WorldWideScience

Sample records for ceramic surfaces modified

  1. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    Science.gov (United States)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  2. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Using Auger electron spectroscopy and secondary electron microscopy, studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel in order to determine the types of surface changes leading to the improved friction and wear behaviour of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behaviour. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions. (author)

  3. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  4. Silicalite-1 zeolite membranes on unmodified and modified surfaces of ceramic supports: A comparative study

    Indian Academy of Sciences (India)

    M K Naskar; D Kundu; M Chatterjee

    2009-10-01

    Silicalite-1 zeolite membranes were prepared hydrothermally on the porous ceramic supports, both unmodified and modified with 3-aminopropyl triethoxysilane (APTES) as a coupling agent following ex situ (secondary) crystal growth process. The microstructure of the membranes was examined by scanning electron microscopy (SEM). The permeation study with a single gas, nitrogen (N2) was performed through the membranes. For the surface modified support, a more surface coverage of the seed crystals on the porous support was observed resulting in a relatively higher dense packing of the crystals during secondary crystal growth process compared to that obtained from the unmodified support. The membrane developed on surface modified support rendered lower permeance value i.e. 9 × 10-7 mol m-2 s-1 Pa-1 of N2 compared to that formed on the unmodified support which gave permeance value of 20 × 10-7 mol m-2 s-1 Pa-1 of N2.

  5. Enhancing Polymer-Modified Mortar Adhesion to Ceramic Tile Surface by Chemical Functionalization with Organosilanes

    Science.gov (United States)

    Mansur, Alexandra Ancelmo Piscitelli; Do Nascimento, Otávio Luiz; Mansur, Herman Sander

    Adhesion between tiles and mortars is of paramount importance to the overall stability of ceramic tile systems. In this sense, from the chemical perspective, weak forces such as van der Waals forces and hydrophilic interactions are expected to occur preferably at the tiles and polymer-modified Portland cement mortar interfaces. Thus, the main goal of this study was to chemically modify the ceramic tile surface through organosilanes aiming to improve adhesion with polymer-modified mortars (PMMs). Glass tile surfaces were treated with five silane derivatives bearing specific functionalities. Fourier transform infrared spectroscopy and contact angle measurements were used for characterizing the novel surfaces produced as the chemical moieties were immobilized onto them. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate) modified mortar. The bond strength results have given strong evidence of the improvement on adherence at the tile-PMM interface, reflecting the whole balance of silane, cement, and polymer interactions.

  6. Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.

    Science.gov (United States)

    Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara

    2016-12-01

    Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface. PMID:27612809

  7. Preparation and Chiral Selectivity of BSA-Modified Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    Cai Lian SU; Rong Ji DAI; Bin TONG; Yu Lin DENG

    2006-01-01

    An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carried out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.

  8. Surface characterization of ceramic materials

    International Nuclear Information System (INIS)

    In recent years several techniques have become available to characterize the structure and chemical composition of surfaces of ceramic materials. These techniques utilize electron scattering and scattering of ions from surfaces. Low-energy electron diffraction is used to determine the surface structure, Auger electron spectroscopy and other techniques of electron spectroscopy (ultraviolet and photoelectron spectroscopies) are employed to determine the composition of the surface. In addition the oxidation state of surface atoms may be determined using these techniques. Ion scattering mass spectrometry and secondary ion mass spectrometry are also useful in characterizing surfaces and their reactions. These techniques, their applications and the results of recent studies are discussed. 12 figures, 52 references, 2 tables

  9. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  10. Ceramic materials based on modified pyrogenic titanium dioxide and titanium-silica

    International Nuclear Information System (INIS)

    Ceramic materials based on modified titanium dioxide and titanium-silica are obtained. Method for modification of titanium dioxide and titanium-silica by palladium additions in the process of flame, hydrolysis of titanium, tetrachloride or silicon tetrachloride mixture with titanium tetrachloride is developed. The above method makes it possible to modify already formed particles of the final products in the reactor cooling zone, which does not effect their size and where by the whole palladium is on the surface of the ceramic material. A series of textolite is prepared on the basis of the developed ceramic materials and their metallization is performed

  11. Renewable-surface sol-gel derived carbon ceramic-modified electrode fabricated by a newly synthesized polypyridil and phosphine Ru (II) complex and its application as an amperometric sensor for hydrazine

    International Nuclear Information System (INIS)

    A chemically modified carbon ceramic composite electrode (CCE) containing Dichloro{(8, 9-dimethyl-dipyridio [2,3-a;2',3'-c] phenazine-κ2-N,N') bis(triphenylphosphine-κ-P)}ruthenium (II) complex which synthesized newly was constructed by the sol-gel technique. Electrochemical behavior and stability of modified CCE were investigated by cyclic voltammetry. The electrocatalytic activity of CCE was investigated and showed a good effect for oxidation of hydrazine in phosphate buffer solution (PBS). A linear concentration range of 6 μM to 1.2 mM of hydrazine with an experimental detection limit of 1 μM of hydrazine was obtained. The diffusion coefficient of hydrazine and its catalytic rate constant for electrocatalytic reaction along with the apparent electron transfer rate constant (ks) and transfer coefficient (α) were also determined. The modified carbon ceramic electrode doped with this new Ru-complex showed good reproducibility, short response time (t 3 month) and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for determination of hydrazine in real water samples used in Fars Power Plant Station, including its heat recovery steam generator (HRSG) water (at different operational condition), cooling system and clean waste water

  12. Renewable-surface sol-gel derived carbon ceramic-modified electrode fabricated by a newly synthesized polypyridil and phosphine Ru (II) complex and its application as an amperometric sensor for hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Abdolkarim [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 7145685464 (Iran, Islamic Republic of)], E-mail: abbaspour@chem.susc.ac.ir; Shamsipur, Mojtaba [Department of Chemistry, College of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Siroueinejad, Arash [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 7145685464 (Iran, Islamic Republic of); Kia, Reza; Raithby, Paul R. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2009-04-01

    A chemically modified carbon ceramic composite electrode (CCE) containing Dichloro{l_brace}(8, 9-dimethyl-dipyridio [2,3-a;2',3'-c] phenazine-{kappa}{sup 2}-N,N') bis(triphenylphosphine-{kappa}-P){r_brace}ruthenium (II) complex which synthesized newly was constructed by the sol-gel technique. Electrochemical behavior and stability of modified CCE were investigated by cyclic voltammetry. The electrocatalytic activity of CCE was investigated and showed a good effect for oxidation of hydrazine in phosphate buffer solution (PBS). A linear concentration range of 6 {mu}M to 1.2 mM of hydrazine with an experimental detection limit of 1 {mu}M of hydrazine was obtained. The diffusion coefficient of hydrazine and its catalytic rate constant for electrocatalytic reaction along with the apparent electron transfer rate constant (k{sub s}) and transfer coefficient ({alpha}) were also determined. The modified carbon ceramic electrode doped with this new Ru-complex showed good reproducibility, short response time (t < 2 s), remarkable long-term stability (>3 month) and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for determination of hydrazine in real water samples used in Fars Power Plant Station, including its heat recovery steam generator (HRSG) water (at different operational condition), cooling system and clean waste water.

  13. Surface modified aerogel monoliths

    Science.gov (United States)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  14. Surface micromachining of unfired ceramic sheets

    OpenAIRE

    Rheaume, Jonathan M.; Pisano, Albert P.

    2011-01-01

    Conventional surface micromachining techniques including photolithography and both wet and dry etching have been directly applied to an unfired sheet of yttria-stabilized zirconia ceramic material. Reversible bonding methods were investigated for affixing unfired ceramic samples to silicon handle wafers in order to perform photolithography. Three types of photoresist were investigated. Thin film photoresist allowed a line-width feature size of 8 μm to be obtained. Thick film photoresist exhib...

  15. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO2); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa2Cu3O6.7); barium titanate (BaTiO3); sapphire (α-A12O3); haematite (α-Fe-2O3); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO2), lead zirconium titanate (PZT + 6 mol.% NiNbO3) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  16. Auger spectroscopy of fracture surfaces of ceramics

    Science.gov (United States)

    Marcus, H. L.; Harris, J. M.; Szalkowski, F. J.

    1974-01-01

    Results of Auger electron spectroscopy (AES) studies of fracture surfaces in a series of ceramic materials, including Al2O3, MgO, and Si3N4, which were formed using different processing techniques. AES on the fractured surface of a lunar sample is also discussed. Scanning electron micrograph fractography is used to relate the surface chemistry to the failure mode. Combined argon ion sputtering and AES studies demonstrate the local variations in chemistry near the fracture surface. The problems associated with doing AES in insulators are also discussed, and the experimental techniques directed toward solving them are described.

  17. Dielectric relaxation in Sr modified PST ceramics

    International Nuclear Information System (INIS)

    Nanocrystalline powders of strontium modified PbSn0.15Ti0.85O3 (PST) having the formula Pb0.94Sr0.06Sn0.15 have been synthesized by a precursor solution method. The electrical behavior of Pb0.94Sr0.06Sn0.15Ti0.85O3 sintered pellets has been studied by complex impedance spectroscopy analysis. The plot of the real and imaginary parts of the impedance shows that the semicircle exhibits a depression degree with a distribution of relaxation time. The modulus curve indicates the possibility of non-exponential type conductivity. The values of the activation energy calculated from both plots of Z'' and M'', are 1.06 and 1.09 eV, which reveals that the species responsible for conduction are same. It also confirms that oxygen vacancies play an important role in conduction. The non-overlapping of the peaks in the plot of M''/M''max and Z''/Z''max as a function of logarithmic frequency measured at 350 C indicates short-range conduction. The compounds exhibit a negative temperature coefficient of resistance with an α value of -5 x 10-2 C at 375 C. The frequency (ω) dependence of conductivity satisfies the ωn power law. The variation of n with temperature suggests that ac conduction is due to small polaron tunneling. (orig.)

  18. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements

    International Nuclear Information System (INIS)

    Wettability has been recognized as one of the most important properties of porous materials for both fundamental and practical applications. In this study, the oleophilicity of Al2O3 membranes modified by four alkoxysilanes with different length of alkyl group was investigated through oil wetting dynamic test. Fourier transform infrared spectroscopy (FTIR), thermogravimertric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were measured to confirm that ceramic membrane surfaces have been grafted with alkoxysilanes without changing the membrane morphology. A high speed video camera was used to record the spreading and imbibition process of oil on the modified membrane surface. The value of oil contact angle and its change during the wetting process were used to characterize the membrane oleophilicity. Characterization results showed that the oleophilicity of the modified membranes increased along with the increasing of the silane alkyl group. The influence of oleophilicity on the filtration performance of water-in-oil (W/O) emulsions was experimentally studied. A higher oil flux was obtained for membranes grafted with a longer alkyl group, indicating that increase oleophilicity can increase the membrane antifouling property. This work presents a valuable route to the surface oleophilicity control and testing of ceramic membranes in the filtration of non-polar organic solvents.

  19. Friction and wear behaviour of ion beam modified ceramics

    International Nuclear Information System (INIS)

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temparature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 8000 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides. (author)

  20. Structural and ferroelectric properties of lanthanum modified BPZT ceramics

    International Nuclear Information System (INIS)

    Lanthanum modified Ba0.80Pb0.20Ti0.90Zr0.10O3 (BPZT) ceramics with composition Ba0.80-xLax Pb0.20Ti0.90Zr0.10O3; x = 0-0.01 in steps of 0.0025 were prepared by conventional solid state method. All the samples were sintered at 1325 deg. C after compacting in circular discs. Detailed structural and ferroelectric properties were carried out for sintered specimens. X-ray diffraction analysis for all the sintered specimens shows tetragonal structure with perovskite. Coercive field (Ec) and remanent polarization (Pr) to spontaneous polarization (Ps) ratio (Pr/Ps) was found to decrease with increase in temperature. Pr/Ps ratio was found to decrease with increase in x, except x = 0.0025.

  1. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    OpenAIRE

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as ...

  2. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-01

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics. PMID:22337594

  3. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route

    International Nuclear Information System (INIS)

    Highlights: → Highly reactive nanosized powders of Pb(0.8)Pr(0.2)TiO(3) were obtained by the OPM route. → Tetragonal phase was observed by X-ray diffraction and confirmed by Raman spectroscopy. → SEM images showed powders partially sintered with particles of approximately 54 nm. → Dielectric measurements show a normal behavior for the ferroelectric to paraelectric transition. - Abstract: Quasi-spherical nanoparticles of praseodymium-modified lead titanate powder (Pb0.80Pr0.20TiO3) with an average size of 54.8 nm were synthesized successfully by the oxidant-peroxo method (OPM) and were used to prepare highly dense ceramic bodies which were sintered at 1100 and 1150 deg. C for 2 h. A tetragonal phase was identified in the powder and ceramic samples by X-ray powder diffraction and FT-Raman spectroscopy at room temperature. The fractured surface of the ceramic sample showed a high degree of densification with fairly uniform grain sizes. Dielectric constants measured in the range of 30-300 deg. C at different frequencies (120 Hz and at 1, 10 and 100 kHz) indicated that samples with 20 mol% praseodymium showed normal ferroelectric behavior regardless of the sintering temperature.

  4. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Alexandre H., E-mail: alehp1@yahoo.com.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil); Souza, Flavio L., E-mail: fleandro.ufabc@gmail.com [Centro de Ciencias Naturais e Humanas, UFABC - Universidade Federal do ABC, Santo Andre 09210-170, SP (Brazil); Longo, Elson, E-mail: elson@iq.unesp.br [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP - Sao Paulo State University, Rua Francisco Degni, CP 355, Araraquara 14801-907, SP (Brazil); Leite, Edson R., E-mail: derl@power.ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil); Camargo, Emerson R., E-mail: camargo@ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil)

    2011-10-17

    Highlights: {yields} Highly reactive nanosized powders of Pb(0.8)Pr(0.2)TiO(3) were obtained by the OPM route. {yields} Tetragonal phase was observed by X-ray diffraction and confirmed by Raman spectroscopy. {yields} SEM images showed powders partially sintered with particles of approximately 54 nm. {yields} Dielectric measurements show a normal behavior for the ferroelectric to paraelectric transition. - Abstract: Quasi-spherical nanoparticles of praseodymium-modified lead titanate powder (Pb{sub 0.80}Pr{sub 0.20}TiO{sub 3}) with an average size of 54.8 nm were synthesized successfully by the oxidant-peroxo method (OPM) and were used to prepare highly dense ceramic bodies which were sintered at 1100 and 1150 deg. C for 2 h. A tetragonal phase was identified in the powder and ceramic samples by X-ray powder diffraction and FT-Raman spectroscopy at room temperature. The fractured surface of the ceramic sample showed a high degree of densification with fairly uniform grain sizes. Dielectric constants measured in the range of 30-300 deg. C at different frequencies (120 Hz and at 1, 10 and 100 kHz) indicated that samples with 20 mol% praseodymium showed normal ferroelectric behavior regardless of the sintering temperature.

  5. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    Science.gov (United States)

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. PMID:26686031

  6. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold

    Science.gov (United States)

    Cao, Bin; Zhou, Dali; Xue, Ming; Li, Guangda; Yang, Weizhong; Long, Qin; Ji, Li

    2008-11-01

    Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW/CS composite scaffold. The in vitro bioactivity of the AW/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the scaffold. The results showed that the compressive strength of AW GC scaffold was improved dramatically after being modified by CS, whereas the mineralization rate was delayed. MSCs can attach well on the surface of the composite scaffold.

  7. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Science.gov (United States)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  8. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    International Nuclear Information System (INIS)

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance

  9. Surface modification and characterization of functional oxide ceramics using CO2 laser

    International Nuclear Information System (INIS)

    Surface of powder-sintered oxides such as superconductor and ferroelectric barium titanate ceramics were recrystallized using scanned CO2 laser irradiation. Conventionally, the ceramic is sintered at high temperature, to increase adhesive forces between powdered ceramic grain. During such process, however, many micro-pores and -cracks are produced owing to large shrinkage of fine aggregate grains into the surface layer. Superconductor surface does not allow the flow of superconductor current uniformly and the flow is concentrated on the surface. Thus properties of superconductor are so sensitive to their surface condition that some substantial modifications of the material are necessary. To clarify this issues, both sample of the powder-sintered superconductor YBaxSr2-xCu3O7-y and the BaTiO3 ceramic film were modified by laser irradiation to recrystallize only the surface layer. Their microstructural features in the surface, the characteristic of superconducting and ferroelectric have been investigated. Thus laser-scanning process appears to be suited to generating large grains with preferred orientation by changing of irradiation condition

  10. Sintering-modified oxymanganospinel ceramics for NTC thermistor application

    OpenAIRE

    Hadzaman, I.; Klym, H.; Shpotyuk, O.; Brunner, M; Balitska, V.

    2012-01-01

    Mixed Ni-Co-Cu oxymanganospinels of Cu0.1Ni0.8Co0.2Mn1.9O4 chemical composition are first developed for possible application as high-precise NTC thermistors using nanophase segregation effects controlled by sintering technological route. It is shown that rack-salt NiO phase in these ceramics occurs a decisive role on parasitic degradation caused by thermal storage of the ceramics at the elevated temperatures.

  11. Influence of ceramic surface treatment on shear bond strength of ceramic brackets

    Directory of Open Access Journals (Sweden)

    Tatiana Fernandes Ramos

    2012-01-01

    Full Text Available Objective: To compare four different surface treatment methods and determine which produces adequate bond strength between ceramic brackets and facets of porcelain (feldspathic, and evaluate the Adhesive Remnant Index (ARI scores. Materials and Methods: Ten facets of porcelain specimens with glazed surfaces were used for each group. The specimens were randomly assigned to one of the following treatment conditions of the porcelain surface: (1 no surface treatment (control group, (2 fine diamond bur + orthophosphoric acid gel 37%, (3 hydrofluoric acid (HFL 10%, and (4 HFL 10% + silane. Ceramic brackets were bonded with the adhesive cement Transbond XT. The shear bond strength values were measured on a universal testing machine at a crosshead speed of 0.5 mm/min. Results: There was a significant difference (P<0.05 between the control group and all other groups. There was no significant difference (P<0.05 between treated porcelain surface with diamond bur + orthophosphoric acid gel 37% (4.8 MPa and HFL 10% (6.1 MPa, but the group treated with HFL 10% had clinically acceptable bond strength values. The group treated with HFL 10% + silane (17.5 MPa resulted in a statistically significant higher tensile bond strength (P<0.05. In group 4, 20% of the porcelain facets displayed damage. Conclusion: Etching of the surface with HFL increased the bond strength values. Silane application was recommended to bond a ceramic bracket to the porcelain surface in order to achieve bond strengths that are clinically acceptable.

  12. Aluminium surface treatment with ceramic phases using diode laser

    Science.gov (United States)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  13. Improvement of Mechanical Properties on a Surface of Bulk Ceramics

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kraus, L.

    Trollhättan : University West, 2009 - (Sudarshan, T.; Nylen, P.), s. 247-254 ISBN 978-0-9817065-1-1. [International Conference on Surface Modification Technologies SMT22/22./. Trollhättan (SE), 22.09.2008-24.09.2008] R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Bulk ceramics * plasma post-treatment * diode laser * wear resistance * mechanical testing Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  14. Surface or internal nucleation and crystallization of glass-ceramics

    Science.gov (United States)

    Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.

    2013-07-01

    Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.

  15. Stress effects in two modified lead zirconate titanate ferroelectric ceramics

    International Nuclear Information System (INIS)

    Mechanical properties of ferroelectric ceramics with compositions Pb/sub 0.99/Nb/sub 0.02/(Zr/sub 0.95/Ti/sub 0.05/)/sub 0.98/O3 and Pb/sub 0.97/La/sub 0.02/(Zr/sub 0.92/Ti/sub 0.08/)O3 have been studied as functions of both hydrostatic pressure and uniaxial stress. Measurements of ultrasonic velocity and sample strains have been made in order to characterize unpoled samples. Both materials have pressure-induced ferroelectric (FE) to antiferroelectric (AFE) phase transitions at approx.0.2 GPa of hydrostatic pressure. Under uniaxial-stress conditions two effects are observed: rotation of FE domains and the FE--AFE phase transition. These effects are separately resolved by the measurements, even though they occur in overlapping stress regions. The domain reorientation responses of the two materials appear to be nearly identical, but the FE--AFE transition begins at lower stress levels for the Nb-doped material. This is presumably due to that material transforming into the orthorhombic (PbZrO3) phase, whereas the La-doped material transforms into the tetragonal AFE phase. The phase transition is spread over a broad range of uniaxial stress for each material and is not nearly complete by 0.6 GPa, the highest stress level attainable. Possible implications of the results for shock-wave studies of FE ceramics are briefly discussed

  16. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    OpenAIRE

    Sima Shahabi; Poya Aslani; Mohamad Ehsan Khalil; Abbase Azari; Sakine Nikzad

    2012-01-01

    Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sand...

  17. Electrocatalytic oxidation of hydrazine by copper iodide modified sol-gel derived carbon-ceramic composite Electrode

    Directory of Open Access Journals (Sweden)

    Ghasem Karim-Nezhad

    2014-03-01

    Full Text Available A new sol-gel derived ceramic-carbon composite electrode was fabricated by the use of CuI as modifier. The electrocatalytic activity of the copper iodide modified sol-gel derived ceramic-carbon composite (CIM-SGD-CCC electrode was examined for the oxidation of hydrazine. Cyclic voltammetry was employed to study the electrochemical and electrocatalytic properties of the modified electrode. Results showed that the CIM-SGD-CCC electrode has very high catalytic activity for electrooxidation of hydrazine. This proves that the copper iodide bears the main role in electro-catalytic oxidation of hydrazine. This modified electrode shows fast amperometric response with the range from 1 μ mol L-1 to 40 μ mol L-1 and the limit of detection (LOD of 0.524 μ mol L-1 for hydrazine. The relative standard deviation (R.S.D. was 0.72 % for 5 successive assays. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed electrode.

  18. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    International Nuclear Information System (INIS)

    Full text: Low temperature plasma reactions, combined with sol-gel coatings, have been used to produce a variety of ceramic surface layers on metal substrates and interfacial layers between metals and oxides or other ceramics. These layers can be designed to be compositionally and functionally graded from the metal to bulk ceramic material, eg. silica, alumina, hydroxyapatite. The graded layers are generally <50nm thick, continuous, fully bonded to the substrate and deformable without disbonding. The objectives in design of these layers have been to produce: metal surfaces protected from oxidation, corrosion and acid attack; improved metal-ceramic bonding; and bioceramic titanium-based interfaces to bioactive hydroxyapatite for improved dental and medical implants. Modified Auger parameter studies for Si in XPS spectra show that the structure on the metal surfaces grades from amorphous, dehydroxylated silica on the outer surface through layer silicates, chain silicates, pyrosilicates to orthosilicates close to the metal interface. At the metal interface, detached grains of the metal are imaged with interpenetration of the oxide and silicate species linking the layer to the oxidised metal surface. The ∼30nm layer has a substantially increased frictional load compared with the untreated oxidised metal, i.e. behaviour consistent with either stronger adhesion of the coating to the substrate or a harder surface. The composition, structure and thickness of these layers can be controlled by the duration of each plasma reaction and the choice of the final reagent. The mechanisms of reaction in each process step have been elucidated with a combination of XPS, TOF-SIMS, TEM, SEM and FTIR. Similar, graded titanium/oxide/silicate/silica ceramic surface layers have been shown to form using the low temperature plasma reactions on titanium alloys used in medical and dental implants. Thicker (i.e. μm) overlayers of ceramic materials can be added to the graded surface layers

  19. Bicontinuous ceramics with high surface area from block copolymer templates.

    Science.gov (United States)

    Hsueh, Han-Yu; Ho, Rong-Ming

    2012-06-01

    Mesoporous polymers with gyroid nanochannels can be fabricated from the self-assembly of degradable block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA), followed by hydrolysis of PLLA block. Well-defined polymer/ceramic nanohybrid materials with inorganic gyroid nanostructures in a PS matrix can be obtained by using the mesoporous PS as a template for sol-gel reaction. Titanium tetraisopropoxide (TTIP) is used as a precursor to give a model system for the fabrication of metal oxide nanostructures from reactive transition metal alkoxides. By controlling the rates of capillary-driven pore filling and sol-gel reaction, the templated synthesis can be well-developed. Also, by taking advantage of calcination, bicontinuous TiO(2) with controlled crystalline phase (i.e., anatase phase) can be fabricated after removal of the PS template and crystallization of TiO(2) by calcination leading to high photocatalytic efficiency. This new approach provides an easy way to fabricate high-surface-area and high-porosity ceramics with self-supporting structure and controlled crystalline phase for practical applications. As a result, a platform technology to fabricate precisely controlled polymer/ceramic nanohybrids and mesoporous ceramic materials can be established. PMID:22530553

  20. Real-time surface grading of ceramic tiles

    OpenAIRE

    López García, Fernando

    2008-01-01

    This thesis presents a case of study of the development and performance analysis of a surface grading application with real-time compliance. We address the issue of spatial and temporal uniformity in the acquisition system. In a surface grading application it is crucial to ensure the uniform response of the system through time and space. All the results presented for surface grading were obtained using real data from the ceramic tile industry. The VxC TSG database is public and can be...

  1. Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum%Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum

    Institute of Scientific and Technical Information of China (English)

    郑楠; 黄学增; 穆海宝; 张冠军

    2011-01-01

    For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface fiashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained.

  2. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  3. Surface agents' influence on the flexural strength of bilaminated ceramics

    Directory of Open Access Journals (Sweden)

    Julia Magalhaes Costa Lima

    2013-07-01

    Full Text Available The objective of this study was to evaluate the influence of different surface agents on the flexural strength of a ceramic system. Eighty bar-shaped specimens of zirconia were divided into four groups according to the agent to be used: group Control - to be cleaned with alcohol; group VM9 - application of a fluid layer of porcelain; group Effect Bonder - application of a bonding agent; and group Coloring Liquid - application of coloring liquid. All specimens received the porcelain application by the layering technique and were then subjected to thermocycling. The four-point bending test was performed to calculate the strength values (σ, MPa and the failure modes were classified. ANOVA did not detect significant differences among the groups. The Weibull modulus were 5 (Control, VM9 and Effect Bonder and 6 (Coloring Liquid. The cracking of the porcelain ceramic toward the interface was the predominant failure mode. It was concluded that the surface agents tested had no effect on the flexural strength of the bilaminated ceramic specimens.

  4. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    Science.gov (United States)

    Bagheri, Hossein; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Plaser irradiation (Plaser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372

  5. Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples

    International Nuclear Information System (INIS)

    Highlights: → MWCNTs-CE was prepared by silane acrylate which provides a nanometer thin MIP film. → The sensor was modified by iniferter and MIP using 'surface grafting-from approach'. → A comparative study was performed between differentially designed ceramic electrodes. → The sensor can detect dopamine in real samples with LODs (0.143-0.154 ng mL-1). - Abstract: A new class of composite electrodes made of sol-gel derived ceramic-multiwalled carbon nanotubes is used for the growth of a nanometer thin film adopting 'surface grafting-from approach'. For this the multiwalled carbon nanotubes-ceramic electrode surface is first modified with an iniferter (benzyl N,N-diethyldithiocarbamate) and then dopamine imprinted polymer, under UV irradiation, for differential pulse anodic stripping voltammetric sensing of dopamine in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples (detection limit 0.143-0.154 ng mL-1, 3σ), without any cross reactivity, interferences and false-positive contributions. Such composite electrodes offer higher stability, electron kinetics, and renewable porous surface of larger electroactive area (with insignificant capacitance) than carbon ceramic electrodes. Additional cyclic voltammetry (stripping mode) and chronocoulometry experiments were performed to explore electrodics and kinetics of electro-oxidation of dopamine.

  6. Effect of surface free energy of ceramic glaze on oil droplet shape and its behavior in water

    Institute of Scientific and Technical Information of China (English)

    LIANG Jin-sheng; MENG Jun-ping; LIANG Guang-chuan; WANG Li-juan; ZHANG Jin; LI Ji-yuan

    2006-01-01

    A super-hydrophilic functional ceramic was prepared by adjusting the chemical components of ceramic glaze. Effect of surface free energy of ceramic glaze on oil droplet shape and its behavior in water were studied. The results show that water can spread on ceramic surface with high surface free energy,and oil droplet can aggregate rapidly and separate from the ceramic surface in water. For the ceramic with lower surface free energy,the polar shares are dependant on its easy-cleaning property. The higher the polar shares,the better the easy-cleaning property,and the easier the droplet separates from the ceramic surface in water.

  7. "False" cytotoxicity of ions-adsorbing hydroxyapatite - Corrected method of cytotoxicity evaluation for ceramics of high specific surface area.

    Science.gov (United States)

    Klimek, Katarzyna; Belcarz, Anna; Pazik, Robert; Sobierajska, Paulina; Han, Tomasz; Wiglusz, Rafal J; Ginalska, Grazyna

    2016-08-01

    An assessment of biomaterial cytotoxicity is a prerequisite for evaluation of its clinical potential. A material is considered toxic while the cell viability decreases under 70% of the control. However, extracts of certain materials are likely to reduce the cell viability due to the intense ions adsorption from culture medium (e.g. highly bioactive ceramics of high surface area). Thus, the standard ISO 10993-5 procedure is inappropriate for cytotoxicity evaluation of ceramics of high specific surface area because biomaterial extract obtained in this method (ions-depleted medium) is not optimal for cell cultures per se. Therefore, a simple test was designed as an alternative to ISO 10993-5 standard for cytotoxicity evaluation of the biomaterials of high surface area and high ions absorption capacity. The method, presented in this paper, included the evaluation of ceramics extract prepared according to corrected procedure. The corrected extract was found not cytotoxic (cell viability above 70%), suggesting that modified method for cytotoxicity evaluation of ions-adsorbing ceramics is more appropriate than ISO 10993-5 standard. For such biomaterials, the term "false" cytotoxicity is more suitable. Moreover, it was noted that NRU assay and microscopic observations should be recommended for cytotoxicity evaluation of ceramics of high surface area. PMID:27157729

  8. Effect of surface conditioning methods on the bond strength of luting cement to ceramics

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Özcan, Mutlu; Vallittu, Pekka K.

    2003-01-01

    Objectives. This study evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to six commercial dental ceramics. Methods. Six disc shaped ceramic specimens (glass ceramics, glass infiltrated alumina, glass infiltrated zirconium diox

  9. Surface-modified nanoparticles for ultrathin coatings

    OpenAIRE

    Nypelö, Tiina

    2012-01-01

    Nanoparticle modification and their utilization in the modification of planar substrates were examined. Emphasis was placed on two topics: the control of layer structure during formation and the alteration of the wetting characteristics of modified surfaces. Layer formation was investigated by adsorbing nanoparticles with a distinct shape and charge onto a nanofibrillated cellulose (NFC) substrate. In addition, nanosized silica particles and NFC were adsorbed sequentially with an oppositely c...

  10. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.;

    2010-01-01

    + occurs due to both the permeation and reducing ability of H-2. In this case, CID of divalent ions also occurs, and hence, an oxide surface layer forms. However, such outward diffusion differs from that induced by the iron oxidation in terms of physical origin. The former is due to incorporation of the N3......- ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts...

  11. Quantitative description of the phase transition of Aurivillius oxides Sm modified BaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    BaBi4Ti4O15+xwt.%Sm2O3 (x=0.00, 0.25, 0.50, 0.75) ceramics were prepared by the solid-state reaction method. The effect of samarium additives on the structural and electrical properties of BBT ceramic was investigated. XRD patterns indicate that all ceramics are an m=4 members of Aurivillius oxides and no secondary phases were detected. A broad dielectric peak in frequency dependent dielectric spectrum is observed during the phase transition of all the BBT ceramics. The modified Curie–Weiss law, Vogel–Fucher relationship and Lorentz-type law were used to describe the phase transition behavior. The relaxor behavior was described well by the modified Curie–Weiss law and Vogel–Fucher relation. The effect of samarium additives on the degree of relaxation and diffuseness of BBT ceramics was discussed

  12. Robust polarization and strain behavior of Sm-modified BiFeO3 piezoelectric ceramics.

    Science.gov (United States)

    Walker, Julian; Budic, Bojan; Bryant, Peter; Kurusingal, Valsala; Sorrell, Charles C; Bencan, Andreja; Rojac, Tadej; Valanoor, Nagarajan

    2015-01-01

    The route to phase-pure BiFeO3 (BFO) ceramics with excellent ferroelectric and electromechanical properties is severely impeded by difficulties associated with the perovskite phase stability during synthesis. This has meant that dopants and solid solutions with BFO have been investigated as a means of not only improving the functional properties, but also of improving the perovskite phase formation of BFO-based ceramics. The present work focuses on Sm-modified BFO ceramics of composition Bi0.88Sm0.12FeO3. The polarization and strain behaviors were investigated as a function of the phase composition, microstructure, and chemical composition. Addition of Sm reduces the susceptibility of the BFO perovskite to phase degradation by Si impurities. Si was observed to react into Sm-rich grains dispersed within the microstructure, with no large increases in the amount of bismuth-parasitic phases, namely Bi25FeO39 and Bi2Fe4O9. These as-prepared ceramics exhibited robust polarization behavior showing maximum remnant polarizations of ~40 to 50 μC/cm(2). The electric-fieldinduced strain showed an appreciable stability in terms of the driving field frequency with maximum peak-to-peak strains of ~0.3% and a coercive field of ~130 kV/cm. PMID:25585392

  13. Modifying horizon thermodynamics by surface tensions

    CERN Document Server

    Chen, Deyou

    2016-01-01

    The modified first laws of thermodynamics at the black hole horizon and the cosmological horizon of the Schwarzschild de Sitter black hole and the apparent horizon of the Friedmann-Robertson-Walker cosmology are derived by the surface tensions, respectively. The corresponding Smarr relations are obeyed. For the black hole, the cosmological constant is first treated as a fixed constant, and then as a variable associated to the pressure. The law at the apparent horizon takes the same form as that at the cosmological horizon, but is different from that at the black hole horizon. The positive temperatures guarantee the appearance of the worked terms in the modified laws at the cosmological and apparent horizons. While they can disappear at the black hole horizon.

