to technical innovation, cost savings and improved profitability for all the participants is described. Partnering also helps avoid duplicated effort through the use of common tools for design, planning schedule tracking and reporting. Investing in appropriate technology development has been a major source of cost reduction in recent years and the impact of a number of these recently introduced technologies in the areas of materials, construction processes and operation and maintenance are discussed in the paper. (author)

  12. Requirements management: keeping your technology acquisition project under control.

    Science.gov (United States)

    Carr, J J

    2000-03-01

    Whether you are acquiring clinical or business information systems, patient monitoring systems, or therapeutic and diagnostic systems, the odds are good that the project will be delivered late, will cost far more than predicted, and will not provide all the features promised. The principal reason for project failure is improper management of the requirements of the system. Requirements engineering and management is a skill from the systems engineering profession that can be learned by nearly any professional who is managing a technology acquisition project. The author discusses what requirements engineering and management is and how it is done. PMID:10725942

  13. Analysing research and technology development strategies : the 'ATLAS' project : energy efficient technologies in industry

    NARCIS (Netherlands)

    Worrell, E.; Bode, J.-W.; Beer, J. de

    2006-01-01

    For Research and Technology Development (RTD) strategies in the field of energy efficiency improvement it is important to have an overview of important and emerging technology areas, that might have an impact on energy use, as well as other related areas. The ATLAS-project "Analysing RTD Strategy" e

  14. Learning to make technology work - a study of learning in technology demonstration projects

    DEFF Research Database (Denmark)

    Sutherland Olsen, Dorothy; Andersen, Per Dannemand

    2014-01-01

    participants, including users. The aim of the project is usually to test the technology and promote changes in users habits, while learning is frequently cited as the main outcome. In this paper we review existing studies of demonstration projects and try to gain an overview of the main aims and effects of...... these projects. We then discuss concepts of learning and develop an analytical framework for our study of demonstrations within sustainable energy and transport in Scandinavia....

  15. The Yumekobo Project Education at Kanazawa Institute of Technology

    Science.gov (United States)

    Demura, Kosei; Tani, Masashi; Hattori, Yoichi

    Yumekobo, which can be translated as “Factory for Dreams and Ideas” , has been attracting the attention of reform-minded educators in Japanese universities. The major function of Yumekobo is to support a student project called the Yumekobo project. It resembles an extra-curricular club activity as at other universities; however, the Yumekobo project is not only an extra-curricular activity but also a symbol of the educational philosophy of Kanazawa Institute of Technology. Students in the Yumekobo project are encouraged to develop a good character, which includes independence, creativity, morality, cooperation, and internationalism. In this paper, an overview of the Yumekobo project is given, and its characteristics are described. Further, its educational effects are discussed based on an analysis of student questionnaires conducted from 2002 to 2005.

  16. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  17. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  18. Learning in Authentic Contexts: Projects Integrating Spatial Technologies and Fieldwork

    Science.gov (United States)

    Huang, Kuo-Hung

    2011-01-01

    In recent years, professional practice has been an issue of concern in higher education. The purpose of this study is to design students' projects to facilitate collaborative learning in authentic contexts. Ten students majoring in Management Information Systems conducted fieldwork with spatial technologies to collect data and provided information…

  19. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    Science.gov (United States)

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  20. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  1. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    International Nuclear Information System (INIS)

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda

  2. SITE EMERGING TECHNOLOGIES PROJECT: BABCOCK & WILCOX CYCLONE VITRIFICATION

    Science.gov (United States)

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-year SITE Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,500 ppm chromium. n advantage of vitrificatio...

  3. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently,...

  4. A Compact Self-Switching/Modulation 2 micron Ceramic Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For remote sensing of laser/lidar technology and global environment monitoring applications, the pulsed coherent Doppler lidars are of considerable contemporary...

  5. Information Technology Systems for Fusion Industry and ITER Project

    International Nuclear Information System (INIS)

    The industrial developments in the fusion industry will have to overcome numerous technical challenges and will have a strong need for modern information technology (IT) systems.The fusion industry has manifested itself with an unprecedented international collaboration, the International Thermonuclear Experimental Reactor (ITER). Data accumulated in ITER will be the major output of the project and will create the knowledge base for a future fusion power plant. A modern and effective information infrastructure will be critical to the success of the ITER project.To accumulate and maintain the knowledge base at all stages of the project, we propose to build an integrated information system for ITER: ITER Information Plant (IIP). IIP will minimize lost experiment time and accelerate the understanding, interpretation, and planning of fusion experiments. IIP will allow to reap maximum benefits from the project's scientific and technological achievements, make the ITER results accessible to hundreds of researchers worldwide. This will facilitate collaboration, dramatically increasing the pace of scientific and technological discovery and the rate at which practical use is made of these discoveries.As the first of its kind, the ITER Information Plant could be used in the future as a prototype IT system for national and international fusion projects, in which multicountry collaboration, distributed work sites and operations are catalysts for success

  6. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  7. Risk management in methodologies of information technology and communications projects

    Directory of Open Access Journals (Sweden)

    Jonathan Carrillo

    2013-12-01

    Full Text Available (Received: 2013/10/02 - Accepted: 2013/12/13At present there are methodologies that have several alternatives and methods to manage projects of Information and Communication Technologies. However, these do not cover a solution for the technology events that can occur in the industry, government, education, among others. In the technology market there are several models to identify and analyze risks according to relevant aspects of their area of specialty e.g. projects, in software development, communications, information security and business alignment. For this reason, this research conducted an evaluation of risk management activities of the methodologies used mostly to know which of them includes more correspondence with basic elements of IT using a rating scale.

  8. Project Morpheus: Lessons Learned in Lander Technology Development

    Science.gov (United States)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.

    2013-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.

  9. Technology Education in South Africa: Evaluating an Innovative Pilot Project

    Science.gov (United States)

    Stables, Kay; Kimbell, Richard

    2001-02-01

    Researchers from Goldsmiths College were asked to undertake an evaluation of a three year curriculum initiative introducing technology education, through a learner-centred, problem solving and collaborative approach. The program was developed in a group of high schools in the North West Province of South Africa. We visited ten schools involved in the project and ten parallel schools not involved who acted as a control group. We collected data on student capability (demonstrated through an innovative test activity) and on student attitudes towards technology (demonstrated in evaluation questionnaires and in semi-structured interviews). Collectively the data indicate that in areas of knowledge and skill and in certain aspects of procedures (most notably problem solving) the project has had a marked impact. We also illustrate that greater consideration could have been given in the project to developing skills in generating and developing ideas and in graphic communication. Gender differences are noted, particularly in terms of positive attitudes illustrated by both boys and girls from schools involved in the project. Attention is drawn to the critical impact the project has had on transforming the pedagogy of the teachers from a teacher-centred didactic model, to a learner-centred, problem solving model. Some wider implications of the successes of this project are debated.

  10. Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Gambrell, KP

    2002-01-11

    In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15

  11. Projects at the Western Environmental Technology Office. Quarterly technical progress report, January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This quarterly report briefly describes recent progress in eight projects. The projects are entitled Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Spray Casting Project; and Watervliet Arsenal Project.

  12. Physics-based Modeling of Foreign Object Damage in Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Firehole Technologies will develop proof-of-concept modeling framework for a multiscale physics-based modeling tool for predicting foreign...

  13. A Low Cost Light Weight Polymer Derived Ceramic Telescope Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary purpose of this proposal is to develop and demonstrate a new technology for manufacturing an ultra-low-cost precision optical telescope mirror which can...

  14. Integrated System Health Management (ISHM) Technology Demonstration Project Final Report

    Science.gov (United States)

    Mackey, Ryan; Iverson, David; Pisanich, Greg; Toberman, Mike; Hicks, Ken

    2006-01-01

    Integrated System Health Management (ISHM) is an essential capability that will be required to enable upcoming explorations mission systems such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions. However, the lack of flight experience and available test platforms have held back the infusion by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) of ISHM technologies into future space and aeronautical missions. To address this problem, a pioneer project was conceived to use a high-performance aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18 currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable host platform for the test bed. This report describes how the test bed was conceived, how the technologies were integrated on to the aircraft, and how these technologies were matured during the project. It also describes the lessons learned during the project and a forward path for continued work.

  15. New Technology for Increasing Through-Life Reliability of Ceramics Components Using Self-Crack-Healing Ability

    OpenAIRE

    Kotoji Ando; Koji Takahashi; Wataru Nakao; Toshio Osada; Kae Iwanaka

    2013-01-01

    Structural ceramics are superior to metallic materials in terms of their high-temperature strengths and critical heat proof temperatures. However, compared to metallic materials, ceramics exhibit lower fracture toughness, so they are more sensitive to flaws such as pores and cracks. The shortness considerably decreases the component reliability. To overcome the shortness, in this study, special attention is paid to structural ceramics with self-crack-healing ability. There are several advanta...

  16. Development of advanced pump impeller fabrication technology using direct nano- ceramic dispersion casting for long time erosion durability

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2008-09-15

    Many components of pump impeller of nuclear power plants is generally made of stainless steel and Al-bronze with superior corrosion resistance to sea water. However, they should be replaced by one- to five-year period because of material damage by a very big cavitation impact load, even though their designed durability is twenty years. Especially, in case of Young-Gwang nuclear power plant located at the west sea, damage of components of pump impeller is so critical due to the additional damage by solid particle erosion and hence their replacement period is very short as several months compared to other nuclear power plants. In addition, it is very difficult to maintain and repair the components of pump impeller since there is no database on the exact durability and damage mechanism. Therefore, in this study, fabrication technology of new advanced materials modified by dispersion of nano-carbide and -oxide ceramics into the matrix is developed first. Secondly, technology to estimate the dynamic damage by solid particle erosion is established and hence applied to the prediction of the service life of the components of pump impeller.

  17. The photovoltaic manufacturing technology project: A government/industry partnership

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  18. The photovoltaic manufacturing technology project: A government/industry partnership

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  19. Welding TiB2 Ceramics and Metal Mo with Combustion Reaction Technology

    Institute of Scientific and Technical Information of China (English)

    Daihua HE; Zhengyi FU; Qingjie ZHANG

    2004-01-01

    Combustion reaction welding, one promising method to weld ceramics and metals, was used to weld TiB2 and Mo. The results showed that the reacted products through combustion reaction were TiB2 and MoB when the Mo contents in reactants were 20 wt pct and 40 wt pct while there was Mo besides MoB and TiB2 when there were 60 wt pct and 80 wt pct Mo in reactants. Diffusion of elements occurred at the interfaces of the two substrates. The interfaces between the reacted and the two substrates were indistinct after being welded. The welding temperature strongly affected properties of the samples. The value of bending strength of the sample with 80 wt pct Mo in reactant welded at 1500℃ was the highest, 368.52 MPa. The highest value of shear strength among all the samples was that of the one with 40 wt pct Mo in reactant welded at 1500℃, 50.97 MPa.

  20. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  1. Ceramic thermal spray technology and explore the dense coating material%陶瓷热喷涂技术与涂层材料探密

    Institute of Scientific and Technical Information of China (English)

    肖军

    2012-01-01

    采用热喷涂技术,在金属基体上制备陶瓷涂层,能把金属材料的特点和陶瓷材料的特点有机地结合起来,获得复合材料结构。由于这种复合材料结构具有异常优越的综合性能,使得热喷涂技术迅速从高尖领域扩展应用到能源、交通、冶金、轻纺、石化、机械等民用工业领域。首先综述了热喷涂高性能陶瓷涂层的应用前景,接着分析了陶瓷涂层及热喷涂技术的特点,然后介绍了热喷涂陶瓷涂层技术的应用领域,以及热喷涂高性能陶瓷涂层的典型应用,最后讨论了热喷涂高性能陶瓷涂层的发展潜力。%using thermal spray techniques, preparation of the metal ceramic coating on the substrate, can the characteristics of metal and ceramic materials, the characteristics of organically combined to obtain composite structures. Because of this unusual composite structures with superior over- all performance, making the thermal spray technology rapidly expanding field of applications from high point to the energy, transportation, metallurgy, textile, petrochemical, machinery and other ci- vilian industries. First, an overview of high--performance ceramic thermal spray coating application prospects, and then analyzed the ceramic coating and thermal spray technology features, and then introduced the ceramic thermal spray coating technology applications, and thermal spray coating of a typical high--performance ceramic application, and finally discuss the high--performance ceramic thermal spray coatings development potential

  2. Wroclaw University of Technology Knowledge Repository: Project Objectives

    OpenAIRE

    Walek, Anna

    2015-01-01

    Knowledge Repository is a project created in the Library and Scientific Information Centre of Wroclaw University of Technology (WrUT). Its main task will be collecting, sharing, and promoting scientific publications of researchers, postgraduates and students of WrUT. It will be also used for bibliometric analysis and reporting research output of WrUT scientific community.Knowledge Repository will closely cooperate with other databases and information services created in WrUT, for example: Res...

  3. New neutron detector based on Micromegas technology for ADS projects

    OpenAIRE

    Andriamonje, Samuel; Andriamonje, Gregory; Aune, Stephan; Ban, Gilles; Breaud, Stephane; Blandin, Christophe; Ferrer, Esther; Geslot, Benoit; Giganon, Arnaud; Giomataris, Ioannis; Jammes, Christian; Kadi, Yacine; Laborie, Philippe; Lecolley, Jean Francois; Pancin, Julien

    2006-01-01

    A new neutron detector based on Micromegas technology has been developed for the measurement of the simulated neutron spectrum in the ADS project. After the presentation of simulated neutron spectra obtained in the interaction of 140 MeV protons with the spallation target inside the TRIGA core, a full description of the new detector configuration is given. The advantage of this detector compared to conventional neutron flux detectors and the results obtained with the first prototype at the CE...

  4. A technological study of Hassuna culture ceramics (Yarim Tepe I settlement

    Directory of Open Access Journals (Sweden)

    Natalia Yu. Petrova

    2012-12-01

    Full Text Available The article presents the results of a comparative technological analysis of Hassuna culture pottery from Yarim Tepe I (6th millennium BC from the lower and middle horizons. The technological stages of selecting the clay and organic materials, the composition of the clay paste and the surface treatment, but also certain issues related to the ornamentation and firing of the pottery are presented in the article.