  14. Dielectric investigations of vanadium modified barium zirconium titanate ceramics obtained from mixed oxide method

    Energy Technology Data Exchange (ETDEWEB)

    Moura, F. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica Universidade Estadual Paulista, Bairro Quitandinha, CEP 14800-900, Araraquara, SP (Brazil); Simoes, A.Z. [Universidade Federal de Itajuba - Unifei - Campus Itabira, Rua Sao Paulo 377, Bairro Amazonas - Itabira-MG, CEP 35900-373 (Brazil)], E-mail: alezipo@yahoo.com; Aguiar, E.C.; Nogueira, I.C.; Zaghete, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica Universidade Estadual Paulista, Bairro Quitandinha, CEP 14800-900, Araraquara, SP (Brazil)

    2009-06-24

    Vanadium modified barium zirconium titanate ceramics Ba(Zr{sub 0.10}Ti{sub 0.90})O{sub 3}:2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (P{sub r}) of 8 {mu}C/cm{sup 2} at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes.

  15. Dielectric investigations of vanadium modified barium zirconium titanate ceramics obtained from mixed oxide method

    International Nuclear Information System (INIS)

    Vanadium modified barium zirconium titanate ceramics Ba(Zr0.10Ti0.90)O3:2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (Pr) of 8 μC/cm2 at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes.

  16. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  17. Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Pure BiFeO3 (BFO) and La-modified BiFeO3 (Bi1-xLaxFeO3 with x = 0.2 and 0.4) ceramic powders were synthesized at relatively low temperature by ferrioxalate precursor method. Pure compositions did not yield phase pure powders and contain secondary phases. At the same time, La-modification at different concentration levels in BFO promoted the formation of perovskite phase with the elimination of secondary phases and phase pure ceramic powders were obtained for the composition Bi1-xLaxFeO3 with x = 0.4. Further, the effect of lanthanum substitution on the morphology, electrical and magnetic properties was also investigated.

  18. Surfaces and interfaces of glass and ceramics; Proceedings of the International Symposium on Special Topics in Ceramics, Alfred University, Alfred, N.Y., August 27-29, 1973

    Science.gov (United States)

    Frechette, V. D. (Editor); Lacourse, W. C.; Burdick, V. L.

    1974-01-01

    The characterization of surfaces and interfaces is considered along with the infrared spectra of several N-containing compounds absorbed on montmorillonites, applications of surface characterization techniques to glasses, the observation of electronic spectra in glass and ceramic surfaces, a method for determining the preferred orientation of crystallites normal to a surface, and the friction and wear behavior of glasses and ceramics. Attention is given to the wear behavior of cast surface composites, an experimental investigation of the dynamic and thermal characteristics of the ceramic stock removal process, a dynamic elastic model of ceramic stock removal, and the structure and properties of solid surfaces. Individual items are announced in this issue.

  19. Degradation of benzophenone in aqueous solution by Mn-Fe-K modified ceramic honeycomb-catalyzed ozonation

    Institute of Scientific and Technical Information of China (English)

    HOU Yan-jun; MA Jun; SUN Zhi-zhong; YU Ying-hui; ZHAO Lei

    2006-01-01

    Comparative studies of ozonation alone, ceramic honeycomb-catalyzed and Mn-Fe-K modified ceramic honeycomb catalyzed ozonafion processes have been undertaken with benzophenone as the model organic pollutant. The experimental results showed that the presence of Mn-Fe-K modified ceramic honeycombs significantly increased the removal rate of benzophenone and TOC compared with that achieved by ozonation alone or ceramic honeycomb-catalyzed ozonation. The electron paramagnetic resonance (EPR) experiments verified that higher benzophenone removal rate was attribute to more hydroxyl radicals generated in the Mn-Fe-K modified ceramic honeycomb-catalyzed ozonation. Under the conditions of this experiment, the degradation rate of all the three ozonation processes are increasing with the amount of catalyst, temperature and value of pH increased in the solution. We also investigated the effects of different process of ozone addition, the optimum conditions for preparing catalyst and influence of the Mn-Fe-K modified ceramic honeycomb after multiple-repeated use.

  20. Experimental investigation on shrinkage and surface replication of injection moulded ceramic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian;

    2014-01-01

    Ceramic moulded parts are increasingly being used in advanced components and devices due to their unprecedented material and performance attributes. The surface finish, replication quality and material shrinkage are of immense importance for moulded ceramic parts intended for precision applications....... The current paper presents a thorough investigation on the process of ceramic moulding where it systematically characterizes the surface replication and shrinkage behaviours of precision moulded ceramic components. The test parts are moulded from Catamold TZP-A which is Y2O3-stabilised ZrO2 having...

  1. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  2. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  3. Structured ceramic surfaces by preceramic polymer demixing processes

    International Nuclear Information System (INIS)

    Polymeric and ceramic coatings with a cellular structure have been manufactured based on demixing processes by the use of two different preceramic polymers and silicon carbide fillers in a dip coating process. The rheological properties of the coating system were adjusted by adding a monomeric silane and methanol, and the crosslinking process was triggered by the addition of catalysts. The surface tension of the coating system was measured and a temperature range for coating and structure formation was identified. The as coated substrates were investigated with respect to an influence of the substrate microstructure and the coating speed on the cellular structure of the coatings. While the substrate microstructure has no influence on the cell structure the coating speed led to a minor change in the cell width. The as received thermoset coatings were pyrolyzed and the structure was intact even after firing at 1100 °C in different atmospheres

  4. Correlation among oxygen vacancies and its effect on fatigue in neodymium-modified bismuth titanate ceramics

    International Nuclear Information System (INIS)

    Pure and Nd-modified Bi4Ti3O12 ceramics are prepared using the conventional solid state reaction method and their dielectric properties and mechanical properties are investigated. This shows that the activation energy of oxygen vacancies is enhanced whereas the concentration of oxygen vacancies is reduced when Bi3+ ions are partially substituted by Nd3+ ions. The Cole-Cole fitting to the dielectric loss reveals a strong correlation among oxygen vacancies, which is found to be proportional to the concentration of oxygen vacancies. The strong correlation reduces the activation energy of oxygen vacancies efficiently. Therefore, we conclude that the enhancement of activation energy originates from the diluted oxygen vacancy concentration and that the diluted oxygen vacancy concentration is the basic aspect of the excellent fatigue resistance in Nd-modified Bi4Ti3O12 materials

  5. Wettability, surface tension and reactivity ofthe molten manganese/zirconia-yttria ceramic system

    OpenAIRE

    Shinozaki, N; Sonoda, M; Mukai, K.

    1998-01-01

    A basic research for improvement of plasma sprayed zirconia coatings has been conducted. Contact angle and surface tension of molten manganese/zirconia-yttria ceramic system weremeasured at 1573K by the sessile drop method, suggesting that molten manganese would spontaneously infiltrate open pores inzirconia coatings. Structure and elementary composition development of ZirCOnIa ceramICs caused by reaction with manganese were examined by using SEM(Scanning Electron Microscopy), EPMA(Electron P...

  6. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    OpenAIRE

    Schmage, P; Nergiz, [No Value; Herrmann, W.; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    2003-01-01

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface conditioning methods: fine diamond bur, sandblasting, 5% hydrofluoric acid, and silica coating for bonding metal brackets to ceramic surfaces of feldspathic porcelain. Sandblasting and hydrofluoric a...

  7. Electromagnetic Probes of Metal and Ceramic Surfaces at Low Temperature.

    Science.gov (United States)

    Rzchowski, Mark Steven

    1988-12-01

    This thesis presents, in three parts, topics dealing with the low temperature electro-magnetic surface properties of metals and ceramics. Part I discusses the development and operation of an apparatus to spatially resolve metallic surface potentials as a function of temperature between 2.8K and room temperature. This experiment operates under UHV conditions with a voltage resolution of 1 millivolt and a spatial resolution of 1200 microns. We use this equipment to search for temperature dependent changes in spatial fluctuations of the surface potential. A screening of these fluctuations by a surface conducting layer is suggested by the experiments of Lockhart, Witteborn, and Fairbank, who reported temperature dependent shielding of random electric fields inside a copper tube. Sharp changes with temperature in the microwave surface conductivity of copper and aluminum have also been reported. We have found some aluminum samples to be contaminated with sufficient tin to explain recent microwave results as superconducting impurity transitions. For copper, where both increased and decreased conductivities have been reported, we explain increasing conductivity results in the same way. The present experiment measures surface potential directly, but shows no evidence of temperature dependent shielding. Part II of this thesis presents a calculation of random fields outside a metal surface and their effect on TOF spectroscopy. We calculate the statistical properties of the fields in one-dimensional and cylindrical geometries, then use these results to investigate TOF effects. Calculated quantities include the autocovariance function of the potential, the rms electric field, corrections to the free particle time of flight, and the mean minimum energy required to transit the random potential. The results compare well with our numerical simulations, and with the available experimental data. In part III we investigate the 9.12 GHz complex surface impedance of bulk and thin film

  8. Surface integrity of creep feed ground structural ceramics

    International Nuclear Information System (INIS)

    This study investigates the mechanics of creep feed grinding of structural ceramics with particular emphasis on the integrity of the finished surface. A fractional factorial experiment of 25 conditions was used to determine the effects of grinding wheel bond (resinoid and vitreous), grit size (80 and 180), grit concentration (50 and 100) and work speed on Al2O3 and ZrO2 specimens. Two depths of cut were interspersed with the varied grinding conditions. Normal and tangential grinding wheel stresses were calculated from wheel entry and exit incremental, measured vertical and horizontal force data. Average normal and tangential stresses were found to be nearly constant below a local material removal rate of about 4 mm2/sec2 (time rate of change of volumetric removal rate per unit wheel width). This implies that rubbing or plowing predominates in the low material removal rate region of the finished surface. In the higher material removal rate regions, large grinding wheel stresses imply greater abrasive grit penetration into the workpiece and a predominance of lateral fracture as a removal mechanism. An additional result of the stress determination is that exit conditions are different from entry conditions and thus highlight the effect of median fracture as a result of workpiece geometry

  9. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  10. POLY(N-VINYLPYRROLIDONE)-MODIFIED SURFACES REPEL PLASMA PROTEIN ADSORPTION

    Institute of Scientific and Technical Information of China (English)

    Xiao-li Liu; Zhao-qiang Wu; Dan Li; Hong Chen

    2012-01-01

    The present work aimed to study the interaction between plasma proteins and PVP-modified surfaces under more complex protein conditions.In the competitive adsorption of fibrinogen (Fg) and human serum albumin (HSA),the modified surfaces showed preferential adsorption of HSA.In 100% plasma,the amount of Fg adsorbed onto PVP-modified surfaces was as low as 10 ng/cm2,suggesting the excellent protein resistance properties of the modified surfaces.In addition,immunoblots of proteins eluted from the modified surfaces after plasma contact confirmed that PVP-modified surfaces can repel most plasma proteins,especially proteins that play important roles in the process of blood coagulation.

  11. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M Mohan; Gorin, Alexander [School of Engineering and Science, Curtin University of Technology, Sarawak (Malaysia); Abou-El-Hossein, K A, E-mail: mohan.m@curtin.edu.my [Mechanical and Aeronautical Department, Nelson Mandela Metropolitan University, Port Elegebeth, 6031 (South Africa)

    2011-02-15

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  12. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    International Nuclear Information System (INIS)

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  13. Surface Patterning of Ceramic Phosphor Plate for Light Extraction

    Science.gov (United States)

    Mao, An

    Light-Emitting Diodes (LEDs) are expected to replace traditional lighting sources in the near future due to their energy-efficiency, optical design flexibility and good reliability over traditional lighting sources. III-V nitride blue LEDs with powdered phosphors have been used commercially to get white emission. However, due to scattering losses, thermal issues as well as the surface reactivity with common encapsulants, LEDs fabricated with powdered phosphors have limitations in achieving high luminous efficacy, high chromatic stability and good color-rendering properties. Solid, non-scattering phosphors could avoid many of these limitations, but issues of light extraction and coupling of excitation radiation to the phosphor require development to insure efficient operation. Photonic crystal structures fabricated into or on non-scattering phosphors can be used to address these challenges. In this thesis, a lift-off process with bilayer resist system is developed to create nanopatterns. A photonic crystal structure is fabricated by low cost molecular transfer lithography (MxL) with bi-layer resist system on non-scattering phosphor plate used for white emission to increase the extraction efficiency. In Chapter 1, some basic background concepts which appear frequently in this thesis are introduced. These concepts include the Stokes shift and backscattering phenomenon for powder phosphors as well as non-scattering phosphors. In Chapter 2, a non-scattering single crystal phosphor with a patterned surface is proposed to replace the powdered phosphors used for color converted LEDs. A non-scattering phosphor YAG:Ce ceramic phosphor plate (CPP) patterned with TiO2 photonic crystal structure is selected for convenience to demonstrate the concept. The physical origin of light extraction of the proposed structure is discussed. The simulation principles and results are discussed in this chapter to find the optimized photonic crystal structure for light extraction. In Chapter 3

  14. Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhen Zhou; Hui Wang; She Ying Dong; An Xiang Tian; Zhi Xian He; Bin Chen

    2011-01-01

    Direct electrochemistry and electrocatalysis of myoglobin (Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide (DTAB) film modified carbon ceramic (CC) electrode. Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb (FeⅡ/FeⅢ) at about -0.3 V vs. SCE (pH = 6.98). The currents of the redox peak were linear to scan rate, and rate constant (Ks) was estimated to be 3.03 s-1. The formal potential (E01) of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of-36.44 mV/pH, implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2).

  15. Influence of surface treatments on bond strength of metal and ceramic brackets to a novel CAD/CAM hybrid ceramic material.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of four different surface treatments methods on the shear bond strength (SBS) of ceramic and metal brackets to Vita Enamic (VE) CAD/CAM hybrid ceramic. A total of 240 plates (10 mm × 10 mm × 3 mm) were cut from VE ceramic blocks and divided into two groups. In each group, four subgroups were prepared by hydrofluoric acid (HF); phosphoric acid (H3PO4); diamond ceramic grinding bur; and silica coating using CoJet system (CJ). Maxillary central incisor metal (Victory Series) and ceramic (Clarity) brackets were bonded with light-cure composite and then stored in artificial saliva for 1 week and thermocycled. The SBS test was performed, and the failure types were classified with adhesive remnant index scores. Surface morphology of the ceramic was characterized after treatment using a scanning electron microscope. Data were analyzed using two-way ANOVA, Tukey HSD test, and Weibull analysis. SBS was significantly affected by the type of bracket and by type of treatment (P HF > Bur > H3PO4. Ceramic bracket showed higher SBS compared to metal bracket. Adhesive failures between the ceramic and composite resin were the predominant mode of failure in all groups. Surface treatment of VE CAD/CAM hybrid ceramic with silica coating enhanced the adhesion with ceramic and metal brackets. PMID:25585677

  16. Nanostructured Porous High Surface Area Ceramics for Catalytic Applications

    OpenAIRE

    Krawiec, Piotr

    2007-01-01

    In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composite...

  17. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization.

    Science.gov (United States)

    Papendorf, Benjamin; Nonnenmacher, Katharina; Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2011-04-01

    The present study focuses on the synthesis and ceramization of novel hafnium-alkoxide-modified silazanes as well as on their microstructure evolution at high temperatures. The synthesis of hafnia-modified polymer-derived SiCN ceramic nanocomposites is performed via chemical modification of a polysilazane and of a cyclotrisilazane, followed by cross-linking and pyrolysis in argon atmosphere. Spectroscopic investigation (i.e., NMR, FTIR, and Raman) shows that the hafnium alkoxide reacts with the N-H groups of the cyclotrisilazane; in the case of polysilazane, reactions of N-H as well as Si-H groups with the alkoxide are observed. Consequently, scanning and transmission electron microscopy studies reveal that the ceramic nanocomposites obtained from cyclotrisilazane and polysilazane exhibited markedly different microstructures, which is a result of the different reaction pathways of the hafnium alkoxide with cyclotrisilazane and with polysilazane. Furthermore, the two prepared ceramic nanocomposites are unexpectedly found to exhibit extremely different high-temperature behavior with respect to decomposition and crystallization; this essential difference is found to be related to the different distribution of hafnium throughout the ceramic network in the two samples. Thus, the homogeneous distribution of hafnium observed in the polysilazane-derived ceramic leads to an enhanced thermal stability with respect to decomposition, whereas the local enrichment of hafnium within the matrix of the cyclotrisilazane-based sample induces a pronounced decomposition upon annealing at high temperatures. The results indicate that the chemistry and architecture of the precursor has a crucial effect on the microstructure of the resulting ceramic material and consequently on its high-temperature behavior. PMID:21381195

  18. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  19. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires

    Science.gov (United States)

    Chung, Jihoon; Lee, Sukyung; Yong, Hyungseok; Lee, Sangmin; Park, Yong Tae

    2016-02-01

    Super-hydrophobic surfaces having contact angles > 150° for water are of great interest due to their potential use in a wide variety of applications. Although many reports on the wettability of different surfaces have been published, few or no studies have been done on the formation of a super-hydrophobic surface on a ceramic substrate. In this paper, we demonstrate the creation of a super-hydrophobic surface on a ceramic substrate by using zinc oxide nanowires (ZnO NWs) prepared by using a direct hydrothermal method. A self-assembled monolayer of heptadecafluoro- 1,1,2,2-tetrahydrodecyl trichlorosilane (HDFS) lowered the surface energy between the water droplet and the nano-textured surface. The length of the ZnO NWs was found to play a key role in the formation of a nanostructure that increased the surface roughness of the substrate. Furthermore, the length of the ZnO NWs could be controlled by changing the growth time, and HDFS-coated ZnO NWs were found to be super-hydrophobic after a growth time of 3 h. We have demonstrated the potential application of this nanostructure for ceramic tableware by introducing a ZnO-NW-textured surface on a ceramic cup, which resulted in water and alcohol repellency. This method is a simple and practical way to achieve a super-hydrophobic surface; hence, our method is expected to be widely used in various ceramic applications.

  20. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  1. Tribological performance of ceramic coatings deposited on metal surfaces for micro-bearing biomedical applications

    International Nuclear Information System (INIS)

    Modification of metal materials by means of ceramic coating deposition is an effective way of forming alternative bearing surfaces. Ceramic AlN, Al2O3 and nanocomposite oxynitride coatings are widely used as protective coatings against wear, diffusion and corrosion. The enhancement of the mechanical properties, such as hardness parameters, effective Young's modulus, toughness, elastic recovery and wear resistance of the coatings, is very important for the tribological performance of the next generation of ceramic-coated ball bearing devices.

  2. Excimer laser induced melting and decomposition of technical ceramic surfaces and their properties

    OpenAIRE

    Grossmann, J.; Emmel, A.; Schubert, E.; Bergmann, H

    1993-01-01

    The chemical, structural and topographical changes after the irradiation of technical oxide (Al2O3, ZrO2) and nonoxide ceramics (SiC, Si3N4) with a XeCl-Excimer Laser were studied as function of the applied energy density and number of pulses. The silicon-based nonoxide ceramics decomposed during a temperature and pressure induced process and an adherent up to 1,5 µm thick crystalline Si-layer remained on top of the specimen surface. In contrast, the oxide ceramics underwent a melting and rap...

  3. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  4. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  5. Pool boiling of nanoparticle-modified surface with interlaced wettability

    KAUST Repository

    Hsu, Chin-Chi

    2012-01-01

    This study investigated the pool boiling heat transfer under heating surfaces with various interlaced wettability. Nano-silica particles were used as the coating element to vary the interlaced wettability of the surface. The experimental results revealed that when the wettability of a surface is uniform, the critical heat flux increases with the more wettable surface; however, when the wettability of a surface is modified interlacedly, regardless of whether the modified region becomes more hydrophilic or hydrophobic, the critical heat flux is consistently higher than that of the isotropic surface. In addition, this study observed that critical heat flux was higher when the contact angle difference between the plain surface and the modified region was smaller. © 2012 Hsu et al.

  6. Preparation and Electrochemical Characterization of a Carbon Ceramic Electrode Modified with Ferrocenecarboxylic Acid

    Directory of Open Access Journals (Sweden)

    Christiana A. Pessoa

    2011-01-01

    Full Text Available The present paper describes the characterization of a carbon ceramic electrode modified with ferrocenecarboxylic acid (designated as CCE/Fc by electrochemical techniques and its detection ability for dopamine. From cyclic voltammetric experiments, it was observed that the CCE/Fc presented a redox pair at Epa = 405 mV and Epc = 335 mV (DE = 70 mV, related to the ferrocene/ferrocenium process. Studies showed a considerably increase in the redox currents at the same oxidation potential of ferrocene (Epa = 414 mV vs. Ag/AgCl in the presence of dopamine (DA, differently from those observed when using only the unmodified CCE, in which the anodic peak increase was considerably lower. From SWV experiments, it was observed that the AA (ascorbic acid oxidation at CCE/Fc occurred in a different potential than the DA oxidation (with a peak separation of approximately 200 mV. Moreover, CCE/Fc did not respond to different AA concentrations, indicating that it is possible to determine DA without the AA interference with this electrode.

  7. Experimental Research on Residual Stress in Surface of Silicon Nitride Ceramic Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ...

  8. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    OpenAIRE

    Enrico Bernardo; Laura Fiocco; Giulio Parcianello; Enrico Storti; Paolo Colombo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, ...

  9. Influence of polishing procedures on the surface roughness of dental ceramics made by different techniques.

    Science.gov (United States)

    Oliveira-Junior, Osmir Batista; Buso, Leonardo; Fujiy, Fábio Hiroshi; Lombardo, Geraldo Henrique Leao; Campos, Fernanda; Sarmento, Hugo Ramalho; Souza, Rodrigo Othavio Assuncao

    2013-01-01

    The aim of this study was to evaluate the influence of 2 different surface polishing procedures-glazing and manual polishing-on the roughness of ceramics processed by computer-aided design/computer-aided manufacturing (CAD/CAM) and conventional systems (stratification technique). Eighty ceramic discs (diameter: 8 mm, thickness: 1 mm) were prepared and divided among 8 groups (n = 10) according to the type of ceramic disc and polishing method: 4 GZ and 4 MP. Specimens were glazed according to each manufacturer's recommendations. Two silicone polishing points were used on the ceramic surface for manual polishing. Roughness was measured using a surface roughness tester. The roughness measurements were made along a distance of 2 mm on the sample surface and the speed of reading was 0.1 mm/s. Three measurements were taken for each sample. The data (μm) were statistically analyzed using analysis of variance (ANOVA) and Tukey's test (α = 0.05). Qualitative analysis was performed using scanning electron microscopy (SEM). The mean (± SD) roughness values obtained for GZ were: 1.1 ± 0.40 μm; 1.0 ± 0.31 μm; 1.6 ± 0.31 μm; and 2.2 ± 0.73 μm. For MP, the mean values were: 0.66 ± 0.13 μm; 0.43 ± 0.14 μm; 1.6 ± 0.55 μm; and 2.0 ± 0.63 μm. The mean roughness values were significantly affected by the ceramic type (P = 0.0001) and polishing technique (P = 0.0047). The SEM images confirmed the roughness data. The manually polished glass CAD/CAM ceramics promoted lower surface roughness than did the glazed feldspathic dental ceramics. PMID:23302371

  10. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  11. Influence of the A/B nonstoichiometry, composition modifiers, and preparation methods on properties of Li- and Ta-modified (K,Na)NbO3 ceramics

    Science.gov (United States)

    Morozov, Maxim I.; Hoffmann, Michael J.; Benkert, Katrin; Schuh, Carsten

    2012-12-01

    Properties of Li- and Ta- modified (K,Na)NbO3 piezoceramics with the base composition near the orthorhombic-tetragonal phase boundary have been investigated with respect to variation of temperature, stoichiometry, compositional homogeneity, atmosphere of thermal treatment, and dopants (Ba, Mn). Although the influence of the most of the abovementioned factors has already been reported in the literature, the paper focuses on several aspects of the composition—property relationships that still remain controversial or poorly elucidated. In particular, we show that improvement of compositional homogeniety in these ceramics emphasizes the instability of piezoelectric response with respect to variation of temperature in the vicinity of the orthorhombic-tetragonal phase transition. Ba dopant is shown to suppress conductivity in ceramics sintered in air, though it makes conductivity more sensitive to variation of the oxygen partial pressure. Mn dopant is shown to suppress conductivity and strongly reduce the influence of the oxygen partial pressure on conductivity of the ceramics. Finally, we show that chemical modifications to the ceramic composition, such as Mn dopant or variation of nonstoichiometry affect the piezoelectric response mainly by the shift of the orthorhombic-tetragonal phase transition temperature.

  12. A method for preparing composite diffusion coating alloy on ceramic surface

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongxia; Wang Wenxian; Chen Shaoping; Wei Yinghui

    2008-01-01

    Metallization of the ceramic surfaces of Si3N4 and Al2O3 was carried out in a composite diffusion coating vacuum furnace using a Ti-Cu composite target. The experimental process and influencing factors were discussed. Optical microscope (OM), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffusion (XRD) and sound emissive scratch test (SEST) were applied to evaluate the alloy layer formed on the ceramic surface. It was indicated that the diffusion coating alloy layer contained Cu, Ti, Fe, Al and Si etc. XRD result indicated that the diffusion coating alloy layer was composed of CuTi2, Cu, Si2Ti and CuTi, Al2TiO5, Ti3O5. It was found that the diffusion coating alloy layer got bonded with ceramic well, and no spallation occurred under the maximum load of 100N. Deposited Si3N4 ceramic was welded with Q235 and the joining quality was examined. Robust joint was formed between Si3N4 ceramic/Q235. This present method has advantages in high efficiency and low cost and provides a new approach for producing ceramic and metal bond.

  13. A method of non-destructive quantitative analysis of the ancient ceramics with curved surface

    International Nuclear Information System (INIS)

    Generally the surface of the sample should be smooth and flat in XRF analysis, but the ancient ceramics and hardly match this condition. Two simple methods are put forward in fundamental method and empirical correction method of XRF analysis, so the analysis of little sample or the sample with curved surface can be easily completed

  14. Sorption Ceramic Membranes with a Functionalized Surface Layer

    Czech Academy of Sciences Publication Activity Database

    Zub, Yu.L.; Tomina, V.V.; Melnyk, I.V.; Stolyarchuk, N.V.; Nazarchuk, H.I.; Sliesarenko, V.V. (ed.); Sliesarenko, V.M.; Topka, Pavel; Šolcová, Olga

    Prague : Orgit, 2014, s. 39. ISBN 978-80-02-02555-9. [International Congress of Chemical and Process Engineering /21./ - CHISA 2014 and Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction /17./ - PRES 2014. Prague (CZ), 23.08.2014-27.08.2014] Grant ostatní: NATO(US) SPP984398 Institutional support: RVO:67985858 Keywords : ceramic membranes * polysiloxane * layers Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Primary Research of MSCs on AW Glass Ceramic with Different Surface Roughness

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionTissue engineering can be defined as the use of composite of cells and materials to promote a replace new tissue formation. The surface topography of the composite including surface texture and surface roughness, can directly influence cellular adsorb, attachment, proliferation differentiation and migradtion. Roughened surfaces were achieved through processes such as machining, particle blasting, chemical/electrochemical etching.Apatite-wallastonite glass-ceramic(AW GC) was developed in 1982 b...

  16. Surface modified silicon nanochannel for urea sensing

    CERN Document Server

    Chen, Yu; Hong, Mi; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2008-01-01

    Silicon nanowires have been surface functionalized with the enzyme urease for biosensor applications to detect and quantify urea concentration. The device is nanofabricated from a silicon on insulator (SOI) wafer with a top down lithography approach. The differential conductance of silicon nanowires can be tuned for optimum performance using the source drain bias voltage, and is sensitive to urea at low concentration. The experimental results show a linear relationship between surface potential change and urea concentration in the range of 0.1 to 0.68 mM. The sensitivity of our devices shows high reproducibility with time and different measurement conditions. The nanowire urea biosensor offers the possibility of high quality, reusable enzyme sensor array integration with silicon based circuits.

  17. Influence of cast surface finishing process on metal-ceramic bond strength

    OpenAIRE

    Denis Vojvodić,; Zdravko Schauperl,; Martina Lauš-Šošić,; Ketij Mehulić,; Sanja Štefančić

    2009-01-01

    Aim To investigate the influence of different cast surface finishingprocess on metal-ceramics bond strength.Methods Six Co-Cr alloy sample groups were cast (Wirobond C,BEGO, Bremen, Germany) and randomly selected for use in oneof the six different final processing of the casting surface (oxidation,sandblasting with 110 and 250 µm Al2O3, bonding agent,hydrochloric acid solution) prior to application of feldspathic ceramic(Duceram Kiss, DeguDent, Hanau-Wolfgang, Germany).The testing was carried...

  18. Growth of failure relevant surface cracks in oxide ceramics with and without transformation-toughening

    International Nuclear Information System (INIS)

    In recent years active debats are on progress to select the right cracks for determination of the toughness behavior of modern structural ceramics, especially of those exhibiting R-curve behavior. Mostly toughness is measured in notched specimens where cracks grow several millimeters while strength is usually measured with unnotched bend bars where small surface flaws cause brittle fracture. As in the majority of cases the latter cracks are responsible for failure of ceramic components a piezo-mechanic testing machine was designed to observe the growth of ''natural'' surface cracks in situ and therefrom the mechanical behavior of structural ceramics was studied. The extension behavior of surface cracks (''natural'' and indentation cracks) in transformation-toughened ZrO2-containing ceramics (stabilized with either MgO or Y2O3) and non-transforming Al2O3 was studied. A novel evaluation method was developed to determine the indentation-induced residual stress intensity from experimental data (crack extension curves). In all the cases it was found that failure occurres at toughness levels significantly below the plateau toughness revealed from long crack experiments and this indicates that the use of plateau toughness values overestimates the toughness potential of ceramics. (orig./MM)

  19. Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride

    Directory of Open Access Journals (Sweden)

    Vanessa Z.S. Ccahuana

    2010-04-01

    Full Text Available OBJECTIVE: This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF gel exposure on the glassy matrix ceramics as a function of time. MATERIAL AND METHODS: Disc-shaped ceramic specimens (N = 120, 10/per ceramic material were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik, 2 for all-ceramic (Vitadur Alpha and Finesse® Low Fusing and 1 for both types of restorations (IPS d.SIGN. The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM before (0 min and after exposure to 1.23 % APF gel for 4 min and 60 min representing short- and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey's test (a=0.05. RESULTS: Significant effect of the type of the ceramics (p=0.0000, p=0.0031 and exposure time (p=0.0000 was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258. Both 4 min (0.44±0.1 - 0.81±0.2 mm and 60 min (0.66±0.1 - 1.04±0.3 mm APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33±0.2 - 0.68±0.2 mm (p0.05 but at 60 min exposure, IPS d.SIGN showed the highest percentage of mass loss (0.1151±0.11. The mean surface roughness for Vita Titankeramik (0.84±0.2 mm and Finesse® Low Fusing (0.74.±0.2 mm was significantly higher than those of the other ceramics (0.59±0.1 mm - 0.49±0.1 mm and Vita Titankeramik (p<0.05 regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for

  20. SURFACE OF GELATIN MODIFIED POLY(L-LACTIC ACID) FILM

    Institute of Scientific and Technical Information of China (English)

    Xin Hou; Bao-long Zhang; Feng She; Yuan-lu Cui; Ke-yu Shi; Kang-de Yao

    2003-01-01

    In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. The PLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, so that these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLA films were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by using environmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined by water contact angle measurement. Experimental results showed that the gelatin was immobilized with water-soluble carbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylic group formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.

  1. Modified PZT ceramics as a material that can be used in micromechatronics

    Science.gov (United States)

    Zachariasz, Radosław; Bochenek, Dariusz

    2015-11-01

    Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.

  2. Optical properties and Surface analysis of lithium incorporated Y2O3:Eu3+ ceramic phosphors

    Directory of Open Access Journals (Sweden)

    Jong-Seong Bae

    2010-09-01

    Full Text Available The influence of lithium doping concentration on the crystallization, the surface morphology, and the luminescent properties of Y1.92O3:Eu0.08 ceramic phosphors were investigated. The crystallinity, the surface morphology, and the photoluminescence (PL of ceramics depended highly on the Li-doping concentrations. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li-doping was found to affect not only the enhanced crystallinity but also the luminescent brightness of Y1.92O3:Eu0.08 ceramics. In particular, the incorporation of Li+ ion into the Y2O3 lattice could induce remarkable increase in the PL intensity. The strongest emission intensity was observed with Y1.68Li0.24O3-δ:Eu0.08 ceramics whose brightness was increased by a factor of 6.5 in comparison with that of Y1.92O3:Eu0.08 ceramics.

  3. Self-Growth of Centimeter-Scale Single Crystals by Normal Sintering Process in Modified Potassium Sodium Niobate Ceramics

    Science.gov (United States)

    Ahn, Cheol-Woo; Lee, Ho-Yong; Han, Guifang; Zhang, Shujun; Choi, Si-Young; Choi, Jong-Jin; Kim, Jong-Woo; Yoon, Woon-Ha; Choi, Joon-Hwan; Park, Dong-Soo; Hahn, Byung-Dong; Ryu, Jungho

    2015-12-01

    In this manuscript, an interesting phenomenon is reported. That is the self-growth of single crystals in Pb-free piezoelectric ceramics. These crystals are several centimeters in size. They are grown without any seed addition through a normal sintering process in modified potassium sodium niobate ceramics. It has been achieved by the composition designed to compensate the Na+ loss which occurs during the liquid phase sintering. The composition of the crystals is (K0.4925Na0.4925-xBa0.015+x/2)Nb0.995+xO3 [x is determined by the Na+ loss, due to Na2O volatilization]. These crystals have high piezoelectric voltage coefficients (g33, 131 10-3Vm/N), indicating that they are good candidates for piezoelectric sensors and energy harvesting devices. We hope that this report can offer the opportunity for many researchers to have an interest in these crystals.

  4. Resin-bonded fixed dental prosthesis with a modified treatment surface in a zirconia framework: a case report.

    Science.gov (United States)

    Viana, Pedro Couto; Portugal, Jaime; Kovacs, Zsolt; Lopes, Ivo; Correia, André

    2016-01-01

    Although resin-bonded fixed dental prostheses (RBFDPs) were developed almost 40 years ago, their implementation in clinical practice did not achieve success due to biomechanical failures of the restorative materials. Nowadays, the evolution of ceramic materials and bonding procedures has allowed for the revival of the dental prosthesis. Zirconia is the dental ceramic with the highest flexural strength under compression. However, there are still some concerns regarding the bonding strength of zirconia to enamel that require further research. In this article, through the presentation of three clinical cases, the authors show how modifying the surface of zirconia frameworks by applying a feldspathic veneering on the retainer's buccal surface allows for a bonding procedure to dental structures. The goal of this treatment method is to simultaneously improve structural strength, esthetic integration, and bonding optimization to enamel. In a 3-year prospective evaluation, this framework modification shows promising results, with a survival rate of 100% and no biological or mechanical complications. PMID:27433551

  5. Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Teruo Okano

    2012-08-01

    Full Text Available In the past two decades, as a novel approach for tissue engineering, cell sheet engineering has been proposed by our laboratory. Poly(N-isopropylacrylamide (PIPAAm, which is a well-known temperature-responsive polymer, has been grafted on tissue culture polystyrene (TCPS surfaces through an electron beam irradiated polymerization. At 37 °C, where the PIPAAm modified surface is hydrophobic, cells can adhere, spread on the surface and grow to confluence. By decreasing temperature to 20 °C, since the surface turns to hydrophilic, cells can detach themselves from the surface spontaneously and form an intact cell sheet with extracellular matrix. For obtaining a temperature-induced cell attachment and detachment, it is necessary to immobilize an ultra thin PIPAAm layer on the TCPS surfaces. This review focuses on the characteristics of PIAPAm modified surfaces exhibiting these intelligent properties. In addition, PIPAAm modified surfaces giving a rapid cell-sheet recovery has been further developed on the basis of the characteristic of the PIPAAm surface. The designs of temperature-responsive polymer layer have provided an enormous potential to fabricate clinically applicable regenerative medicine.

  6. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  7. Influence of cast surface finishing process on metal-ceramic bond strength

    Directory of Open Access Journals (Sweden)

    Denis Vojvodić,

    2009-08-01

    Full Text Available Aim To investigate the influence of different cast surface finishingprocess on metal-ceramics bond strength.Methods Six Co-Cr alloy sample groups were cast (Wirobond C,BEGO, Bremen, Germany and randomly selected for use in oneof the six different final processing of the casting surface (oxidation,sandblasting with 110 and 250 µm Al2O3, bonding agent,hydrochloric acid solution prior to application of feldspathic ceramic(Duceram Kiss, DeguDent, Hanau-Wolfgang, Germany.The testing was carried out with a tensile testing machine (LRXwith Nexygen software, Lloyd Instr., Fareham, UK (ISO 9693.Results The highest force (66.902 N for the separation of ceramicsmeasured with the sample sandblasted with 250µm Al2O3,oxidised and repeatedly sandblasted with 250 µm, and the lowestforce (36.260 N with the sample treated with hydrochloric acidsolution. With all sample groups except the group with the bondingagent (cohesive fracture, an adhesive fracture of the mediumand an adhesive-cohesive fracture of the peripheral part of thefracture surface were observed. The oxidation, prolonged oxidationand the bonding agent do not influence the bond strength ofthe tested metal-ceramic system.Conclusion Different casting surface treatments have an importantrole on the bond strength of the ceramic-metal interface.

  8. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  9. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  10. Influence of different surface treatments on the fracture toughness of a commercial ZTA dental ceramic

    OpenAIRE

    Flavio Teixeira da Silva; Marcio Alessandro Negrelly Zacché; Helio Salim de Amorim

    2007-01-01

    The objective of this study was to investigate how mechanical surface treatments performed for removal of excess of molten glass, influence the fracture toughness of a dental zirconia toughened alumina (In-Ceram® Zirconia). Infiltrated ZTA disks were submitted to three different surface treatments (grinding, sandblasting and grinding + sandblasting + annealing). Fracture toughness was accessed through indentation strength test (IS). X ray diffraction was used to investigate the metastability ...

  11. Finite Element Analysis and Experiment Research on Surface Residual Stress of Ceramics Grinding

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The theoretical model of residual stress of ceramics grinding has been established applying thermal elastoplastic mechanics theory. While grinding at the course of grinding wheel moved along workpiece surface the distributing regulation of residual stress can be simplified into thermal elastioplastic mechanical issue, under the action of the both moving centralized force and heat source. Calculating and evaluating of surface residual stress using current procedure of finite element analysis which has been...

  12. Identification and elimination of organic contaminants on the surface of PLZT ceramic wafers

    International Nuclear Information System (INIS)

    Surface contamination of PLZT (lead lanthanum zirconate-titanate) hot-pressed ferroelectric ceramics being used as the electrooptic wafers in thermal/flash protective goggles has caused ''mottling'' on the surface of the wafers adversely affecting the performance of the goggles. Mottling describes the nonuniform appearance of the goggle lens in the transmitting (open) and protective (closed) states. Experiments were devised to identify the contaminant and to find a method of effectively removing it from the ceramic surface without changing the electrical properties of the PLZT. Infrared spectroscopy, secondary ion mass spectroscopy, Auger electron spectroscopy and scanning electron microscopy were used to determine the type and extent of contamination and effectiveness of cleaning methods. The contaminant was identified as the residue from an optical adhesive used in processing the wafers. Various cleaning methods were compared: washing and soaking wafers in a 50 percent potassium carbonate/deionized water solution; solvent cleaning with various combinations of tetrahydrofuran, methylene chloride, methylethylketone; oxygen plasma; ultraviolet light. Results indicated that although solvents and potassium carbonate solutions removed the gross contamination there was still a sufficient amount present to cause the ''mottling''. In addition, some adverse effects on the ceramic surface were discovered in the case of K2CO3 cleaning. Auger scans proved ultraviolet light to be the most effective method with no contamination remaining after a two hour exposure and no apparent surface damage. A model explaining the behavior of the contaminated surface with respect to various solvents was developed

  13. Modified phosphate ceramics for stabilization and solidification of salt mixed wastes

    International Nuclear Information System (INIS)

    Novel chemically bonded phosphate ceramics have been investigated for stabilization and solidification of chloride and nitrate salt wastes. Using low-temperature processing, we stabilized and solidified chloride and nitrate surrogate salts (with hazardous metals) in magnesium potassium phosphate ceramics up to waste loadings of 70-80 wt.%. A variety of characterizations, including strength, microstructure, and leaching, were then conducted on the waste forms. Leaching tests show that all heavy metals in the leachant are well below the EPAs universal treatment standard limits. Long-term leaching tests, per ANS 16. 1 procedure, yields leachability index for nitrate ions > 12. Chloride ions are expected to have an even higher (i.e., better) leachability index. Structural performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfies the regulatory criteria. Thus, based on the results of this study, it seems that phosphate ceramics are viable option for containment of salt wastes

  14. Surface modified stainless steels for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  15. Modified Critical State Two-Surface Plasticity Model for Sands

    DEFF Research Database (Denmark)

    Sørensen, Kris Wessel; Nielsen, Søren Kjær; Shajarati, Amir; Clausen, Johan

    This article describes the outline of a numerical integration scheme for a critical state two-surface plasticity model for sands. The model is slightly modified by LeBlanc (2008) compared to the original formulation presented by Manzari and Dafalias (1997) and has the ability to correctly model t...

  16. A Modified Jaeger's Method for Measuring Surface Tension.

    Science.gov (United States)

    Ntibi, J. Effiom-Edem

    1991-01-01

    A static method of measuring the surface tension of a liquid is presented. Jaeger's method is modified by replacing the pressure source with a variable pressure head. By using this method, stationary air bubbles are obtained thus resulting in controllable external parameters. (Author/KR)

  17. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    OpenAIRE

    Halyna Klym; Ivan Hadzaman; Oleh Shpotyuk

    2015-01-01

    Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH)2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to h...

  18. TiO2 ceramic varistor modified with tantalum and barium

    International Nuclear Information System (INIS)

    The non-linear current (I)-voltage (V) characteristics of titanium dioxide doped with small quantities of tantalum and barium (99.9 TiO2 + 0.1 Ta and 99.4 TiO2 + 0.1 Ta + 0.5 Ba, all are in at.%) were investigated. These samples have the non-linear coefficient (α) values of (20-30) with high breakdown voltages (E B ∼ 400-700 V mm-1). The pentavalent tantalum acts as donor and increases the electronic conductivity. The higher electrical conductivity and decrease in the breakdown field strength with barium addition is attributed to higher density. The acceptor like surface states formed by barium ions segregate to grain boundaries due size misfit to thereby modifying the electrical barrier characteristics of grain boundaries

  19. Effects of surface treatments on bond strength of glass-infiltrated ceramic.

    Science.gov (United States)

    Lu, Y C; Tseng, H; Shih, Y H; Lee, S Y

    2001-09-01

    The purpose of this study was to evaluate the effects of various surface treatments on the bond strength at the In-Ceram/resin composite interface. Ninety-eight In-Ceram specimens were divided into seven groups and exposed to various surface treatments as follows: (A) control (B) saliva contamination (C) saliva contamination plus aluminum oxide sandblasting (D) glove powder contamination (E) glove powder contamination plus aluminum oxide sandblasting (F) rough aluminum oxide sandblasting and (G) excess glass infiltration. A resin composite cylinder was cemented to each In-Ceram specimen with Panavia 21 resin luting cement. Half of the cemented specimens in each group were stored in water for 24 h, and the other half were stored in water for 2 weeks and then were thermo-cycled for 2000 cycles. Shear bond strengths (SBS) of seven specimens in each subgroup were determined and analysed using analysis of variance (ANOVA) and Tukey HSD test as well as Student's t-test. Scanning electronic microscopy was used to identify the type of bond failure. Shear bond strength was significantly decreased by saliva and glove powder contaminations (P contaminated specimens. However, the glove powder plus sandblasting group showed no significant difference in SBS compared with the control group. There was no significant difference in SBS between the excess glass-infiltrating group and the control group. The SBS was significantly decreased by rough aluminum oxide sandblasting (P contaminants may significantly influence the bond strength of In-Ceram restorative in clinical use. PMID:11580818

  20. Simulation analysis of grinding wheel motion trajectory on SiC ceramics aspheric surface grinding

    Science.gov (United States)

    Zhang, Feihu; Liu, Lifei; Li, Chunhui

    2014-08-01

    In grinding process of SiC ceramics aspheric surface, the motion trajectory of grinding wheel has great influence on the surface forming. The paper provides mathematical models of grinding wheel movements; analytical simulation was done to describe the trajectories of the grinding wheel in manufacturing an aspherical workpiece. The effect of grinding parameters (including the rotation speed of the workpiece, the feed rate of grinding wheel etc.) on the aspheric surface coverage rate was conducted and discussed in detail. An experimental study was done according to the simulation results and an aspheric surface with form error less than 10μm was gained.

  1. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    OpenAIRE

    Saadet Atsü; Bülent Çatalbaş; Ibrahim Erhan Gelgör

    2011-01-01

    OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group): (1) sandblasting (control); (2) tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the la...

  2. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  3. Polarization-induced surface charges in hydroxyapatite ceramics

    Science.gov (United States)

    Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.

    2014-07-01

    Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.

  4. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  5. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, over oxidized polypyrrole and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    A carbon ceramic electrode was modified with a thin film composed of over oxidized polypyrrole, CuO and multi-walled carbon nanotubes. The surface morphology, electrochemical properties and electrocatalytic activity towards the oxidation of glucose of the modified electrode were studied in detail. Benefiting from the high electrocatalytic activity of CuO, the selectivity of OPpy film, and the fast electron transfer rate promoted by MWCNTs, this modified electrode displays good stability, selectivity, high electrocatalytic activity and a low detection limit for the determination of glucose in pH 13 solution. Under the optimum conditions, the linear range for the determination of glucose by cyclic voltammetry is from 20 μM to 10 mM, and the detection limit is 4.0 μM (at an SNR of 3). The amperometric calibration plot covers the 0.20 μM to 2.0 mM concentration range, and the detection limit is 50 nM. The highest sensitivity for the determination of glucose is 3922.6 μA mM−1 cm2. (author)

  6. Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemens, F.; Trunec, M.

    2015-01-01

    Roč. 35, č. 10 (2015), s. 2873-2881. ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia toughened alumina * Co-extrusion * Composite * Mechanical properties1 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  7. Dye removal using some surface modified silicate minerals

    Institute of Scientific and Technical Information of China (English)

    Selim K.A.; Youssef M.A.; Abd El-Rahiem F.H.; Hassan M.S

    2014-01-01

    The objective of this work is to study the efficiency of some surface modified phyllosilicate minerals (bentonite and glauconite) in the removal of dyes from textile waste water. It is found that complete dye removal was achieved by using 10-25 g modified glauconite from solutions having a dye concentration of 10-50 mg/L. Adsorption data were modeled using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. Adsorption capacities and optimum adsorption isotherms were predicted by linear regression method. The analysis of experimental isotherms showed that Langmuir isotherm reasonably fit the experimental data in the studied concentration range for the adsorption of dye onto glauconite mineral surface where Freundlich isotherm fit the experimental data for the adsorption of dye onto bentonite mineral surface.

  8. Analysis of surface modified polymers: XPS and conductivity measurements

    International Nuclear Information System (INIS)

    Full text: Design specific, surface modified polymers are finding ever increasing application in technological, manufacturing and medical areas. A brief review will be presented of such, followed by specific reference to electrical properties of surface modified polymeric materials, their application and analysis. A new method has been devised for the measurement of resistivity in the surface region of insulating materials, including many well known polymers. It measures resistivity through recording of the decay of surface charge placed on the surface of a sample. This method will be outlined and results presented. An ionic charge transport theory has also been developed, based on self field driven motion of, and diffusion transport of, charge carriers; which provides greater insight into the way carriers move in the surface region of insulators in general. The agreement between this theory and the measurements obtained has resulted in an accurate technique for the measurement of electrical resistivity in the surface region of insulators. Values may also be simultaneously obtained for the carrier diffusion coefficient, and the carrier occupancy depth. The methodology has been applied to a series of surface modified polymers under various grafting conditions (graft concentration, temperature and time). The chosen substrates were: polyaniline (PAN), low density polyethylene (LDPE) and teflon (PTFE), pretreated for grafting by either Ar plasma or ozone. The graft monomers used for copolymerisation were acrylic acid (Mc), sodium salt of styrene sulfonic acid (NaSS) and N,N-dimethylacrylamide (DMAA). XPS measurements of the samples will also be used to infer the conduction mechanisms in the materials resulting from grafting procedures. Copyright (1999) Australian X-ray Analytical Association Inc

  9. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    Science.gov (United States)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  10. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  11. Characterization and cytocompatibility of surface modified polyamide66.

    Science.gov (United States)

    Shen, Juan; Li, Yubao; Zuo, Yi; Zou, Qin; Li, Jidong; Huang, Di; Wang, Xiaoyan

    2009-11-01

    The chemical modification of polyamide66 (PA66) membrane by graft polymerization with methacrylic acid (MAA) was initiated under ultraviolet light. Subsequently, covalent immobilization of bioactive surface was obtained by coupling gelatin to the MAA graft chains with the aid of a water-soluble carbodiimide (WSC). The existence of carboxyl groups grafted on PA66 surface was verified quantitatively by UV-vis spectroscopy. The chemical composition, surface topography, and wettability were investigated by Fourier transform infrared (FTIR) technique, X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle (WCA) measurement. Results showed that the WCA changed from the original value of 67.5 degrees to the minimum value of 30 degrees after grafting with PMAA. Original PA66 displayed a smooth surface morphology [root mean square (RMS) roughness was around 16 nm]. The modified PA66 surface exhibited an increase in roughness (RMS roughness around 21 nm). Simultaneously, the original and modified PA66 membranes were cultured with MG63 cells to investigate their cytocompatibility. The in vitro biological evaluation demonstrated that the immobilization of gelatin on PA66 membrane acted as a good template for the attachment and proliferation of cells. Also, the less toxic reagents and the moderate reaction conditions involved will be very helpful for the introduction of functional groups onto polymer surface. PMID:19637374

  12. Excimer laser surface processing for tribological applications in metals and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Hivonen, Juha-Pekka; Nastasi, M.

    1991-01-01

    The use of pulsed excimer lasers, operating at UV wavelengths, for surface modification has many potential applications in the tribology of metals and ceramics. Alterations of surface chemistry and microstructure are possible on standard engineering materials. We have demonstrated improved tribological performance in stainless steel by the formation of a unique oxide and by Ti mixing and in SiC by Ti mixing. Specifically, we have observed reduced friction in dry sliding conditions and a change in the wear process resulting in greatly reduced surface damage. We have also demonstrated the effectiveness of excimer laser mixing in other systems with potential tribological applications. 22 refs., 7 figs.

  13. Ultra-precision grinding of PZT ceramics--Surface integrity control and tooling design

    OpenAIRE

    Arai, S; Wilson, Stephen A.; Corbett, John; Whatmore, Roger W.

    2009-01-01

    A comprehensive statistical analysis of the factors controlling surface quality and form in ultra-precision grinding of polycrystalline lead zirconate titanate (PZT) ceramics has been conducted. The work focuses on practical grinding conditions and it includes an assessment of the interactions that exist between the method of material removal and the machine design. In the first phase of experimentation, defects including porosity and the fractural damage induced in the subsurface area were i...

  14. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose.

    Science.gov (United States)

    Andresen, Martin; Stenstad, Per; Møretrø, Trond; Langsrud, Solveig; Syverud, Kristin; Johansson, Leena-Sisko; Stenius, Per

    2007-07-01

    We have prepared potentially permanent antimicrobial films based on surface-modified microfibrillated cellulose (MFC). MFC, obtained by disintegration of bleached softwood sulfite pulp in a homogenizer, was grafted with the quaternary ammonium compound octadecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride (ODDMAC) by a simple adsorption-curing process. Films prepared from the ODDMAC-modified MFC were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) and tested for antibacterial activity against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The films showed substantial antibacterial capacity even at very low concentrations of antimicrobial agent immobilized on the surface. A zone of inhibition test demonstrated that no ODDMAC diffused into the surroundings, verifying that the films were indeed of the nonleaching type. PMID:17542633

  15. Impact Behaviour of Modified Biopolymer Droplet on Urea Surface

    OpenAIRE

    S. Yon Norasyikin; K. KuZilati; Zakaria, M; S. Suriati

    2014-01-01

    The droplet impact behaviour provides the particle coating characterization during the coating process of controlled release fertiliser. To have a good coating uniformity around the urea granules, it is necessary to enhance the wettabitily properties between the coating material and urea surface. In this study, modified biopolymer is used as the coating material for the controlled release fertilizer. Various compositions of starch:urea:borate were prepared and evaluated for the wettability pr...

  16. CHEMICALLY MODIFIED ZEOLITES: SURFACES AND INTERACTION WITH Cs AND Co

    Directory of Open Access Journals (Sweden)

    Pavel Dillinger

    2007-06-01

    Full Text Available Inorganic exchangers, including zeolites, have interesting properties such as resistance to decomposition in the presence of ionizing radiation or to high temperatures, what make them applicable for the purification of low and middle polluted radioactive waste waters. The research was focused on model radioactive waste effluents and the investigated metals were cobalt (Co and cesium (Cs. The performance of natural zeolite of clinoptilolite type and zeolite chemically modified with NaOH solutions was determined by studying their surface and sorption properties using volumetric method and static radioindicator method. The measurements of zeolite´s surfaces showed the double increase of the specific surface along with an increase of mesopore’s diameter. The reason is the extraction of silicon from zeolite caused by NaOH solution what creates secondary mesoporous structure. The radioactive tracer technique was used to evaluate sorption properties of zeolites and the best sorbent was selected based on KD, μ, Γ and S values. The sorption abilities of natural and chemically modified zeolites for Cs uptake were comparable. The uptake of Co with natural zeolite was negligible and it increased up to 14 times for modified zeolites depending on the concentration of treated NaOH solution.

  17. Structural and surface changes of copper modified manganese oxides

    Science.gov (United States)

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  18. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in...... ammonia pressure is less negative. The activity goes through a maximum as the An coverage increases, and then to zero as the coverage approaches 1 ML. At 713 K and 400 ppm NH3, a maximum enhancement of 50% is observed at 0.04 ML An. Based on features in the TPD spectra, the enhancement is suggested to be...

  19. Tribological Behaviour of Surface Modified Copper Nanoparticles as lubricating Additives

    Science.gov (United States)

    Shi, P. J.; Yu, H. L.; Wang, H. M.; Xu, B. S.

    A special kind of surface modified copper nanoparticles was selected as the auto-reconditioning materials to in situ generate a copperized protective film on iron-base metal surfaces under designed tribological conditions. The morphologies and element distributions of the formed film were observed and determined by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The micro mechanical properties and tribological behaviors were investigated by nano test system and ball- on-disc tribotester. The results show that the morphology of the protective film is smooth, the nano-hardness decreases by 46% and the friction coefficient of the copperized protective film is about 0.10. The forming mechanism of the auto-reconditioning film can be described that the copper nanoparticles deposit on the worn surfaces and form iron-copper alloy film with lower hardness and shear strength, which has better friction-reducing, antiwear and surface-optimizing behaviors.

  20. Studies of surface modified NiTi alloy

    Science.gov (United States)

    Shevchenko, N.; Pham, M.-T.; Maitz, M. F.

    2004-07-01

    A corrosion resistant and nickel free surface on NiTi (nitinol) for biomedical applications should be produced by ion implantation. Ar + and/or N + implantation in NiTi alloy was performed at energies of 20-40 keV and fluences of (3-5) × 10 17 cm -2 by means of plasma immersion ion implantation. The modification of the NiTi alloy and its biocompatibility properties were studied. The near surface layers were analysed by Auger electron spectroscopy (AES), grazing incidence X-ray diffraction (GIXRD) and cell culture tests, and electrochemical corrosion analysis of these layers was performed. A nickel depleted surface layer is produced by the implantation, which was sealed by the formation of TiN or Ti oxide layers at the different implantation regimes, respectively. No differences in biocompatibility were seen on the modified compared with the initial surfaces. The corrosion stability increased by this treatment.

  1. Effect of surface treatment and liner material on the adhesion between veneering ceramic and zirconia.

    Science.gov (United States)

    Yoon, Hyung-in; Yeo, In-sung; Yi, Yang-jin; Kim, Sung-hun; Lee, Jai-bong; Han, Jung-suk

    2014-12-01

    Fully sintered zirconia blocks, each with one polished surface, were treated with one of the followings: 1) no treatment, 2) airborne-particle abrasion with 50μm alumina, and 3) airborne-particle abrasion with 125μm alumina. Before veneering with glass ceramic, either liner Α or liner B were applied on the treated surfaces. All veneered blocks were subjected to shear force in a universal testing machine. For the groups with liner A, irrespective of the particle size, air abrasion on Y-TZP surfaces provided greater bond strength than polishing. Application of liner B on an abraded zirconia surface yielded no significant influence on the adhesion. In addition, specimens with liner A showed higher bond strength than those with liner B, if applied on roughened surfaces. Fractured surfaces were observed as mixed patterns in all groups. For the liner A, surface treatment was helpful in bonding with veneering ceramic, while it was ineffective for the liner B. PMID:25282467

  2. Piezoelectric and dielectric properties of cerium-modified Aurivillius type K0.5La0.5Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    The Aurivillius type potassium lanthanum bismuth titanate (K0.5La0.5Bi4Ti4O15, KLBT) polycrystalline ceramics with 0.0-1.0 wt.% CeO2 were synthesized using conventional solid-state processing. X-ray diffraction analysis revealed that the cerium-modified KLBT ceramics have a pure four-layer Aurivillius type structure. The effects of cerium oxide on the piezoelectric, ferroelectric and dielectric properties on the KLBT ceramics were investigated. By the cerium modification, the piezoelectric activities of KLBT ceramics were significantly improved and the dielectric loss decreased. The piezoelectric coefficient d33 for the 0.50 wt.% CeO2-modified KLBT was found to be 28 pC N-1, the highest value among the modified KLBT-based piezoceramics. The reason for piezoelectric activities enhancement with Ce modification was given. The dielectric spectroscopy presented that the Curie temperature for all the KLBT ceramics is higher than 400 deg. C

  3. Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling

    International Nuclear Information System (INIS)

    Highlights: • Submicron size strontium doped BZT ceramics were prepared by high energy ball milling. • Structural analysis was done by Reitveld refinement and Raman analysis. • Decrement in transition temperature and increment in diffusivity is observed with doping. • Remnant polarization decreases and coercive filed increases with doping. • Optical study was done by UV–vis spectroscopy and the optical band gap increases with doping. - Abstract: Strontium modified barium zirconium titanate with general formula Ba1−xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content. The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV–visible spectroscopy and found that the optical band gap increases with Sr concentration

  4. Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Badapanda, T., E-mail: badapanda.tanmaya@gmail.com [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha 752054 (India); Sarangi, S.; Behera, B. [School of Physics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019 (India); Parida, S. [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha 752054 (India); Saha, S.; Sinha, T.P. [Department of Physics, Bose Institute, Kolkata 700009 (India); Ranjan, Rajeev [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Sahoo, P.K. [School of Physical Science, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha (India)

    2015-10-05

    Highlights: • Submicron size strontium doped BZT ceramics were prepared by high energy ball milling. • Structural analysis was done by Reitveld refinement and Raman analysis. • Decrement in transition temperature and increment in diffusivity is observed with doping. • Remnant polarization decreases and coercive filed increases with doping. • Optical study was done by UV–vis spectroscopy and the optical band gap increases with doping. - Abstract: Strontium modified barium zirconium titanate with general formula Ba{sub 1−x}Sr{sub x}Zr{sub 0.05}Ti{sub 0.95}O{sub 3} ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr{sub 0.05}Ti{sub 0.95}O{sub 3} shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content. The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV–visible spectroscopy and found that the optical band gap increases with Sr concentration.

  5. Effect of regular surface textures generated by laser on tribological behavior of Si3N4/TiC ceramic

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Wu, Ze; Cheng, Hongwei

    2013-01-01

    Two kinds of regular micro-grooved textures with different geometric characteristics were fabricated on the surfaces of Si3N4/TiC ceramics by Nd:YAG laser; friction and wear tests were carried out to investigate the tribological properties of these textured ceramics in unlubricated and MoS2 lubricated conditions. The wear surfaces of the textured ceramics and the balls were examined by SEM and the possible friction reduction and wear resistant mechanisms were discussed. The results show that the friction coefficient of the textured ceramics was reduced compared with the smooth ceramics among all the experiments, the wavy grooves are the most effective in the friction-reduction among the patterns investigated, and the wear life of textured ceramics can be increased in MoS2 lubricated condition. Furthermore, it is observed that the textured ceramics produce more abrasive wear on the ball specimens in unlubricated friction, while it reduces the wear of balls in MoS2 lubricated condition. The main effect mechanism of textures is to capture debris and reduces the contact area of couples in unlubricated condition, and increase lubricant supply by reservoir creation and form the continued lubricating film on the surfaces of spacing between the textures in MoS2 solid lubricated condition.

  6. Preparation and characterization of PbTi03 ceramics modified by a natural mixture of rare earth oxides of xenotime

    International Nuclear Information System (INIS)

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO3, Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO3 prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO3. The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm2. These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  7. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable. (author)

  8. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO2 or stabilized ZrO2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr2O3-A12O3) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  9. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  10. Surface-modified magnetic colloids for affinity adsorption of immunoglobulins

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernanda [School of Chemical Engineering, State University of Campinas, C.P. 6066, 13083-970 Campinas-SP (Brazil); Pinho, Samantha C. [School of Chemical Engineering, State University of Campinas, C.P. 6066, 13083-970 Campinas-SP (Brazil)], E-mail: samantha@usp.br; Zollner, Terezinha C.A. [School of Chemical Engineering, State University of Campinas, C.P. 6066, 13083-970 Campinas-SP (Brazil); Zollner, Ricardo L. [School of Medical Sciences, State University of Campinas, Campinas-SP (Brazil)], E-mail: zollner@unicamp.br; Cuyper, Marcel de [Interdisciplinary Research Centre, Katholieke Universiteit Leuven-Campus Kortrijk, B-8500 Kortrijk (Belgium)], E-mail: Marcel.DeCuyper@kulak.ac.be; Santana, Maria Helena A. [School of Chemical Engineering, State University of Campinas, C.P. 6066, 13083-970 Campinas-SP (Brazil)], E-mail: lena@feq.unicamp.br

    2008-07-15

    This work describes the preparation, characterization and in vitro adsorption tests of surface-modified magnetoliposomes for affinity binding of (i) anticardiolipin (isotype G) antibodies and (ii) specific isotype E antibodies generated by hypersensitivity reactions in humans with respiratory allergy. In the first case, cardiolipin embedded in the bilayer of magnetoliposomes was used as specific ligand. In the second case, antigenic proteins present in an extract of Dermatophagoids pteronyssinus and Blomia tropicalis mites were covalently coupled on the surface of magnetoliposomes via a diglycolic spacer arm, and used as specific ligands for IgE. Antibody adsorption was performed in a high-gradient magnetophoresis system, using either sera of healthy individuals or a pool of sera from autoimmune or allergic patients. The selectivity and capacity of the system were quantified by a frontal analysis in a capillary column, and by constructing breakthrough curves. The results show that the highest yield and selectivity were obtained if the ligand was extended into the aqueous layer surrounding the magnetoliposome surface. A 100% selectivity was obtained for adsorption of specific IgE, and 8% for IgG. These results demonstrate the potentialities of both types of surface-modified magnetic biocolloids in the field of in vitro diagnosis tests for allergic or autoimmune conditions.