  5. Implementing Biogas Technology Project in Malvar, Batangas, Philippines

    Directory of Open Access Journals (Sweden)

    Juvy G. Mojares

    2015-11-01

    Full Text Available This study sought to determine the environmental and social impacts of the biogas technology project of the municipal government of Malvar, Batangas, Philippines, through the Municipal Environment and Natural Resources Office. Document analysis and interview were employed in this study. Results showed that heat and electricity generation from biogas decreased dependency on electricity and fuel oil.In terms of social impacts, the biogas technology contributed to socio-economic improvement of the barangay in the form of job creation, technological and skills transfer through training in biogas production, contribution to continuous pursuing of energy neutrality and encouraged sustainability development at the community level. Aside from these, the technology was a source of organic fertilizer for the farming community of Malvar. It is recommended that commercial farms be strictly monitored and ordinances be imposed on them specifically on the use of biogas technology. The municipal government could partner with GOs and NGOs providing grant or equipment for such technology. For the monitoring of backyard farms, develop close coordination with barangay officials, if it does not work, plan a consultative meeting with agencies concerned to explain the hazards of improper disposal of hog wastes.

  6. Applications of Technology of Compound Lining of Semi—gr aphitized Self—baking Carbon Block Ceramic Brickwork in Large—sized Blast Furnaces

    Institute of Scientific and Technical Information of China (English)

    HAOYung-zhong; CHENQian-wan

    1994-01-01

    Based on the analyses of the lining technologies of the hot press formed carbon brick iu U.S.A., of the ce-ramic cup in France and of the creative self-baking car-bon brick in China,the technology of semi-graphitized car-bon block-ceramic brickwork has been studied and developed ,and has successfully ben used in No.7 blast furnace (2580m3) at Anshan Irom and Steel Company and in No.3 blast furnace (1200m3) at Taiyuan Iron and Steel Company,This paper puts fourward a feasible scheme for realization of long service lives of the bootms and the hearths of large-sized blast furaces in China.

  7. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  8. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    Science.gov (United States)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  9. Project management technology transfer for the Qinshan CANDU project: an integrated team approach

    International Nuclear Information System (INIS)

    This paper describes how technology for project management is being transferred from Atomic Energy of Canada Limited to Third Qinshan Nuclear Power Company Ltd. It includes a description of the Contract model and participants, software used, specific activities planned and progress to date in initiating the transfer of know-how to the Qinshan Site in China

  10. USING THERE DIMENSIONAL PRINTERS AS A NEW EXPRESSION IN CERAMIC ART

    Directory of Open Access Journals (Sweden)

    Sanver OZGUVEN

    2015-10-01

    Full Text Available With the start of use computer technology to create piece of art, many artist start to create their works via the technology. In recent years, it has begun to be seen many samples in ceramics, as can be seen from other area like Paintings, Graphic Design, Cinema ect. 3D printer technology has begun to use ceramic materials in recent 10 years and has göne forward remarkably. In this article,by describing working prencible of 3D printers and types, it will be informed about using the technology in ceramic art. It will be featured on centers that work on this subject and their projects. As a new shaping method, 3D printers will be featured to mention ceramic artists and their works.

  11. Pilot Project Technology Business Case: Mobile Work Packages

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Niedermuller, Josef [ScottMadden, Inc., Raleigh, NC (United States)

    2015-05-01

    Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) was developed in September of 2015 to frame the benefit side of II&C technologies to address the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the “benefits” side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology. The methodology is presented in the context of the entire process, but the tool provided is limited to determining the organizational benefits only. This report describes a the use of the BCM in building a business case for mobile work packages, which includes computer-based procedures and other automated elements of a work package. Key to those impacts will be identifying where the savings are

  12. A US perspective on fast reactor fuel fabrication technology and experience. Part II: Ceramic fuels

    International Nuclear Information System (INIS)

    This paper is Part II of a review focusing on the United States experience with oxide, carbide, and nitride fast reactor fuel fabrication. Over 60 years of research in fuel fabrication by government, national laboratories, industry, and academia has culminated in a foundation of research and resulted in significant improvements to the technologies employed to fabricate these fuel types. This part of the review documents the current state of fuel fabrication technologies in the United States for each of these fuel types, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  13. Structuration of micro-fluidic devices based on low temperature co-fired ceramic (LTCC) technology

    OpenAIRE

    Birol, Hansu; Maeder, Thomas; Jacq, Caroline; Corradini, Giancarlo; Fournier, Yannick; Saglini, Igor; Straessler, Sigfrid; Ryser, Peter

    2005-01-01

    Smart packaging concept has been the driving force for the search of advanced technologies to produce multi-functional micro-scale devices for long years. In this sense, LTCC technology has been recently addressed as the suitable choice for a wide range of applications. In addition to its attractive characteristics for high-frequency applications those have been profited for a long time, it receives a growing attention for sensor applications in the recent years as well. This is due to the ea...

  14. Ceramic Heat Exchangers and Chemical Reactors with Micro-Scale Features for In-Situ Resource Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop compact and lightweight ceramic heat exchangers and chemical reactors suitable for high temperature processes. These devices will have...

  15. Fast reactor cycle technology development project (FaCT project). Phase I report

    International Nuclear Information System (INIS)

    JAEA and JAPC launched Fast Reactor Cycle Technology Development Project (FaCT) in 2006. 'The Japan sodium-cooled fast reactor (JSFR) with MOX fuel, the advanced aqueous reprocessing, and the simplified pelletizing fuel fabrication systems' have been studied as a main concept in the FaCT project. In 2010, a judgment on whether the innovative technologies should be adopted was made. In 2015, the design concept of the demonstration and commercial facilities for fast breeder reactor cycles that may fulfill the development targets as well as the R and D programs aimed at their commercialization are to be proposed. The adoption judgment of the innovative technologies was conducted focusing on the abovementioned main concept. To evaluate the sodium-cooled fast reactor (with MOX fuel) in terms of its design adequacy as a reactor system, 13 tasks of the innovative technologies were reduced to 10 tasks to fit more precisely with the targeting evaluation technology. As the result, 8 tasks were rated as adoptable. However, for a steam generator with double-walled straight tube, it was judged that heat exchanger tube with a protective tube should be selected as an alternative technology. Further, the assessments for the high-burnup reactor core and fuels are to be conducted in the two stages. Then finally cladding tubes materials will be selected on top of the judgment of necessity for alternative materials. For advanced aqueous reprocessing, 3 tasks of the innovative technologies were rated as adoptable. And, it was judged that the evaluation of other 3 tasks (i.e., effective uranium recovery system by crystallization technology, MA recovery technology by extraction chromatography method, waste reduction technology or waste polarizing technology) should be continued. For simplified pelletizing fuel fabrication, 3 tasks of the innovative technologies were rated as adoptable. And, it was judged that the evaluation of other 2 tasks (i.e., sintering and O/M ratio adjustment

  16. Bringing Technology to Students’ Proximity: A Sociocultural Account of Technology-Based Learning Projects

    Directory of Open Access Journals (Sweden)

    Evode Mukama

    2014-12-01

    Full Text Available This paper depicts a study carried out in Rwanda concerning university students who participated in a contest to produce short documentary films. The purpose of this research is to conceptualize these kinds of technology-based learning projects (TBLPs through a sociocultural perspective. The methodology included focus-group discussions and field notes to collect empirical data. The findings reveal that the more educational technologies capture objects of learning positioned in the students’ sociocultural proximity, the more focused the learners’ attention is on these objects. The study shows also that a change in learning projects may depend to a large extent on whether the technology relates to the students’ sociocultural proximity, that is, taking into consideration students’ physical, cultural, and contextual real world. The study recommends a community of learning/inquiry embedded in a collaborative, problem-solving dynamic involving cognitive support from peers, teachers, external specialists, and the wider community.

  17. PPLICATION OF COAL MINING WASTE IN THE PRODUCTION OF STRUCTURAL CERAMICS USING AN ECOLOGICALLY FRIENDLY AND RESOURCE SAVING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vaysman Yakov Iosifovich

    2016-03-01

    Full Text Available The article states that the use of spoil heaps (coal mining waste in the production of structural ceramics is expedient. It shows the reduction of negative ecological effects during the life cycle when coal mining waste is used in the initial blend for the production of structural ceramics. It shows that the development of the recommendations for the use of coal mining waste in the production of structural ceramics is an urgent issue as far as the use of coal mining waste in the production of structural ceramics can lead both to the achievement of resource saving and positive ecological effect and to the undesirable decrease of the basic physical and mechanical properties of the final products when the structure of the mix is inappropriate. In order to develop these recommendations the authors have examined the microstructure, mineral composition and physical and mechanical properties of structural ceramics produced with the use of coal mining waste, which effect the consumer properties of the target material. As a result of the research the authors have made the conclusions about the nature and degree of impact of coal mining waste quantity on the physical and mechanical properties of construction ceramics. The comparison of the data received during the measurement of the basic physical and mechanical properties of construction ceramics with the results of the research of microstructure, elemental and mineral composition of the samples has shown their correlation.

  18. Yield Improvement With Pellicalised Masks In Projection Printing Technology

    Science.gov (United States)

    Rangappan, A.; Kao, Chuck

    1982-09-01

    Photomask limited yields in LSI and VLSI processes are examined in this paper. Mask defects are classified into two catagories i.e., soft and hard mask defects. Theoretical modelling indicates a substantial yield improvement with pellicle protected masks. In 1:1 projection technology soft mask defects are the predominent cause of mask limited yield. Use of pellicles eliminates the effect of soft defects up to 100 microns in size, does not cause a degradation of image quality or dimensional control, prolongs mask life, and saves considerable labour and cost in maintaining high quality masks. Pellicle mounting, inspection, and handling techniques used are described. Very large die with 3 micron, NMOS, Si-gate technology are used to determine the actual yield improvement. Lots were processed using identical sets of masks of which one set was pellicle protected. Defect density at each process step and final probe yield are statistically analysed to show the individual contributions of hard mask defects, soft mask defects, and random process defects to the overall device yield. Actual yield increase data is presented. This pellicle technology is directly applicable to 10:1 stepping exposure systems where high soft mask defect density could be a more severe problem than in 1:1 projection systems.

  19. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  20. Present status of some technological activities supporting the MOLCARE project

    Energy Technology Data Exchange (ETDEWEB)

    Torazza, A. [Ansaldo Ricerche S.r.l., Genova (Italy); Rocchini, G. [ENEL, Milano (Italy); Scagliotti, M. [CISE, Milano (Italy)

    1996-12-31

    The development of MCFC stack technology is carried out at Ansaldo Ricerche in the framework of the MOLCARE project, a cooperation with Spanish companies under a partial UE funding, while a specific research program concerning the physico-chemical characterization of materials is performed jointly by CISE and ENEL. The project includes the development, the construction and the testing of a full scale 100 kW prototype, the assessment of stack technology on subscale stacks, the mathematical modelling of the MCFC based plants and the basic researches. The aim of the basic researches, carried out on single cells, is to improve the effectiveness and durability of both the active and the hardware materials. The Ansaldo stack technology is based on external manifolding. The full scale 100 kW prototype will be integrated with the sensible heat reformer and other ancillary equipments according to the {open_quote}Compact Unit (CU){close_quotes} concept. These technical choices stress requirements for manifold gasket configuration. electrolyte migration control, {Delta}p management and porous component compaction.

  1. Projects at the Western Environmental Technology Office. Quarterly technical progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report contains brief outlines of the multiple projects under the responsibility of the Western Environmental Technology Office in Butte Montana. These projects include biomass remediation, remediation of contaminated soils, mine waste technology, and several other types of remediation.

  2. Projects at the Western Environmental Technology Office. Quarterly technical progress report, April 1--June 30, 1995

    International Nuclear Information System (INIS)

    This report contains brief outlines of the multiple projects under the responsibility of the Western Environmental Technology Office in Butte Montana. These projects include biomass remediation, remediation of contaminated soils, mine waste technology, and several other types of remediation

  3. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  4. Repair-welding technology of irradiated materials - WIM project

    International Nuclear Information System (INIS)

    A new project on the development of repair-welding technology for core internals and reactor (pressure) vessel, consigned by the Ministry of International Trade and Industry (MITI), has been started from October 1997. The objective of the project is classified into three points as follows: (1) to develop repair-welding techniques for neutron irradiated materials, (2) to prove the availability of the techniques for core internals and reactor (pressure) vessel, and (3) to recommend the updated repair-welding for the Technical Rules and Standards. Total planning, neutron irradiation, preparation of welding equipment are now in progress. The materials are austenitic stainless steels and a low alloy steel. Neutron irradiation is performed using test reactors. In order to suppress the helium aggregation along grain boundaries, low heat input welding techniques, such as laser, low heat input TIG and friction weldings, will be applied. (author)

  5. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project

    Science.gov (United States)

    1988-03-01

    Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.

  6. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  7. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  8. Technology Base Research Project for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim (ed.)

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  9. 1992 DOE/Sandia crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Maish, A. [ed.

    1992-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.

  10. Achievement report for fiscal 1998. Research and development of synergy ceramics (Development of technology for energy use rationalization); 1998 nendo seika hokokusho. Shinaji ceramics no kenkyu kaihatsu (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim is to create inorganic materials with their functions well harmonized and with their reliability remarkably improved, and efforts are made to establish basic technologies with which structural control may be carried out simultaneously for multiple layers in in-process products through positive utilization of various chemical reactions in the materials synthesizing process. This fiscal year's achievements are stated below. A low-temperature pressure nitriding method is developed in which nitriding reaction directly involves the metal aluminum compact for conversion into ceramics, and an aluminum sintered body is produced capable of high thermal conduction of not less than 170w/mk with the original compact shape retained. By a heat treatment in a high-temperature pressure nitriding atmosphere, a success is attained in producing a silicon nitride ceramic body enhanced (150w/mk) in thermal conduction. It is clarified that the microwave-aided selective heating technology works effectively in enhancing the particle growth rate in a liquid-phase sinter system, and a success is won in increasing strength by virtue of the formation of particle-growing particles. (NEDO)

  11. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, D.S. (ed.)