  11. Surface-modified magnetic colloids for affinity adsorption of immunoglobulins

    International Nuclear Information System (INIS)

    This work describes the preparation, characterization and in vitro adsorption tests of surface-modified magnetoliposomes for affinity binding of (i) anticardiolipin (isotype G) antibodies and (ii) specific isotype E antibodies generated by hypersensitivity reactions in humans with respiratory allergy. In the first case, cardiolipin embedded in the bilayer of magnetoliposomes was used as specific ligand. In the second case, antigenic proteins present in an extract of Dermatophagoids pteronyssinus and Blomia tropicalis mites were covalently coupled on the surface of magnetoliposomes via a diglycolic spacer arm, and used as specific ligands for IgE. Antibody adsorption was performed in a high-gradient magnetophoresis system, using either sera of healthy individuals or a pool of sera from autoimmune or allergic patients. The selectivity and capacity of the system were quantified by a frontal analysis in a capillary column, and by constructing breakthrough curves. The results show that the highest yield and selectivity were obtained if the ligand was extended into the aqueous layer surrounding the magnetoliposome surface. A 100% selectivity was obtained for adsorption of specific IgE, and 8% for IgG. These results demonstrate the potentialities of both types of surface-modified magnetic biocolloids in the field of in vitro diagnosis tests for allergic or autoimmune conditions

  12. Surface-modified magnetic colloids for affinity adsorption of immunoglobulins

    Science.gov (United States)

    Martins, Fernanda; Pinho, Samantha C.; Zollner, Terezinha C. A.; Zollner, Ricardo L.; de Cuyper, Marcel; Santana, Maria Helena A.

    This work describes the preparation, characterization and in vitro adsorption tests of surface-modified magnetoliposomes for affinity binding of (i) anticardiolipin (isotype G) antibodies and (ii) specific isotype E antibodies generated by hypersensitivity reactions in humans with respiratory allergy. In the first case, cardiolipin embedded in the bilayer of magnetoliposomes was used as specific ligand. In the second case, antigenic proteins present in an extract of Dermatophagoids pteronyssinus and Blomia tropicalis mites were covalently coupled on the surface of magnetoliposomes via a diglycolic spacer arm, and used as specific ligands for IgE. Antibody adsorption was performed in a high-gradient magnetophoresis system, using either sera of healthy individuals or a pool of sera from autoimmune or allergic patients. The selectivity and capacity of the system were quantified by a frontal analysis in a capillary column, and by constructing breakthrough curves. The results show that the highest yield and selectivity were obtained if the ligand was extended into the aqueous layer surrounding the magnetoliposome surface. A 100% selectivity was obtained for adsorption of specific IgE, and 8% for IgG. These results demonstrate the potentialities of both types of surface-modified magnetic biocolloids in the field of in vitro diagnosis tests for allergic or autoimmune conditions.

  13. Structures Formation on the Y-TZP-AI2O3 Ceramic Composites Surface

    Science.gov (United States)

    Kulkov, Sergei; Sevostyanova, Irina; Sablina, Tatiana; Buyakova, Svetlana; Pshenichnyy, Artem; Savchenko, Nickolai

    2016-07-01

    The paper discusses the structure of Y-TZP-Al2O3 ceramics produced from nanopowders and friction surface, wear resistance, friction coefficient of Y-TZP-AEO3 composites rubbed against a steel disk counterface at a pressure of 5 MPa in a range of sliding speeds from 0.2 to 47 m/s. Analysis by X-ray diffraction, scanning electron microscopy showed that the high wear resistance of Y-TZP-Al2O3 composites at high sliding speeds is due to high-temperature phase transitions and protective film formation on the friction surface.

  14. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  15. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    Science.gov (United States)

    Jeong, Woo Yun

    2013-06-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  16. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  17. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

    Science.gov (United States)

    Eraslan, Oguz

    2016-01-01

    PURPOSE To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (Phigh SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments. PMID:27141250

  18. Photoluminescent iron disilicide on modified Si surface by using silver

    International Nuclear Information System (INIS)

    Pronounced enhancement of photoluminescence (PL) intensity was observed from β-FeSi2 by using metal-organic chemical vapor deposition (MOCVD) on (100) Si substrates coated with a silver (Ag) layer. X-ray diffraction analysis revealed modifications to the crystal structure near the surface of Si, where the in-plane lattice parameter had been elongated, by Ag atomic diffusion from the surface to inside the Si during the heating process before deposition. This modified Si surface contributed to decreasing the non-radiative recombination centers at the β-FeSi2/Si interface and in the β-FeSi2 film, which led to the pronounced enhancement of PL intensity. (author)

  19. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation process for marine applications

    Indian Academy of Sciences (India)

    V V Narulkar; S Prakash; K Chandra

    2007-08-01

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is greatly improved. In this paper, a dense ceramic oxide coating, ∼ 20 m thick, was prepared on an Y1 magnesium alloy through microarc oxidation in a Na3SiO3–Na2WO4–KOH–Na2EDTA electrolytic solution. The property of corrosion resistance of ceramic coating was studied by CS300P electrochemistry–corrosion workstation, and the main impact factor of the corrosion resistance was also analysed. Microstructure and phase composition were analysed by SEM and XRD. The microhardness of the coating was also measured. The basic mechanism of microarc coating formation is explained in brief. The results show that the corrosion resistance property of microarc oxidation coating on the Y1 magnesium surface is superior to the original samples in the 3.5 wt% NaCl solutions. The microarc oxidation coating is relatively dense and uniform, mainly composed of MgO, MgAl2O4 and MgSiO3. The microhardness of the Y1 magnesium alloy surface attained 410 HV, which was much larger than that of the original Y1 magnesium alloy without microarc oxidation.

  20. A Modified Surface on Titanium Deposited by a Blasting Process

    Directory of Open Access Journals (Sweden)

    Caroline O’Sullivan

    2011-09-01

    Full Text Available Hydroxyapatite (HA coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. Plasma technology is the principal deposition process for coating HA on bioactive metals for this application. However, thermal decomposition of HA can occur during the plasma deposition process, resulting in coating variability in terms of purity, uniformity and crystallinity, which can lead to implant failure caused by aseptic loosening. In this study, CoBlastTM, a novel blasting process has been used to successfully modify a titanium (V substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatitic abrasives under the trade name MCD, was investigated to determine the effect of abrasive particle size on the surface properties of both microblast (abrasive only and CoBlast (HA/abrasive treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (microblasted and an untreated Ti. The HA powder, apatitic abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystallinity and topography including surface roughness. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatitic abrasives used. The CoBlast process did not alter the chemistry of the crystalline HA during deposition. Cell proliferation on the HA surface was also assessed, which demonstrated enhanced osteo-viability compared to the microblast and blank Ti. This study demonstrates the ability of the CoBlast process to deposit HA coatings with a range of surface properties onto Ti substrates. The ability of the CoBlast technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.

  1. Effects of Surface Morphology ZnAl2O4 of Ceramic Materials on Osteoblastic Cells Responses

    International Nuclear Information System (INIS)

    Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl2O4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl2O4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl2O4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nano structured materials have a great potential to be used in dental implant and bone substitute applications.Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl2O4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl2O4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl2O4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell

  2. Dynamic compression test of ceramics using modified compression split Hopkinson bar

    International Nuclear Information System (INIS)

    The misalignment of the flat anvil of a testing machine with the end of a circular rod specimen causes local crushing due to the stress concentration and bending moment, which must be avoided in compression tests. When very hard material, such as fine ceramics, is tested using the compression split Hopkinson bar, the hard specimen may be indented into the incident and transmission bars. In this paper, the insertion of a thin metal plate between the bar-specimen interface in the conventional compression split Hopkinson bar system was examined to prevent indentation. The stress pulse in the incident and transmission bars in measured using the thin steel plate (thickness 0.4 and 1 mm), copper (1 mm) and aluminium (1 mm), and the pulse profile is investigated. The configuration of the wave observed using the thin steel plate (0.4 mm) is the sharpest, and is similar to that without the plate. The rise of pulses using the steel plate (1 mm) is ramplike. With use of a copper plate and aluminium, the two-step profile appears. The stress-strain relationship evaluated from these stress pulses was compared with that obtained in the static test. The dynamic strength of ceramics is less than about half the static strength. (author)

  3. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  4. Surface morphology and fracture in handpiece adjusting of a leucite-reinforced glass ceramic with coarse diamond burs

    International Nuclear Information System (INIS)

    Highlights: ► Morphology and fracture on the removed leucite-reinforced glass ceramic. ► Morphology consisted of microfracture, chipping, ductile scratches, smear areas. ► Brittle fracture was the primary mechanism for the ceramic removal. ► Lateral and radial cracks due to the mechanical impact of diamond burs. ► Temperature-induced phase transformations were detected in leucite-reinforced glass ceramic, which might cause crack initiation. - Abstract: The aim of this paper was to understand surface morphology and fracture occurring on leucite-reinforced glass ceramic surfaces adjusted with coarse diamond burs. The surface roughness was quantitatively assessed using stylus profilometry and was analyzed statistically. The surface morphology was viewed using scanning electron microscopy. Surface phase transformations were preliminarily studied using Raman spectrometry. The results show that the surface roughness did not significantly depend on either depth of cut (p > 0.05) or feed rate (p > 0.05). However, when decreasing the depth of cut and the feed rate, a tendency for brittle-to-ductile transition existed. The surface morphology consisted of microfracture, chipping, ductile removal scratches, smear areas and debris. Brittle fracture was the primary mechanism for material removal. Lateral and radial cracks due to the mechanical impact of diamond burs were the major cause of surface fracture in the leucite-reinforced glass ceramic. The maximum adjusting temperatures on the adjusted surfaces were estimated based on heat transfer analysis. The Raman spectra of the adjusted and unadjusted surfaces show a strong temperature-dependence of Raman shifts near 525–529 cm−1. This indicates the occurrence of temperature-induced cubic-tetragonal phase transformations in the adjusted leucite glass ceramic surfaces. These phase transformations are considered to contribute crack initiation and propagation on the adjusted surfaces.

  5. Surfaces and interfaces of ceramics and metals. [Final] report, July 1988--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Structures of surfaces of several ceramic oxides were studied by use of reflection electron microscopy (REM) and associated techniques. High-temperature annealing in air or oxygen gives smooth, flat crystal faces in most cases, including the (111) MgO surface, previously thought to be facetted. Stability of the (111) MgO surface is shown to be due to a surface superlattice reconstruction. Surface superlattices, stable in air, have also been shown to exist on sapphire and rutile crystal faces. The segregation of Ca to the surface of MgO has been studied using reflection electron energy loss techniques. Initial studies of Cu-Au alloy crystal surfaces, necessarily carried out in ultra-high vacuum, have been made using RHEED and Auger electron spectroscopy. Clean alloy surfaces show surface reconstructions associated with the segregation of Au atoms at the surface. High-temperature annealing results in the segregation of sulfur to the surface and the formation of a variety of surface superlattice structures. Structures of solid-solid interfaces have been studied using a wide variety of electron-optical techniques including nanodiffraction and electron holography. In particular the interfaces in semiconductor multiple quantum well structures and also multilayer structures of Si and Co have been studied.

  6. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura;

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The...... alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB in...... saline waters need a careful risk evaluation due to potential lanthanum release....

  7. Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics.

    Directory of Open Access Journals (Sweden)

    Sakineh Arami

    2014-04-01

    Full Text Available The aim of this study was to assess the surface of yttrium-stabilized tetragonal zirconia (Y-TZP after surface treatment with lasers and airborne-particle abrasion.First, 77 samples of presintered zirconia blocks measuring 10 × 10 × 2 mm were made, sintered and polished. Then, they were randomly divided into 11 groups (n=7 and received surface treatments namely, Er:YAG laser irradiation with output power of 1.5, 2 and 2.5 W, Nd:YAG laser with output power of 1.5, 2 and 2.5 W, CO2 laser with output power of 3, 4 and 5 W, AL2O3 airborne-particle abrasion (50μ and no treatment (controls. Following treatment, the parameters of surface roughness such as Ra, Rku and Rsk were evaluated using a digital profilometer and surface examination was done by SEM.According to ANOVA and Tukey's test, the mean surface roughness (Ra after Nd:YAG laser irradiation at 2 and 2.5 W was significantly higher than other groups. Roughness increased with increasing output power of Nd:YAG and CO2 lasers. Treated surfaces by Er:YAG laser and air abrasion showed similar surface roughness. SEM micrographs showed small microcracks in specimens irradiated with Nd:YAG and CO2 lasers.Nd:YAG laser created a rough surface on the zirconia ceramic with many microcracks; therefore, its use is not recommended. Air abrasion method can be used with Er:YAG laser irradiation for the treatment of zirconia ceramic.

  8. Influence of Sintering Temperature on Pore Structure and Electrical Properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna KLYM

    2015-05-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3⋅Mg(OH2⋅5H2O powders at 1200, 1300 and 1400 ºC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increase of preparing temperature from 1200 ºC to 1400 ºC results in transformation of pore size distribution in ceramics from tri- to bi-modal including open macro- and mesopores with the sizes from ten to hundreds nm and nanopores up to a few nm. The studied ceramic elements with electrical resistances ∼(10–2 – 102 MОhm are high humidity sensitive in the region of 30 %– 95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity results in lose sensitivity.

  9. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna Klym

    2015-03-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to hundreds nm and nanopores until to a few nm. The studied ceramic elements with electrical resistances ~ 10-2-102 MОhm are high humidity sensitive in the region of 30-95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to achievement near to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity result in lose sensitivity up to 40-50 %.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5189

  10. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    Science.gov (United States)

    Hilgenberg, K.; Behler, K.; Steinhoff, K.

    2014-06-01

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB2 are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  11. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hilgenberg, K., E-mail: hilgenberg@uni-kassel.de [Metal Forming Technology, University of Kassel (Germany); Behler, K. [Laser Technology, THM University of Applied Sciences (Germany); Steinhoff, K. [Metal Forming Technology, University of Kassel (Germany)

    2014-06-01

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB{sub 2} are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  12. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    International Nuclear Information System (INIS)

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB2 are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  13. Gold Nanoparticles As A Modifying Agent of Ceramic-Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sobczak-Kupiec A.

    2014-10-01

    Full Text Available Much effort has been invested in the development of biomaterials for the repair or replacement of hard tissue. The synthesis of composites based on mineral and organic constituents is nowadays extremely important for the development of materials for biomedical applications. In this paper we report the preparation and characterization of ceramic-polymer composites doped with gold nanoparticles. Properties and applications in medicine and dentistry of colloidal gold nanoparticles depends upon their size and shape. The influence of the presence of the metallic nanoparticles on the degradation process was investigated by pH and conductivity analyses of water filtrates. The nanocomposites were characterized with the use of X-ray Diffaction (XRD and Fourier Transformed Infrared Spectroscopy (FT-IR methods.

  14. Dielectric and pyroelectric properties of Ba-modified lead lanthanum zirconate stannate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qingfeng, E-mail: zhangqf321@gmail.com [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiang Shenglin; Zeng Yike; Xie Zhenzhen; Fan Maoyan; Zhang Guangzu; Zhang Yangyang; Yu Yan; Wang Jing; Qin Xiaoye [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-06-15

    (Pb{sub 0.97-x}La{sub 0.02}Ba{sub x})(Zr{sub 0.75}Sn{sub 0.12}Ti{sub 0.13})O{sub 3} ceramics in the composition range 0.1 {<=} x {<=} 0.16 were prepared by conventional solid state reaction process. On increasing Ba content from 0.1 to 0.16 mol, the specimens underwent phase transition from the first order to the second order and the Curie temperature decreased from 85 to 35 deg. C. With x = 0.16, the specimen showed good pyroelectric properties for practical applications. When a 500 V/mm dc bias field was applied, the specimen showed the maximum pyroelectric coefficient of 5800 {mu}C/m{sup 2} K and figure of merit of 58 x 10{sup -5} Pa{sup -0.5} at Curie temperature.

  15. A New Facility for the Experimental Investigation on Nano Heat Transfer between Gas Molecules and Ceramic Surfaces

    OpenAIRE

    Bayer, D.; Gross, U; Raed, K.

    2015-01-01

    Since the last decade, the interest has risen in nanoscaled technological products, which have advantages through their size effect. The size effect also plays a significant role in the area of micro- and nanoscale heat transfers. Many applications were developed using this effect, such as nanostructured porous media, e.g. Aerogels or ceramics. This experimental work is focused on the determination of thermal accommodation coefficients (TAC) on ceramic surfaces considering several influencing...

  16. The Characteristics of the Surface Topography of Excimer Laser Processed Al2O3 Ceramic

    Institute of Scientific and Technical Information of China (English)

    LIUYing; WENShi-zhu

    2004-01-01

    Surface of Al2O3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of thesystem(MEMS). It is indicated that the statistic pararueters of surface topography processed by the excimer laser have an obvioas regularity. The arithmeticmean value Ro and the root-mean square value Rq change with the changing of processing parameters in the same step and trend, and there is a quantitative relation between them. A simplified nuuIel is proposed for the excimer laser processing surface profile, whose results of the analysis and calculation agree basically with the experimental data. Furthermore, the surfaces processed by excimer laser are greatly fiat. Skewness root-mean-square value Zq changed little with the change of the technological parameters. The above characteristics depend on the processing principle of excimer laser, quite different from the cutting processing.

  17. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    Science.gov (United States)

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin

    2011-05-01

    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  18. Impact Behaviour of Modified Biopolymer Droplet on Urea Surface

    Directory of Open Access Journals (Sweden)

    S. Yon Norasyikin

    2014-01-01

    Full Text Available The droplet impact behaviour provides the particle coating characterization during the coating process of controlled release fertiliser. To have a good coating uniformity around the urea granules, it is necessary to enhance the wettabitily properties between the coating material and urea surface. In this study, modified biopolymer is used as the coating material for the controlled release fertilizer. Various compositions of starch:urea:borate were prepared and evaluated for the wettability properties. The wettability properties measured are the maximum spreading diameter, dynamic contact angle and surface tension. The high speed Charged Couple Device (CCD camera was used to capture the images of this droplet impact behaviour. From this analysis, it is indicated that a composition of starch:urea:borate (50:15:2.5 has the best wettability characteristic and thus are suitable to be used as a coating material.

  19. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    OpenAIRE

    Gyngazov (Ghyngazov), Sergey Anatolievich; Vasiljev, Ivan Petrovich; Frangulyan (Franguljyan), Tamara Semenovna; Chernyavski (Chernyavskiy), Aleksandr Viktorovich

    2015-01-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO[2-3]Y[2]O[3] (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E=78 keV, the pulse current density J[i] = 4mA/cm{2}, current pulse duration equal tay=250 mcs, pulse repetition frequency f=5 H...

  20. Plasma-surface interactions associated with electrical breakdown of water using porous ceramic-coated electrodes

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    Vol. I-01. Matsuyama, Ehime : Ehime Yoko Co.Ltd, 2010, s. 9-10. ISBN N. [International Workshop on Plasmas with Liquids (IWPL 2010). Matsuyama (JP), 22.03.2010-24.03.2010] R&D Projects: GA AV ČR IAAX00430802 Institutional research plan: CEZ:AV0Z20430508 Keywords : corona discharge * water * ceramic * electric breakdown * surface charge Subject RIV: BL - Plasma and Gas Discharge Physics http://plasma.eng.ehime-u.ac.jp/IWPL_2010/IWPL2010_ProceedingsV3.pdf

  1. Interaction of surface-modified silica nanoparticles with clay minerals

    Science.gov (United States)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-05-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  2. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R.W.; Buchheit, R.G.; Neau, E.L. [and others

    1995-08-01

    The emerging capability to produce high average power (10--300 kW) pulsed ion beams at 0.2{minus}2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This new technique uses high energy, pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1--20 micrometers of the surface of any material. The depth of treatment is controllable by varying the ion energy and species. Deposition of the energy in a thin surface layer allows melft of the layer with relatively small energies (1--10J/cm2) and allows rapid cooling of the melted layer by thermal conduction into the underlying substrate. Typical cooling rates of this process (109 K/sec) are sufficient to cause amorphous layer formation and the production of non-equilibrium microstructures (nanocrystalline and metastable phases). Results from initial experiments confirm surface hardening, amorphous layer and nanocrystalline grain size formation, corrosion resistance in stainless steel and aluminum, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning and oxide layer removal as well as surface ablation and redeposition. These results follow other encouraging results obtained previously in Russia using single pulse ion beam systems. Potential commercialization of this surface treatment capability is made possible by the combination of two new technologies, a new repetitive high energy pulsed power capability (0.2{minus}2MV, 25--50 kA, 60 ns, 120 Hz) developed at SNL, and a new repetitive ion beam system developed at Cornell University.

  3. Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

    Directory of Open Access Journals (Sweden)

    Wan Rafizah Wan Abdullah

    2012-04-01

    Full Text Available High demands on low-voltage electronics have increased the need for zinc oxide (ZnO varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11 based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.

  4. Synthesis, structural and electrical properties of La and Nb modified Bi4Ti3O12 ferroelectric ceramics

    Science.gov (United States)

    Roy, M.; Bala, Indu; Barbar, S. K.; Jangid, S.; Dave, P.

    2011-11-01

    Polycrystalline ceramic samples of Bi4-xLaxTi3O12 (x=0.0, 0.5 and 1) and Bi3.5La0.5Ti3-yNbyO12 (y=0.02 and 0.04) have been synthesized by standard high temperature solid state reaction method using high purity oxides and carbonates. The effect of lanthanum doping on Bi-site and Nb doping on Ti-site on the structural and electrical properties of Bi4Ti3O12 powders was investigated by X-ray diffraction, scanning electron microscopy, dc conductivity and dielectric studies. A better agreement between the observed and calculated X-ray diffraction pattern was obtained by performing the Rietveld refinement with a structural model using the non-centrosymmetric space group Fmmm in all the cases. A better agreement between observed and calculated d-values also shows that the lattice parameters calculated using the Rietveld refinement analysis are better. The increase in lanthanum and niobium contents does not lead to any secondary phases. It is found that La3+ doping reduces the material grain size and changes its morphology from the plate-like form to a spherical staking like form. The substitution of Nb for Ti ions affected the degree of disorder and modified the dielectric properties leading to more resistive ceramic compounds. The shape and size of the grains are strongly influenced by the addition of niobium to the system. The activation energies of all the compounds were calculated by measuring their dc electrical conductivities. The frequency and temperature dependent dielectric behavior of all the compounds have also been studied and the results are discussed in detail. The substitution of La and Nb on the Bi and Ti sites decreased the Tc and improved the dielectric and ferroelectric behavior.

  5. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  6. Effect of different surface treatments on the hydrothermal degradation of a 3Y-TZP ceramic for dental implants

    OpenAIRE

    Cattani-Lorente, Maria Angeles; Scherrer, Susanne; Durual, Stéphane; Sanon, C; Douillard, T; Gremillard, L.; Chevalier, J; Wiskott, Anselm

    2014-01-01

    Implant surface modifications are intended to enhance bone integration. The objective of this study was to assess the effect of different surface treatments on the resistance to hydrothermal degradation, hardness and elastic modulus of a 3Y-TZP ceramic used for dental implants

  7. Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid

    International Nuclear Information System (INIS)

    The structure and magnetic behaviour of 34SiO2-(45 - x) CaO-16P2O5-4.5 MgO-0.5 CaF2 - x Fe2O3 (where x = 5, 10, 15, 20 wt.%) glasses have been investigated. Ferrimagnetic glass-ceramics are prepared by melt quench followed by controlled crystallization. The surface modification and dissolution behaviour of these glass-ceramics in simulated body fluid (SBF) have also been studied. Phase formation and magnetic behaviour have been studied using XRD and SQUID magnetometer. The room temperature Moessbauer study has been done to monitor the local environment around Fe cations and valence state of Fe ions. X-ray photoelectron spectroscopy (XPS) was used to study the surface modification in glass-ceramics when immersed in simulated body fluid. Formation of bioactive layer in SBF has been ascertained using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SBF solutions were analyzed using an absorption spectrophotometer. The magnetic measurements indicated that all these glasses possess paramagnetic character and the [Fe2+/Fe3+] ions ratio depends on the composition of glass and varied with Fe2O3 concentration in glass matrix. In glass-ceramics saturation magnetization increases with increase in amount of Fe2O3. The nanostructure of hematite and magnetite is formed in the glass-ceramics with 15 and 20 wt.% Fe2O3, which is responsible for the magnetic property of these glass-ceramics. Introduction of Fe2O3 induces several modifications at the glass-ceramics surface when immersed in SBF solution and thereby affecting the surface dissolution and the formation of the bioactive layer.

  8. Epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    Lazarević Zorica Ž.

    2002-01-01

    Full Text Available The corrosion behaviour and thermal stability of epoxy coatings electrodeposited on modified aluminum surfaces (anodized, phosphatized and chromatized-phosphatized aluminium were monitored during exposure to 3% NaCl solution, using electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA. Better protective properties of the epoxy coatings on anodized and chromatized-phosphatized aluminum with respect to the same epoxy coatings on aluminum and phosphatized aluminum were obtained: higher values of Rp and Rct and smaller values of Cc and Cd, from EIS, and a smaller amount of absorbed water inside the coating, from TGA. On the other hand, a somewhat lower thermal stability of these coatings was obtained (smaller values of the ipdt temperature. This behavior can be explained by the less porous structure of epoxy coatings on anodized and chromatized-phosphatized aluminum, caused by a lower rate of H2 evolution and better wet ability.

  9. Silicon carbide wafer bonding by modified surface activated bonding method

    Science.gov (United States)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  10. Enhanced magnetization with unusual low temperature magnetic ordering behaviour and spin reorientation in holmium-modified multiferroic BiFeO3 perovskite ceramics

    International Nuclear Information System (INIS)

    Holmium-doped Bi1−xHoxFeO3 (x = 0, 0.025, 0.05, 0.075 and 0.10) perovskite ceramics were synthesized by a rapid liquid phase quenching process. The structural analysis performed using x-ray diffraction suggested phase formation with distorted rhombohedral structure in all the synthesized ceramic samples. Rietveld analysis of x-ray diffraction patterns and Raman spectroscopy also confirmed the distorted perovskite structure with R3c symmetry. Optical studies showed characteristic bending vibrations of O − Fe − O, Fe − O stretching and visible range PL emissions in modified BiFeO3 ceramics. Ferromagnetic characteristics were shown by all the holmium-doped samples at room temperature and 5 K. Very high saturation magnetization (at 7 T), four to six times higher at 5 K than at 300 K, is observed for holmium-doped ceramic samples. A complex temperature dependence of magnetization behaviour is observed for holmium-doped samples, which is indicative of a spin reorientation in doped ceramics. (paper)

  11. Influence of different surface treatments on the fracture toughness of a commercial ZTA dental ceramic

    Directory of Open Access Journals (Sweden)

    Flavio Teixeira da Silva

    2007-03-01

    Full Text Available The objective of this study was to investigate how mechanical surface treatments performed for removal of excess of molten glass, influence the fracture toughness of a dental zirconia toughened alumina (In-Ceram® Zirconia. Infiltrated ZTA disks were submitted to three different surface treatments (grinding, sandblasting and grinding + sandblasting + annealing. Fracture toughness was accessed through indentation strength test (IS. X ray diffraction was used to investigate the metastability of tetragonal zirconia particles under all treatments proposed. Kruskall-Wallis non-parametrical test and Weibull statistics were used to analyze the results. Grinding (group 1 introduced defects which decreased the fracture toughness and reliability, presenting the lowest K IC. On the other hand, grinding followed by sandblasting and annealing (group 3 presented the highest K IC. Sandblasting (group 2 presented the highest reliability but lower K IC compared to group 3.

  12. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  13. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  14. DNA immobilization on polymer-modified Si surface by controlling pH

    International Nuclear Information System (INIS)

    A novel approach based on polymer-modified Si surface as DNA sensor platforms is presented. The polymer-modified Si surface was prepared by using 3-(methacryloxypropyl)trimethoxysilane [γ-MPS] and poly(acrylamide) [PAAm]. Firstly, a layer of γ-MPS was formed on the hydroxylated silicon surface as a monolayer and then modified with different molecular weight of PAAm to form polymer-modified surface. The polymer-modified Si surface was used for dsDNA immobilization. All steps about formation of layer structure were characterized by ellipsometry, atomic force microscopy (AFM), attenuated total reflectance Fourier transformed infrared (ATR-FTIR), and contact angle (CA) measurements. We found that in this case the amount of dsDNA immobilized onto the surface was dictated by the electrostatic interaction between the substrate surface and the DNA. Our results thus demonstrated that DNA molecules could be immobilized differently onto the polymer-modified support surface via electrostatic interactions.

  15. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  16. Mechanical and electrical properties of polymer-derived Si-C-N ceramics reinforced by octadecylamine ? modified single-wall carbon nanotubes

    OpenAIRE

    Shopova-Gospodinova, D.; Burghard, Z.; Dufaux, T.; Burghard, M; Bill, J

    2011-01-01

    Abstract Polymer-derived Si-C-N ceramics reinforced by homogeneously distributed octadecylamine?functionalized single-walled carbon nanotubes (SWCNTs) were synthesized using a casting process, successive pressureless cross-linking and thermolysis. We find that the incorporation of even small amounts of modified SWCNTs leads to a remarkable improvement of mechanical and electrical transport properties of our composites. In particular, we find two-fold enhancement of fracture toughne...

  17. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite

    Science.gov (United States)

    Chiu, Hsien Tang; Sukachonmakul, Tanapon; Kuo, Ming Tai; Wang, Yu Hsiang; Wattanakul, Karnthidaporn

    2014-02-01

    Polysilazane (PSZ) and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on aluminum nitride (AlN) by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700 °C in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 °C in air. Thus, in the present work, a SiOC ceramic coating could provide a new surface modification for the improvement of the interfacial adhesion between the thermally conductive filler and the matrix in which can enhance the thermal conductivity of the composites.

  18. Study on the microstructure evolution of phenol-formaldehyde resin modified by ceramic additive

    Institute of Scientific and Technical Information of China (English)

    JIANG Haiyun; WANG Jigang; DUAN Zhichao; LI Fan

    2007-01-01

    Boron carbide (B4C) was selected as the additive for the modification of a phenol-formaldehyde (PF) resin, and the micro-structural evolution of the modified resin at high temperature was investigated.Results showed that the distribution of B4C particles became uniform at elevated temperatures.The primary oxidation of B4C started to occur at 450℃,and lots of B2O3 was formed above 650℃.By the modification reactions of B,C,the volatiles including CO was converted into amorphous carbon and remained in the resin matrix,which was responsible for maintaining the stability of the resin at high temperatures.

  19. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei; Stamate, Eugen; Thydén, Karl Tor Sune; Bonanos, Nikolaos

    2012-01-01

    was deposited by magnetron sputtering. Effecting from heat treatments, Pd nanoparticles with particle sizes in the range of 5–20 nm were distributed at the interface, and throughout the backbone. The polarization resistance of the modified STN reduced to 30 Ωcm2 at 600 °C, which is three times less......The electrode performance of solid oxide fuel cell anode with Pd nanoparticles at the interface of ScYSZ electrolyte and Sr0.94Ti0.9Nb0.1O3 (STN) electrode introduced in the form of metal functional layer have been investigated at temperatures below 600 °C. A metal functional layer consisting of Pd...

  20. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. PMID:25715193

  1. Corrosion Behavior of Titanate Ceramics in Short-Term MCC-1 Tests: The Effects of Surface Finish; TOPICAL

    International Nuclear Information System (INIS)

    Two series of MCC-1 tests were designed and conducted to describe the effects of surface finish on the corrosion behavior of titanate ceramics. These effects are important for the comparison of short-term test results from different laboratories. Test samples were prepared with 240- and 600-grit finishes. Tests, conducted for 1, 3, 7, and 14 days at 90 C, were carried out in Teflon(regsign) vessels. Two different ceramics were used in this study: a Hf-Ce-Ce ceramic containing pyrochlore, perovskite, rutile and a small amount of a silicate phase, and a Hf-Ce-U ceramic containing pyrochlore and rutile. This study shows no detectable difference in the results of tests with ceramics finished to 240-grit and 600-grit; therefore, tests conducted at these two surface finishes can be directly compared. Due to its broader use, we recommend that short-term tests be conducted with monoliths finished to 600-grit. Comparison of data from blank tests in Teflon(regsign) and stainless steel vessels shows that the background associated with Teflon(regsign) vessels is lower. Therefore, we recommend that short-term tests be conducted in Teflon(regsign) vessels

  2. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density.