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  12. New neutron detector based on Micromegas technology for ADS projects

    CERN Document Server

    Andriamonje, Samuel A; Aune, Stephan; Ban, Gilles; Breaud, Stephane; Blandin, Christophe; Ferrer, Esther; Geslot, Benoit; Giganon, Arnaud; Giomataris, Ioannis; Jammes, Christian; Kadi, Yacine; Laborie, Philippe; Lecolley, Jean Francois; Pancin, Julien; Riallot, Marc; Rosa, Roberto; Sarchiapone, Lucia; Steckmeyer, Jean Claude; Tillier, Joel

    2006-01-01

    A new neutron detector based on Micromegas technology has been developed for the measurement of the simulated neutron spectrum in the ADS project. After the presentation of simulated neutron spectra obtained in the interaction of 140 MeV protons with the spallation target inside the TRIGA core, a full description of the new detector configuration is given. The advantage of this detector compared to conventional neutron flux detectors and the results obtained with the first prototype at the CELINA 14 MeV neutron source facility at CEA-Cadarache are presented. The future developments of operational Piccolo-Micromegas for fast neutron reactors are also described.

  13. Technology transfer and Lessons learned from international project

    International Nuclear Information System (INIS)

    After the TMI-2 accidents, there were no new plant construction works in US. However, to reduce the increasing CO2 release and get the clean energy for the next generation, the United States is on the verge of a nuclear renaissance. Japanese Manufacturing Company, Mitsubishi Heavy Industries (MHI) submitted an application for design certification (DC) to the Nuclear Regulatory Commission (NRC). Mitsubishi Nuclear Energy Systems (MNES) is a wholly owned subsidiary of MHI responsible for serving nuclear power plant and related component in US and is currently the prime contractor for US utility company (Luminant power, formerly TXU) to develop the construction and operating license. As the MNES senior project manager for this project I am supported by a team of engineering and project managers from many companies of US and Japan. We face the challenge of cultural differences, time differences, language differences and geographic separation. The purpose of my presentation will be to share with the conference attendees how we are learning from each other, transferring one country's new technology to another country and working together as a team to ensure a safe culture and high quality product. We have learned that the culture and language differences can be a real issue; there is a difference in project management approach between the US and Japan. Another significant factor is understood by all parties of the US latest regulatory requirements and QA requirements. By knowing and recognizing these differences we continue to look for ways to work together. I think the most important thing we have learned is the importance of respecting each other and the necessity of clear and timely communications. Sharing the experiences of this learning and how we are working together to transfer the Japanese technology to the US market will be the emphasize of my presentation. (authors)

  14. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  15. Metal-ceramic composite coatings obtained by new thermal spray technologies: Cold Gas Spray (CGS) and its wear resistance

    International Nuclear Information System (INIS)

    In this paper, composite coatings composed by an aluminum bronze metal matrix and a hard ceramic alumina phase obtained by cold spray technique were obtained in order to increase the tribological properties of the pure bronze coatings. The different processes that occur during the coating formation (hardening of the metal particles, fragmentation of the ceramic particles, shot peening on the metal substrate, etc) are described and their effects on the coating properties are studied. Wear tests consisting on Ball-on-Disk tests, abrasion Rubber Wheel tests and erosion tests as well as microhardness and adhesion tests are carried out and the results are correlated with the ceramic phase content of the coatings. It can be concluded that the hard ceramic phase increases the tribological properties with relation of the initial bronze coating. Finally, main wear mechanisms during the tribological tests are described. (Author) 21 refs.

  16. Systems and Technologies for Space Exploration: the regional project STEPS

    Science.gov (United States)

    Boggiatto, D.; Moncalvo, D.

    The Aerospace technology network of Piemonte represents ˜25% of the italian capacity and handles a comprehensive spectrum of products (aircraft, propulsion, satellites, space station modules, avionics. components, services...). The cooperation between the Comitato Distretto Aerospaziale Piemonte and the European Regional Development Fund 2007-2013 has enabled Regione Piemonte to launch three regional Projects capable to enhance the synergy and competitiveness of the network, among which: STEPS - Sistemi e Tecnologie per l'EsPlorazione Spaziale, a joint development of technologies for robotic and human Space Exploration by 3 large Industries, 27 SMEs, 3 Universities and one public Research Centre. STEPS develops virtual and hardware demonstrators for a range of technologies to do with a Lander's descent and soft landing, and a Rover's surface mobility, of both robotic and manned equipment on Moon and Mars. It also foresees the development of Teleoperations labs and Virtual Reality environments and physical simulations of Moon and Mars surface conditions and ground. Mid-way along STEPS planned development, initial results in several technology domains are available and are presented in this paper.

  17. Influence of the PVD and CVD technologies on the residual macro- stresses and functional properties of the coated tool ceramics

    OpenAIRE

    L.A. Dobrzański; S. Skrzypek; D. Pakuła; J. Mikuła; A. Křiž

    2009-01-01

    Purpose: The goal of this work is to compare the macro-stresses as well as mechanical and functional properties of the PVD and CVD coatings deposited on oxide and nitride ceramics tool.Design/methodology/approach: In the paper the residual macro-stresses of PVD and CVD coatings deposited on tool ceramics substrates, measured with the application of the grazing angle X-ray diffraction geometry are compared in relation to the fundamental mechanical properties like hardness and adhesion.Findings...

  18. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  19. Stress-strain analysis of ceramic heads in the destruction device

    Czech Academy of Sciences Publication Activity Database

    Janíček, Přemysl

    Brno : Brno University of Technology, 2014 - (Fuis, V.), s. 260-263 ISBN 978-80-214-4871-1. ISSN 1805-8248. [Engineering Mechanics 2014 /20./. Svratka (CZ), 12.05.2014-15.05.2014] R&D Projects: GA ČR GA13-34632S Institutional support: RVO:61388998 Keywords : material parameters of bioceramics * destruction tests * weibull weakest link theory * endoprosthesis ceramic heads Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  20. Stress analysis of the hip joint endoprosthesis ceramic head for different values of shape deviations

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Janíček, Přemysl

    Dürnten : Trans Tech Publications Ltd, 2014, s. 770-775. ISBN 978-3-03835-102-3. ISSN 1022-6680. - (936). [International Conference on Materials Science and Engineering Technology 2014. Shanghai (CN), 28.06.2014-19.06.2014] R&D Projects: GA ČR(CZ) GA13-34632S Institutional support: RVO:61388998 Keywords : hip joint endoprosthesis * ceramic head * shape deviation * cone contact areas Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. Production technology and provenance study of archaeological ceramics from relevant sites in the Alcantara River Valley (North-eastern Sicily, Italy)

    International Nuclear Information System (INIS)

    In this paper, volcanic-rich ceramic remains from the archaeological sites of Francavilla, Naxos and Taormina (Province of Messina, North-eastern Sicily) were studied by using inclusions as main provenance marker. Technological features, such as temper choice, vitrification degree and firing temperatures, were investigated by polarizing microscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Information on the production centres was obtained through the identification of the source area of raw materials used as temper. Indeed, petrochemical analysis of the volcanic inclusions within the examined ceramics displayed strong affinities with structures/textures and compositions of the locally outcropping mugearitic products, probably ascribed to the eruptive activity of an eccentric vent of Mt. Etna (Mt. Mojo). A local production for the studied pottery samples has been therefore advanced, assuming that the used volcanic temper was easily available from the alluvial deposits along the Alcantara River stream, which is connected to the lava flow of Mt. Mojo.

  2. Structural Ceramics

    Science.gov (United States)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  3. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  4. Exploring the Relationship between Authentic Leadership and Project Outcomes and Job Satisfaction with Information Technology Professionals

    Science.gov (United States)

    Fischer, Mark A.

    2014-01-01

    One of the most important issues for organizations and information technology (IT) professionals is measuring the success or failure of information technology projects. How we understand the value and usefulness of IT projects is critical to how information technology executives evaluate and decide on technology investments. In a 2009 CHAOS…

  5. Fast reactor cycle technology development project (FaCT project). Phase 1 (Interim report)

    International Nuclear Information System (INIS)

    JAEA and JAPC launched Fast Reactor cycle Technology Development Project (FaCT) in 2006. 'The JAEA sodium-cooled loop-type fast reactor (JSFR) with MOX fuel, the advanced aqueous reprocessing, and the simplified pelletizing fuel fabrication systems' have been studied as a main concept in the FaCT project. JAEA targets 2015 in which the design concept that fulfills the development target and the design requirement is to be proposed. R and D system and R and D progress management have been improved and firmly established. Based on the indication of Japan Atomic Energy Commission and in cooperation with related organizations, R and Ds and design studies have been executed to evaluate innovative technologies. Direction in the adoption of the innovative technologies is to be determined in 2010. To attain this step, this report describes progress and results, and specifies issues and countermeasures upto 2008. This report also indicates future study procedure of the FaCT project. A CD-ROM is attached as an appendix. (J.P.N.)

  6. The research of the ceramic fuel pins, irradiated in the technological channels of the ATS of IVG.1 reactor

    International Nuclear Information System (INIS)

    The basic objective of the work is to install the qualitative and quantitative indexes of the serviceability of the rod-type carbide fuel pins as applied to the exploitation conditions in the high temperature gas cooled reactor, where the nitrogen will be used as the coolant. For that purpose the state of the fuel pins, tested in the nitrogen technological channels of the ATS of IVG.1 (EWG-1) reactor in the series of four research nitrogen start-ups , including the energetic start-up with the duration of 160 s. and three standard start-ups with the duration of 510 s., was researched. On the base of the results of the post-reactor research of the fuel pins of ten channels of ATS it is determined that the ceramic fuel pins of (U, Zr)C+C, (U, Nb)C+C and (U, Zr,Nb)C are enough serviceable in the severe conditions of the high temperature tests in the flow path of the chemically aggressive coolant. The lack of the surface cracks in the fuel pins, lack of the fuel pins failures and lack of overweight and thickening of the fuel pins are revealed. It is observed the oxy-nitration of the fuel pins surfaces (at appearance of the characteristic color tones and presence of the slight burning of the fuel rods to each other), however, the depth of the oxy-nitration , even of the fuel pins of the output heating sections, tested at 2800 K, did not exceed 10 μm. It is found out that the levels of the radioactive change of the fuel pins parameters are the same as of the fuel pins of the hydrogen technological channels, tested at the same temperatures and up to the same neutrons fluences. The low change of the fuel pins strength is observed; the strengthening of the fuel pins on the output heating sections for ∼ 20 % (due to the appearance of the residual radiation macro stresses) and weakening of the fuel pins in the output sections for ∼30 % (due to oxy-nitration and erosion of the surface, and also non-congruent evaporating of the surface material). The prognostic analysis of

  7. A Project in Support of Nuclear Technology Cooperation

    International Nuclear Information System (INIS)

    The results and contents of the project are as follows; - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. - Domestic INIS project has carried out various activities on supporting a decision-making for INIS Secretariat, exchanges of the statistical information between INIS and the country, and technical assistance for domestic end-users using INIS database. - Based on the construction of INIS database sent by member states, the data published in the country has been gathered, collected, and inputted to INIS database according to the INIS reference series. - Using the INIS output data, it has provided domestic users with searching INIS CD-ROM DB and INIS online database, INIS SDI service, non-conventional literature delivery services and announce INIS to users. - Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy information and computer software developed in the advanced countries

  8. A Project in Support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Cheol; Kim, Kyoung Pyo; Yi, Ji Ho (and others)

    2007-12-15

    The results and contents of the project are as follows; - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. - Domestic INIS project has carried out various activities on supporting a decision-making for INIS Secretariat, exchanges of the statistical information between INIS and the country, and technical assistance for domestic end-users using INIS database. - Based on the construction of INIS database sent by member states, the data published in the country has been gathered, collected, and inputted to INIS database according to the INIS reference series. - Using the INIS output data, it has provided domestic users with searching INIS CD-ROM DB and INIS online database, INIS SDI service, non-conventional literature delivery services and announce INIS to users. - Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy information and computer software developed in the advanced countries.

  9. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density

  10. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    International Nuclear Information System (INIS)

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper

  11. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  12. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  13. Using Information and Communication Technologies in Hospital Classrooms: SAVEH Project

    Directory of Open Access Journals (Sweden)

    Dolores Meneses

    2011-03-01

    Full Text Available Children suffering a serious illness, experience enormous changes in their daily lives. Not only does the direct consequences of the disease affect the child, but also the fact of being at a hospital, or at home and not being allowed to go to school. Frequently, connections with classmates, neighbors, and sometimes even some with his relatives are lost. Furthermore, the responsibility of the state, to continue his schooling process is much harder, since different communities (family, school teachers, hospital teachers, medical doctors, psychologists… have to be coordinated. Last but not least, entertainment and enjoyment should be provided to avoid boredom and to improve their affective state. At the same time, with the development of Information and Communication Technologies, a large number of solutions have arisen that allow people to enhance their communication, education and entertainment possibilities. These technologies seem perfectly suitable to be used to tackle the problems described above. In this article, some of the special necessities of children suffering from a serious illness are pointed out, technologies available to be facilitated are described and some initiatives taking place in Spain mentioned. The SAVEH project will be described in detail.

  14. Flexible Electrostatic Technology for Capture and Handling Project

    Science.gov (United States)

    Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason

    2015-01-01

    previous MSFC and NASA proposals or concepts can now be realized or simplified by the development of the this initial and future FETCH grippers including commercial resupply, Exploration vehicle assembly, Satellite servicing, and orbital debris removal since a major part of these missions is to align to and capture some handle. Completed Project (2013 - 2014) Flexible Electrostatic Technology for Capture & Handling Project Center Innovation Fund: MSFC CIF Program | Space Technology Mission Directorate (STMD) For more information visit techport.nasa.gov Some NASA technology projects are smaller (for example SBIR/STTR, NIAC and Center Innovation Fund), and will have less content than other, larger projects. Newly created projects may not sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 pounds per square inch or 70-300 lb./sq. ft. of surface contact, the FETCH can turn-on and turn-off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, and precision relocation for accurate anchor adhesion.