    Science.gov (United States)

    Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei

    2016-01-01

    Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm(3) at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm(3) at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites. PMID:27184360

  3. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density

    Science.gov (United States)

    Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei

    2016-01-01

    Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm3 at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm3 at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites. PMID:27184360

  4. Fabrication and dielectric properties of modified calcium (Pb0.75Ba0.25)(Zr0.7Ti0.3)O3 ceramics

    Science.gov (United States)

    Machnik, Zbigniew; Bochenek, Dariusz; Wodecka-Dus, Beata; Adamczyk, Małgorzata; Osińska, Katarzyna

    2016-02-01

    The aim of the present work is to report investigations concerning the influence of homovalent modificators on relaxor properties of PBZT 25/70/30 ceramics. The selection of the proper homovalent additive was very important. Literature reports as well as data taken from the periodic table indicated, that calcium ions substitute themselves for lead ions with high likelihood of occurrence. The investigations showed that the substitution significantly changed the microstructure of ceramics - with grains of calcium modified ceramics decreasing and density increasing. The XRD measurements indicate that the pure PBZT ceramics as well as calcium dopant were characterised by tetragonal structure with space group I4 /mmm. Addition of calcium leads to a slight decrease in the lattice constant and crystal structure. The calcium modification also changes the dielectric properties. The temperature characteristic of the dielectric constant achieved a broadened maximum at temperature Tm, which decreases with increasing Ca content. The properties typical for ferroelectric relaxors weaken with increasing calcium dopant. Contribution to the Topical Issue "Materials for Dielectric Applications", edited by Maciej Jaroszewski and Sabu Thomas.

  5. Studies on enhancement of surface durability for steel surface by camphor oil modified epoxy polyamide coating

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, M. [Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 006 (India)]. E-mail: selvaraj_58@yahoo.co.in; Maruthan, K. [Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 006 (India); Venkatachari, G. [Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 006 (India)

    2006-12-15

    Epoxy polyamide coatings are generally used to protect mild steel structures from corrosive atmosphere due to their better adhesion over under prepared surface and effective barrier protection. But the coating has the ability to disintegrate due to UV radiation and high humidity condition. To improve the weatherability and chemical resistance performance of epoxy polyamide, there is a need to modify it with suitable cross linking agent. In this work, it has been found that camphor oil at 5 wt.% as the optimum level to protect the mild steel structures from corrosive electrolyte. Further the impedance study has shown that the resistance exerted by the Camphor oil incorporated coating in 0.5 M NaCl solution after 60 days is 3 x 10{sup 7} {omega} cm{sup 2} where as the resistance of the coating without this modifier is 3 x 10{sup 6} {omega} cm{sup 2}. The FTIR spectral study indicates that the formation of ether linkages in the dried film and also the other functional groups present in the epoxy polyamide polymer is completely disappeared in the modified coating. Similarly the TG and DTA analysis showed that considerable shift in the degradation temperature has been noticed for the polymer coating with modifier.

  6. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  7. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    International Nuclear Information System (INIS)

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  8. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    Science.gov (United States)

    Mubarak Ali, M.; Raj, V.

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  9. Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on Ag-TiO2-modified kaolinite ceramic adsorbents

    Science.gov (United States)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2016-03-01

    Photocatalytic ceramic adsorbents were prepared from locally sourced kaolinite clay minerals for the removal of copper and cobalt ions from high concentration aqueous solutions. The minerals were treated with mild acid before modification using silver nanoparticles sources and titanium-oxide nanoparticles. Batch adsorption experiment was carried out on the targeted ions and the results were analyzed by Langmuir and Freundlich equation at different concentrations (100-1000 mg/l). As-received raw materials do not exhibit any adsorption capacity. However, the adsorption isotherms for modified kaolinite clay ceramic adsorbents could be fitted well by the Langmuir model for Cu2+ and Co2+ with correlation coefficient (R) of up to 0.99705. The highest and lowest monolayer coverage (q max) were 93.023 and 30.497 mg/g for Cu2+ and Co2+, respectively. The separation factor (R L ) was less than one (<1), indicating that the adsorption of metal ions on modified ceramic adsorbent is favorable. The highest adsorbent adsorption capacity (K f ) and intensity (n) constants obtained from Freundlich model are 14.401 (Cu2+ on KLN-T) and 6.057 (Co2+ on KLN-T).

  10. The influence of surface standardization of lithium disilicate glass ceramic on bond strength to a dual resin cement.

    Science.gov (United States)

    Brum, R; Mazur, R; Almeida, J; Borges, G; Caldas, D

    2011-01-01

    In vitro studies to assess bond strength between resins and ceramics have used surfaces that have been ground flat to ensure standardization; however, in patients, ceramic surfaces are irregular. The effect of a polished and unpolished ceramic on bond strength needs to be investigated. Sixty ceramic specimens (20×5×2 mm) were made and divided into two groups. One group was ground with 220- to 2000-grit wet silicon carbide paper and polished with 3-, 1-, and ¼-μm diamond paste; the other group was neither ground nor polished. Each group was divided into three subgroups: treated polished controls (PC) and untreated unpolished controls (UPC), polished (PE) and unpolished specimens (UPE) etched with hydrofluoric acid, and polished (PS) and unpolished specimens (UPS) sandblasted with alumina. Resin cement cylinders were built over each specimen. Shear bond strength was measured, and the fractured site was analyzed. Analysis of variance (ANOVA) and Tukey post hoc tests were performed. PE (44.47 ± 5.91 MPa) and UPE (39.70 ± 5.46 MPa) had the highest mean bond strength. PS (31.05 ± 8.81 MPa), UPC (29.11 ± 8.11 MPa), and UPS (26.41 ± 7.31 MPa) were statistically similar, and PC (24.96 ± 8.17 MPa) was the lowest. Hydrofluoric acid provides the highest bond strength regardless of whether the surface is polished or not. PMID:21819200

  11. Modification of surface texture by grinding and polishing lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    This paper reports that grinding and polishing affected the orientation of 90 degrees domains at the surface of lead zirconate titanate (PZT) ceramics. This was quantified by using changes in the intensity ratio of the (002) and (200) X-ray reflections. Grinding unpoled PZT with 600-grit SiC paper gave X-ray intensity ratios similar to those of poled material. This implies that 90 degrees domain realignments had occurred in the near surface region probed by the X-rays. Grinding poled samples with 600-grit SiC further increased the X-ray intensity ratio beyond that caused by poling, indicating that additional surface reorientation of 90 degrees domains had occurred. The effects of diamond polishing depended on the size of the diamond particles. The use of 6-μm diamond had no effect on the (002)/(200) intensity ratio of either poled or unpoled samples, while polishing with 15- or 45-μm diamond significantly enhanced the 90 degrees domain rotation. In unpoled samples, the increase in the X-ray intensity ratio then approached that induced by poling or grinding with 600-grit SiC paper. While the observed increase in X-ray intensity ratio upon grinding is attributed to the rotation of 90 degrees domains, the simultaneous formation of 180 degrees domains appears to minimize or reduce the increase in electrical polarization

  12. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    Science.gov (United States)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  13. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    Directory of Open Access Journals (Sweden)

    Jiangming Yu

    Full Text Available The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I, osteocalcin, insulin-like growth factor-I (IGF-I, and transforming growth factor-β1 (TGF-β1. The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  14. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  15. Electrical studies on Zr-modified Bi3.25La0.75Ti3O12: a promising FRAM ceramic

    Science.gov (United States)

    Thirumal Reddy, N.; Prasad, N. V.; Kumar, G. S.; Prasad, G.

    2014-12-01

    Zr-modified Auruvillius family of lanthanum bismuth titanate, namely Bi3.25La0.75Ti3-xZrxO12 (BLTZ, x = 0, 0.1, 0.3, 0.5, 0.7 and 1), was prepared by solid-state reaction method. Dielectric properties of the ceramics were studied as a function of temperature. Hysteresis measurements were also performed. Among the composition, Bi3.25La0.75Ti2.9Zr0.1O12 (BLTZ1) showed large remnant polarization compared to the promising ceramic, namely Bi3.25La0.75Ti3O12. The results were corroborated with the pyroelectric, electric polarization and Raman spectroscopic data.

  16. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    Science.gov (United States)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  17. Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: A comparison between multi walled and single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon-ceramic electrodes (CCE) modified with carbon nanotubes were prepared, and the electrochemical behavior towards acetaminophen (ACOP) was investigated using both a bare CCE and electrodes modified with either single walled carbon nanotubes (SWCNT) or multi walled carbon nanotubes (MWCNT) in an effort to understand which of them is the better choice in terms of electrocatalyzing the oxidation of ACOP, and thus for sensing it. The SWCNT are found to be the better material in significantly enhancing the oxidation peak current and improving the reversibility of the oxidation. Under optimal conditions, linearity between the oxidation peak current and the concentration of ACOP is obtained for the concentration range from 40 nM to 85 μM, with a detection limit of 25 nM. Finally, ACOP was successfully determined with the SWCNT modified electrode in pharmaceutical samples. (author)

  18. Research on Alumina Modified Feldspathic Dental Ceramics%氧化铝改性钾长石牙科陶瓷的研究

    Institute of Scientific and Technical Information of China (English)

    高辉; 张光磊; 邵长涛

    2011-01-01

    Alumina modified feldspathic dental ceramics were fabricated by common sintering method, using alumina as an additive to strengthen and toughen the feldspathic ceramics. The prescription and the sintering technology of the feldspathic ceramics composite materials were identified. The influences of sintering technology on the machinability, the microhardness and the flexural strength were discussed. The feldspathic ceramics composite materials were characterized by XRD and SEM. The results reveal that the sintering temperature of feldspathic ceramics is raised with the increase of alumina content. Where the relative density of the feld spathic ceramics added with 20wt% A12O3 reach 97.9% after sintered at 1200°C. Furthermore, the property of feldspathic ceramics is improved obviously with the addition of alumina. The abrasion rate reaches the maximum with the addition of 5wt% alumina, the microhardness is increased by 26.9% with addition of 20wt% A12O3, and the flexural strength is increased with the increase of alumina content.%利用氧化铝的颗粒增强作用,采用常规烧结法制备了氧化铝改性钾长石牙科陶瓷.通过实验确定了钾长石复合陶瓷的最佳烧结工艺,分析了工艺条件对烧结效果、可加工性、显微硬度和抗弯强度等性能的影响.用XRD、SEM对钾长石复合材料进行了表征.研究表明:添加氧化铝可以提高钾长石的烧结温度,当Al2O3添加量为20wt%时,其最佳烧结温度为1200℃,相对密度达97.9%.此外,添加氧化铝可以显著改善钾长石陶瓷的性能,当Al2O3 添加量为5wt%时,钾长石瓷的磨削率达到最大,当Al2O3添加量为20wt%时,钾长石瓷的显微硬度提高了26.9%.并且随着氧化铝添加量的增加,钾长石陶瓷的抗弯强度逐渐增强.

  19. Synthesis-phase–composition relationship and high electric-field-induced electromechanical behavior of samarium-modified BiFeO3 ceramics

    International Nuclear Information System (INIS)

    Solid-state (non-activated) and mechanochemical activation (activated) synthesis methods were used to produce Sm-modified BiFeO3 ceramics of composition Bi0.88Sm0.12FeO3. The first part shows that the formation of Bi0.88Sm0.12FeO3 using the two synthesis methods followed a different reaction pathway on annealing the powders. The non-activated ceramics reacted by forming two intermediate phases, isostructural to BiFeO3 and SmFeO3, and then inter-diffusing, forming the final Bi0.88Sm0.12FeO3 solid solution. Unlike the non-activated samples, the activated ceramic powders formed Bi0.88Sm0.12FeO3 phase on annealing the powders, without apparent intermediate phases. As revealed by transmission electron microscopy, the non-activated reaction pathway caused the Pbam phase to form as chemical inhomogeneous (Sm-rich) isolated nano-sized grain inclusions in the final ceramics. Conversely, the activated reaction pathway caused the Pbam phase to form chemically homogeneous nano-regions within the R3c phase grains. The results demonstrate the important role of processing in the appearance of the frequently discussed anti-polar Pbam phase in this system. In the second part, the high electric-field-induced polarization and strain behaviors of these ceramics were studied by means of polarization–electric (P–E) and strain–electric field (S–E) hysteresis loops, and the S–E loops were compared with those of unmodified BiFeO3. Bipolar S–E loops of Bi0.88Sm0.12FeO3 had a distinctive butterfly shape with less frequency dependence relative to BiFeO3 at driving-field frequencies of 0.1–100 Hz. BiFeO3 ceramics exhibite strong driving electric-field-frequency-dependent domain switching, the origins of which were previously attributed to a domain-wall pinning mechanism and “hardening” behavior. This study shows that Sm-modification induces a “hardening–softening” transition in BiFeO3 ceramics

  20. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    Poly (ether sulfone) (PES) 50 kDa membranes were surface modified by irradiation with UV light (254 nm) in the presence of N-vinyl-2-pyrrolidine (NVP), 2-acrylamidoglycolic acid monohydrate (AAG) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AAP). The surfaces of the modified membranes were c...

  1. Surface modified carbon nanoparticle papers and applications on polymer composites

    Science.gov (United States)

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach

  2. Effects of different surface finishing procedures on the change in surface roughness and color of a polymer infiltrated ceramic network material

    Science.gov (United States)

    Arslan, Merve; Türker, Nurullah; Barutcigil, Kubilay

    2016-01-01

    PURPOSE Polymer infiltrated ceramic network (PICN) materials, also called hybrid ceramics, are new materials in dental market. The manufacturer of the PICN material VITA Enamic suggests 3 different finishing procedures for this new material. In the present study, surface roughness and color differences caused from different finishing procedures of VITA Enamic were investigated. MATERIALS AND METHODS 120 specimens were prepared in dimensions 2 × 10 × 12 mm from VITA Enamic hybrid ceramic blocks with 'high translucency' and 'translucency 2M2' shades. The specimens were divided into 8 groups. For each group, different finishing procedures suggested by the manufacturer were performed. Surface roughness values were determined by a tactile portable profilometer. Color changes were evaluated using a clinical spectrophotometer. The data were analyzed using one-way ANOVA and Tukey's post-hoc comparison. The significance level was set at α=0.05. RESULTS The roughest surfaces were observed in Glaze Groups. Their surface roughness values were similar to that of the control group. Clinical Kit and Technical Kit groups did not show a statistically significant difference regarding surface roughness (P>.05). The largest color difference regarding ΔE00 was observed in Clinical Kit finishing groups. There were also statistically significant color changes between the groups (P2.25). CONCLUSION Within the limitations of the present study, it may be suggested that finishing the VITA Enamic restorations by Technical Kit instead of Glaze and Clinical Kit gives better clinical performance in regard to surface roughness and shade matching. PMID:26949483

  3. First principles calculations of ceramics surfaces and interfaces: Examples from beta-silicon nitride and alpha-alumina

    Science.gov (United States)

    Dunn, Jennifer Synowczynski

    The goal of this thesis was to use first principles calculations to provide a fundamental understanding at the atomistic level of the mechanisms (e.g. structural relaxations of ceramic surfaces/interfaces, charge transfer reactions, adsorption and dissociation phenomena, localized debonding) behind macroscopic behavior in ceramics (e.g. fracture toughness, corrosion, catalysis). This thesis includes the results from three independent Density Functional Theory (DFT) studies of beta-Si3N4 and alpha-Al2O 3. Due to the computational complexity of first principles calculations, the models in this thesis do not consider temperature or pressure effects and are limited to describing the behavior of systems containing less than 200 atoms. In future studies, these calculations can be used to train a reactive molecular dynamics force field (REAXFF) so that larger scale phenomena including temperature effects can be explicitly simulated. In the first study, the effect of over 30 dopants on the stability of the interface between beta-Si3N4 grains and the intergranular glassy SiON film (IGF) was investigated. The dopants chosen not only represented commonly known glass modifiers and sintering aides but also enabled us to search for dependencies based on atomic size and electronic orbital configuration. To ensure that the approximations used in our model captured the key physical phenomena occurring on the beta-Si3N4 (100) surface and at the Si3N4/ IGF interface, we compared to experimental data (i.e. High Angle Annual Dark Field-Scanning Transmission Electron Microscopy atomic positions and fracture toughness values (Mikijelj B., 2009)). We identified a computational metric (the interfacial stability factor S) which correlates with experimentally measured fracture toughness values. The interfacial stability factor S is defined as the binding energy of the doped system minus the binding energy of the undoped system, where the binding energy is the total energy of the system minus

  4. Studies on surface chemical states of some metals and ceramics bombarded with energetic light-ions

    International Nuclear Information System (INIS)

    An electron spectroscopy was applied to the investigation of surface chemical state of some metals and ceramics bombarded with energetic light ions. Bombardments of keV-order hydrogen ions on Sc, Ti, V, Y, Zr and Nb induced the XPS core-line chemical shifts to higher binding-energies by 0.2 - 1.4 eV, the appearence of new photopeaks at 3.0 - 5.0 eV below the Fermi level. Although the peak energies are lower by 1 - 3 eV than those calculated for MeH2 (Me = metal) by molecular-orbital theory, the peaks are assigned to the metal-H bonds. The chemical shifts induced by bombarding hydrogen-ions were also observed in the X-ray-induced Auger electron spectra (XAES) For Y, Zr and Nb. The hydride layers produced by the ion-implantation are more stable at high temperature than those obtained by thermal synthesis, because of the surface damages which prevent thermal diffusion of hydrogen. In the case of hydrogen-ion bombarded SiC, carbon enriched layer was observed in the near surface region, while the surfaces of Si3N4 and SiO2 became silicon-rich after the bombardments. On the other hand, the bombardments of H2+, D2+ and He+-ions on TiC, TiN and TiO2 made their surfaces titanium-rich. At high fluences, the X/Ti (X = C, N, O) become constant. The energy dependences of the steady state values of the C/Ti ratios have maximum at 2 - 4 keV/atom of incident ion, while those of the N/Ti and O/Ti ratios decreased with the increase in the ion energies. Incident-energy dependences of the Ti+/X+ ratios determined by SIMS substantiate that the sputtering is responsible for the surface compositional change of the binary compounds. The surface of TiO2 was easily reduced to Ti2O3 by the H2+ and D2+, or to TiO by the He+ and Ar+-ion bombardments. The difference in the reduced species is correlated with the thermodynamical parameters of the corresponding reduction reactions. (J.P.N.)

  5. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10-4 M (Cu, Cd, Pb)(NO3)2 + 0.01 M HNO3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo Kα and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film growth

  6. The Influence of Surface Morphology of Dense Ca-P Ceramics on Apatite Formation in Dynamic SBF

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study aimed at exploring the effect of surface morphology of dense phosphate calcium (Ca-P) ceramics upon the formation of bone-like apatite in static or dynamic simulated body fluid (SBF). Dense and sandblasted calcium phosphate ceramics were immersed into dynamic SBF flowing at normal physiological speed of body fluid of skeletal muscle.The changes were characterized using SEM, XPS, IR and XRD. Changes can be observed after the sandblasted surface of dense calcium phosphate ceramics had been immersed in SBF for 14 days. XPS analysis results showed that the flake-like structure was composed of Ca, P, C, O; IR analysis result of surface structure of samples showed that there were specific peaks for CO2-3; XRD results indicated the decrease in crystallinity and the increase in amorphous structure. The rough surface was advantageous for the formation of bone-like apatite. Increasing the Ca2+, HPO2-4 concentration of SBF could also enhance the bone like apatite formation. All the results demonstrated that local concentration is a key factor affecting nucleation.

  7. Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics

    International Nuclear Information System (INIS)

    Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics

  8. Impact of surface finishes on the flexural strength and fracture toughness of In-Ceram Zirconia.

    Science.gov (United States)

    Manawi, Manal; Ozcan, Mutlu; Madina, Manal; Cura, Cenk; Valandro, Luiz Felipe

    2012-01-01

    Dental restorations made of zirconia are usually selectively adjusted chairside to eliminate occlusal or internal interferences that can impair the mechanical properties of ceramic framework material. Effects of polishing procedures on zirconia after chipping or simply glazing the monolithic zirconia restorations are not known. This study evaluated the effects of different surface treatment procedures--namely, glazing or grinding, finishing, and polishing regimens--on the flexural strength and fracture toughness of a zirconia core material. Forty zirconia specimens were prepared and divided into two main groups (n = 20) according to the type of surface treatment (glazed or ground, finished, and polished). Each group was further divided into two subgroups (n = 10) according to type of mechanical test (flexural strength and fracture toughness). The roughness measurements were performed before mechanical testing. Qualitative evaluation of representative specimens of each subgroup was performed using SEM. The surface roughness mean (μm; ± standard deviations) recorded for the glazed specimens (0.94 ± 0.2) was significantly lower than that of the finished and polished group (3.01 ± 0.1) (P zirconia showed significantly higher flexural strength (385.4 ± 45.4 MPa) and fracture toughness (6.07 ± 1 MPa.m½) values than the ground, finished, polished zirconia (302.4 ± 47.6 MPa and 2.14 ± 0.5 MPa.m½) (P = 0.002 and P polishing. Grinding, finishing, and polishing markedly decreased the flexural strength and fracture toughness of zirconia compared to the glazed groups. PMID:22414507

  9. Electrochemical behavior of an indenedione derivative electrodeposited on a renewable sol-gel derived carbon ceramic electrode modified with multi-wall carbon nanotubes: Application for electrocatalytic determination of hydrazine

    International Nuclear Information System (INIS)

    A novel modified carbon ceramic electrode (CCE) containing multi-wall carbon nanotubes (MWCNTs) was fabricated by a sol-gel technique. The prepared MWCNT-CCE was modified by the electrodeposition of an indenedione derivative. The indenedione modified MWCNT-CCE (IMWCNT-CCE) shows one pair of peaks with surface confined characteristics. According to the theoretical model of Laviron, estimations were made in different pHs of the surface charge transfer rate constant, ks, and the charge transfer coefficient, α, for electron transfer between the indenedione derivative and MWCNT-CCE. The modified electrode shows a highly catalytic activity toward hydrazine electrooxidation at a wide pH range (5-9). The kinetic parameters such as the electron transfer coefficient, α, the heterogeneous rate constant, k', and the exchange current of hydrazine at the IMWCNT-CCE were calculated as 0.29 ± 0.01, 2.7(±0.3) x 10-3 cm s-1 and 0.17 ± 0.03 μA, respectively. Also, the modified electrode shows an excellent analytical performance for voltammetric determination of hydrazine. Differential pulse voltammetry (DPV) exhibits two linear dynamic ranges, 0.6-8.0 μM and 8.0-100.0 μM, and a lower detection limit of 0.29 μM for hydrazine. Finally, the practical analytical utility is illustrated by differential pulse voltammetric determination of hydrazine in auxiliary cooling water at IMWCNT-CCE and the accuracy of the results is verified in comparison with those obtained from the standard ASTM method

  10. Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.

    Science.gov (United States)

    Karahaliloğlu, Zeynep; Demirbilek, Murat; Şam, Mesut; Sağlam, Necdet; Mızrak, Alpay Koray; Denkbaş, Emir Baki

    2016-01-01

    The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation. PMID:24863802

  11. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  12. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  13. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    OpenAIRE

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1...

  14. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    International Nuclear Information System (INIS)

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S

  15. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  16. Surface analysis of γ-ray irradiation modified PBO fiber

    International Nuclear Information System (INIS)

    Poly[p-phenylene benzobisoxazole] (PBO) fiber is treated in a solution of epichlorohydrin and acetone using γ-ray irradiation method with a increasing irradiation dose. The irradiation treatment induces a modification of the surface properties. The effects of the treatment on the chemical components, the surface free energy, and the surface roughness of the fiber are analyzed by using X-ray photoelectron spectroscopy (XPS), dynamic capillary method and atomic force microscopy (AFM), respectively. The grafting reaction between the PBO polymer and the irradiation medium-epichlorohydrin is also discussed by 1H nuclear magnetism resonance (1H NMR) analysis. The results indicate that, γ-ray irradiation technique can significantly improve the surface chemical inertness and the surface smooth of the PBO fiber by generating some active oxygen-containing, chlorine-including and nitrogen-containing groups and activating the surface of the fiber

  17. In Vitro Analysis of Fibronectin-Modified Titanium Surfaces

    OpenAIRE

    Chang, Yu-Chi; Lee, Wei-Fang; Feng, Sheng-Wei; Huang, Haw-Ming; Lin, Che-Tong; Teng, Nai-Chia; Chang, Wei Jen

    2016-01-01

    Background Glow discharge plasma (GDP) procedure is an effective method for grafting various proteins, including albumin, type I collagen, and fibronectin, onto a titanium surface. However, the behavior and impact of titanium (Ti) surface modification is yet to be unraveled. Purpose The purpose of this study is to evaluate and analyze the biological properties of fibronectin-grafted Ti surfaces treated by GDP. Materials and Methods Grade II Ti discs were initially cleaned and autoclaved to ob...

  18. Functional properties of laser modified surface of tool steel

    Directory of Open Access Journals (Sweden)

    M. Bonek

    2006-04-01

    Full Text Available Purpose: Investigations include alloying the surface of X40CrMoV5-1 hot-work tool steel with tungsten carbide using a high power diode laser (HPDL.Design/methodology/approach: The structural mechanism of surface layer development was determined and the effect of alloying parameters, gas protection method, and thickness of paste layer applied onto the steel surface on structure refinement and influence of these factors on the mechanical properties of surface layer was studied.Findings: The fine grained martensite structure is responsible for hardness increase of the alloyed layer. The dependence is presented of micro-hardness change on the laser beam effect on the treated surface, and especially the hardness increase in the alloyed layer. The tribological wear relationships were determined for laser treated surface layers, determining friction coefficient, mass loss, and wear trace shape developed due to the abrasive wear of the investigated surfaces. The X40CrMoV5-1 conventionally heat treated steel was used as reference material.Practical implications: Laser surface modification has the important cognitive significance and gives grounds to the practical employment of these technologies for forming the surfaces of new tools and regeneration of the used ones.Originality/value: The outcome of the research is an investigation showing the structural mechanisms accompanying laser alloying.

  19. Functional properties of laser modified surface of tool steel

    OpenAIRE

    M. Bonek; L.A. Dobrzański

    2006-01-01

    Purpose: Investigations include alloying the surface of X40CrMoV5-1 hot-work tool steel with tungsten carbide using a high power diode laser (HPDL).Design/methodology/approach: The structural mechanism of surface layer development was determined and the effect of alloying parameters, gas protection method, and thickness of paste layer applied onto the steel surface on structure refinement and influence of these factors on the mechanical properties of surface layer was studied.Findings: The fi...

  20. Alignment of liquid crystals : on geometrically and chemically modified surfaces

    NARCIS (Netherlands)

    Zhang, Jing

    2013-01-01

    This thesis consists of two main parts. The first part describes a new model to explain the complex role of surface materials and surface geometry in the liquid crystal (LC) alignment, which has been a subject of intensive debate over the last 40 years. The second part presents a potentially cost ef

  1. Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns

    OpenAIRE

    Ahmed Attia

    2010-01-01

    OBJECTIVE: This study investigated the durability of repaired all-ceramic crowns after cyclic loading. MATERIAL AND METHODS: Eighty In-ceram zirconia crowns were fabricated to restore prepared maxillary premolars. Resin cement was used for cementation of crowns. Palatal cusps were removed to simulate fracture of veneering porcelain and divided into 4 groups (n = 20). Fracture site was treated before repair as follows: roughening with diamond bur, (DB); air abrasion using 50 µm Al2O3, (AA) and...

  2. Surface characterization of silver and palladium modified glassy carbon

    Indian Academy of Sciences (India)

    Aleksandra A Perić-Grujić; Olivera M Nešković; Miomir V Veljković; Zoran V Laušević; Mila D Laušević

    2007-12-01

    In this work, the influence of silver and palladium on the surface of undoped, boron doped and phosphorus doped glassy carbon has been studied. The silver and palladium concentrations in solution, after metal deposition, were measured by atomic absorption spectrophotometer. The morphology of metal coatings was characterized by scanning electron microscopy. In order to investigate the nature and thermal stability of surface oxygen groups, temperature-programmed desorption method combined with mass spectrometric analyses, was performed. The results obtained have shown that silver and palladium spontaneously deposit from their salt solutions at the surface of glassy carbon samples. Silver deposits have dendrite structure, whilst palladium forms separate clusters. The highest amount of both silver and palladium deposits at the surface of sample containing the highest quantity of surface oxide complexes. It has been concluded that carboxyl groups and structure defects are responsible for metal reduction. Calculated desorption energies have shown that the surface modification by metal deposition leads to the formation of more stable surface of undoped and doped glassy carbon samples.

  3. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA)

    International Nuclear Information System (INIS)

    Lightweight Expanded Clay Aggregate (LECA) modified with an aqueous solution of magnesium chloride MgCl2 and hydrogen peroxide H2O2 was used to remove Cr(VI) from aqueous solutions. The adsorption properties of the used adsorbents were investigated through batch studies, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Fluorescence Spectroscopy (XRF), and Fourier Transform Infrared (FTIR) spectroscopy. The effect created by magnesium chloride on the modification of the LECA surface was greater than that of hydrogen peroxide solution and showed a substantial increase in the specific surface area which has a value of 76.12 m2/g for magnesium chloride modified LECA while the values of 53.72 m2/g, and 11.53 m2/g were found for hydrogen peroxide modified LECA and natural LECA, respectively. The extent of surface modification with enhanced porosity in modified LECA was apparent from the recorded SEM patterns. XRD and FTIR studies of themodified LECA surface did not show any structural distortion. The adsorption kinetics was found to follow the modified Freundlich kinetic model and the equilibrium data fitted the Sips and Dubinin-Radushkevich equations better than other models. Maximum sorption capacities were found to be 198.39, 218.29 and 236.24 mg/g for natural LECA, surface modified LECA with H2O2 and surface modified LECA with MgCl2, respectively. Adsorbents were found to have only a weak effect on conductivity and turbidity of aqueous solutions. Spent natural and surface modified LECA with MgCl2 was best regenerated with HCl solution, while LECA surface modified with H2O2 was best regenerated with HNO3 concentrated solution. Thermal method showed a lower regeneration percentage for all spent adsorbents.

  4. A Feasibility Study on the Application of Ultrasonic Method for Surface Crack Detection of SiC/SiC Composite Ceramics

    International Nuclear Information System (INIS)

    Nondestructive evaluation(NDE) of ceramic matrix composites is essential for developing reliable ceramics for industrial applications. In the work, C-Scan image analysis has been used to characterize surface crack of SiC ceramics nondestructively. The possibility of detection of surface crack were carried out experimentally by two types of ultrasonic equipment of SDS-win and μ-SDS, and three types of transducer of 25, 50 and 125 MHz. A surface micro-crack of ceramics was not detected by transducer of 25 MHz and 50 MHz. Though the focus method was detected dimly the crack by transducer of 125 MHz, the defocus method could detect the shape of diamond indenter. As a whole, the focus method and the defocus method came to the conclusion that micro crack have a good possibility for detection

  5. Electroless plating of copper on surface-modified glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Su Wei, E-mail: aaasuwei@yahoo.com.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Yao Libei; Yang Fang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li Peiyuan, E-mail: lipearpear@yahoo.cn [College of Pharmacy, Guangxi Traditional Chinese Medical University, Nanning 530001 (China); Chen Juan; Liang Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2011-07-01

    This work focuses on developing a novel convenient method for electroless copper deposition on glass material. This method is relied on the formation of amino (NH{sub 2})-terminated film on the surface of glass substrate, by coating polyethylenimine (PEI) on glass matrix and using epichlorohydrin (ECH) as cross-linking agent. The introduced amino groups can effectively adsorb the palladium, the catalysts which could initiate the subsequent Cu electroless plating, onto the glass substrate surface. Finally, a copper film is formed on the palladium-activated glass substrate through copper electroless plating and the surface-coppered glass material is therefore acquired. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) images combined with energy diffraction X-ray (EDX) analysis demonstrate the successful copper deposition on the surface of glass substrate.

  6. Electroless plating of copper on surface-modified glass substrate

    International Nuclear Information System (INIS)

    This work focuses on developing a novel convenient method for electroless copper deposition on glass material. This method is relied on the formation of amino (NH2)-terminated film on the surface of glass substrate, by coating polyethylenimine (PEI) on glass matrix and using epichlorohydrin (ECH) as cross-linking agent. The introduced amino groups can effectively adsorb the palladium, the catalysts which could initiate the subsequent Cu electroless plating, onto the glass substrate surface. Finally, a copper film is formed on the palladium-activated glass substrate through copper electroless plating and the surface-coppered glass material is therefore acquired. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) images combined with energy diffraction X-ray (EDX) analysis demonstrate the successful copper deposition on the surface of glass substrate.