  15. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  16. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  17. Influence of incorporation of powder of printed circuit boards on technological properties and microstructure of triaxial ceramics

    International Nuclear Information System (INIS)

    Using the methodology of experiments with mixtures, seven formulations of clay, phyllite, and printed circuit boards (PCB) were obtained to study the influence of this waste on triaxial ceramic tiles. Each formulation was processed under conditions similar to those used in the ceramic tiles industry, and characterized for fired modulus of rupture (FMoR) and water absorption (WA). The samples sintered at 1180°C were also subjected to analysis by XRD and SEM. The lowest resistance was observed in samples with 40% residue, while the highest strength occurred for samples with 14% residue, which reached average values of mechanical strength and water absorption of 35.0 MPa and 2.0%, respectively. The microstructure showed that it is possible to use waste of PCB in triaxial ceramic, which exhibits a fluxing behavior and it has an important effect on the sinterability and the development of appropriate microstructures. (author)

  18. Proceedings of the nuclear criticality technology safety project

    International Nuclear Information System (INIS)

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings

  19. Soft city culture and technology the Betaville Project

    CERN Document Server

    Skelton, Carl

    2014-01-01

    Soft City Culture and Technology: The Betaville Project discusses the complete cycle of conception, development, and deployment of the Betaville platform. Betaville is a massively participatory online environment for distributed 3D design and development of proposals for changes to the built environment– an experimental integration of art, design, and software development for the public realm. Through a detailed account of Betaville from a Big Crazy Idea to a working "deep social medium", the author examines the current conditions of performance and accessibility of hardware, software, networks, and skills that can be brought together into a new form of open public design and deliberation space, for and spanning and integrating the disparate spheres of art, architecture, social media, and engineering. Betaville is an ambitious enterprise, of building compelling and constructive working relationships in situations where roles and disciplinary boundaries must be as agile as the development process of the soft...

  20. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  1. The Digital Sky Project Prototyping Virtual Observatory Technologies

    CERN Document Server

    Brunner, R J; Good, J; Handley, T; Lonsdale, C; Djorgovski, S G

    2000-01-01

    Astronomy is entering a new era as multiple, large area, digital sky surveys are in production. The resulting datasets are truly remarkable in their own right; however, a revolutionary step arises in the aggregation of complimentary multi-wavelength surveys (i.e., the cross-identification of a billion sources). The federation of these large datasets is already underway, and is producing a major paradigm shift as Astronomy has suddenly become an immensely data-rich field. This new paradigm will enable quantitatively and qualitatively new science, from statistical studies of our Galaxy and the large-scale structure in the universe, to discoveries of rare, unusual, or even completely new types of astronomical objects and phenomena. Federating and then exploring these large datasets, however, is an extremely challenging task. The Digital Sky project was initiated with this task in mind and is working to develop the techniques and technologies necessary to solve the problems inherent in federating these large data...

  2. Nuclear Criticality Technology and Safety Project parameter study database

    International Nuclear Information System (INIS)

    A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst

  3. Improvement of Mechanical Properties on a Surface of Bulk Ceramics

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kraus, L.

    Trollhättan : University West, 2009 - (Sudarshan, T.; Nylen, P.), s. 247-254 ISBN 978-0-9817065-1-1. [International Conference on Surface Modification Technologies SMT22/22./. Trollhättan (SE), 22.09.2008-24.09.2008] R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Bulk ceramics * plasma post-treatment * diode laser * wear resistance * mechanical testing Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  4. Composite materials based on porous ceramic preform infiltrated by aluminium alloy

    Directory of Open Access Journals (Sweden)

    A. Nagel

    2007-01-01

    Full Text Available Purpose: The goal of this project is the optimization of manufacturing technology of the ceramic preforms basedon Al2O3 powder manufactured by the pressure infiltration method with liquid metal alloy.Design/methodology/approach: Ceramic preforms were manufactured by the method of sintering of ceramicpowder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the forming factor ofthe structure of canals and pores inside the ceramic agglomerated framework the carbon fibers Sigrafil C10M250 UNS were used. Then ceramic preforms were infiltrated with liquid EN AC – AlSi12 aluminum alloy.Stereological and structure investigations of obtained composite materials were made on light microscope.Findings: It was proved that developed technology of manufacturing of composite materials with the pore ceramicAl2O3 infiltration ensures expected structure and can be used in practice.Practical implications: The developed technology allows to obtain method’s elements locally reinforced andcomposite materials with precise shape mapping.Originality/value: The received results show the possibility of obtaining the new composite materials being thecheaper alternative for other materials based on the ceramic fibers.

  5. A Project in Support of Nuclear Technology Cooperation

    International Nuclear Information System (INIS)

    The result and contents of the project are as follows; - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. - Domestic INIS project has carried out various activities on supporting a decision-making for INIS Secretariat, exchanges of the statistical information between INIS and the country, and technical assistance for domestic end-users using INIS database. - Based on the construction of INIS database sent by member states, the data published in the country has been gathered, collected, and inputted to INIS database according to the INIS reference series. - Using the INIS output data, it has provided domestic users with searching INIS CD-Rom DB and INIS online database, INIS SDI service, non-conventional literature delivery services and announce INIS to users. - Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Effective management of computer codes for nuclear application and establishment of information exchange mechanism for rapid technical support. - acquisition of nuclear computer codes from NEA Data Bank an registration of new software developed by domestic organization

  6. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    Science.gov (United States)

    1986-07-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  7. The advanced linked extended reconnaissance and targeting technology demonstration project

    Science.gov (United States)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  8. Foreign Present Condition of the Science and Technology Project Evaluation and Development Trend Research

    OpenAIRE

    Minli Jin

    2009-01-01

    The science and technology project evaluation is science and technology evaluation of importance constitute part, push national science and technology business to develop continuously and healthily, promote science and technology resources excellent turn to install, suggest a high-tech management important means and guarantee of the level. This text carried on for the abroad in advance national way of doing with evaluation of the science and technology project analytical, put forward evaluati...

  9. Review of PV Inverter Technology Cost and Performance Projections

    Energy Technology Data Exchange (ETDEWEB)

    Navigant Consulting Inc.

    2006-01-01

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  10. SIHTI 2. Energy and environmental technology. Yearbook 1996. Project presentations

    International Nuclear Information System (INIS)

    SIHTI 2 Programme on Energy and Environmental Technology aims at supporting the development of holistic knowhow related to environmental control in Finland. In 1996 this research programme of about three million FIM covered an exceptionally wide field of research, including indicators of greenhouse gases, analysis of effects of energy and environment taxes as well as testing and development of different instruments of decision-making for environmental estimates. An important part of the programme consisted of life-cycle analysis data for energy production in Finland and of the use of various assessment methods in the decision-making of enterprises. Cleaning technology of flue gases is a research integrity, in which internationally recognised expertise has been developed in Finland. Major part of the projects concerns separation and health impacts of particulates. Emission sources have been surveyed, compositions and particle size distributions measured and means of affecting the separation capacity of scrubbers and electric precipitators studied. The studies include theoretical model calculations, equipment-technical development in laboratory scale and testing in demonstration plants. The first results have already been utilised commercially. Reduction of gaseous components, in particular, nitrogen oxides and sulphur compounds has also been studied. One significant part of the programme comprises the reduction and utilisation of solid wastes from energy production and pulp and paper industries

  11. 二硼化锆陶瓷增韧技术的研究进展%Research and Development of Toughening Technologies of Zirconium Diboride Ceramics

    Institute of Scientific and Technical Information of China (English)

    冯伦; 王海龙; 范冰冰; 陈建宝; 许红亮; 陈德良; 卢红霞; 张锐

    2011-01-01

    本文介绍了近年来二硼化锆陶瓷的增韧技术及其机制,包括弥散颗粒增韧、不同长径比相(晶须、纤维、晶片、碳纳米管等)增韧、ZrO2相变增韧、仿生结构增韧、原位反应增韧、晶须和颗粒协同增韧;展望了二硼化锆陶瓷增韧技术的未来发展趋势.%This paper reviews recent toughening technologies and toughening mechanisms of zirconium diboride ceramics. These technologies include dispersed particles toughening, different aspect ratio phases (whiskers、chopped fibers,,platelets.,carbon nano-tubes et al) toughening, zirconia transformation toughening, biomimetic structure toughening, in-situ reaction toughening, SiC whiskers and SiC particles combined toughening. Futhermore, the future development of toughening technology of zirconium diboride ceramics is prospected.

  12. Factors that Impact Software Project Success in Offshore Information Technology (IT) Companies

    Science.gov (United States)

    Edara, Venkatarao

    2011-01-01

    Information technology (IT) projects are unsuccessful at a rate of 65% to 75% per year, in spite of employing the latest technologies and training employees. Although many studies have been conducted on project successes in U.S. companies, there is a lack of research studying the impact of various factors on software project success in offshore IT…

  13. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    Science.gov (United States)

    Tang, Tian; Popp, David

    2016-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…

  14. Almetax and industrial technology total center Shigaraki ceramic industry technology test field in Shiga Prefecture; Arumetakkusu to Shiga-ken kogyo gijutsu sogo senta sigaraki yogyo gijutsu gijutsu shikenjo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Almetax and industrial technology total center Shigaraki ceramic industry technology test field in Shiga Prefecture. Almetax of the aluminum building material and industrial technology total center Shigaraki ceramic industry technology test field in Shiga Prefecture developed the light thermal insulation foaming tile in the cooperation. This is a tile using the ash which arises by the renewal process of the aluminum. The aluminum ash was mixed with the feldspar of the Shigaraki-made, and it was burnt at the low temperature. In the lightness under the half of usual tile, it has the heat retaining property over 3 times. almetax was being planned a waste loss thermal insulation a stone two bird environmental consideration type goods begin to. The aluminum ash is mixed with the feldspar, and by the process burnt at 1200-1250 degrees C, it decomposes, the aluminum nitride in the ash foams. Therefore, the stoma which was homogeneously independent in burnt tile is possible. It is lightly easy to be handled, and it is a feature that the heat retaining property is high. There is the strength from the foaming concrete, and the water absorption rate is low. The aluminum reconstruction technique of almetax was made to fuse with the technology of the ceramic industry technology test field of the pottery lightening. almetax studies the cost reduction of the decontamination processing of the ash. It aims at cost of product of 3 thousand yen /m{sup 2} of usual tile level. The commercialization as partition between two rooms of external wall and life space of the building has been planned. The gross discharge of the domestic aluminum ash has been estimated with annual about 192 thousand tons. Though the part is utilized as a secondary material of the iron and steel refining, it deals with the excess minute as an industrial waste. (translated by NEDO)

  15. Correlational Study of Risk Management and Information Technology Project Success

    Science.gov (United States)

    Gillespie, Seth J.

    2014-01-01

    Many IT projects fail despite the best efforts to keep these projects within budget, schedule, and scope. Few studies have looked at the effect of project risk management tools and techniques on project success. The primary focus of this study was to examine the extent to which utilization of project risk management processes influence project…

  16. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  17. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  18. Projects to improve mathematics performance at a university of technology

    Directory of Open Access Journals (Sweden)

    Ina Louw

    2009-09-01

    Full Text Available Lecturers at tertiary institutions have been expressing concern about the quality of students in mathematics for a long time now. Blame is usually placed at the door of secondary schools, but through put figures are still determining state subsidies and as such necessitate institutions to constantly revisit their efforts in terms of improving performance in mathematics. In this article, the results of two studies to improve the mathematics performance at a technical university are reported. The first study took place at the former Technikon Northern Gauteng and was an action research project with an experimental design. The study entailed the implementation of tutorial sessions and it revealed certain traits of tertiary mathematics education. Data were collected through structured observation, questionnaires and focus group interviews. A standardized questionnaire, Study Orientation Questionnaire in Maths (SOM, was introduced and “study habits” was the field in the test that featured most significantly in both the experimental and the control groups. The results revealed, inter alia, that timely assessment is needed to detect and correct misconceptions as soon as possible. It also pointed out that attendance of lectures (and tutorials impacted strongly on performance. Lastly, it was found that students preferred communicating mathematics through the medium of English and not by using their mother tongue. The second project was conducted at the Tshwane University of Technology (TUT and consisted of an investigation into assessment practices in first year mathematics. The study was executed with action research as strategy and data were collected through interviews, questionnaires and focus group interviews. Qualitative and quantitative data were collected and respondents were exposed to contemporary assessment strategies as suggested by OBE. The aim of the study was to enhance the respondents’ insight into contemporary assessment

  19. Fiscal 1997 report of the R and D result of industrial science and technology. R and D on synergy ceramics (R and D on an ultrahigh-temperature gas turbine for power generation); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (hatsuden`yo chokoon gas turbine no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For development of high-efficiency power generation gas turbines using petroleum substituting energy, the process technology which can highly harmonize conflicting characteristics and various functions was developed for new ceramic materials. This paper summarizes the result in fiscal 1997. On design technology of the characteristics harmonizing process, the design and synthesis of ceramic precursors were made by using chemical reaction of metal organics. On analysis of fracture behavior by controlling microscopic and macroscopic particle shapes, orientations were observed by convergent ion beam. On control technology of a structure formation process, study was made on continuous pore shape control to form porous material with uni-directionally arranged pores in ceramic matrix, interface control between particles to decrease a plastic deformation temperature and improve a heat insulation, interface control between phases of a rare-earth silicate/silicon-carbide-based composite, boundary control between layers of piezoelectric ceramics, and boundary control of the composite where inorganic-organic hybrids occupy the interface between ceramic particles. 79 refs., 193 figs., 15 tabs.

  20. A Synthesis and Survey of Critical Success Factors for Computer Technology Projects

    Science.gov (United States)

    Baker, Ross A.

    2012-01-01

    The author investigated the existence of critical success factors for computer technology projects. Current research literature and a survey of experienced project managers indicate that there are 23 critical success factors (CSFs) that correlate with project success. The survey gathered an assessment of project success and the degree to which…

  1. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation

  2. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  3. Green technology foresight of products and materials - some reflections and results from an ongoing Danish project

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Pedersen, Thomas Thoning; Falch, Morten;

    2005-01-01

    The article presents some methodological and theoretical reflections and some preliminary results from a Danish Green Technology Foresight project about environmental friendly products and materials, where the environmental potentials and risks from three technology areas are analysed: nano- bio...

  4. Thermal Protection System Materials (TPSM): Heat Shield for Extreme Entry Environment Technology (HEEET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Heatshield for Extreme Entry Environ­ment Technology (HEEET) project seeks to mature a game changing Woven Ther­mal Protection System (TPS) technology...