  7. Electroless plating of copper on surface-modified glass substrate

    Science.gov (United States)

    Su, Wei; Yao, Libei; Yang, Fang; Li, Peiyuan; Chen, Juan; Liang, Lifang

    2011-07-01

    This work focuses on developing a novel convenient method for electroless copper deposition on glass material. This method is relied on the formation of amino (NH2)-terminated film on the surface of glass substrate, by coating polyethylenimine (PEI) on glass matrix and using epichlorohydrin (ECH) as cross-linking agent. The introduced amino groups can effectively adsorb the palladium, the catalysts which could initiate the subsequent Cu electroless plating, onto the glass substrate surface. Finally, a copper film is formed on the palladium-activated glass substrate through copper electroless plating and the surface-coppered glass material is therefore acquired. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) images combined with energy diffraction X-ray (EDX) analysis demonstrate the successful copper deposition on the surface of glass substrate.

  8. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  9. Platelet Adhesion onto Nitinol Surfaces Modified by Microwave Cold-plasma

    Institute of Scientific and Technical Information of China (English)

    Jun YANG; Jian Hua WANG; Shen Yi TONG

    2005-01-01

    The macromolecular structures on nitinol surfaces were prepared by ECR microwave cold-plasma of tetraglyme conditions. The surface chemistry was characterized by high resolution ESCA. The results showed that the modified nitinol surfaces were built up mainly of -CH2-CH2-O- linkages and were particularly effective in preventing platelet adhesion.

  10. Controlled release of proteins from polymer-modified surfaces

    OpenAIRE

    Fang, Fang; Szleifer, I.

    2006-01-01

    The ability to control the rate of adsorption and desorption of proteins from surfaces is studied by using a molecular theory. We show how changing the chemical structure and charge of short linear and branched grafted polymers to an electrode surface can be used to promote fast adsorption of charged proteins on a time scale of seconds and control the desorption in a time scale ranging from milliseconds to hours. The optimal controlled release is found from the interplay of electrostatic attr...

  11. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  12. Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid

    International Nuclear Information System (INIS)

    This study introduces a new surface-renewable electrode based on a sol–gel derived graphene ceramic composite. The electrode was prepared by dispersing graphene nanosheets into a solution of the sol–gel precursors containing methyl triethoxysilane in methanol and hydrochloric acid. During hydrolysis of methyl triethoxysilane, the graphene nanosheets are trapped in the gel. After moulding and drying the composite, it can be used as a surface-renewable electrode to which we refer as a graphene ceramic composite electrode (GCCE). Cyclic voltammograms of the hexacyanoferrate(II/III) model redox system at the GCCE were compared to those obtained with a conventional carbon ceramic electrode and showed a highly improved electron transfer rate at the GCCE. The electrocatalytic oxidation of ascorbic acid as a model analyte was then studied at working potential of 50 mV and over the 3–84 μM concentration range. It revealed a sensitivity of 6.06 μA μM−1 cm−2 and a detection limit of 0.82 μM. The GCCE was successfully applied to the determination of ascorbic acid in orange juice and urine samples. Advantages such as good mechanical and chemical stability, ease of fabrication, and reproducible preparation make the GCCE a potentially useful and widely applicable renewable electrode for use in routine analysis. (author)

  13. [Possibilities for improvement of the surface properties of dental implants (2). The use of ceramic oxides in surface coating for titanium and tantalum implants].

    Science.gov (United States)

    Szabó, G; Kovács, L; Vargha, K

    1995-02-01

    A corrosion-resistant, 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure was produced on the surface of titanium implants. The layer contains a bioactive component, it is made from the material of the implant, adheres well and gives an aesthetically pleasant impression. The coated implants were subjected to various physical, chemical electronmicroscopic, etc. tests for their qualitative characterization. These tests demonstrated the good properties of the implants. The procedure is protected internationally by patents. PMID:7875341

  14. Improvement of the Specificity of Surface Plasmon Resonance with BSA-modified Chip

    Institute of Scientific and Technical Information of China (English)

    Li Hua CHEN

    2006-01-01

    A chip was modified with bovine serum albumin (BSA), then interaction between glutathione (GSH) immobilized on the top of BSA and glutathione-S-transferase (GST) was examined, using surface plasmon resonance (SPR). The SPR results showed that BSA-modified chip was effective not only in binding the target proteins but also in suppressing the nonspecific binding (NSB) of proteins.

  15. Analysis of the influence of process conditions on the surface finish of ceramic materials manufactured by EDM

    International Nuclear Information System (INIS)

    Electrical discharge machining (EDM) is an emerging alternative versus some other manufacturing processes of conductive ceramic materials, such as: laser machining, electrochemical machining, abrasive water jet, ultrasonic machining and diamond wheel grinding. Due to its interest in the industrial field, in this work a study of the influence of process conditions on the surface aspect of three conductive ceramic materials: hot-pressed boron carbide (B4C), reaction-bonded silicon carbide (SiSiC) and cobalt-bonded tungsten carbide (WC-Co) is carried out. These materials are to be electrical discharge machined under different machining conditions and in the particular case of finish stages (Ra≤ 1 μm). (Author)

  16. Ceramic Films Containing Ca,P and Al Formed on Surface of TC4 Alloy by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    FU Lian-chun; JIANG Zhao-hua; YAO Zhong-ping; SUN Xue-tong

    2004-01-01

    Ceramic films containing Ca, P and Al were prepared on surface of TC4 alloy by micro-arc oxidation using direct current supply to enhance its seawater and plankton corrosion resistance. XRD, EDS, SEM and EPMA were employed to characterize the microstructure and the phase composition. The results showed that 15 μm-ceramic films which was uniform and compact were formed on TC4 . The mass proportion of Ca, P and Al is about 2 : 3 : 4. There was AlPO4 crystal but Ca was not crystal. Cyclic Volt-Ampere test showed that the corrosion resistance of theceramic films was much better than that of the TC4 substrate.

  17. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  18. Surface chemistry of atmospheric plasma modified polycarbonate substrates

    International Nuclear Information System (INIS)

    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88 deg. to 18 deg. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-C=O)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.

  19. Excitation energy migration in yellow fluorescent protein (citrine) layers adsorbed on modified gold surfaces

    Science.gov (United States)

    Yusoff, Hanis Mohd; Rzeźnicka, Izabela I.; Hoshi, Hirotaka; Kajimoto, Shinji; Horimoto, Noriko Nishizawa; Sogawa, Kazuhiro; Fukumura, Hiroshi

    2013-09-01

    The nature of functional proteins adsorbed on solid surfaces is interesting from the perspective of developing of bioelectronics and biomaterials. Here we present evidence that citrine (one of yellow fluorescent protein variants) adsorbed on modified gold surfaces would not undergo denaturation and energy transfer among the adsorbed citrine molecules would occur. Gold substrates were chemically modified with 3-mercaptopropionic acid and tert-butyl mercaptan for the preparation of hydrophilic and hydrophobic surfaces, respectively. A pure solution of citrine was dropped and dried on the modified gold substrates and their surface morphology was studied with scanning tunnelling microscopy (STM). The obtained STM images showed multilayers of citrine adsorbed on the modified surfaces. On hydrophobic surfaces, citrine was adsorbed more randomly, formed various non-uniform aggregates, while on hydrophilic surfaces, citrine appeared more aligned and isolated uniform protein clusters were observed. Fluorescence lifetime and anisotropy decay of these dried citrine layers were also measured using the time correlated single photon counting method. Fluorescence anisotropy of citrine on the hydrophobic surface decayed faster than citrine on the hydrophilic surface. From these results we concluded that fluorescence energy migration occurred faster among citrine molecules which were randomly adsorbed on the hydrophobic surface to compare with the hydrophilic surface.

  20. Transcrystallization at the surface of graphene-modified chitosan fibers

    Science.gov (United States)

    Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren

    2016-07-01

    Incompatibility between hydrophilic chitosan (CS) fiber and hydrophobic polymer matrices leads to unsatisfactory properties of the composites. The crystallization of polymer on the fiber surface is a promising way to increase interfacial interactions. Here, we coated CS fiber surfaces with graphene oxide via electrostatic self-assembly to improve interfacial interactions between the polymer and the CS fiber. Structures of the CS fiber before and after graphene coating were characterized by various methods. The formation of a polypropylene (PP) transcrystalline (TC) layer on the CS fiber surface was investigated. It is suggested that at low crystallization temperatures the fiber induced TC phase forms faster than at high temperature. There exist α and β crystal of PP in the TC phase formation process as demonstrated by x-ray diffraction. The polarized light optical microscope results demonstrate that graphene coated CS fiber can also enhance the TC phase nucleation ability of poly(l-lactide).

  1. Information Exchange via Surface Modified Resonance Energy Transfer

    CERN Document Server

    Boström, Mathias; Huang, Dan; Ninham, Barry W; Sernelius, Bo E

    2013-01-01

    The theory is presented for resonance interaction between two atoms in an excited configuration: one atom, the "receptor" of information (i.e. energy), adsorbed on a phospholipid surface and the other atom, the "emitter" of information (i.e. energy), a long distance away. The dielectric function for a specific phospholipid membrane is obtained from density functional theory calculations. We present numerical results comparing the range and magnitude of non-specific Casimir-Polder interactions with the much more long-ranged, and highly specific, resonance interaction. A study of the resonance interaction with one or both atoms adsorbed on a phospholipid membrane surface reveals a possibility to have a cross over from attraction to repulsion or from repulsion to attraction at separations between receptor and emitter atoms exceeding several hundred {\\AA}ngstr\\"oms. The energy transfer and the observed transitions in the sign of the interaction energies near surfaces provide potential new ways to start recognitio...

  2. Improvement of wear resistance of the hot work tool steel by laser surface feeding with ceramic powders

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2013-04-01

    Full Text Available Purpose: In this paper the result of laser surface feeding or remelting is discussed. The remelted layers which were formed on the surface of the investigated hot work steel were examined and analyzed metallographically and analyzed using a hardness testing machine. The resistance research has been done on the CSM Instruments.Design/methodology/approach: In this paper the results of laser treatment techniques applied in metal surface technology are presented and discussed. There is presented laser treatment with feeding or remelting of hot work tool steel X40CrMoV5-1 with ceramic powders especially - Al2O3 and Si3N4, as well as results of laser remelting influence on structure and properties of the surface of the hot work steel, carried out using the high power diode laser (HPDL.Findings: On the basis of the wear abrasion tests carried out on hot work tool steel it could be found that each of those specimens is characterized by different resistance for the same powders and the power of the laser beam. The metallographic investigations on light microscope show that during feeding or remelting the hot work tool steel with the ceramic powder layer in the whole range of the laser power values used 1.2-2.3 kW the obtained bead face is characteristic of the high roughness, multiple pores, irregularity.Practical implications: The resistance to abrasive wear is a practical aim of this work as well as improvement of hardness as a very important properties for practical use. It is necessary to continue the research to determine feeding or remelting parameters for demanded properties of hot work tool steels surface layers. Originality/value: Laser feeding or remelting by using HPDL laser (High Power Diode Laser and selected ceramic powders can be very attractive for industries.

  3. Surface modified polysiloxane a sensitive coatings for QCM sensors

    Science.gov (United States)

    Ying, Zhihua; Jiang, Yadong; Du, Xiaosong; Xie, Guangzhong; Yang, Yajie; Tai, Huiling

    2008-02-01

    A quartz crystal microbalance (QCM) gas sensor with polysiloxane sensing film was fabricated for detection of dimethyl methyl phosphonate (DMMP), the simulant of chemical warfare agents (CWAs). Poly(methyl-3,3,3-trifluoropropylsiloxane) (PMTFPS) was oxygen plasma treated and then grafted with sulfosalicylic acid (SSA). The resultant SSA modified PMTFPS (SMP) was drop-coated on the electrode of QCM. Compared with the PMTFPS-QCM and SSA-QCM sensors, the sensitivity of SMP-QCM sensor was much higher. However, the SMP films showed less resistance to humidity variations. The selectivity of SMP-QCM sensor to DMMP was also investigated, and better results was showed out after SSA grafted.

  4. Effect of A-site La3+ modified on dielectric and energy storage properties in lead zironate stannate titanate ceramics

    International Nuclear Information System (INIS)

    (Pb1-1.5xLax)(Zr0.66Sn0.23Ti0.11)O3 (PLZST) ceramics with different lanthanum (La3+) content (x = 0–6%) were prepared by conventional solid state reaction process, and exhibited excellent electrical properties with high switching field from AFE to FE phase and electric breakdown strength. The maximum dielectric constant (εm) and its corresponding temperature (Tm) decreased with La3+ doping and a phase transition from rhombohedral ferroelectric (FE) to tetragonal antiferroelectric (AFE) state was found at 2% La3+ doping. At room temperature, a maximum energy density of 1.47 J cm−3 was obtained for x = 4%. In addition, electric-field-dependent energy storage properties of PLZST (x = 4%) ceramics have been investigated, which could be ascribed to the AFE–FE phase transition associated with the increase of strain. (paper)

  5. Environmental Radioactivity Comparison Study for the Glaze-Clay Surface of Ceramic Tiles by Tracks Technique

    International Nuclear Information System (INIS)

    Tracks Density, radon concentration, radon exhalation rates and radium concentration were measured from ceramic tiles for both of glaze and clay by using the track technique, containing CR-39, to estimate the radiation exposure in the vicinity of ceramic tile. For ceramic tiles of wall, the average of tracks density, the radon concentration, radon exhalation rates and radium concentration were found in the range 230-356 tracks.cm-2, 389-600 Bq.m-3, 21-31 mBq.m-2.h-1, 16-25 Bq.kg-1, respectively. While for ceramic tiles of floor, the average of tracks density, the radon concentration, radon exhalation rates and radium concentration were found in the range 274-509 tracks.cm-2, 463-860 Bq.m-3, 25-46 mBq.m-2.h-1, 19-46 Bq.kg-1, respectively. The average level of radon concentrations caused by these ceramic tiles for Egyptian companies covering both of wall, floor, glaze and clay giving an annual exposure dose 22±2 mSv.y-1 which is higher than internationally recommended range

  6. Physico-chemical characterisation of surface modified particles for inhalation.

    Science.gov (United States)

    Stank, Katharina; Steckel, Hartwig

    2013-05-01

    Surface modification of drugs for inhalation is a possibility to influence interparticulate forces. This can be necessary to achieve a sufficient aerosolisation during powder inhalation as the cohesiveness of the micronised drug can be reduced. In addition, the interaction with propellants in pressurised metered dose inhaler can be changed. This can be used to improve the physical stability of the suspension based formulations. A dry particle coating process was used for the alteration of particle surfaces. The blending of micronised salbutamol sulphate (SBS) with different concentrations of magnesium stearate (Mgst) or glycerol monostearate (GMS) was followed by co-milling with an air jet mill. The powder properties were characterised by SEM, EDX, laser diffraction, BET and inverse gas chromatography. Physical mixtures generated by Turbula blending were compared to co-milled samples. A slight particle size reduction was determined. The Mgst deposition on SBS particles was detected by EDX measurements. The dispersive surface energy of SBS is lowered and the energy distribution is more homogenous for the co-milled samples. This study proves the application of co-milling for surface modification in the inhalation area. PMID:23518364

  7. Surface properties of polyethylene modified by atmospheric plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Chodák, I.; Kuruc, Š.; Mosnáček, J.; Chehimi, M. M.; Špírková, Milena; Kleinová, A.

    Bratislava: Polymer Institute of the Slovak Academy of Sciences, 2006. s. 38-L1/2. [International Polymer Workshop /2./ From Polymer Modification to Multicomponent System. 26.11.2006-28.11.2006, Bratislava - Smolenice] Institutional research plan: CEZ:AV0Z40500505 Keywords : plasma modification * low-density polyethylene LDPE * surface properties Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Structure and surface properties of praseodymium modified alumina

    International Nuclear Information System (INIS)

    Mixed PrO2-Al2O3 oxides with different PrO2 content (1-20 wt.%) were prepared by wetness impregnation of γ-alumina with aqueous solution of praseodymium nitrate. The samples were characterized by different techniques, using surface adsorption-desorption of N2 (SBET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), temperature-programmed reduction (TPR) and temperature-programmed desorption of CO2 (TPD-CO2). TGA and XRD showed the presence of small praseodymium oxide species on the alumina surface. XPS and DRS detected electron deficient interaction between deposited praseodymium oxide and alumina. It was observed a lower reduction temperature for supported Pr oxide species compared to that of the bulk Pr6O11. TPD-CO2 studies suggested that the deposition of Pr oxide on alumina leaded to increase of the basicity of mixed oxides.

  9. Convective heat transfer fouling of aqueous solutions on modified surfaces

    OpenAIRE

    Janabi, Abdullah K. O. Al-

    2011-01-01

    The present research study was part of the European project "MEDESOL" entitled "Seawater desalination by innovative solar-powered membrane-distillation system". The project aimed at developing a stand-alone desalination unit to produce fresh water with a maximum of 50 m3/day. Several components such as suitable membrane and efficient solar collectors had to be developed as well as a plate heat exchanger for a maximum life expectancy with least deposition occurrence on its surfaces. The contri...

  10. Characterization of surface-modified austenitic alloys. Final report

    International Nuclear Information System (INIS)

    This report describes the results of research to characterize the physical, mechanical and fouling properties of Pd, W and WO3 coatings on stainless steel substrates. Deposition of colloidal corrosion products on stainless steel surfaces (fouling) adversely affects the performance of a number of light water reactor systems. Surface charge measurements have recently found that W and Pd oxide powders can resist such fouling. To assess their potential as open-quotes fouling resistantclose quotes coatings, metallic W, Pd and WO3 were deposited onto 304 SS coupons by various techniques including electroplating, physical vapor deposition, magnetron sputtering, ion plating, ion beam assisted deposition, metal plasma ion immersion, ion implantation, metal-organic deposition and sol gel processing. The deposited coatings, nominally 1-3 microns in thickness, were evaluated for mechanical integrity and resistance to fouling. Scratch and pull testing revealed that Pd coatings exhibited better adhesion, better scratch resistance and fewer surface defects than W coatings. W coatings contained higher impurity levels, exhibited brittle failure in scratch tests and poorer adhesion to the 304 SS substrate than the Pd coatings. Pd coatings also exhibited superior resistance to fouling in 235 degrees C water at pH=4.0 containing I g/l magnetite, after a 72 hour exposure. On the basis of impurity control, mechanical integrity and fouling resistance, Pd coatings were judged to be superior to W or WO3 coatings

  11. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    Science.gov (United States)

    Roberts, Joseph J. P.

    Chapter One provides a general introduction of the research on metal oxide nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. Emphasis is given to the different synthetic route for producing small (electrode (microE) experiments. Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well as electrochemical tagging of ZrO 2 and IrO2 nanoparticles. An unbound azo-dye was synthesized and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple between a spectroscopic tag and ZrO2 nanoparticles was also explored, but resulted in very low surface coverages. ZrO2 nanoparticles were also ferrocene tagged using previously discussed siloxane chemistry as well as a new route using click chemistry with an azo-phosphate ligand. A similar approach was taken with hydrolytically synthesized IrO 2 and is included for comparison. Chapter Five studies the multivalent electrochemistry of 4 nm magnetite nanoparticles. These nanoparticles are synthesized via thermal degradation and capped with citric acid to make them water soluble. pH dependent electrochemistry was discovered and characterized using cyclic voltammetry, chronoamperometry, and rotating disk electrode experiments. Two separate electrochemical species are present and undergo two irreversible, but separate electrochemical reactions; Fe(II) → Fe (III) and Fe(III) → Fe(II).

  12. High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics

    International Nuclear Information System (INIS)

    Graphical abstract: Polarization hysteresis (P–E) loops of the (Pb0.85Ba0.08Sr0.03La0.03) (Zr0.74Sn0.22Ti0.04) samples: (a) measured at different applied electric-field and (b) measured at different temperatures is shown. It is typical antiferroelectrics whose remnant polarization is zero. As the remnant polarization of AFE is small and the ceramics are accompanied by the formation of the anti-parallel domain structure, energy stored in PLZST can be effectively released. Thus we calculated the energy density from the P–E loop and obtained the power density was up to 1.2 J/cm3 at 55 °C, and at 45 °C the energy density was ∼1.24 J/cm3. As usual, for bulk ceramics, the switching between the AFE and FE states occurs at lower field. This value is much higher than that reported previously for the PLZT bulk ceramic (0.4 J/cm3). - Highlights: • Ba2+, Sr2+ co-doping caused the Tc of PLZST moved to the lower temperature (Tc ≈ 40 °C). • The ΔE was so smaller, EAF ≈ 90 kV/cm and EFA ≈ 85 kV/cm. • Ba, Sr co-doped PLZST ceramic exhibited slanted P–E loops with a large breakdown field (100 kV/cm). • A high energy density was up to 1.2 J/cm3. - Abstract: (Pb0.85Ba0.08Sr0.03La0.03)(Zr0.74Sn0.22Ti0.04) (Ba, Sr co-doped PLZST) co-doping antiferroelectric (AFE) ceramics with orthorhombic perovskite structure were prepared by the traditional solid state reaction process. It was observed that the doping of barium and strontium caused the Curie temperature of PLZST move to the lower temperature (Tc ≈ 40 °C). Ba, Sr co-doped PLZST AFE ceramics exhibited excellent electrical properties, the AFE to ferroelectric (FE) transition occurred at field EAF ≈ 90 kV/cm, and the transition from FE to AFE occurred at EFA ≈ 85 kV/cm. The maximum relative permittivity was about 4800, occurring at a field near the AFE to FE transition point, with a dielectric loss of 0.006. The samples exhibited small ΔE and slanted hysteresis loops with a large breakdown field of 100 k

  13. Cell adhesion behavior on the silicone rubber surface modified by using ion beam irradiation

    International Nuclear Information System (INIS)

    In this study we studied cell adhesion and proliferation on the surface of a silicone rubber modified by ion beam irradiation. The surface property of the irradiated silicone rubber was characterized by water contact angle and FT-IR analyses. It was observed that human (HEK293) fibroblast cells exhibit strong adhesion to the irradiated silicone surface. This enhanced adhesion of mammalian cells can be attributed to the increase in the hydrophilicity of the silicone surface by ion beam irradiation

  14. Effect of pore structure on surface characteristics of zirconium phosphate-modified silica.

    Science.gov (United States)

    El Shafei, Gamal M S

    2002-06-15

    Three samples of silica of different pore structure-predominantly microporous, S1; mesoporous, S2; and nonporous, S3-were modified with zirconium phosphate and examined. Pore structure analysis showed that modification had taken place in wider pores of S1 leaving a totally microporous sample, and in large pores of S2 giving a mesoporous sample of narrower pore size distribution. The modification of the nonporous sample decreased the surface area and pore volume to a lower extent than in the other two samples, but resulted in a surface of lower energy toward N2. The different distribution of surface silanol groups on the surfaces of different porosity may result in variable pictures on the modified surfaces as reflected in the differences observed in Brønsted acidity of modified surfaces. The use of these modified silica samples for amino acid adsorption (L-glutamic acid and L-alanine) indicated that both the isoelectric point of the amino acid and the distribution of surface groups on modified solids are controlling the adsorption process. PMID:16290676

  15. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  16. Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry.

    Science.gov (United States)

    Dong, Haoran; He, Qi; Zeng, Guangming; Tang, Lin; Zhang, Chang; Xie, Yankai; Zeng, Yalan; Zhao, Feng; Wu, Yanan

    2016-06-01

    This study investigated the correlation between the colloidal stability and reactivity of surface-modified nano zero-valent iron (SM-nZVI) as affected by the surface coating (i.e., polyacrylic acid [PAA] and starch) under various geochemical conditions. Generally, the colloidal stability of nZVI was enhanced with increasing loading of surface coating, while there is an optimum loading for the most efficient Cr(VI) removal by SM-nZVI. At lower loadings than the optimum loading, the surface coating could enhance the particle stabilization, facilitating the Cr(VI) reduction by providing more available surface sites. However, the over-loaded surface coating on the surface of nZVI particles decreased the Cr(VI) reduction due to the occupation of the reactive sites and the inhibition of the mass transfer of Cr(VI) ions from water to the particle surface by providing the electrostatic or steric repulsion. The effects of Ca(2+) ions or humic acid (HA) on the colloidal stability and reactivity of PAA-modified nZVI (P-nZVI) and starch-modified nZVI (S-nZVI) were examined. Differing stability behavior and reactivity were observed for different SM-nZVI. It was found that the presence of Ca(2+) or HA altered surface chemistry of SM-nZVI, the particle-particle interaction and the particle-contaminant interaction, and hence influencing the stability behavior and reactivity of the particles. PMID:26970032

  17. To Evaluate the Effect of Various Surface Treatments on the Shear Bond Strength of Three Different Intraoral Ceramic Repair Systems: An In Vitro Study

    OpenAIRE

    Jain, Sidharth; Parkash, Hari; Gupta, Sharad; Bhargava, Akshaya

    2013-01-01

    Fractures of metal-ceramic restoration pose an esthetic and functional dilemma both for patient and the dentist. Intraoral repair systems eliminate the remake and removal of restoration. Many intraoral repair materials and surface treatments are available to repair intraorally fractured metal-ceramic restoration. Bond strength data of various materials and specific technique used for repair are necessary for predicting the success of a given repair system. This study evaluated the shear bond ...

  18. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO2. On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  19. Modelling for near-surface interaction of lithium ceramics and sweep-gas by use of cellular automation

    International Nuclear Information System (INIS)

    Tritium release from the lithium ceramics as a fusion reactor breeder material is strongly affected by the composition of the sweep-gas as result of its influences with the material's surface. The typical surface processes which play important roles are adsorption, desorption and interaction between vacancy site and the constituents of the sweep-gas. Among a large number of studies and models, yet it seems to be difficult to model the overall behaviour of those processes due to its complex time-transient nature. In the present work the coarse grained atomic simulation based on the Cellular Automaton (CA) is used to model the dynamics of near-surface interaction between Li2O surface and sweep-gas that is consisting of a noble gas, hydrogen gas and water vapour. (author)

  20. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  1. Glass carbon surface modified by the fluorine ion irradiation

    Science.gov (United States)

    Teranishi, Yoshikazu; Ishizuka, Masanori; Kobayashi, Tomohiro; Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo

    2012-02-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word "TIRI". The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ˜ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  2. Glass carbon surface modified by the fluorine ion irradiation

    International Nuclear Information System (INIS)

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word “TIRI”. The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ∼ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  3. Glass carbon surface modified by the fluorine ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Teranishi, Yoshikazu, E-mail: teranishi.yoshikazu@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute (TIRI), Nishigaoka 3-13-10, Kitaku, Tokyo 115-8586 (Japan); Ishizuka, Masanori [Tokyo University, Inst. of Phys. and Chem. Res., RIKEN (Japan); Kobayashi, Tomohiro [Chuo University, Inst. of Phys. and Chem. Res., RIKEN (Japan); Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo [Tokyo Metropolitan Industrial Technology Research Institute (TIRI), Nishigaoka 3-13-10, Kitaku, Tokyo 115-8586 (Japan)

    2012-02-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word 'TIRI'. The line width was varied with 300 nm, 500 nm, and 1 {mu}m. The line depth was about 200 {approx} 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  4. Preparation and characterization of PbTi0{sub 3} ceramics modified by a natural mixture of rare earth oxides of xenotime

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar-Rodrigues, Jair; Rodrigues Junior, Pedro; Cruz, Gerson K. da, E-mail: jbr@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica; Lente, Manuel H.; Eiras, Jose A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Fisica

    2014-01-15

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO{sub 3}, Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO{sub 3} prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO{sub 3}. The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm{sup 2}. These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  5. Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics

    Science.gov (United States)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2016-02-01

    In the present work ferroelectric, dielectric and pyroelectric properties of Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics were investigated. A significant increase in polarization has been observed, from 16 μC/cm2 to 25 μC/cm2 for 15% Sr added BCZT compositions. Correspondingly an improvement in dielectric constant, from 2743 to 4040, was observed at room temperature (1 MHz). It was found that Curie-Weiss temperature (TCW) decreases from 357 K to 308 K for 15% Sr containing BCZT ceramics. Simultaneously, it also enhances the order-disorder to displacing phase transition as γ varies from 1.91 to 1.31. Pyroelectric coefficient was found to be 25 μC/cm2K at 308 K. Finally, pyroelectric figures of merit (FOMs) for voltage responsivity (Fv), current responsivity (Fi), detectivity (Fd), energy harvesting (Fe) and new energy harvesting (Fe∗) are calculated. A large improvement in pyroelectric FOMs indicates that it might be a potential material for pyroelectric applications.

  6. Structural and dielectric properties of La- and Ti-modified K0.5Na0.5NbO3 ceramics

    International Nuclear Information System (INIS)

    Studies of structural and dielectric properties of lead-free perovskite K0.5Na0.5NbO3 (KNN) ceramics obtained by the substitution of 5 at% of La and Ti for ions in the A-site and B-site, respectively, and sintered at different temperatures between 1100 C and 1190 C, are presented. X-ray diffraction patterns show the successful formation of an orthorhombic perovskite phase similar to that of pure KNN. The effect of doping and sintering temperature on the dielectric properties of the resulting ceramics is discussed. Simultaneous substitution of La and Ti into the KNN (KNNLaTi) causes a shift in the ferroelectric-paraelectric phase transition temperature from that of pure KNN (420 C) to considerably lower ones (81 to 110 C) for the modified compounds. A particularly important result is the appearance of a single peak in the permittivity vs. temperature curve associated with the ferroelectric-paraelectric phase transition, where the KNNLaTi compound changes from orthorhombic to cubic structure, instead of the two reported for pure KNN. This transition exhibits the characteristics of a normal diffuse phase transition with an incipient relaxer behavior. (orig.)

  7. Structural and dielectric properties of La- and Ti-modified K{sub 0.5}Na{sub 0.5}NbO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, J.; Perez, A. [Universidad de La Habana, Facultad de Fisica, Ciudad Habana (Cuba); Instituto de Cibernetica, Matematica y Fisica, CITMA, Departamento de Fisica Aplicada, La Habana (Cuba); Portelles, J. [Universidad de La Habana, Facultad de Fisica, Ciudad Habana (Cuba); Instituto de Cibernetica, Matematica y Fisica, CITMA, Departamento de Fisica Aplicada, La Habana (Cuba); Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Ensenada, B.C. (Mexico); Durruthy-Rodriguez, M.D. [Instituto de Cibernetica, Matematica y Fisica, CITMA, Departamento de Fisica Aplicada, La Habana (Cuba); Ostos, C. [Universidad de Antioquia, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Medellin (Colombia); Raymond, O.; Heiras, J.; Cruz, M.P.; Siqueiros, J.M. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Ensenada, B.C. (Mexico)

    2012-06-15

    Studies of structural and dielectric properties of lead-free perovskite K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) ceramics obtained by the substitution of 5 at% of La and Ti for ions in the A-site and B-site, respectively, and sintered at different temperatures between 1100 C and 1190 C, are presented. X-ray diffraction patterns show the successful formation of an orthorhombic perovskite phase similar to that of pure KNN. The effect of doping and sintering temperature on the dielectric properties of the resulting ceramics is discussed. Simultaneous substitution of La and Ti into the KNN (KNNLaTi) causes a shift in the ferroelectric-paraelectric phase transition temperature from that of pure KNN (420 C) to considerably lower ones (81 to 110 C) for the modified compounds. A particularly important result is the appearance of a single peak in the permittivity vs. temperature curve associated with the ferroelectric-paraelectric phase transition, where the KNNLaTi compound changes from orthorhombic to cubic structure, instead of the two reported for pure KNN. This transition exhibits the characteristics of a normal diffuse phase transition with an incipient relaxer behavior. (orig.)

  8. Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics

    Science.gov (United States)

    Chen, Xiuli; Chen, Jie; Huang, Guisheng; Ma, Dandan; Fang, Lang; Zhou, Huanfu

    2015-12-01

    (1 - x)BaTiO3- xBi(Zn2/3Nb1/3)O3 [(1 - x)BT- xBZN, 0 ≤ x ≤ 0.2] ceramics were prepared via a conventional solid-state reaction method. X-ray diffraction (XRD) patterns and Raman spectra analysis show that the ceramics are tetragonal phase when x ≤ 0.02, and transform to pseudocubic phase as x ≥ 0.06. The temperature and frequency dependences of relative permittivity indicate a gradual crossover from a classic ferroelectric to relaxor ferroelectric. The dielectric relaxor behavior follows a modified Curie-Weiss law. The degree of the phase transition diffuseness ( γ) and the deviation from the Curie-Weiss law (Δ T_{{d}} ) increase to the maximum at x = 0.08, and subsequently decrease with further increasing x values, which associated with the appearance of polar nanoregions on account of the formation of random fields included local electric fields and elastic fields. Nevertheless, the random fields may decrease by reason of the interaction between the local electric fields and elastic fields.