  5. Human factors and technology environment in multinational project: problems and solutions

    International Nuclear Information System (INIS)

    At the onset of nuclear projects in Spain, there was an import of nuclear technology. In a second phase, there was a transfer of technology. Subsequently, there was an adaptation of the technology. In this evolution, comparable to that of other countries, were involved several countries, overcoming the difficulties of human factors involved. The current nuclear projects multinationals have a new difficulty: the different industrial technological environments. This paper will address the organizational challenges of multinational engineering projects, in the type of project and the human factors of the participating companies.

  6. LARGE-SCALE DEMONSTRATION AND DEPLOYMENT PROJECT-TECHNOLOGY INFORMATION SYSTEM (LSDDP-TIS)

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    In recent years, an increasing demand for remediation technologies has fueled rapid growth in the D&D technologies. The D&D project managers are now faced with the task of selecting from among the many commercially available and innovative technologies, the most appropriate technology, or combination of technologies, that will address their specific D&D needs. The DOE's Office of Science and Technology (OST) sponsored the Large-Scale Demonstration and Deployment Projects (LSDDP) to demonstrate improved and innovative technologies that are potentially beneficial to DOE's environmental project. To date, three LSDDPS have been conducted at DOE's nuclear production and research facilities at the Fernald Environmental Management Project--Plant-1 (FEMP), Chicago Pile-5 Research Reactor (CP-5), and Hanford Production Reactor 105-C, Now four new LSDDPS have been launched at the Los Alamos National Laboratory (LANL), Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Mound Environmental Management Project (MEMP). In the LSDDPS, an extensive search is first conducted to identify candidate technologies that can potentially address the identified problems The candidate technologies then go through a screening process to select those technologies with the best potential for addressing remediation problems at the LSDDP site as well as project sites across the DOE complex. This selection process can be overwhelming and time-consuming. The result is that D&D project managers for the new LSDDPS are challenged to avoid duplication of demonstrated technologies.

  7. A project in support of nuclear technology cooperation

    International Nuclear Information System (INIS)

    Establish strategies of international cooperation in an effort to promote our nation's leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. Domestic INIS project has carried out various activities on supporting a decision-making for INIS Secretariat, exchanges of the statistical information between INIS and the country, and technical assistance for domestic end-users using INIS database. Based on the construction of INIS database sent by memeber states, the data published in the country has been gathered, collected, and inputted to INIS database according to the INIS reference series. Using the INIS output data, it has provided domestic users with searching INIS CD-ROM DB and INIS online database, INIS SDI service, non-conventional literature delivery services and announce INIS to users. Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing

  8. Advanced handling technology project and implications for cask design

    International Nuclear Information System (INIS)

    This paper describes the results of the ongoing Advanced Handling Technologies Project (AHTP) at Sandia. AHTP was initiated in 1986 to explore the use of advanced robotic systems to perform cask handling operations at radioactive waste handling facilities and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof of concept systems developed in AHTP are intended to extrapolate from currently available commercial systems to those that would be available by the time than an actual repository would be open for operation. These systems provide test facilities for the investigation of the robotic handling of alternate cask design features. The following sections describe (1) the approach used in AHTP to select operations for proof of concept robotic systems and to identify the cask design implications, (2) the separate proof of concept robotic systems developed in AHTP, and (3) preliminary insights into the impact of cask system design features on the feasibility of robotic performance of cask handling operations. The main conclusions from AHTP to date regarding design for remote handling are: (1) incorporation of cask system design features which facilitate robotic cask handling can be achieved with minimal impact on cask functional features, (2) proper cask design allows robotic cask handling operations from manipulation of cask tie-down mechanisms to radiation surveys to be performed quickly and reliably without direct human intervention, and (3) design for remote handling also facilitates manual handling operations

  9. WEB TECHNOLOGIES DEVELOPMENT SUPPORTING CONTEMPORARY PROJECT MANAGEMENT NEEDS

    OpenAIRE

    Kresimir Jurina; Igor Vrecko; Zlatko Barilovic

    2014-01-01

    During the last two decades, projects have become increasingly important and recognizable tools for achieving competitiveness, strategic aims and much needed positive changes. The consequence of this, among other things, is the growing number of projects which emerge and are carried out in all business systems around the world. With the growing number of projects, there arose the need for trained project managers. In order to successfully do their tasks, it is very important for project manag...

  10. Development of technology for high-level radwaste treatment to ceramic matrix by method of self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    For the purpose of reduction of the risk of spread of transuranic actinides, carbon-14 and other radionuclides contained in the NPP HLW, the Rosenergoatom concern decided to develop a technology of self-propagating high-temperature synthesis (SHS) to obtain a ceramic matrix suitable for long-term and ecologically safe deep geological disposal of the high-level radwaste of the nuclear industry. The proposed graphite HLW treatment method to immobilise the radionuclides into the thermally, chemically and radiation stable carbide-corundum matrix is based on a SHS-process according to the chemical reaction in the system C+Al+TiO2, where the component C is irradiated graphite of the RBMK reactor core moderators. This paper reports the results of the R and D activities for optimising the SHS technology on a pilot plant using non-irradiated graphite and fuel spill simulators (HLW). (author)

  11. High temperature ceramics for automobile gas turbines. Part 2: Development of ceramic components

    Science.gov (United States)

    Walzer, P.; Koehler, M.; Rottenkolber, P.

    1978-01-01

    The development of ceramic components for automobile gas turbine engines is described with attention given to the steady and unsteady thermal conditions the ceramics will experience, and their anti-corrosion and strain-resistant properties. The ceramics considered for use in the automobile turbines include hot-pressed Si3N4, reaction-sintered, isostatically pressed Si3N4, hot-pressed SiC, reaction-bonded SiC, and glass ceramics. Attention is given to the stress analysis of ceramic structures and the state of the art of ceramic structural technology is reviewed, emphasizing the use of ceramics for combustion chambers and ceramic shrouded turbomachinery (a fully ceramic impeller).

  12. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  13. Machinery Cutting Technology of Ceramic Parts%陶瓷零件的机械切削加工

    Institute of Scientific and Technical Information of China (English)

    王强; 谢帆

    2013-01-01

    用数据包络分析法评价陶瓷的可加工性,构造数学规划模型,求出决策单元的最优解.结合陶瓷材料的机械加工难点,探讨了陶瓷车削、磨削、钻削等机械切削加工工艺的技术要点.通过切削正交试验,得到刀具的前角、后角、主偏角、副偏角、刃倾角、刀尖圆弧半径及切削速度、吃刀深度、进给量的参考值,优化加工工艺参数,达到较好的加工效果.%The machinability of ceramics is evaluated by data envelopment analysis, and mathematical programming model is constructed, then the optimal solution of decision-making unit is found. These reference values of the tool rake angle, clearance angle, tool cutting edge angle, minor cutting edge angle, tool cutting edge inclination angle, tip ARC radius and cutting speed, back engagement and the range of feeds are obtained through orthogonal cutting test, whose processing parameters are optimized, then better processing results are achieved. Considering the problem of machining of ceramic materials, the techniques of mechanical cutting process, ceramic turning, grinding, drilling, are discussed.

  14. Expedited technology demonstration project. Project baseline revision 2.2 and FY96 plan

    International Nuclear Information System (INIS)

    The Expedited Technology Demonstration Project Plan, Mixed Waste Management Facility (MWMF) current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include feed preparation and feed delivery systems, and the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is provided. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in fiscal year 97, followed by the activation of feed preparation and final forms in fiscal year 98

  15. Manufacture and test of mechanical connections for ceramic heat exchanger tubes/ceramic sleeve-screw connection

    International Nuclear Information System (INIS)

    Goal of the project was the qualification of a mechanical connection for ceramic heat-exchanger tubes made from SiSiC. The tube ends with external screw threads are turned into a ceramic sleeve with internal threads. A flat sealing provides sufficient tightness. Tube compounds of approx. 4.7 m length were manufactured for a solar receiver test panel. In fall/winter 1987/88 the panel was successfully tested under realistic environmental and operational conditions up to 10000C air outlet temperature at the Plataforma Solar in Almeria/Spain, and the ceramic sleeve connection withstood all loads. The work was performed in completion of the German-Spanish Technology Program GAST (Gas-cooled Solar Tower Power Plant) in close cooperation with the companies MAN Technologie and Asinel. (orig.) With 8 refs., 1 tab., 14 figs

  16. Lithium ceramic of blankets intend for Russian fusion reactors and an influence of the ceramic properties on parameters of reactor tritium systems

    International Nuclear Information System (INIS)

    Russian Controlled Fusion Program involves development of a DEMO design and participation in ITER Project. A solid breeder blanket in DEMO contains a ceramic orthosilicate lithium breeder and a beryllium multiplier. Test Modules of the blanket are developed in a frame of ITER activities. Experimental models of tritium breeding zones (TBZ) for the Modules, materials and technology fabrication of the TBZ, tritium reactor systems to control and treat of gases released from lithium ceramic being developed. Two models of tritium breeding and neutron multiplying elements of the TBZ were designed, manufactured and have been tested already in IVV-2M nuclear reactor. The first model consists of lithium orthosilicate ceramic sphere pebbles (1-1.5 mm diameter) and beryllium sphere (0.1 and 1.0 mm diameter). Ceramic cylindrical pellets (11 mm diameter and 10 mm height) and porous beryllium (20% porosity) are in the second model. Some properties and microstructure of the ceramic elements are performed. Initial results of some changes of ceramic structure and in-pile experimental ratio of hydrogen and oxygen form of tritium release in helium/neon purge gas are presented. These results and outcome of irradiated LiAlO2, Li4SiO4 and Li2SiO3 ceramics in a water-graphite nuclear reactor are considered to be a DATE BASE for development of the Test Modules and the DEMO blanket and influence of the kinetic tritium release parameters on DEMO tritium systems are discussed. (author)

  17. A two year case study: Technology Assisted Project Supervision (TAPAS)

    OpenAIRE

    2009-01-01

    During their final year undergraduate project a student may feel under-supported, stressed or isolated. In an internally funded project we set out to investigate the benefits of using a diverse blend of collaboration and communication tools alongside traditional methods of final year project supervision. We established separate formal and informal communication channels between the supervisor and their project students and a community of practice of students and supervisors was set up using t...

  18. New business opportunity: Green field project with new technology

    Science.gov (United States)

    Lee, Seung Jae; Woo, Jong Hun; Shin, Jong Gye

    2014-06-01

    Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.

  19. New business opportunity: Green field project with new technology

    Directory of Open Access Journals (Sweden)

    Lee Seung Jae

    2014-06-01

    Full Text Available Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation

  20. Enabling Technologies for Fabrication of Large Area Flexible Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MesoScribe Technologies, a high tech start-up from SUNY-Stony Brook, proposes to apply a breakthrough new direct writing technology to meet the objectives set-forth...

  1. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  2. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to develop a novel high pressure "pump-on-a-chip" and "valve-on-a-chip" microfluidic technology for NASA planetary science...

  3. Teaching Engineering Statistics with Technology, Group Learning, Contextual Projects, Simulation Models and Student Presentations

    Science.gov (United States)

    Romeu, Jorge Luis

    2008-01-01

    This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…

  4. An Examination of the Determinants of Top Management Support of Information Technology Projects

    Science.gov (United States)

    Mahoney, Michael L.

    2011-01-01

    Despite compelling evidence that top management support promotes information technology project success, existing research fails to offer insight into the antecedents of top management support of such projects. This gap in the literature is significant since the exploitation of information technology offers organizations unique opportunities for…

  5. The AECT HistoryMakers Project: Conversations with Leaders in Educational Technology

    Science.gov (United States)

    Lockee, Barbara B.; Song, Kibong; Li, Wei

    2014-01-01

    The early beginnings and evolution of the field of educational technology (ET) have been documented by various scholars in the field. Recently, another form of historical documentation has been undertaken through a project of the Association for Educational Communications and Technology (AECT). The AECT HistoryMakers Project is a collaborative…

  6. Constructivism and Technology Use: Findings from the Impacting Leadership Project

    Science.gov (United States)

    Overbay, Amy; Patterson, Ashley S.; Vasu, Ellen S.; Grable, Lisa L.

    2010-01-01

    This study used two surveys, the Activities of Instruction 2.0 (AOI 2.0) and the School Technology Needs Assessment (STNA) to assess the relationship between teachers' level of constructivism and their level of technology use. Results indicate that constructivist practices and beliefs were significant predictors of technology use, after accounting…

  7. Thermal and structural analysis of a filter vessel ceramic tubesheet

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States); Zievers, J.F. [Industrial Filter & Pump Mfg. Co., Cicero, IL (United States)

    1995-08-01

    A ceramic tubesheet assembly for a hot gas filter vessel is analyzed using the finite element method to determine stresses under differential pressure loading. The stresses include local concentration effects. Selection of the stress measures for evaluation of structural integrity is discussed. Specification of stress limits based upon limited data is considered. Stress results from this ongoing design analysis technology project are shown for one design concept.

  8. Interfacing design and making of Ceramics_Paper

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede; Tamke, Martin; Evers, Henrik Leander

    2015-01-01

    research materiality through digital technology is considered in an extended way, as being the result of firstly the interaction of a designer with responding matter; here clay, - and secondly the process; here interventions by the designer, 3d printing, firing and glazing. The project used design as a...... aesthetic purposes, the printed ceramics express the playful and light movements of the hands and simultaneously the presence of materiality....

  9. Soil flushing, iron coprecipitation, and ceramic membrane filtration: Innovative technologies for remediating arsenic-contaminated soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Redwine, J.C. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-12-31

    This paper provides a brief description and case study of soil flushing to treat contaminated groundwater. Selected reagents may be added to the flushing water to enhance contaminant removal. In the iron coprecipitation process, and iron salt is added to the contaminated water and the pH is adjusted to induce precipitation of iron oxyhydroxides. During floc formation, trace elements adsorb onto the iron floc. Cross-flow ceramic membrane filtration can be used to remove any remaining contaminant in the feed stream. In field tests, an arsenic plume flushed with citric acid was reduced by 73 percent after 6 months of treatment.

  10. Bilişim Teknolojisi Projelerinde Reel Opsiyonlar (Real Options in Information Technology Projects)

    OpenAIRE

    KOCAKOÇ, İpek Deveci; Aysun Kapucugil İKİZ

    2009-01-01

    Many sources such as the immaturity, complexity and unpredictable evolution of the technologies themselves, and the difficulty of predicting the market demand generally cause uncertainty in the Information Technology (IT) projects. Managerial flexibility has value in the context of uncertain IT projects, as management can continuously gather information about uncertain project and market characteristics and, based on this information, change its course of action. As traditional capital budget...

  11. A proposed project risk management framework in the information technology environment / Herbert James van Antwerp

    OpenAIRE

    Van Antwerp, Herbert James

    2010-01-01

    Information Technology (IT) projects that resulted from the accelerated technological pace of change, will enable a path of growth and long term return on investment (ROI) for organisations. However, embarking on such large scale investments leave little opportunity to turn back, and sound project management principles will be required to effectively manage unforeseen issues during the project life cycle, and if these fail, the organisations will be constantly functioning in cr...

  12. Using Project Portfolio Management in a Junior Enterprise Technology

    Directory of Open Access Journals (Sweden)

    RIBEIRO, D. M.

    2011-06-01

    Full Text Available Junior Enterprises have their own particularities in managing of their projects. Scarcity of resources and lack of experience of its members are critics and typical factors in the daily life of these companies. However, these and other variables such as the time for return on investment, project complexity and runtime of the project, must be taken into consideration in the prioritization of the outstanding portfolio projects to maximize desired outcomes. The Portfolio Management aims to provide the company a better allocation of resources in an environment with multiple projects going simultaneously. The model proposed here seeks a link between projects and organizational strategy. In this Paper also are presented the results of applying the model on Upe consultoria JR.

  13. New Technologies for DNA analysis-A review of the READNA Project

    NARCIS (Netherlands)

    McGinn, Steven; Bauer, David; Brefort, Thomas; Dong, Liqin; El-Sagheer, Afaf; Elsharawy, Abdou; Evans, Geraint; Falk-Sörqvist, Elin; Forster, Michael; Fredriksson, Simon; Freeman, Peter; Freitag, Camilla; Fritzsche, Joachim; Gibson, Spencer; Gullberg, Mats; Gut, Marta; Heath, Simon; Heath-Brun, Isabelle; Heron, Andrew J; Hohlbein, Johannes; Ke, Rongqin; Lancaster, Owen; Le Reste, Ludovic; Maglia, Giovanni; Marie, Rodolphe; Mauger, Florence; Mertes, Florian; Mignardi, Marco; Moens, Lotte; Oostmeijer, Jelle; Out, Ruud; Pedersen, Jonas Nyvold; Persson, Fredrik; Picaud, Vincent; Rotem, Dvir; Schracke, Nadine; Sengenes, Jennifer; Stähler, Peer F; Stade, Björn; Stoddart, David; Teng, Xia; Veal, Colin D; Zahra, Nathalie; Bayley, Hagan; Beier, Markus; Brown, Tom; Dekker, Cees; Ekström, Björn; Flyvbjerg, Henrik; Franke, Andre; Guenther, Simone; Kapanidis, Achillefs N; Kaye, Jane; Kristensen, Anders; Lehrach, Hans; Mangion, Jonathan; Sauer, Sascha; Schyns, Emile; Tost, Jörg; van Helvoort, Joop M L M; van der Zaag, Pieter J; Tegenfeldt, Jonas O; Brookes, Anthony J; Mir, Kalim; Nilsson, Mats; Willcocks, Spike; Gut, Ivo G

    2015-01-01

    The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and deve

  14. The Effects of the Project Champion's Leadership Style on Global Information Technology User Acceptance and Use

    Science.gov (United States)

    Ekiko, Mbong C.

    2014-01-01

    The research problem was the lack of knowledge about the effect of leadership style of the project champion on global information technology (IT) project outcomes, resulting in a high failure rate of IT projects accompanied by significant waste of resources. The purpose of this quantitative, nonexperimental study was to evaluate the relationship…

  15. Success Rates by Software Development Methodology in Information Technology Project Management: A Quantitative Analysis

    Science.gov (United States)

    Wright, Gerald P.

    2013-01-01

    Despite over half a century of Project Management research, project success rates are still too low. Organizations spend a tremendous amount of valuable resources on Information Technology projects and seek to maximize the utility gained from their efforts. The author investigated the impact of software development methodology choice on ten…

  16. An Empirical Analysis of Technology Transfer of National R&D Projects in South Korea

    OpenAIRE

    Mi-Sun Kim; Dong-Ho Shin; Jae-Soo Kim; Byeong-Hee Lee

    2015-01-01

    This study is aimed at seeking policy implications for the policy makers of South Korean government and finding a direction to support R&D institutions in performing R&D activities more efficiently, by analyzing the factors influencing technology transfer of the national R&D projects. The data retrieved from NTIS (National Science & Technology Information Service) was used in analyzing the results of 575 projects with 1,903 cases of technology transfer, performed by the Ministry of Science, I...

  17. Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications

    OpenAIRE

    Nikoleta Andreadou; Miguel Olariaga Guardiola; Gianluca Fulli

    2016-01-01

    This paper provides a study of the smart grid projects realised in Europe and presents their technological solutions with a focus on smart metering Low Voltage (LV) applications. Special attention is given to the telecommunications technologies used. For this purpose, we present the telecommunication technologies chosen by several European utilities for the accomplishment of their smart meter national roll-outs. Further on, a study is performed based on the European Smart Grid Projects, highl...

  18. Information Technology Based System for Experience Transfer in Projects

    OpenAIRE

    Saadatakhtar, Ehsan

    2013-01-01

    Projects are per definition unique. However, there are several elements, such as solutions, methods, tools, etc. that are common to projects. In a time sensitive work environment, like project settings, it is highly beneficial to focus on making use of existing knowledge and solutions, and avoid ?reinventing the wheel?. This existing knowledge can be both explicit and tacit knowledge. Explicit refers to written knowledge, and tacit refers to experience and unwritten knowledge. Experience like...

  19. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  20. Northwest Open Automated Demand Response Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was

  1. Deploying innovative technologies to improve DOE D ampersand D project baselines

    International Nuclear Information System (INIS)

    The insertion of innovative technologies to replace baseline technologies used in cost estimation and planning of DOE D ampersand D projects is considered a high risk endeavor by project and programmatic decision makers. It is almost always considered safer to go with the open-quotes devil you knowclose quotes than use a new or untried technology, methodology or system. The decision on the specific technology to be utilized to remediate a problem is often made months or years in advance of execution, and the highly proscriptive documentation of agreements necessary to obtain stakeholder and regulator approval of remedial plans is often counterproductive to considering improved technologies

  2. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  3. How Undergraduate Students Use Social Media Technologies to Support Group Project Work

    Science.gov (United States)

    McAliney, Peter J.

    2013-01-01

    Technology continues to evolve and become accessible to students in higher education. Concurrently, teamwork has become an important skill in academia and the workplace and students have adopted established technologies to support their learning in both individual and team project work. Given the emergence of social media technologies, I examined…

  4. Scientific projection paper for cluster B: technology development

    International Nuclear Information System (INIS)

    This section deals with new technology developments in fields primarily concerned with dose reduction and matters relating to radiation protection rather than toward technology developments that might enhance the beneficial uses of ionizing radiation, except for the consideration of diagnostic techniques which may result in alternatives to ionizing radiation. Three major areas have been identified in which progress can be made via technology development: diagnostic radiology, occupational exposure and exposure of the public to radioactivity

  5. 日用陶瓷的低碳制备技术%LOW-CARBON PREPARATION TECHNOLOGY OF CERAMICS

    Institute of Scientific and Technical Information of China (English)

    王慧; 刘晓红; 郑卫东; 曾令可

    2011-01-01

    Global warming has become one of the world's most pressing problems, how to effectively prevent the emission of greenhouse gases are serious challenges what countries around the worm must face. For the high energy consumption, carbon dioxide emissions large ceramic industry, to achieve low-carbon production of ceramics is an important way to improve the competitiveness of enterprises.%全球气候变暖已成为当今世界最为严峻的问题之一,如何有效地防止温室气体的排放也是世界各国必须面临的严峻挑战。对于高能耗、二氧化碳排放量较大的陶瓷行业来说,实现陶瓷的低碳生产,是提高企业竞争力的一条重要途径。

  6. Affordable, Precision Reflector Mold Technology (PDRT08-029) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in replication mold technology that reduce material costs, grinding time, and polishing time would enable fabrication of large, precision molds and...

  7. Advanced Technology MEMS-based Acoustic Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation proposes a technological advancement of current state-of-the-art acoustic energy harvester for harsh environment...

  8. Advanced Multimission Operations Systems Tech (AMMOS) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AMMOS Technology tasks include: - Enhance mission planning and sequence generation tools with constraint based automated planning and scheduling techniques to...

  9. Tailored ceramics

    International Nuclear Information System (INIS)

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  10. Technological Innovation Projects: Proposal For an Integrative Model Between Project Management and Knowledge Management in a Customer-Supplier Perspective

    Directory of Open Access Journals (Sweden)

    Edval da Silva Tavares

    2014-10-01

    Full Text Available In face of strong competition, companies in Brazil have increased their financial investments in automation, offering new products and services and reducing operating costs. These companies are focusing their efforts on core competencies and, therefore, they often lack the internal expertise to implement new projects, especially those that bring technological innovation. For this reason, we use the processes of outsourcing or subcontracting to help implement such projects. The unit of analysis in this study is the project and the object of the study to analyze the process of knowledge transfer from a provider to a customer during the duration of the project, which involves new technologies. The main motivation of this work is to address the acquisition and retention of new knowledge related to projects designed for business customers. We have developed a study of three cases of multiple financial firms that buy new technologies and two suppliers of information technology. As a practical result, a management model of knowledge transfer and retention of knowledge in client companies is proposed and incorporated into project management.

  11. Avionics Technology Contract Project Report Phase I with Research Findings.

    Science.gov (United States)

    Sappe', Hoyt; Squires, Shiela S.

    This document reports on Phase I of a project that examined the occupation of avionics technician, established appropriate committees, and conducted task verification. Results of this phase provide the basic information required to develop the program standards and to guide and set up the committee structure to guide the project. Section 1…

  12. Techport Input for Propulsive Descent Technologies (PDT) Project

    Science.gov (United States)

    Campbell, Charles H.

    2013-01-01

    The PDT project will investigate the use of retro propulsion during the supersonic phase of atmospheric entry for Mars missions. The project technical approach involves a combination of procurement and evaluation of commercially provided flight data, development of candidate vehicle configurations, and engineering calibration of computational fluid dynamics models to the available flight data.

  13. A Manhattan Project in Educational Technology, Part II.

    Science.gov (United States)

    Roberts, Wesley K.

    The initial four phases of the Training Extension Course (TEC), a project to remedy deficiencies in training programs for armed forces recruits, employed systematic instructional development and extensive audiovisual resources. The project required subcontracting for lesson production and modifications in personnel and budgeting. Posttest evidence…

  14. Interdisciplinary Project-Based Learning: Technology for Improving Student Cognition

    Science.gov (United States)

    Stozhko, Natalia; Bortnik, Boris; Mironova, Ludmila; Tchernysheva, Albina; Podshivalova, Ekaterina

    2015-01-01

    The article studies a way of enhancing student cognition by using interdisciplinary project-based learning (IPBL) in a higher education institution. IPBL is a creative pedagogic approach allowing students of one area of specialisation to develop projects for students with different academic profiles. The application of this approach in the Ural…

  15. Achievement report for fiscal 1998 on research and development of industrial science technologies. Research and development on synergy ceramics (research and development of ultra-high temperature gas turbines for electric power generation); 1998 nendo shinaji ceramics no kenkyu kaihatsu. Hatsuden'yo koon gas turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper describes development of synergy ceramics. In developing a technology to design property fusion processes, studies were made on control of nano-structures by using a high-order nano-structure process, and on evaluation of micro region properties. Such nanocomposite bodies were selected for the object as piezoelectric ceramics PZT group (which increases mechanical characteristics and durability without impeding electric characteristics) and alumina-group YAG (which enhances high-temperature strength). Three-dimensional analyses were performed on particle morphology and crack structures by using focusing ion beams as a study on destruction behavior by means of microscopic and macroscopic particle morphology control. This paper reports the achievements of research and development on control of continuous small pore morphology (uni-directionally pierced pores on a new-type low expansion material used as matrix), intra-particle interface (discusses methods to micronize silicon nitride ceramics tissues), intra-layer interface (oxide-based ceramics are laminated on surface to improve oxidation and heat resistance without impeding high-temperature mechanical properties of non-oxide-based ceramics), intra-layer boundary (Pb-based double composition piezoelectric body having stable layer interface), and boundaries between inorganic and organic matters. (NEDO)

  16. Geothermal materials project input for conversion technology task

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1990-08-01

    This ongoing laboratory-based high risk/high payoff R and D program has already yielded several durable cost-effective materials of construction for geothermal energy processes. In FY 1991, R and D in the following areas will be performed: (1) development and downhole testing of advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight (1.1 g/cc) well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive scale-resistant composites for heat-exchanger tubing, (4) high-temperature chemical coupling materials which can be used to bond elastomers to steel substrates, and (5) high-temperature elastomers for use in downhole drill motors. Contingent upon the results, work on heat-exchanger tubing and lost-circulation control materials will be completed FY 1991 and the other activities will be continued in FY 1992. Work on other materials needs will commence in FY 1992. These include the in situ conversion of drilling fluids into well-completion materials and ceramic-type well casing. All of the subtasks will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. Results to date are discussed. 2 refs., 2 figs., 2 tabs.

  17. Digital Dance Literacy: An Integrated Dance Technology Curriculum Pilot Project

    Science.gov (United States)

    Risner, Doug; Anderson, Jon

    2008-01-01

    Although the technological methods in which dance artists create, develop, document and present their work have grown significantly over the past two decades, technology education in undergraduate dance curricula in the US often remains peripheral. Some dance programs in higher education, especially those with graduate programs, now include a…

  18. Space Technology and GIS Applications in ADB Projects

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    Space technology and geographic information systems (GIS) have now become valuable tools in helping development organizations achieve their missions. They can be applied to various development sectors including agriculture, rural development, and food security; education; energy; environment; climate change; health; pubic management and governance (especially disaster risk management); transport; urban development; and water management. This report provides an overview of the space technology...