  9. Voltammetric and amperometric determination of hydrogen peroxide using a carbon-ceramic electrode modified with a nanohybrid composite made from single-walled carbon nanotubes and silver nanoparticles

    International Nuclear Information System (INIS)

    A nanohybrid composite material was prepared from single-walled carbon nanotubes and silver nanoparticles, and used to fabricate a modified carbon-ceramic electrode. The preparation of the composite is facile and efficient. The nanohybrid composite deposited on the carbon-ceramic electrode was characterized by X-ray diffraction and cyclic voltammetry. The new electrode displays favorable electrocatalytic ability towards hydrogen peroxide (HO2) and can be used to electrocatalytically reduce this species. Under the optimum conditions, the current measured during hydrodynamic amperometry is linearly related to the concentration of H2O2 over the concentration range from 0.01 to 8 mM, with a detection limit of 2 x 10-7 M at a signal-to-noise ratio of 3 and sensitivity of 3.23 μA/mM. The electrode exhibits good reproducibility, long-term stability and negligible interference by dopamine, uric acid, and other important biological compounds. The electrode was successfully applied to the determination of H2O2 in honey samples, and the recovery was 101.2%. (author)

  10. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  11. Wear resistance of a metal surface modified with minerals

    Science.gov (United States)

    Kislov, S. V.; Kislov, V. G.; Balasch, P. V.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2016-02-01

    The article describes the advantages of the new technology of mineral coating of metal products for the friction pair of mechanical systems. It presents the research results of the wear rate of the samples made of 12X13 steel (X12Cr13) with mineral layers, in the experiments with a piston ring sliding inside a cylinder liner with grease. The wear rate of the samples with mineral layers is lower almost by two factors than that of the samples made of grey foundry iron and untreated samples. As the result of slip/rolling abrasion tests of parts with mineral layers under conditions of high contact pressure, a suggestion was made concerning probable mechanics of surface wear.

  12. Correlation between temperature-dependent permittivity dispersion and depolarization behaviours in Zr4+-modified BiFeO3–BaTiO3 piezoelectric ceramics

    Indian Academy of Sciences (India)

    Weidong Zeng; Changrong Zhou; Jianrong Xiao; Jiafeng Ma

    2015-12-01

    The correlation between permittivity frequency dispersion and depoling process upon heating was investigated in Zr4+-modified 0.75BiFeO3–0.25BaTiO3 (BF–BZT) ceramics. The temperature-dependent permittivity r() and the piezoelectric coefficient 33 for poled samples were measured under heating conditions to clarify the depolarization mechanism. The results indicate that the poling temperature plays a crucial role in the domains' alignment process, as expected. The temperature-dependent permittivity frequency dispersion and depolarization behaviours may have same origin. The aligned domains' break up into random state/nanodomains at depoling temperature ( d), which causes strong frequency dependence of the permittivity, simultaneously, induces the loss of piezoelectricity. It suggests that the temperature-dependent permittivity measurements method is a simple way to determine the depolarization temperature.

  13. Formation and electrical characterization of Ti-modified Sr0.3Ba0.7Nb2O6 ceramic system

    International Nuclear Information System (INIS)

    Titanium modified Sr0.3Ba0.7Nb2O6 ceramic system has been studied in a wide range of compositions. As the sintering temperature exceeds the 1250 deg. C, the substitution of niobium by titanium induces liquid phase formation, which enhances the densities of the samples with compositions in the monophasic range. X-ray diffraction analysis shows a linear titanium incorporation into the Sr0.3Ba0.7Nb2-yTi yO6-y/2 system up to a solubility limit 0.07 m r 420) of the sample with a titanium content of 0.07 are two times higher than the reported for the SBN (30/70) system

  14. Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface.

    Science.gov (United States)

    Henderson, Rita K; Parsons, Simon A; Jefferson, Bruce

    2008-07-01

    In this paper we present an investigation into the use of bubbles modified with surfactants in dissolved air flotation (DAF). Bubble modification was investigated by dosing surfactants of varying character into the saturator of a DAF unit in turn. The cell removal efficiency only improved when using a cationic surfactant where optimum removal of Microcystis aeruginosa cells was obtained when using 0.0022-0.004 mequiv L(-1) surfactant. However, the magnitude of the removal differed according to the hydrophobicity of the surfactant. Typically, the more efficiently the surfactant adsorbed at the bubble interface, the better the removal efficiency. When the dose to saturator ratio was kept constant and the recycle ratio varied, the removal efficiency improved with increasing recycle ratio, reaching a maximum removal efficiency of 87% for M. aeruginosa. This value was comparable with that predicted by a theoretical model. The bubble collection efficiency of a maximum of two cells per bubble was constant irrespective of the influent cell number or recycle ratio. Treatment of additional species in this way revealed a relationship between increasing size and both increasing removal efficiency and decreasing surfactant dose, which is supported by theoretical relationships. PMID:18678021

  15. Surface phenomena in gel-derived glasses and glass-ceramics materials of the CaO-P2O5-SiO2 system

    International Nuclear Information System (INIS)

    Three types of glass ceramics materials of the CaO-P2O-SiO2 system were obtained using the sol gel method and applying calcium nitrate, tetraethyl orthosilicate, and triethyl phosphate as precursors of the respective oxides. The base materials were also modified the addition of 5 mole % Al2O3, using aluminium tri-sec-butoxide as its precursors. Gels were heated up to the temperature 700 grad C. It has been found that after heating these materials contain a glassy phase, hydroxyapatite and wollastonite; there were important differences in the phase compositions as well as in the pore structure of these materials. Materials after treatment were put into simulated body fluid. After a difference time periods the surface changes of these materials were examined using FTIR, scanning electron microscopy (SEM), and X-ray fluorescence analysis in micro-regions (EDAX) methods. It has been found, that the bone-like hydroxyapatite is formed on the surface of gel-derived materials and the time necessary to forming the continual layer of this compound is depend upon the chemical composition of the base materials. On the basis of conducted examinations the attempt of the explanation of the hydroxyapatite formation mechanism was undertaken. The results of our experiments can be interpreted as indicating the bio-activity of obtained gel-derived materials. This means that these materials used as bone implants can be permanently joined to the bone. (authors)

  16. Cellular interactions of surface modified nanoporous silicon particles

    Science.gov (United States)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  17. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Science.gov (United States)

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings. PMID:21733541

  18. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  19. A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    孟凡明; 张有云

    2003-01-01

    Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.

  20. Chemically modified Si(111) surfaces simultaneously demonstrating hydrophilicity, resistance against oxidation, and low trap state densities

    Science.gov (United States)

    Brown, Elizabeth S.; Hlynchuk, Sofiya; Maldonado, Stephen

    2016-03-01

    Chemically modified Si(111) surfaces have been prepared through a series of wet chemical surface treatments that simultaneously show resistance towards surface oxidation, selective reactivity towards chemical reagents, and areal defect densities comparable to unannealed thermal oxides. Specifically, grazing angle attenuated total reflectance infrared and X-ray photoelectron (XP) spectroscopies were used to characterize allyl-, 3,4-methylenedioxybenzene-, or 4-[bis(trimethylsilyl)amino]phenyl-terminated surfaces and the subsequently hydroxylated surfaces. Hydroxylated surfaces were confirmed through reaction with 4-(trifluoromethyl)benzyl bromide and quantified by XP spectroscopy. Contact angle measurements indicated all surfaces remained hydrophilic, even after secondary backfilling with CH3sbnd groups. Surface recombination velocity measurements by way of microwave photoconductivity transients showed the relative defect-character of as-prepared and aged surfaces. The relative merits for each investigated surface type are discussed.

  1. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.

    Science.gov (United States)

    Dementyev, Petr; Peter, Matthias; Adamovsky, Sergey; Schauermann, Swetlana

    2015-09-21

    Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes. PMID:26256836

  2. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    OpenAIRE

    GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; Olivier ROMIEU; Roel CRUZ; Flores, Hector; Frederic CUISINIER; Elias PEREZ; POZOS-GUILLEN, Amaury

    2013-01-01

    Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angl...

  3. Effect of Four Surface Treatment Methods on the Shear Bond Strength of Resin Cement to Zirconia Ceramics- A Comparative in Vitro Study

    OpenAIRE

    Murthy, Varsha; Manoharan; Balaji; Livingstone, David

    2014-01-01

    Background: Improving the retention of zirconia-based ceramics is desirable in order to avoid the failure of crowns and fixed partial dentures .This can be achieved by creating micromechanical retention using surface treatments. Therefore, it becomes necessary to constantly compare and re-evaluate the influence of different surface treatment methods on the bond strength .

  4. Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

    OpenAIRE

    Jana Markhoff; Enrico Mick; Aurica Mitrovic; Juliane Pasold; Katharina Wegner; Rainer Bader

    2014-01-01

    Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modi...

  5. Silica nanoparticles surface-modified with thiacalixarenes selectively adsorb oligonucleotides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yuskova, Elena A. [Kazan (Volga Region) Federal University, Department of Chemistry, A. M. Butlerov Chemical Institute (Russian Federation); Ignacio-de Leon, Patricia Anne A.; Khabibullin, Amir [University of Utah, Department of Chemistry (United States); Stoikov, Ivan I., E-mail: ivan.stoikov@mail.ru [Kazan (Volga Region) Federal University, Department of Chemistry, A. M. Butlerov Chemical Institute (Russian Federation); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2013-10-15

    We prepared silica nanospheres 360 nm in diameter surface-modified with p-tert-butylthiacalix[4]arenes containing amine, carboxyl, and guanidinium groups. We found that these silica nanoparticles selectively adsorb model oligonucleotides and proteins. The particles modified with the macrocycle containing guanidinium fragments selectively adsorbed long-chain oligonucleotides and those modified with the macrocycle containing amine groups adsorbed BSA and hemoglobin with pH-dependent selectivity. We compared this behavior with that of silica nanoparticles carrying amine and carboxyl groups, and concluded that both electrostatic interactions and specific binding are responsible for the observed selectivity.

  6. Improvement in the Tensile Bond Strength between 3Y-TZP Ceramic and Enamel by Surface Treatments

    Directory of Open Access Journals (Sweden)

    Seon-Mi Byeon

    2016-08-01

    Full Text Available This study examined the effects of 3 mol % yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP ceramic surface treatments on the tensile bond strength and surface characteristics of enamel. To measure the tensile bond strength, the 3Y-TZP and tooth specimens were manufactured in a mini-dumbbell shape and divided into four groups based on the type of 3Y-TZP surface treatment: polishing (P, 110 µm alumina sandblasting (S, 110 µm alumina sandblasting combined with selective infiltration etching (SS, and 110 µm alumina sandblasting combined with MDP (10-methacryloyloxydecyl dihydrogen phosphate-containing silane primer (SP. After surface treatment, the surface roughness, wettability, and surface changes were examined, and the tensile bond strength was measured. The mean values (from lowest to highest for tensile bond strength (MPa were as follows: P, 8.94 ± 2.30; S, 21.33 ± 2.00; SS, 26.67 ± 4.76; and SP, 31.74 ± 2.66. Compared to the P group, the mean surface roughness was significantly increased, and the mean contact angle was significantly decreased, while wettability was increased in the other groups. Therefore, surface treatment with 110 µm alumina sandblasting and MDP-containing silane primer is suitable for clinical applications, as it considerably improves the bond strength between 3Y-TZP and enamel.

  7. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    International Nuclear Information System (INIS)

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  8. Exoemission of charged particles from the surface of irradiated high-temperature superconducting ceramics

    International Nuclear Information System (INIS)

    The present communication reports the results of the study of the samples of YBa2Cu3O7 ceramics with a density of 5.4 g/cm3, composed of one phase with Tc = 92 K in the form of 1 mm thick tablets 10 mm in diameter. Part of the samples was obtained in the air by the use of gamma-quanta (Cobalt-60), the absorbed dose was 106 rad. The design of the facility for recording the thermostimulated exoemission (TSE) spectra of positive and negative particles allowed the measurements to be made in the vacuum of 10-8 Tor at a heating rate of 0.1 K [4]. Part of the experiments was made using non-irradiated ceramics which were spalled in a vacuum chamber shortly before recording the TSE spectra

  9. Surface modification of sialon ceramics and cemented carbides by PVD coating deposition

    OpenAIRE

    L.A. Dobrzański; M. Staszuk

    2011-01-01

    Purpose: The paper includes investigation results of structures and mechanical properties of coatings deposited by the physical vapor deposition (PVD) techniques onto both sialon tool ceramics and sintered carbides. The paper includes two kinds of coating materials, isomorphic containg phases with TiN and AlN.Design/methodology/approach: In the paper were presented some observations of coating structures, before carried out in the scanning electron microscope. Phases composition analysis was ...

  10. Ultrasonic spray pyrolysis of surface modified TiO{sub 2} nanoparticles with dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Dugandžić, Ivan M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Jovanović, Dragana J. [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Mančić, Lidija T.; Milošević, Olivera B. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Ahrenkiel, Scott P. [South Dakota School of Mines and Technology, 501 E. Saint Joseph St., Rapid City, SD 57701 (United States); Šaponjić, Zoran V. [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2013-12-16

    Spherical, submicronic TiO{sub 2} powder particles were prepared in the low temperature process of ultrasonic spray pyrolysis (150 °C) by using as a precursor aqueous colloidal solutions consisting of surface modified 45 Å TiO{sub 2} nanoparticles with dopamine. Detailed structural and morphological characterization of colored submicronic TiO{sub 2} spheres was performed by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analysis and FTIR techniques. Also, optical characterization of both dopamine-modified TiO{sub 2} precursor nanoparticles and submicronic TiO{sub 2} powder particles was performed using absorption and diffuse reflectance spectroscopy, respectively. A significant decrease of the effective band gap (1.9 eV) in dopamine-modified TiO{sub 2} nanoparticles compared to the band gap of bulk material (3.2 eV) was preserved after formation of submicronic TiO{sub 2} powder particles in the process of ultrasonic spray pyrolysis under mild experimental conditions. Due to the nanostructured nature, surface-modified assemblage of TiO{sub 2} nanoparticles preserved unique ability to absorb light through charge transfer complex by photoexcitation of the ligand-to-TiO{sub 2} band, conventionally associated with extremely small TiO{sub 2} nanoparticles (d < 20 nm) whose surface Ti atoms, owing to the large curvature, have penta-coordinate geometry. - Highlights: • The surface-modified TiO{sub 2} nanoparticles with dopamine were used as a precursor. • Colored submicronic TiO{sub 2} particles were obtained after ultrasonic spray pyrolysis. • CT complex was formed between electron donating ligands and surface Ti atoms. • The effective band-gap of surface modified TiO{sub 2} powders decreases to 1.3 eV.

  11. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics.

    Science.gov (United States)

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A; Divakar, Darshan Devang; Matinlinna, Jukka P; Vallittu, Pekka K

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces' microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey's test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  12. Third-body Wear Damage Produced in CoCr Surfaces by Hydroxyapatite and Alumina Ceramic Debris: A 10-cycle Metal-on-Metal Simulator Study

    Directory of Open Access Journals (Sweden)

    Thomas Halim

    2015-12-01

    Full Text Available Ceramic particles are believed to be particularly abrasive due to their extreme hardness. Ceramic debris has been reported in retrieved total hip arthroplasty (THA due to chipping and fracture of alumina components or by flaking of hydroxyapatite from implant coatings. However there appears to be no abrasion ranking of such particle behavior. The hypotheses in this study were, i alumina particles would create large scratches in CoCr surfaces and ii hydroxyapatite would produce very mild scratching comparable to bone-cement particles. Hydroxyapatite beads came in two types of commercial powders while the flakes were scraped from retrieved femoral stems. Alumina beads came in two commercial powders and flakes were retrieved from a fractured ceramic head. Particle morphologies were determined by SEM and CoCr surface damage by interferometry and SEM. Six 38-mm MOM were mounted inverted in a hip simulator and run with ceramic particles inserted for a 10-second test. Surface-roughness ranking after 10-second abrasion test revealed that bone cement and hydroxyapatite produced least damage to CoCr surfaces while alumina produced the most. Alumina increased surface roughness 19-fold greater than either hydroxyapatite or bone-cement particles. The alumina debris produced numerous scratches typically 20-80 µm wide with some up to 140µm wide. Surprisingly the alumina beads and flakes were pulverized within the 10-second test interval and remained adherent to the CoCr surfaces. Additionally, the hydroxyapatite although also a ceramic had no more effect on CoCr than the bone-cement debris. Use of well-characterized and commercially available alumina and hydroxyapatite powders appeared advantageous for abrasion tests. These new data indicated that such ceramic powders have merit.

  13. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    International Nuclear Information System (INIS)

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O3 were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K3LiNb6O17, tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO3 modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO3 modified KNN.

  14. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  15. Influence of nitrogen ion implantation fluences on surface structure and tribological properties of SiC ceramics in water-lubrication

    International Nuclear Information System (INIS)

    Nitrogen ions were implanted into SiC ceramics by using ion implantation technology (N+-SiC). The surface structure and chemical bonds of N+-SiC ceramics were determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and their nanohardness was measured by nanoindenter. The friction and wear properties of the N+-SiC/SiC tribo-pairs were investigated and compared with those of SiC/SiC tribo-pairs in water using ball-on-disk tribo-meters. The wear tracks on the N+-SiC ceramics were observed by non-contact surface profilometer and scanning electron microscope (SEM) and their wear volumes were determined by non-contact surface profilometer. The results show that the N+-SiC ceramics were mainly composed of SiC and SiCN phase and Si-N, C-C, C=N and C-N bonds were formed in the implantation layer. The highest hardness of 22.3 GPa was obtained as the N+-SiC ceramics implanted at 50 keV and 1 x 1017 ions/cm2. With an increase in nitrogen ion fluence, the running-in period of N+-SiC/SiC tribo-pairs decreased, and the mean stable friction coefficient decreased from 0.049 to 0.024. The N+-SiC ceramics implanted at 50 keV and 5 x 1017 ions/cm2 exhibited the excellent tribological properties in water. In comparison of SiC/SiC ceramic tribo-pairs, the lower friction coefficient and lower wear rate for the N+-SiC/SiC tribo-pairs were acquired.

  16. Application of a modified electrochemical system for surface decontamination of radioactive metal waste

    International Nuclear Information System (INIS)

    Conventional and modified electrolytic decontamination experiments were performed in a solution of sodium sulfate for the decontamination of carbon steel as the simulated metal wastes which are generated in large amounts from nuclear power plants. The effect of reaction time, current density and concentration of electrolytes in the modified electrolytic decontamination system were examined to remove the surface contamination of the simulated radioactive metal wastes. As for the results of this research, the modified electrochemical decontamination process can decontaminate more effectively than the conventional decontamination process by applying different anode material which causes higher induced electro-motive forces. When 0.5 M sodium sulfate, 0.4 A/cm2 current density and 30 minutes reaction time were applied in the modified process, a 16 μm thickness change that is expected to remove most surface contamination in radioactive metal wastes was achieved on carbon steel which is the main material of radioactive metal waste in nuclear power plants. The decontamination efficiency of metal waste showed similar results with the small and large lab-scale modified electrochemical system. The application of this modified electrolytic decontamination system is expected to play a considerable role for decontamination of radioactive metal waste in nuclear power plants in the near future. (author)

  17. Nuclear surface properties and spin-orbit potential in modified derivative scalar couplings

    International Nuclear Information System (INIS)

    With the use of modified derivative scalar coupling (MDSC) model, the nuclear surface properties and the spin-orbit potential in semi-infinite nuclear matter have been investigated in the framework of relativistic Thomas-Fermi and Hartree approaches. The results show that the spin-orbit potential has been improved by the tensor coupling. However, the surface tension and the surface thickness are still to small. The effects of σ-meson mass on the surface properties and the spin-orbit potential have also been discussed

  18. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Ravikumar Ramakrishnaiah

    2016-05-01

    Full Text Available The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™; the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching and four experimental groups (20, 40, 80 and 160 s of etching. The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability.

  19. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties

    International Nuclear Information System (INIS)

    Studies were performed on surface modification of antibacterial TiO2/Ag+ nanoparticles by grafting γ-aminopropyltriethoxysilane (APS). The interfacial structure of the modified particles was characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The thickness of the surface layer was determined by using Auger electron spectroscopy (AES). The results show that APS is chemically bonded to the surface of antibacterial TiO2/Ag+ nanoparticles. Furthermore, the modified particles were mixed in PVC to prepare composites whose antibacterial property was investigated. The results suggest that surface modification has no negative effect on antibacterial activity of TiO2/Ag+ nanoparticles and PVC-TiO2/Ag+ composites exhibits good antibacterial property

  20. POLLUTION CONTROL TECHNICAL MANUAL: MODIFIED 'IN SITU' OIL SHALE RETORTING COMBINED WITH LURGI SURFACE RETORTING

    Science.gov (United States)

    The oil shale PCTM for Modified In Situ Oil Shale Retorting combined with Lurgi Surface Retorting addresses the application of this combination of technologies to the development of oil shale resources in the western United States. This manual describes the combined plant using L...

  1. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte; Skolimowski, Maciej; Conde, Alvaro; Dufva, Martin; Nilsson, Mats; Brivio, Monica; van der Wijngaart, Wouter; Haraldsson, Tommy

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...

  2. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Science.gov (United States)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie; Jiang, Yanping

    2016-02-01

    Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm-2, which is near the highest value in the literature. The optimal parameters of the SDS/SiO2 ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO2 particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO2 reacted with SDS to give a carbocation which then formed a Si-O-C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a new modification route.

  3. Investigations on Agglomeration and Haemocompatibility of Vitamin E TPGS Surface Modified Berberine Chloride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Parameswara Rao Vuddanda

    2014-01-01

    Full Text Available The objective of the present study is to investigate the influence of surface modification on systemic stability of NPs. Vitamin E TPGS (1% w/v was used for surface modification of berberine chloride nanoparticles. Naked and surface modified NPs were incubated in different SBFs (pH 6.8 and 7.4 with or without bile salts and human plasma. NPs were observed for particle agglomeration and morphology by particle size analyzer and TEM, respectively. The haemocompatibility studies were conducted on developed NPs to evaluate their safety profile. The surface modified NPs were stable compared to naked NPs in different SBFs due to the steric stabilization property of vitamin E TPGS. Particle agglomeration was not seen when NPs were incubated in SBF (pH 6.8 with bile salts. No agglomeration was observed in NPs after their incubation in plasma but particle size of the naked NPs increased due to adhesion of plasma proteins. The TEM images confirmed the particle size results. DSC and FT-IR studies confirmed the coexistence of TPGS in surface modified NPs. The permissible haemolysis, LDH release, and platelet aggregation revealed that NPs were compatible for systemic administration. Thus, the study illustrated that the surface modification is helpful in the maintenance of stability of NPs in systemic conditions.

  4. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  5. Shear bond resistance and enamel surface comparison after the bonding and debonding of ceramic and metallic brackets

    Science.gov (United States)

    da Rocha, José Maurício; Gravina, Marco Abdo; Campos, Marcio José da Silva; Quintão, Cátia Cardoso Abdo; Elias, Carlos Nelson; Vitral, Robert Willer Farinazzo

    2014-01-01

    Objective To evaluate, in vitro, the shear bond strength presented by three brands of polycrystalline ceramic brackets and one brand of metallic bracket; verify the adhesive remnant index (ARI) after the tests, and analyze, through scanning electron microscopy (SEM) the enamel surface topography after debonding, detecting the release of mineral particles. Methods Sixty bovine lower incisors were used. Three ceramic brackets (Allure®, InVu®, and Clarity®) and one metallic bracket (Geneus®) were bonded with Transbond XT®. Kruskal-Wallis's test (significance level set at 5%) was applied to the results of share bond and ARI. Mann Whitney's test was performed to compare the pairs of brackets in relation to their ARI. Brown-Forsythe's test (significance level set at 5%) was applied to the results of enamel chemical composition. Comparisons between groups were made with Games-Howell's and the Post-hoc tests. Results No statistically significant difference was observed in relation to the shear bond strength loads. Clarity® brackets were the most affected in relation to the surface topography and to the release of mineral particles of enamel (calcium ions). Conclusion With regard to the ARI, there was a prevalence of score 4 (40.4%). As for enamel surface topography, the Geneus® bracket was the only one which did not show superficial tissue loss. The InVu® and Clarity® ones showed cohesive fractures in 33.3% and the Allure® in 50%, the latter being the one that presented most fractures during removal. PMID:24713563

  6. Amperometric determination of L-tyrosine by an enzymeless sensor based on a carbon ceramic electrode modified with copper oxide nanoparticles

    International Nuclear Information System (INIS)

    We report on the electrochemical formation of copper oxide nanoparticles (CuO-NPs) at a carbon ceramic electrode (CCE) as a highly-porous substrate. A copper film was deposited on the surface of the CCE and derivatized in situ to give CuO-NPs by potential cycling between -0.8 and 0.35 V in strongly alkaline solution. The electrode was characterized by scanning electron microscopy and cyclic voltammetry. The CuO-NPs exhibited excellent electrocatalytic activity toward the oxidation of L-tyrosine (L-Tyr) in responding linearly in the 2 to 1,350 μM concentration range, an associated detection limit (S/N = 3) of 160 nM, and a sensitivity of 0.61 A M-1 cm-2. (author)

  7. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    International Nuclear Information System (INIS)

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al2O3) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this work

  8. O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters

    International Nuclear Information System (INIS)

    Graphical abstract: Based on first-principle calculations, this study shows that the confined small Fe cluster inside the SWCNT can significantly modify the electronic structure of the carbon surface. This drastically facilitates the activation of the adsorbed O2 molecule. The calculated energy barrier (less than 0.8 eV) of the rate-determining step for the O2 dissociation indicates that the process can proceed readily at room temperature. - Highlights: • The confined Fe cluster inside the carbon nanotube can significantly modify the electronic structure of the carbon surface. • The confined Fe cluster makes the adsorption of the O2 molecule much more energetically favorable. • The calculated energies suggest that the dissociation of the O2 on the modified carbon surface can proceed readily at room temperature. - Abstract: Using first-principles calculations, the structural, magnetic, and electronic properties of the (6, 6) single-walled carbon nanotubes (SWCNT) with the confined small Fe cluster are systematically studied. We find that Fe–C interactions can induce the transfer of the electrons from the confined Fe to the carbon surface of the SWCNT considerably, and consequently the reduction of the local work function of the region in contact with the Fe. The charging of the carbon surface and the reduction of the work function make the adsorption of the O2 molecule much more energetically favorable on the outer surface of the SWCNT. Furthermore, the energy barrier of the rate-determining step, i.e., the approaching of the O2 towards the modified carbon surface, for the O2 dissociation is less than 0.8 eV, indicating that the process can proceed readily at room temperature

  9. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces.

    Science.gov (United States)

    Meininger, M; Wolf-Brandstetter, C; Zerweck, J; Wenninger, F; Gbureck, U; Groll, J; Moseke, C

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr(2+) ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr(2+) into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr(2+) ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant-bone interface. PMID:27287100

  10. Physicochemical, mechanical and vacuum properties of carbon glass ceramics and its surface erosion under hydrogen and helium ions bombardment

    International Nuclear Information System (INIS)

    Results of investigations and review of properties of new high-temperature high-strength chemically resistant carbon- containing material-carbon glass ceramics, having fine-grained quasiisotropic structure, are presented. It is established that gas permeability of carbon glass ceramics is 104-105 times less than that of graphite. Carbon glass ceramics, properly heat treated has elevated radiation resistance in fast neutron flux. Threshold automization energy of carbon glass ceramics with Hg+ ions 2-3 times surpasses the graphite automization threshold. Carbon glass ceramics degasses well in vacuum at 660-840 deg C

  11. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina

    Directory of Open Access Journals (Sweden)

    Sanli Deniz

    2011-01-01

    Full Text Available Abstract Superhydrophobic nanoporous anodic aluminum oxide (alumina surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS. Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.

  12. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    International Nuclear Information System (INIS)

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  13. Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics

    Science.gov (United States)

    Ghosh, S. K.; Ganguly, M.; Rout, S. K.; Sinha, T. P.

    2015-04-01

    Rare earth lanthanum (La) doped barium zirconate titanate, Ba1 - x La2 x/3Zr0.3Ti0.7O3 (BLZT) ceramics, with x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 were prepared using solid state reaction route. Structural characterizations of the materials were done by using X-ray diffraction and Raman spectroscopy. The Rietveld refinement technique employed to investigate the details of the crystal structure revealed a single phase cubic perovskite structure for all the compositions, belonging to the space group Pm-3m. Raman spectroscopy was used to probe the order-disorder correlation in local symmetry and it was verified that the presence of disorder in cubic structure is increased due to La3+ ion substitution at A-site. In addition, the signature of relaxor behavior and diffuse types of phase transition can be detected by monitoring the relative intensity of Raman features. Room temperature photo-electronic properties were investigated by using ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Heterovalent doping (La3+) is accompanied by creation of ionic defects to maintain the charge neutrality; as a result the intermediate energy levels are formed within the band gap. These intermediate energy levels play a significant role in electronic band transitions in higher La concentration, x ≥ 0.08; enhancing the self-trapping mechanism leads to slightly decreasing in band gap values and shifting the PL emission spectra towards violet-blue regions. The temperature dependence of the dielectric constant was investigated and relaxor type of phase transition was observed in the material. The degree of relaxor behavior was enhanced with increase in La3+ ion concentration.

  14. Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds

    Directory of Open Access Journals (Sweden)

    Nergis Abay

    2016-01-01

    Full Text Available Designing and providing a scaffold are very important for the cells in tissue engineering. Polybutylene succinate (PBS has high potential as a scaffold for bone regeneration due to its capacity in cell proliferation and differentiation. Also, stem cells from 3rd molar tooth germs were favoured in this study due to their developmentally and replicatively immature nature. In this study, porcine dental germ stem cells (pDGSCs seeded PBS scaffolds were used to investigate the effects of surface modification with fibronectin or laminin on these scaffolds to improve cell attachment, proliferation, and osteogenic differentiation for tissue engineering applications. The osteogenic potentials of pDGSCs on these modified and unmodified foams were examined to heal bone defects and the effects of fibronectin or laminin modified PBS scaffolds on pDGSC differentiation into bone were compared for the first time. For this study, MTS assay was used to assess the cytotoxic effects of modified and unmodified surfaces. For the characterization of pDGSCs, flow cytometry analysis was carried out. Besides, alkaline phosphatase (ALP assay, von Kossa staining, real-time PCR, CM-Dil, and immunostaining were applied to analyze osteogenic potentials of pDGSCs. The results of these studies demonstrated that pDGSCs were differentiated into osteogenic cells on fibronectin modified PBS foams better than those on unmodified and laminin modified PBS foams.

  15. Tennis core strings of polyamide-6 modified by surface-capped nano-silica

    Science.gov (United States)

    Liu, Juan; Yi, Hongling; Lin, Heng; Zheng, Baicun

    2013-01-01

    A new method that modified silica nanoparticles were infused into PA6 is to produce tennis core string through a melt-extrusion process. The idea was to produce a highly strong and elastic tennis core string of PA6, utilizing the interactions between modified silica and polymer. The effects of surface-capped nano-silica on the strength and elongation of tennis core string were studied. It has been observed that with the infusion of silica nanoparticles modified by γ-glycidoxypropyltrimethoxysilane (GPS), the stress at breaking and E-modulus of tennis core string is enhanced by 46.24% and 15.17% comparing with neat PA6 with changeless elongation at breaking at a critical concentration. The source of this improvement has been traced to the produced strong covalent bond and hydrogen bond between epoxy groups and-COOH and-NH2 in polyamide. Besides, compared with kinds of others strings of previous research results, tennis core string added nano-silica modified by γ-glycidoxypropyltrimethoxysilane (GPS) has a strength at breaking at 352.43 MPa exceeding the natural gut string, the polyvinylidene fluoride (PVDF), Monofil string and integrated nylon string by 42.05%, 4.49% and 9.38%, respectively. Meanwhile, tennis core string of polyamide modified by surface-capped nanosilica (PGMNS) has a higher elastic ratio at 0.15 than the other four strings.

  16. Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization.