  19. FACTORS EFFECTING TECHNOLOGY ACQUISITION DECISIONS IN NATIONAL DEFENSE PROJECTS

    Directory of Open Access Journals (Sweden)

    Gökhan ASTAN

    2015-04-01

    Full Text Available “Defense Industry” (DI not only strengthens the military power of a country, but also effects other fields of technology and economy positively and enables countries to be much more powerful in terms of their competitiveness in technology and knowledge instead of merely being a follower and a continuous customer. If a state seeks to have high-tech and capable DI the only foundation is to create a national environment which is managed based on a systematic ”Technology Management” philosophy and well-defined “Acquisition” process. With already reduced resources, it is crucial to spend money for the most needed and right technology. Consequently, the focus of this study is on the “Acquisition" and "Technology Transfer" (TT concepts and approaches. As such the different TT methods are compared and their advantages and disadvantages discussed. In the last part of the study, DI is described and assessed in terms of the TT methods.

  20. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented

  1. A Proposal to Manage Lessons Learned in Projects: Web 2.0 Technologies to Promote Innovation

    Directory of Open Access Journals (Sweden)

    Marcirio Silveira Chaves

    2014-06-01

    Full Text Available The web 2.0 is transforming the project management in organizations by improving communication and collaboration. The new generation of web-based collaborative tools provides much better experience than the traditional software package allowing document sharing, integrated task tracking, enforcing team processes and agile planning. Despite of the indubitable benefits brought by web 2.0, the use of these technologies to promote knowledge management remains unexplored. For many project managers to obtain and integrate information from different tools of previous similar projects in global organizations remains a challenge. This theoretical paper presents a proposal that suggests an innovation in the knowledge management area applying web 2.0 technologies. The main goal is to provide an integrated vision of a set of technologies that could be used by organizations in order to promote better management of lessons learned. The proposal includes the lessons learned processes (e.g. capture, share and dissemination, the process-based (e.g. project review and after action review and documentation-based (e.g. micro article and learning histories methods. Results show how web 2.0 technologies can help project managers and team project to cope with the main lessons learned processes and methods to learn from experience. Moreover, recommendations are made for the effective use of web 2.0 components promoting innovation and supporting lessons learned management in projects.Keywords: Project management; Lessons learned processes; lessons learned methods; project learning; web 2.0 technologies; innovation.

  2. Guide on Project Web Access of SFR R and D and Technology Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Won, Byung Chool; Lee, Yong Bum; Kim, Young In; Hahn, Do Hee

    2008-09-15

    The SFR R and D and technology monitoring system based on the MS enterprise project management is developed for systematic effective management of 'Development of Basic Key Technologies for Gen IV SFR' project which was performed under the Mid- and Long-term Nuclear R and D Program sponsored by the Ministry of Education, Science and Technology. This system is a tool for project management based on web access. Therefore this manual is a detailed guide for Project Web Access(PWA). Section 1 describes the common guide for using of system functions such as project server 2007 client connection setting, additional outlook function setting etc. The section 2 describes the guide for system administrator. It is described the guide for project management in section 3, 4.

  3. Guide on Project Web Access of SFR R and D and Technology Monitoring System

    International Nuclear Information System (INIS)

    The SFR R and D and technology monitoring system based on the MS enterprise project management is developed for systematic effective management of 'Development of Basic Key Technologies for Gen IV SFR' project which was performed under the Mid- and Long-term Nuclear R and D Program sponsored by the Ministry of Education, Science and Technology. This system is a tool for project management based on web access. Therefore this manual is a detailed guide for Project Web Access(PWA). Section 1 describes the common guide for using of system functions such as project server 2007 client connection setting, additional outlook function setting etc. The section 2 describes the guide for system administrator. It is described the guide for project management in section 3, 4

  4. Glass and ceramics. [lunar resources

    Science.gov (United States)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  5. Demonstration of Submillimeter Astrophysics Technology at Caltech Submillimeter Observatory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The following are the objectives of this project:(1) Demonstration of 1600-element Kinetic Inductance Detector (KID) imaging array operating at 350 micron with near...

  6. Keynote presentation: Project Management, Technology and Evolving Work Processes

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    , Aarhus University. First, this Project Management course involves continual, ongoing development through working with real clients. To learn about project management from a communications perspective, learners were asked to work in teams for project conception and planning. To communicate with the client...... project management documents looked like, but also how these documents are interconnected and work together to solve a problem. In addition, as they were in communication with a real client, they needed to work iteratively, ch anging their understanding of the problem, which in turn changed their options...... for solving the problem as well as planning and communicating the solution. This dynamic participation in problem solving helped students gain experience beyond recognition and reproduction  Campus Encounters – Bridging Learners Conference “Developing Competences for Next Generation Service Sectors...

  7. Fast GC for Space Applications Based on PIES Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project is aimed at the development of an analytical instrument which combines the advantages of fast gas chromatography (GC) and a detector that...

  8. GIS Technology: Resource and Habitability Assessment Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a one-year project to apply a GIS analysis tool to new orbital data for lunar resource assessment and martian habitability identification.  We used...

  9. Adaptive Deployable Entry and Placement Technology (ADEPT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ADEPT Project is developing a mechanically deployable low-ballistic coefficient aeroshell entry system to perform entry descent landing (EDL) functions for...

  10. New technologies for DNA analysis - a review of the READNA Project.

    Science.gov (United States)

    McGinn, Steven; Bauer, David; Brefort, Thomas; Dong, Liqin; El-Sagheer, Afaf; Elsharawy, Abdou; Evans, Geraint; Falk-Sörqvist, Elin; Forster, Michael; Fredriksson, Simon; Freeman, Peter; Freitag, Camilla; Fritzsche, Joachim; Gibson, Spencer; Gullberg, Mats; Gut, Marta; Heath, Simon; Heath-Brun, Isabelle; Heron, Andrew J; Hohlbein, Johannes; Ke, Rongqin; Lancaster, Owen; Le Reste, Ludovic; Maglia, Giovanni; Marie, Rodolphe; Mauger, Florence; Mertes, Florian; Mignardi, Marco; Moens, Lotte; Oostmeijer, Jelle; Out, Ruud; Pedersen, Jonas Nyvold; Persson, Fredrik; Picaud, Vincent; Rotem, Dvir; Schracke, Nadine; Sengenes, Jennifer; Stähler, Peer F; Stade, Björn; Stoddart, David; Teng, Xia; Veal, Colin D; Zahra, Nathalie; Bayley, Hagan; Beier, Markus; Brown, Tom; Dekker, Cees; Ekström, Björn; Flyvbjerg, Henrik; Franke, Andre; Guenther, Simone; Kapanidis, Achillefs N; Kaye, Jane; Kristensen, Anders; Lehrach, Hans; Mangion, Jonathan; Sauer, Sascha; Schyns, Emile; Tost, Jörg; van Helvoort, Joop M L M; van der Zaag, Pieter J; Tegenfeldt, Jonas O; Brookes, Anthony J; Mir, Kalim; Nilsson, Mats; Willcocks, James P; Gut, Ivo G

    2016-05-25

    The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively. PMID:26514324

  11. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  12. Calibration/Validation Technology for the CO2 Satellite Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to develop high altitude CO2 analyzer technology that can be deployed on the research aircraft of NASA's Airborne Science Program (ASP). The...

  13. Lightweight Pump Technology for Advanced Green Monopropellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima will develop an innovative light weight self-pressurizing pump (SPP) technology to provide a constant-pressure supply of monopropellant to a spacecraft or...

  14. Prototype-Technology Evaluator and Research Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and flight tested the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  15. Polymer Matrix Composites using Fused Deposition Modeling Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  16. Technologies Enabling Exploration of Skylights, Lava Tubes and Caves Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Missions to date have orbited and roved, but sub-planetary worlds elude exploration. This investigation proposes to develop technology for venturing underground...

  17. Biomedical Monitoring by a Novel Noncontact Radio Frequency Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This technology will be a quantum advance in cardiac monitoring and will be applicable in numerous situations such as for immediate assessment and monitoring...

  18. An MMOD Risk Mitigation Technology for Spacecraft TPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed technology uses nitrogen or helium gas and water to prevent structural damage that could lead to loss of vehicle and loss of crew caused by high...

  19. Novel Polymer Microfluidics Technology for In Situ Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new polymer based microfluidics technology for NASA planetary science applications. In particular, we will design, build...

  20. Health-Enabled Smart Sensor Fusion Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proven that the combination of smart sensors with embedded metadata and wireless technologies present real opportunities for significant improvements in...

  1. Automated Service Discovery using Autonomous Control Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the advent of mobile commerce technologies, the realization of pervasive computing and the formation of ad-hoc networks can be leveraged to the benefit of the...

  2. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  3. A project in support of Nuclear Technology Cooperation

    International Nuclear Information System (INIS)

    Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy informations and computer software developed in the advanced countries. - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate

  4. Managing quality inside a high-technology project organization

    OpenAIRE

    Jokinen, T

    2004-01-01

    Abstract This action research addresses the deployment of Total Quality Management (TQM) principles in a high-technology new product development organisation. During the period of study, the organisation grew fast. High-technology product development and hypergrowth provided a unique combination of extreme conditions for the study. The existing concepts of TQM are presented as an organised map enabling strategic analysis for an implementation plan. The history of TQM dates back to the ...

  5. The Mixed Waste Management Facility: A DOE technology demonstration project

    International Nuclear Information System (INIS)

    The Mixed Waste Management Facility (MWMF) is a national demonstration test bed that will be used to evaluate, at pilot scale, emerging technologies for the effective treatment of low-level radioactive, organic mixed wastes. The treatment technologies will be selected from candidates of advanced processes that have been sufficiently demonstrated in laboratory and bench-scale tests, and most closely meet suitable criteria for demonstration. The primary and initial goal will be to demonstrate technologies that have the potential to effectively treat a selection of organic-based mixed waste streams, currently in storage within the DOE, that list incineration as the best demonstrated available technology (BDAT). In future operations, the facility may also be used to demonstrate technology that addresses a broader range of government, university, medical, and industry needs. The primary objective of the MWMF is to demonstrate integrated mixed-waste processing technologies. While primary treatment processes are an essential component of integrated treatment trains, they are only a part of a fully integrated demonstration

  6. Survey on the Technology Readiness Level of R and D projects for a Technical Risk Management

    International Nuclear Information System (INIS)

    The purpose of applying the Technology Readiness Level/Design Readiness Level (TRL/DRL) in technical risk management is to make technology assessments, and improve communication among researchers with a consistent, systematic technology readiness Technical risk management for the Nuclear Hydrogen Production project was adopted of experience assessed with Delphi Method from the Next Generation Nuclear Plant(NGNP)of the DOE to improve the poor contactor management of the major projects which experienced cost increases and/or schedule delays in long-term. In the current phase that is doing key technology research and development projects, the technology readiness level was reviewed and applied to the Nuclear Hydrogen Production project to prepare an input for the next design phases. Based on the previous works, pre-conceptional design and key R and D works for the Nuclear Hydrogen Design and Development(NHDD) projects and the results of key research and development projects, the TRL was applied to assess the levels and compared with the advanced design stages of Westinghouse Electric Co. With this process, several issues were identified to apply the design and technology level to the familiar steps of design process and research and development projects. In order to resolve these issues, it is needed to systematically adjust and modify the current process with TRLs

  7. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175. ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  8. Radiation technology for sewage sludge treatment: The Argentine project

    International Nuclear Information System (INIS)

    Within the environmental applications of ionizing radiation, disinfection of wastewaters or sewage sludges is one of the most best known. Argentina based the project of a full scale irradiation plant on the gamma irradiation application, utilizing Argentine made Cobalt-60 sources. The design characteristics, process descriptions and costs are included. The research project developed information about the irradiation effects on the sludges with respect to plant performance. For the purpose of oxi-irradiation experiments, a lab-scale pool irradiator was constructed and is described. (author)

  9. Laser Micromachining of Ceramics

    OpenAIRE

    Sciti, Diletta; Bellosi, Alida

    2011-01-01

    Laser surface processing of ceramics is an area of considerable technological importance for several structural, tribological, optical and electronic applications. The laser beam behaves as a heat source that induces a temperature rise on the surface and within the bulk of the material. Depending on laser parameters and material characteristics, lasers can be used for fabricating microholes at designated locations, for cutting, scribing, for surface modifications In this work different types ...

  10. Advanced ceramics: the present and the perspectives

    International Nuclear Information System (INIS)

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author)

  11. Phase Change Permeation Technology for Environmental Control & Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will explore a recent advancement in Phase Change Permeation™ technology to enable improved (1) water recovery from urine/brine for Environmental...

  12. Surface Ceramic Coating Technology by Microarc Oxidation%铝合金微弧氧化生成陶瓷膜的研究

    Institute of Scientific and Technical Information of China (English)

    贺子凯; 蒋玉思

    2001-01-01

    微弧氧化又称阳极火化沉积技术或等离子体增强电化学陶瓷化技术.该技术生成的膜与基体金属结合牢固,厚度可达230 μm,绝缘电阻大于100 MΩ,硬度达2500 HV,大大改善了轻金属的耐磨性、耐蚀性和耐热冲击性,工件尺寸变化小.本文研究在铝合金表面微弧氧化制备陶瓷化氧化膜,以期改善铝合金的耐磨特性.讨论了影响制备陶瓷弧氧化膜的主要因素.%Microarc oxidation,is called by anodic oxidation,or plasma enhanced electrochemical surface ceramic coating technology.The films formed on the metal combine with the substrate firmly,are up to 230 μm thick.Its dielectric resistor is 100 MΩ,and microhardness is up to 2500 HV.These properties better the wear resistance,corrosion resistance and thermal property of the light metals.The work piece changes little in size.The paper studied the ceramic coating was attempted to prepare on the surface of the aluminium alloy by microarc oxidation to improve its abrasion resistance.The major factors affecting the vifreous films were discussed.

  13. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    MAY TH

    2008-08-12

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revision includes information on additional feed tanks.

  14. A project in support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung; Choi, Pyong Hoon; Yi, Ji Ho (and others)

    2005-12-15

    Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy informations and computer software developed in the advanced countries. - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate.