    Science.gov (United States)

    Zuñiga-Aguilar, E; Olayo, R; Ramírez-Fernández, O; Morales, J; Godínez, R

    2014-01-01

    Currently, there are several techniques for modified cell culture surfaces under research to improve cell growth and adhesion. Recently, different methods have been used for surface coating, using biomolecules that enhance cell attachment and growth of nerve cells from spinal cord, such as the use of Poly-DL-Ornithine/Laminin. Plasma-polymerized pyrrole (PPy)-treated surfaces have showed improvement on surfaces biocompatibility with the cells in culture since they do not interfere with any of the biological cell functions. In the present work, we present a novel mouse nerve cell culture technique, using PPy-treated cell culture surfaces. A comparative study of cell survival using Poly-DL-Ornithine/Laminin-treated surfaces was performed. Our results of cell survival when compared with data already reported by other investigators, show that cells cultured on the PPy-modified surface increased survival up to 21 days when compared with Poly-DL-Ornithine/Laminin-coated culture, where 8 days cell survival was obtained. There were electrical and morphological differences in the nerve cells grown in the different surfaces. By comparing the peak ion currents of Poly-DL-Ornithine/Laminin-seeded cells for 8 days with cells grown for 21 days on PPy, an increase of 516% in the Na(+) current and 127% in K(+) currents in cells seeded on PPy were observed. Immunofluorescence techniques showed the presence of cell synapses and culture viability after 21 days. Our results then showed that PPy-modified surfaces are an alternative culture method that increases nerve cells survival from lumbar spinal cord cell culture by preserving its electrical and morphological features. PMID:24650203

  17. Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Institute of Physics, Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42200 Poland (Poland); Balitska, V. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv State University of Vital Activity Safety, 35, Kleparivska Street, Lviv 79007 (Ukraine); Brunner, M. [Fachhochschule Köln/University of Applied Sciences, 2, Betzdorfer Strasse, Köln 50679 (Germany); Hadzaman, I. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Drohobych Ivan Franko State Pedagogical University, 24, I. Franko Street, Drohobych 82100 (Ukraine); Klym, H. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12, Bandera Street, Lviv 79013 (Ukraine)

    2015-02-15

    Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics.

  18. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    Science.gov (United States)

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  19. One-step Fabrication of Nanoporous Black Silicon Surfaces for Solar Cells using Modified Etching Solution

    Institute of Scientific and Technical Information of China (English)

    Ye-hua Tang; Chun-lan Zhou; Su Zhou; Yan Zhao; Wen-jing Wang; Jian-ming Fei; Hong-bin Cao

    2013-01-01

    Currently,a conventional two-step method has been used to generate black silicon (BS)surfaces on silicon substrates for solar cell manufacturing.However,the performances of the solar cell made with such surface generation method are poor,because of the high surface recombination caused by deep etching in the conventional surface generation method for BS.In this work,a modified wet chemical etching solution with additives was developed.A zhomogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature.The BS layer had low reflectivity and shallow etching depth.The additive in the etch solution performs the function of pH-modulation.After 16-min etching,the etching depth in the samples was approximately 200 nm,and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%,BS solar cells were fabricated in the production line.The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination.An efficiency of 15,63% for the modified etching BS solar cells was achieved on a large area,ptype single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88%fill factor.

  20. Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41

    International Nuclear Information System (INIS)

    This work reports the synthesis and surface characterization of a Zr-modified mesoporous MCM-41 solid with an ordered hexagonal arrangement, prepared through a templated synthesis route, using cetyltrimethylammonium chloride as the template. The surface features, crystalline structure, textural properties and surface acidity of the materials were characterized by in situ Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), N2 physisorption isotherms, 29Si MAS-NMR and in situ FT-IR of pyridine adsorption. It is evident that the surfactant cations inserted into the network of the solids during the preparation could be removed by calcination of the sample above 500 deg. C. The resultant material showed a large surface area of 680.6 m2 g-1 with a uniform pore diameter distribution in a very narrow range centered at approximately 2.5 nm. Zirconium incorporation into the Si-MCM-41 framework, confirmed by 29Si MAS-NMR analysis, increased not only the wall thickness of the mesopores but also the long-range order of the periodically hexagonal structure. Both, Lewis and Broensted acid sites, were formed on the surface of the Zr-modified MCM-41 solid. Compared to Si-MCM-41 on which only very weak Lewis acid sites were formed, the densities of both Lewis and Broensted acid sites and the strength of the acidity on the Zr-modified sample were significantly increased, indicating that the incorporation of zirconium greatly enhances the acidity of the material

  1. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  2. The Control of Mesenchymal Stromal Cell Osteogenic Differentiation through Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Niall Logan

    2013-01-01

    Full Text Available Stem cells continue to receive widespread attention due to their potential to revolutionise treatments in the fields of both tissue engineering and regenerative medicine. Adult stem cells, specifically mesenchymal stromal cells (MSCs, play a vital role in the natural events surrounding bone healing and osseointegration through being stimulated to differentiate along their osteogenic lineage and in doing so, they form new cortical and trabecular bone tissue. Understanding how to control, manipulate, and enhance the intrinsic healing events modulated through osteogenic differentiation of MSCs by the use of modified surfaces and biomaterials could potentially advance the fields of both orthopaedics and dentistry. This could be by either using surface modification to generate greater implant stability and more rapid healing following implantation or the stimulation of MSCs ex vivo for reimplantation. This review aims to gather publications targeted at promoting, enhancing, and controlling the osteogenic differentiation of MSCs through biomaterials, nanotopographies, and modified surfaces for use in implant procedures.

  3. Optical properties of ZnTe layers formed over surface-modified ZnSe substrates

    Energy Technology Data Exchange (ETDEWEB)

    Makhniy, V.P.; Mel' nyk, V.V.; Slyotov, M.M.; Gorley, P.N. [Chernivtsi National University, 58012 Chernivtsi (Ukraine); Horley, P.P. [Chernivtsi National University, 58012 Chernivtsi (Ukraine); Centro de Fisica das Interaccoes Fundamentais (CFIF), 1049-001 Lisboa (Portugal); Vorobiev, Yu.V. [Laboratorio de Investigacion en Materiales, CINVESTAV, 76230 Queretaro (Mexico)], E-mail: vorobiev@qro.cinvestav.mx; Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, 31109 Chihuahua (Mexico)

    2008-11-30

    Heterolayers of zinc telluride were created using the isovalent replacement method over the low-resistive mono-crystalline substrates of zinc selenide, doped with the isovalent tellurium impurity. It was found that the surface structure of the heterolayer is being determined by the treatment of the substrate layers and inherits its properties, namely mirror-smooth or matte (modified) surfaces. The latter type corresponds to the quantum-scale surface formations responsible for the wide unstructured spectral band with photon energies significantly exceeding the bandwidth of the materials studied.

  4. Optical properties of ZnTe layers formed over surface-modified ZnSe substrates

    International Nuclear Information System (INIS)

    Heterolayers of zinc telluride were created using the isovalent replacement method over the low-resistive mono-crystalline substrates of zinc selenide, doped with the isovalent tellurium impurity. It was found that the surface structure of the heterolayer is being determined by the treatment of the substrate layers and inherits its properties, namely mirror-smooth or matte (modified) surfaces. The latter type corresponds to the quantum-scale surface formations responsible for the wide unstructured spectral band with photon energies significantly exceeding the bandwidth of the materials studied

  5. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    International Nuclear Information System (INIS)

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days

  6. Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by γ-diethoxyphosphorous ester propyldiethoxymethylsilane,boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃.Phosphorus,silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy.The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis.The results show that linear low density polyethylene (LLDPE) composite,filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers,passes the V-O rating of UL-94 test and shows the limited oxygen index of 34%,and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously;The mechanical properties of MAH can be improved by surface-modification.The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.

  7. Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine

    International Nuclear Information System (INIS)

    Spherical, submicronic TiO2 powder particles were prepared in the low temperature process of ultrasonic spray pyrolysis (150 °C) by using as a precursor aqueous colloidal solutions consisting of surface modified 45 Å TiO2 nanoparticles with dopamine. Detailed structural and morphological characterization of colored submicronic TiO2 spheres was performed by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analysis and FTIR techniques. Also, optical characterization of both dopamine-modified TiO2 precursor nanoparticles and submicronic TiO2 powder particles was performed using absorption and diffuse reflectance spectroscopy, respectively. A significant decrease of the effective band gap (1.9 eV) in dopamine-modified TiO2 nanoparticles compared to the band gap of bulk material (3.2 eV) was preserved after formation of submicronic TiO2 powder particles in the process of ultrasonic spray pyrolysis under mild experimental conditions. Due to the nanostructured nature, surface-modified assemblage of TiO2 nanoparticles preserved unique ability to absorb light through charge transfer complex by photoexcitation of the ligand-to-TiO2 band, conventionally associated with extremely small TiO2 nanoparticles (d 2 nanoparticles with dopamine were used as a precursor. • Colored submicronic TiO2 particles were obtained after ultrasonic spray pyrolysis. • CT complex was formed between electron donating ligands and surface Ti atoms. • The effective band-gap of surface modified TiO2 powders decreases to 1.3 eV

  8. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  9. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  10. Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

    Science.gov (United States)

    Xiao-Jun, Zhang; Chang-Le, Chen

    2016-01-01

    Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions , and X¯M¯ are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X¯ and M¯ by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).

  11. X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane

    International Nuclear Information System (INIS)

    Rice husks were subjected to dry-grinding and steam-explosion to reduce their sizes. Subsequently, the surface of rice husk particles was modified using two different coupling agents, maleated polypropylene (MAPP) and γ-aminopropyltriethoxysilane (γ-APS, A-1100) to induce chemical reactions between the husk surface and the coupling agents used. The modified surface properties of rice husk were examined using X-ray photoelectron spectroscopy and FT-IR spectroscopy. Dry grinding, a simple method of fracturing husk, provided particulate segments, while steam explosion separated husk into fibrous components. When treated with MAPP, the O/C ratio of the husk surface decreased for both dry ground and steam-exploded husk. The γ-APS treatment resulted in an increase in the Si/O ratio for dry ground husk surface while this ratio decreased for steam-exploded husk particles. These results indicated that both coupling agents might be linked to the husk surface through chemical reactions. FT-IR results also supported the occurrence of ester and ether bonds after treatment of husks with MAPP and γ-APS. The present work suggested that the method of preparing rice husk particles had a great impact on their surface properties, and would therefore affect the interfacial adhesion in rice husk-thermoplastic composites

  12. Primary Research of MSCs on AW Glass Ceramic with Different Surface Roughness

    Institute of Scientific and Technical Information of China (English)

    Yan-Juan TANG; Qiao-Feng WU; Huai-Qing CHEN; Da-Li ZHOU

    2005-01-01

    @@ 1 Introduction Tissue engineering can be defined as the use of composite of cells and materials to promote a replace new tissue formation. The surface topography of the composite including surface texture and surface roughness, can directly influence cellular adsorb, attachment, proliferation differentiation and migradtion. Roughened surfaces were achieved through processes such as machining, particle blasting, chemicaL/electrochemical etching.

  13. Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconia-reinforced Lithium Silicate Ceramic.

    Science.gov (United States)

    Sato, T P; Anami, L C; Melo, R M; Valandro, L F; Bottino, M A

    2016-01-01

    This study evaluated the effects of surface treatments on the bond strength between the new zirconia-reinforced lithium silicate ceramic (ZLS) and resin cement. VITA Suprinity blocks were crystallized according to the manufacturer's instructions and randomly assigned to six groups (N=36; n=6), according to the surface treatment to be performed and aging conditions: HF20, 10% hydrofluoric acid for 20 seconds, baseline (control); HF20tc, 10% hydrofluoric acid for 20 seconds, aging; HF40, 10% hydrofluoric acid for 40 seconds, baseline; HF40tc, 10% hydrofluoric acid for 40 seconds, aging; CJ, CoJet sandblasting (25 seconds, 2.5 bar, 15-mm distance), baseline; and CJtc, CoJet sandblasting (25 seconds, 2.5 bar, 15-mm distance), aging. All specimens were silanized (Monobond S) and cemented with Panavia F to newly polymerized Z250 resin blocks. After specimens were immersed for 24 hours in distilled water at 37° C, 1-mm(2) cross-section microbars were obtained by means of a cutting machine under constant cooling. Baseline groups were immediately tested, whereas "tc" groups were used to analyze the effect of aging on bond strength (10,000 thermal cycles, 5/55°C, 30-second bath). The microtensile bond strength test was performed with a universal testing machine (0.5 mm/min), and bond strength (MPa) was calculated when the load-to-failure (N) was divided by the adhesive area (mm(2)). We also evaluated the surface roughness (Sa, average roughness; Str, texture aspect ratio; Sdr, developed interfacial area ratio) and the contact angle resulting from the treatments. Data were statistically analyzed by one- or two-way analysis of variance and Tukey's test (all α=5%). The failure mode of each specimen was evaluated by stereomicroscopy, and representative specimens were analyzed by scanning electron microscopy. The microtensile bond strength was affected by the surface conditioning (p<0.0001), storage condition (p<0.0001), and the interaction between them (p=0.0012). The

  14. Melittin liposomes surface modified with poloxamer 188: in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C

    2011-05-01

    Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes. PMID:21699070

  15. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  16. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  17. Adsorption, reaction and desorption of hydrogen on modified Pd(1 1 1) surfaces

    International Nuclear Information System (INIS)

    The interaction of hydrogen (deuterium) with different modified Pd(1 1 1) surfaces has been investigated. The focus was put on the energy and angel dependence of the desorbing molecules from oxygen covered, potassium covered and vanadium oxide covered surfaces. Conventional adsorption/desorption as well as permeation/desorption experiments were performed. For the oxygen covered surface optimum reaction rates for water production and the energy distribution of the reaction products were determined, both for the reaction of oxygen with molecular hydrogen as well as with atomic hydrogen. Potassium on the surface enhances the activation barrier for hydrogen adsorption resulting in a hyper-thermal desorption flux and a forward focused angular distribution of desorption. Permeation/desorption of deuterium from ultra-thin vanadium oxide films yield mainly thermalized desorbing molecules or slightly hyper-thermal, depending on the oxidation state of the surface oxide.

  18. Low-pressure sustainment of surface-wave microwave plasma with modified microwave coupler

    Science.gov (United States)

    Sasai, Kensuke; Suzuki, Haruka; Toyoda, Hirotaka

    2016-01-01

    Sustainment of long-scale surface-wave plasma (SWP) at pressures below 1 Pa is investigated for the application of the SWP as an assisting plasma source for roll-to-roll sputter deposition. A modified microwave coupler (MMC) for easier surface-wave propagation is proposed, on the basis of the concept of the power direction alignment of the slot antenna and surface-wave propagation. The superiority of the MMC-SWP over conventional SWPs is shown at a sustainment pressure as low as 0.6 Pa and an electron density as high as 3 × 1017 m-3. A polymer film is treated with the MMC-SWP at a low pressure of 0.6 Pa, and surface modification at a low pressure is proved using Ar plasma. These results show the availability of the MMC-SWP as the surface treatment plasma source that is compatible with sputter deposition in the same processing chamber.

  19. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  20. [Study of Surface Enhanced Raman Spectroscopy on Copper Films Modified by Ion Beam].

    Science.gov (United States)

    Ding, Liang-liang; Hong, Rui-jin; Tao, Chun-xian; Zhang, Da-wei

    2015-11-01

    Surface-enhanced Raman Spectroscopy (SERS) was a rapid non-destructive testing. It was based on detecting molecule vibrational spectrum which was adsorbed on the metallic surface. Now it was widely used in surface adsorption, electrochemical catalysis, sensors, bio-medical testing, trace amount analysis and other fields. In our experiment, copper metallic films were deposited 50 nm on BK7 glass substrates by direct current magnetron sputtering. And then the films were employed for the Ar ion beam etching modification. The structure, morphology and optical properties was characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM), spectrophotometer and Raman spectroscopy. In the XRD graph, the peak value of modify copper film were the same with the untreated film. So the structure of copper film was not change. With increasing the power of Ar ion, the surface roughness was changed, and scattered spectrum intensity was increased by surface roughness added. With Rhodamine B (Rh B) as a probe molecule, Raman scattered spectrum was detected on modify copper film. Compared with the different samples, we can find the Raman signal was enhanced by surface roughness added. It will have some value on study the principles of SERS. PMID:26978913

  1. Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    International Nuclear Information System (INIS)

    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH3 gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N2 gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent 'loss' of functional groups, within the first monolayers of the surface (∼1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements

  2. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Madhav Prasad; Park, Il Song, E-mail: ilsong@jbnu.ac.kr; Lee, Min Ho, E-mail: mh@jbnu.ac.kr

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants.

  3. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  4. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO2-50CaO-15P2O5-(10 - x)Fe2O3-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca3Si2O7) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  5. Enamel and Dentin Surface Finishing Influence on the Roughness and Microshear Bond Strength of a Lithium Silicate Glass-Ceramic for Laminate Veneers

    OpenAIRE

    Gonzaga, Carla Castiglia; Bravo, Ruth Peggy; Pavelski, Thiago Vinícius; Garcia, Paula Pontes; Gisele Maria CORRER; Leonardi, Denise Piotto; Cunha, Leonardo Fernandes da; Adilson Yoshio FURUSE

    2015-01-01

    Objectives. This study evaluated the influence of cavity surface finishing with diamond burs of different grit mounted on high-speed turbine and ultrasound on the roughness and microshear bond strength (MBS) of a lithium silicate glass-ceramic to enamel and dentin. Methods. Enamel and dentin specimens were divided into seven groups, according to the type of surface finishing: 1200-grit sandpaper (control), two different brands of medium-grit and fine-grit diamond burs in a high-speed turbine;...

  6. Selective Photooxidation and Photoreduction Processes at Surface-Modified by Grafted Vanadyl

    Directory of Open Access Journals (Sweden)

    Rossano Amadelli

    2011-01-01

    Full Text Available Titanium dioxide was surface-modified by grafting vanadyl species using vanadyl triisopropoxide as a precursor. The resulting material, (VOxn/TiO2, was characterized by Raman spectroscopy and photoelectrochemical methods. Photocatalytic oxidation of benzyl alcohol and cyclohexene were used to test oxidation selectivity and 4-nitro-benzaldehyde to assess selective photoreduction. The surface-modified TiO2 exhibits an enhanced selectivity to benzaldehyde in the photocatalytic oxidation of benzyl alcohol in an aqueous medium and an increase of cyclohexenol formation in the case of cyclohexene in nonaqueous solvent. The salient result is the 100% selective reduction of the nitrogroup in 4-nitro-benzaldehyde achieved under mild experimental conditions.

  7. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  8. The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation

    International Nuclear Information System (INIS)

    Polyethylene terephthalate (PET) film is modified by Ag ion implantation with a fluence 1 x 1016 ions/cm2. The results of X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that silver has been successfully implanted into the surface of PET. The PET samples modified by silver ion implantation have significantly bactericidal property. The capacity of the staphylococcus epidermidis (SE) adhered on the Ag+ implanted PET surface is 5.3 x 106 CFU/ml, but the capacity of the SE adhered on the untreated PET film is 2.23 x 107 CFU/ml. The thromboembolic property is evaluated by in vitro platelet adhesion test, and there is not statistically difference between the untreated PET and the Ag+ implanted PET for the number of adhered and activated platelets. The PET implanted by silver ion has not acute toxicity to endothelial cell (EC) which was evaluated by the release of lactate dehydrogenase (LDH) test

  9. Investigation of Streptococcus mutans biofilm growth on modified Au(111)-surfaces using AFM and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan; Zhang, Jingdong; Ulstrup, Jens

    2011-01-01

    (hexadecanethiol, MHD) or hydrophilic (mercapto-hexadecanoic acid, MHDA) end groups. The voltammetric reductive desorption (RD) peaks of the thiol-based SAMs in the absence and presence of biofilms and growth medium was in focus as a sensitive probe of the SAM local environment.AFM showed that S. mutans had grown...... to dense monolayers on all the four modified Au(111)-surfaces after 24 hour. The growth rates were slightly different and fastest for MHD-modified surfaces but the biofilms after 24 hour were indistinguishable. Reductive desorption signals of all the four compounds in phosphate buffer, pH 7.4 were...... very similar in the absence and presence of the biofilms and growth medium. RD in strongly alkaline solution where RD peak resolution is higher was also addressed. Most notably, the strong RD peaks of the long pure and functionalized MHD and MHDA in 0.1M NaOH remained in the presence either of biofilm...

  10. Surface modified Ti based metallic glasses for bioactivation by electrochemical treatment technique

    Energy Technology Data Exchange (ETDEWEB)

    Oak, Jeong-Jung, E-mail: ojj69@pusan.ac.kr [GCRC-SOP, Pusan Nat’l University, Busan (Korea, Republic of); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai (Japan); Rao, K. Venkat [Division of Engineering Materials Physics, KTH, Stockholm (Sweden); Chun, Ho-Hwan [Dept. of Naval Architecture and Ocean Engineering, Pusan Nat’l University, Busan (Korea, Republic of); Park, Yong Ho [Dept. of Materials Science and Engineering, Pusan Nat’l University, Busan (Korea, Republic of)

    2014-12-05

    The aim of this study is surface modification of Ni-free type Ti based metallic glass (Ti{sub 42}Hf{sub 11}Cu{sub 11}Pd{sub 36} at.%) for increasing calcification by electrochemical treatment. Ni-free type Ti based metallic glass has excellent mechanical and chemical properties which are comparable with those of Ti based alloys. Surface of Ti based metallic glasses was prepared as follows; one is anodically-oxidized porous layer by potentiostatic control in 5 M NaOH solution at 25 °C for 2 h, and the other is simple hydrothermal treated poros layer by immersion in 5 M NaOH solution at 60 °C for 24 h. The synthesized surface structures were characterized by X-ray diffraction (XRD) identification, SEM observation, energy dispersive X-ray spectroscopy (EDS) analysis and Auger electron spectroscopy (AES) analysis. These surfaces on the modified specimens have nano-mesh laminated structures and are consist of sodium titanate and titanium oxide. In addition, the above two types surfaces with nano-mesh laminated layer were immersed in Hank’s balance salt solution (HBSS) at 37 °C for 21 days for evaluation of calcification. The apatite-forming ability on these surfaces is observed by SEM observation and EDS analysis. As stated above surface modifications are also discussed about calcification effect by different surface treatment and different formability of porosity in this study. - Highlights: • Electrochemical treatment synthesizes nano-mesh laminated structures. • Large reticular area and fine nanopores are synthesized in alkali-solution at 25 °C. • Low crystal growth of sodium titanate densifies nano-mesh laminated structures. • The modified surface increases calcification in simulated body fluid.

  11. Piezoelectric Properties of BaTiO3 Nanoparticles with Surfaces Modified by Hydroxyl Groups

    Directory of Open Access Journals (Sweden)

    N. Emelianov

    2014-07-01

    Full Text Available Piezoelectric properties of nanoparticles BaTiO3 with spherical shape, diameter of 20-200 nm, the surface-modified hydroxyl (-OH groups studied by piezoelectric force microscopy. Measured value of piezoelectric coefficient d*33  27 pm/V, which is close to the value obtained for the 100 nm particles BaTiO3.

  12. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane

    OpenAIRE

    J. Zhang; Liu, X; Blume, R.; Zhang, A; Schlögl, R.; Su, D.

    2008-01-01

    Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with modified surface functionality efficiently catalyze the oxidative dehydrogenation of n-butane to butenes, especially butadiene. For low O2/...

  13. Removal of Reactive Red 120 from aqueous solutions using surface modified natural zeolite

    OpenAIRE

    K Naddafi; M Gholami

    2014-01-01

    Background & objective: Synthetic dyes are extensively used in various industries such as textile, leather tanning, plastic, pulp and paper. Since dyes are toxic and even carcinogenic, discharging dye-containing wastewater into the environment poses serious environmental and health problems. Therefore, the purpose of this paper was to evaluate the removal of Reactive Red 120 from aqueous solutions using surface modified natural zeolite. Materials &Methods: The Semnan zeolite was sieved usi...

  14. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  15. Radiation balance of a soil-straw surface modified by straw color

    International Nuclear Information System (INIS)

    Straw color may alter the net radiative flux at the soil-straw surface and, consequently, the availability of energy for soil, biological, and atmospheric processes. This study ascertained the radiation balance of a soil-straw surface as modified by the color of the straw on the surface. Barley (Hordeum vulgare L.) stubble and loose straw on 36-m2 plots near Fairbanks, AK, was painted black, white, or remained unpainted (natural) in a randomized block experimental design. Reflected global radiation was measured in the spring of 1988–1990 and net radiation was monitored in the spring of 1990. Midday reflected global radiation and soil-straw surface temperatures were measured on clear days in 1989. The albedo of the black straw treatment was 0.05, of the natural straw treatment was 0.2, and of the white straw treatment was 0.3. The black straw treatment resulted in higher midday surface temperatures and consequently higher emission of longwave radiation compared with other straw color treatments. A soilstraw-atmosphere system model provided good estimates of the measured net radiative flux in 1990 (R2 = 0.91). The model predicted that a soil-black straw surface would absorb 10% more radiation than a soil-natural straw surface and 15% more radiation than a soil-white straw surface averaged over the three years. The results suggest that straw color management can be an option for altering the surface radiation balance in regions with extreme climates. (author)

  16. Mixed azide-terminated monolayers: a platform for modifying electrode surfaces.

    Science.gov (United States)

    Collman, James P; Devaraj, Neal K; Eberspacher, Todd P A; Chidsey, Christopher E D

    2006-03-14

    We have prepared and characterized mixed self-assembled monolayers (SAM) on gold electrodes from azido alkane thiols and various omega-functionalized alkane thiols. In the presence of copper(I) catalysts, these azide-modified surfaces are shown to react rapidly and quantitatively with terminal acetylenes forming 1,2,3-triazoles, via "click" chemistry. The initial azide substituents can be identified and monitored using both grazing-angle infrared (IR) and X-ray photoelectron spectrosopies. Acetylenes possessing redox-active ferrocene substituents react with the azide-terminated mixed SAMs and electrochemical measurements of the ferrocene-modified SAM electrodes have been used to quantify the redox centers attached to these platforms. Time-resolved electrochemical measurements have enabled us to follow the formation of these ferrocene centers and thus to measure the rate of the surface "click" reaction. Under optimal conditions this well-behaved second-order reaction takes place with a rate constant of 1 x 10(3) M(-)(1) s(-)(1). Typical reaction times of several minutes were realized using micromolar concentrations of acetylene. These techniques have been used to construct well-characterized, covalently modified monolayers that can be employed as functional electrode surfaces. PMID:16519441

  17. Properties of modified starches and their use in the surface treatment of paper

    OpenAIRE

    Jonhed, Anna

    2006-01-01

    The papermaking industry uses a large amount of starch each year, both as a wet-end additive and as a rheological modifier in surface sizing and coating colors. It is important to be able to reduce the amount of chemicals used in the papermaking and surface treatment process, to reduce costs and to make the process even more efficient. Interest in new high-performance starches is great. By using these new types of starches, improved recycling of barrier products may be obtained as well as a r...

  18. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  19. Giant Magnetoimpedance Effect in Surface Modified CoFeMoSiB Amorphous Ribbons

    Institute of Scientific and Technical Information of China (English)

    M. A. Cerdeira; G. V. Kurlyandskaya; A. Fernandez; M. Tejedor; H. Garcia-Miquel

    2003-01-01

    Thin magnetic Fe layers in thickness of 10-240 nm were deposited onto a wheel surface of CoFeMoSiB amorphous ribbons to check our concept of a new type of heterogeneous magnetoimpedancematerials formed by two different magnetic parts. The presence of an additional iron layer modifies the magnetoimpedance response of the composite material and leads to increase of the magnetoimpedance ratio from 330 to 345% at a frequency of 3.5MHz.Two possible mechanisms are discussed for explanation to the observed behaviour. Modification of the surface properties of the amorphous ribbons may have certain potential for techmological applications.

  20. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  1. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  2. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    International Nuclear Information System (INIS)

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6∼8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5∼6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  3. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    International Nuclear Information System (INIS)

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  4. Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning

    International Nuclear Information System (INIS)

    Research highlights: → Self-organizing PS-b-PMMA creates striped nanostructure scaffolds. → These striped nanostructures can be selectively metalized and modified using light. → Metalized stripes can be decorated with SAMs to create functional substrates. → Nanostructured surfaces thus prepared exhibit controlled wetting and recognition. - Abstract: Thin-film poly(styrene-block-methyl methacrylate) diblock copolymer (PS-b-PMMA) is used to create chemically patterned surfaces via metal deposition combined with self-assembled monolayers (SAMs) and UV exposure. We use this method to produce surfaces that are chemically striped on the scale of a few tens of nanometers. Atomic force and transmission electron microscopies are used to verify the spatially localized organization of materials, and contact angle measurements confirm the chemical tunability of these scaffolds. These surfaces may be used for arraying nanoscale objects, such as nanoparticles or biological species, or for electronic, magnetic memory or photovoltaic applications.

  5. In situ STM imaging and direct electrochemistry of Pyrococcus furiosus ferredoxin assembled on thiolate-modified Au(111) surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Christensen, Hans Erik Mølager; Ooi, Bee Lean; Ulstrup, Jens

    2004-01-01

    We have addressed here electron transfer (ET) of Pyrococcus furiosus ferredoxin (PfFd, 7.5 kDa) in both homogeneous solution using edge plane graphite (EPG) electrodes and in the adsorbed state by electrochemistry on surface-modified single-crystal Au(111) electrodes, This has been supported by...... electrode surface modified by the same functional group monolayer and to address diffusionless direct electrochemistry, as well as surface microstructures of the protein monolayer. PfFd molecules were found to assemble on either mercaptopropionic acid (MPA) or cysteine-modified Au(111) surfaces in stable...

  6. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei;

    2014-01-01

    feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...... degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen......-containing functional groups on the CNT surfaces, such as carboxylic acids and anhydrides, have an even stronger interaction with palladium NPs than the nitrogen-containing counterparts. Our work contributes to elucidation of the complex metal-carbon interaction and unlocks potential in activity and selectivity control...

  7. Physicochemical properties of the anion-modified surfaces of silver nanostructures

    Science.gov (United States)

    Sibbald, Morgan Scot

    Nano-sized structures of silver were prepared, characterized, and then chemically-modified with the adsorption of molecules and ions on the metal surface. Nanostructures prepared as aqueous colloids were found to have highly regular polyhedral shapes by transmission electron microscopy. Electron diffraction techniques indicated that isolated Ag structures were composed of a single crystalline phase or were multiply-twinned, both having a lattice constant of 4.05 A. Adsorption of iodide and bromide ions on the silver surface was monitored by surface-enhanced Raman spectroscopy. A characteristic halide-metal stretching vibration was observed at 112 cmsp{-1} for Isp- and at 156 cmsp{-1} for Brsp-. Extinction spectra of the halide-modified Ag colloids showed a frequency-shift and damping of the surface plasmon resonance band assigned to particle aggregation. This was confirmed using two dimensional arrays of particles in which the surface-modifier caused only damping with no change in the plasmon frequency. Addition of cytochrome c to the halide-modified colloid resulted in the reduction of the protein. Competitive binding of Isp- ions between cytochrome c and the metal necessitated the use of a redox active indophenol dye for quantitative measurements of reduction efficiencies. Two distinct processes were identified: reduction at iodide coverages up to one monolayer on the Ag surface and reduction in the presence of excess Isp- in solution. The latter was characterized by Isp- reacting with silver in a 1:1 stoichiometry to form molecular AgI. The former, which resulted in only 5% reduction of the electron acceptors, was a consequence of partial charge transfer from Isp- to the metal, producing a unique iodide-Ag surface complex different than molecular AgI. Raman spectra of the complex excited at 413 nm and at temperatures less than 150 K contained a strong vibrational progression with a fundamental band at 123 cmsp{-1} and up to six overtones. An excitation profile

  8. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Science.gov (United States)

    Sakai, C.; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Ogata, Y.; Fujita, D.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO3 dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  9. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  10. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion. PMID:27035544

  11. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    International Nuclear Information System (INIS)

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pHpzc values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 μg/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Preparation of bovine hemoglobin-imprinted polymer beads via the photografting surface-modified method

    Institute of Scientific and Technical Information of China (English)

    Qingqing GAI; Qiuye LIU; Wenyou LI; Xiwen HE; Langxing CHEN; Yukui ZHANG

    2008-01-01

    Molecularly imprinted polymers (MIPs), based on photografting surface-modified polystyrene beads as matrices, were prepared with acrylamide as the functional monomer, bovine hemoglobin as the template molecule and N, N'-methylene bisacrylamide as the crosslinker in a phosphate buffer. The results of IR, scanning electron microscope (SEM) and elemental analyses demonstrated the formation of a grafting polymer layer on the polysty-rene-bead surface. Subsequent removal of the template left behind cavities on the surface of the polymer matrix with a shape and an arrangement of functional groups having complementary binding sites with the original tem-plate molecule. The adsorption studies showed that the imprinted polymers have a good adsorption capacity and specific recognition for bovine hemoglobin as the template