  15. Status of the JET project and its supporting technological programme

    International Nuclear Information System (INIS)

    A brief review of the overall design of the JET facility is given. Particular JET components described include the vacuum system, toroidal field coils, poloidal system, power supplies, control and data acquisition, and status of the project towards the construction phase

  16. The ARROWS project: adapting and developing robotics technologies for underwater archaeology

    OpenAIRE

    Allotta,Benedetto; Costanzi, Riccardo; Ridolfi, Alessandro; Colombo, Carlo; Bellavia, Fabio; Fanfani, Marco; Pazzaglia, Fabio; Salvetti, Ovidio; Moroni, Davide; Pascali, Maria Antonietta; Reggiannini, Marco; Kruusmaa, Maarja; Salumae, Taavi; Frost, Gordon; Tsiogkas, Nikolaos

    2015-01-01

    ARchaeological RObot systems for the World's Seas (ARROWS) EU Project proposes to adapt and develop low-cost Autonomous Underwater Vehicle (AUV) Technologies to significantly reduce the cost of archaeological operations, covering the full extent of archaeological campaign. ARROWS methodology is to identify the archaeologists requirements in all phases of the campaign and to propose related technological solutions. Starting from the necessities identified by archaeological project partners in ...

  17. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  18. Decision Point 2 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip

    2011-08-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the “CerFab”) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the “ITM Oxygen Development Facility”), and to perform supporting development tasks in materials development an engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 2, which pertains to progress in Materials Development, Engineering Development, and construction of the CerFab, with an emphasis on establishing the environmental permitting required prior to the next Decision Point. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Also in this area, Ceramatec has made significant progress in developing Advanced Architecture wafers and modules by advancing in parallel with two production methods of the Advanced Architecture components and determining the appropriate equipment required to make these components at high volume in the CerFab. Work in this area continues to refine the CerFab requirements. Under Engineering Development, Air Products has developed various concepts around use of ITM in industrial applications to reduce carbon footprint though process integrations that result in less fuel requirement. Air Products also developed notions around hybrid cryogenic air separation plants with ITM Oxygen plants for scale

  19. NPP advanced pipework technologies: recent backfitting projects and computational analyses

    International Nuclear Information System (INIS)

    Some recent international NPP projects involving advanced engineering services for existing installations, such as replacement of valves, containment penetrations and pipework as well as design and installations of pipe supports and dynamic restraints, are summarized. Examples of thermomechanical analyses of operational phenomena performed as part of comprehensive plant design, licensing, and commissioning support activities are presented. Turnkey project management with system function warranty resulted in most effective use of all resources drawn together from several high-qualified subcontractors and international equipment manufacturers working under the supervision of an in-house team. Experience collected to date in backfitting various plants of different design and age provides a strong knowledge basis. It is available for evaluating any plant currently in operation or under construction in order to check the need for modifications and recommend the appropriate scheduling and level of effort. (authors)

  20. Becoming Little Scientists: Technologically-Enhanced Project-Based Language Learning

    Science.gov (United States)

    Dooly, Melinda; Sadler, Randall

    2016-01-01

    This article outlines research into innovative language teaching practices that make optimal use of technology and Computer-Mediated Communication (CMC) for an integrated approach to Project-Based Learning. It is based on data compiled during a 10- week language project that employed videoconferencing and "machinima" (short video clips…

  1. Using Information Technology to Forge Connections in an Extension Service Project

    Science.gov (United States)

    Schneider, Sandra B.; Brock, Donna-Jean P.; Lane, Crystal Duncan; Meszaros, Peggy S.; Lockee, Barbara B.

    2011-01-01

    A hybrid Extension project is introduced that uses a traditional Extension delivery model without the complete infrastructure of Cooperative Extension Services. The absence of this local organizational support and infrastructure necessitates new thinking regarding how Information Technology (IT) can support this project and hybrid Extension…

  2. Groundwater/Vadose Zone Integration Project Science and Technology Summary Description

    International Nuclear Information System (INIS)

    This volume of the Project Description for the Groundwater/Vadose Zone Integration Project contains the Science and Technology roadmap. Roadmapping is a process in which problem holders come together with problem solvers to define problems and establish a path to solution

  3. Groundwater/vadose zone integration project science and technology summary description

    International Nuclear Information System (INIS)

    This volume of the Project Description for the Groundwater/Vadose Zone Integration Project contains the Science and Technology roadmap. Roadmapping is a process in which problem holders come together with problem solvers to define problems and establish a path to solution

  4. Automotive technology status and projections. Volume 1: Executive summary

    Science.gov (United States)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  5. Progress of Project “The Key Technology Research of Passive Shutdown System for CDFR”

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Passive shutdown technology is one of the key technologies to increase safety performance of larger-size sodium-cooled fast reactors. The objective to the project was to develop the preliminary design of the rod on the basis of theoretic analysis of passive shutdown assembly.

  6. Technological stakes of LHC, the large superconducting collider in project at CERN

    International Nuclear Information System (INIS)

    The LHC large superconducting particle collider project is presented, with particular emphasis on its major technological requirements and returns, mostly in the domains of high-field electromagnets, superfluid helium cryogenics, and integration of such advanced techniques in a large machine. The corresponding cooperation and technological transfer to European laboratories and industries are briefly discussed

  7. Technology Outlook for Australian Tertiary Education 2013-2018: An NMC Horizon Project Regional Analysis

    Science.gov (United States)

    Johnson, L.; Adams Becker, S.; Cummins, M.; Freeman, A.; Ifenthaler, D.; Vardaxis, N.

    2013-01-01

    The "Technology Outlook Australian Tertiary Education 2013-2018: An NMC Horizon Project Regional Analysis" reflects a collaborative research effort between the New Media Consortium (NMC) and Open Universities Australia to help inform Australian educational leaders about significant developments in technologies supporting teaching,…

  8. PROJECT W-551 INTERIM PRETREATMENT SYSTEM TECHNOLOGY SELECTION SUMMARY DECISION REPORT AND RECOMMENDATION

    International Nuclear Information System (INIS)

    This report provides the conclusions of the tank farm interim pretreatment technology decision process. It documents the methodology, data, and results of the selection of cross-flow filtration and ion exchange technologies for implementation in project W-551, Interim Pretreatment System. This selection resulted from the evaluation of specific scope criteria using quantitative and qualitative analyses, group workshops, and technical expert personnel

  9. PROJECT W-551 INTERIM PRETREATMENT SYSTEM TECHNOLOGY SELECTION SUMMARY DECISION REPORT AND RECOMMENDATION

    Energy Technology Data Exchange (ETDEWEB)

    CONRAD EA

    2008-08-12

    This report provides the conclusions of the tank farm interim pretreatment technology decision process. It documents the methodology, data, and results of the selection of cross-flow filtration and ion exchange technologies for implementation in project W-551, Interim Pretreatment System. This selection resulted from the evaluation of specific scope criteria using quantitative and qualitative analyses, group workshops, and technical expert personnel.

  10. The Salt (Science-Arts-Language-Technology) Comenius Project: Primary School Students' Views about Salt

    OpenAIRE

    Ursula ONDRATSCHEK; BALIM, Ali Günay; Suat TURKOGUZ

    2015-01-01

    This study aimed to investigate students' views towards salt structure, properties and application areas. "The SALT Comenius Project" initiated activities in 2012. This project was conducted with 10 European countries including Turkey, Germany, Italy, Poland, Greece, Spain, Estonia, Austria, Romania, and Scotland. The aim of this project is to develop friendships between primary school students through science, art, language, technology, and culture and to increase students' attention toward...

  11. Application for the technology overview of web projects based on automatic analysis of repositories

    OpenAIRE

    POLANC, ALJANA

    2016-01-01

    This thesis comprises the development and presentation of an application which aims to facilitate the overview of the technical and other data of web projects that are being developed or maintained in a company. The application automatically updates the collection of relevant data of the web projects by integrating with the GitHub web service, where it obtains the information regarding programming languages, libraries, other technologies, project contributors and other important data. In the ...

  12. OPM3® Portugal project: information systems and technologies organizations: outcome analysis

    OpenAIRE

    Silva, David Renato Macedo Alves da; Tereso, Anabela Pereira; Fernandes, Aldora Gabriela Gomes; Loureiro, Isabel F.; Pinto, José Ângelo

    2015-01-01

    Increasing the maturity in Project Management (PM) has become a goal for many organizations, leading them to adopt maturity models to assess the current state of its PM practices and compare them with the best practices in the industry where the organization is inserted. One of the main PM maturity models is the Organizational Project Management Maturity Model (OPM3®), developed by the Project Management Institute. This paper presents the Information Systems and Technologies organizations out...

  13. Management Technologies - Are they worth it? A normative study of ISO 9001 and Project Management

    OpenAIRE

    Kavanagh, Donncha; Naughton, Ed; Corkery, Elaine; O'Sullivan, Kathleen

    2009-01-01

    This research inquires into the value of two common 'management technologies', namely ISO 9001 and project management. To avoid certain methodological problems, we study the value of these micro-level practices by inductively analysing macro-level data, specifically the intensity of project management and ISO 9001 certification (termed project management score and ISO 9001 score) in different countries against national measures of wealth and innovation. There is no correlation between ISO 900...

  14. The relationship between systems development methodologies and Information Technology project success / Maphisa Shirley Nkone

    OpenAIRE

    Nkone, Maphisa Shirley

    2013-01-01

    The purpose of this study was to investigate the relationship between systems development methodologies (SDMs) and the success of Information Technology (IT) projects. The study also seeks to find other critical success factors (CSFs) that influence IT projects success. What initiated this study, with reference to the literature review, is the apparent general view that IT project deliveries are still late, over budget, and unpredictable (Chow & Cao, 2008:961; The Standish Group, 2004). To...

  15. Edulabs for the Integration of Technologies in Basic Education – Monitoring the AGIRE Project

    OpenAIRE

    Pombo, Lúcia; Carlos, Vânia; Loureiro, Maria João

    2015-01-01

    The AGIRE project is a partnership between the University of Aveiro, a consortium comprising 26 companies related to teaching and learning, and one School Grouping, with the financial support of QREN. The project is embedded into the Edulab concept (school laboratories with technological equipment, as tablets, laptops, whiteboards, and educational materials such as eBooks and learning platforms) to promote the adoption of innovative teaching practices. The project stems from identified contex...

  16. Development of Welding and Hardfacing Technology: Challenges for ASTRID project

    International Nuclear Information System (INIS)

    ASTRID Welding and Hardfacing Technology: Conclusion → Developments of Welding and Hardfacing Technology are undertaken through the evaluation of different solutions: • non commercial electrodes & experimental solid wires for 316L(N); • experimental & commercial solid wires for grade 91; • nickel-base hardfacings. ⟹ Define welding and hardfacing products specifications, finalize design of components…. → Further steps should integrate a qualification approach of products and processes, and should conduct industrial developments to solve manufacturing issues, as: • parts alignment issues for Narrow Gap welding; • the development of alternatives processes (EBW, GMAW…); • specific developments for made-to-measure tube-to-tubesheet welding; • chosen alternative hardfacing solutions for a given application; • dimensional tolerances and deformations for alternative hardfacing…. → In support: a large long-term R&D program on representative joints and hardfacing sollicitated under representative conditions

  17. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    Science.gov (United States)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  18. Diagnostic framework and health check tool for engineering and technology projects

    Directory of Open Access Journals (Sweden)

    Simon P Philbin

    2014-10-01

    Full Text Available Purpose: Development of a practitioner oriented diagnostic framework and health check tool to support the robust assessment of engineering and technology projects.Design/methodology/approach: The research is based on a literature review that draws together insights on project assessment and critical success factors to establish an integrated systems view of projects. This is extended to allow a comprehensive diagnostic framework to be developed along with a high-level health check tool that can be readily deployed on projects. The utility of the diagnostic framework and health check tool are explored through three illustrative case studies, with two from Canada and one from the United Kingdom. Findings andOriginality/value: The performance of engineering and technology projects can be viewed through a systems perspective and being a function of six sub-systems that are: process, technology, resources, impact, knowledge and culture. The diagnostic framework that is developed through this research integrates these sub-systems to provide a comprehensive assessment methodology for projects, which is linked to existing best practice for project reviews, performance management and maturity models. The case studies provide managerial insights that are related to the diagnostic framework but crucially also position the approach in the context of industrial applications for construction engineering and technology management.Research limitations/implications: The case study approach includes two case studies from the construction and facilities development sector with the third case study from the research and technology sector. Further work is required to investigate the use of the diagnostic framework and health check tool in other sectors.Practical implications: The health check tool will be of practical benefit to new projects managers that require access to a robust and convenient project review methodology for assessing the status and health of a

  19. One high performance technology of infrared scene projection

    Science.gov (United States)

    Wang, Hong-jie; Qian, Li-xun; Cao, Chun; Li, Zhuo

    2014-11-01

    Infrared scenes generation technologies are used to simulate the infrared radiation characteristics of target and background in the laboratory. They provide synthetic infrared imagery for thermal imager test and evaluation application in the infrared imaging systems. At present, many Infrared scenes generation technologies have been widely used, and they make a lot of achievements. In this paper, we design and manufacture one high performance IR scene generation technology, and the whole thin film type transducer is the key, which is fabricated based on micro electro mechanical systems (MEMS). The specific MEMS technological process parameters are obtained from a large number of experiments. The properties of infrared scene generation chip are investigated experimentally. It achieves high resolution, high frame, and reliable performance, which can meet the requirements of most simulation system. The radiation coefficient of the thin film transducer is measured to be 0.86. The frame rate is 160 Hz. The emission spectrum is from 2μm to 12μm in infrared band. Illuminated by the visible light with different intensities the equivalent black body temperature of transducer could be varied in the range of 290K to 440K. The spatial resolution is more than 256×256.The geometric distortion and the uniformity of the generated infrared scene is 5 percent. The infrared scene generator based on the infrared scene generation chip include three parts, which are visual image projector, visual to thermal transducer and the infrared scene projector. The experimental results show that this thin film type infrared scene generation chip meets the requirements of most of hardware-in-the-loop scene simulation systems for IR sensors testing.

  20. A Project in Support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deok Ku; Kim, Kyoung Pyo; Ko, Young Chel (and others)

    2006-12-15

    Establish strategies of international cooperation in an effect to promote our nation's leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. Using the INIS output data, it has provided domestic users with searching. Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing.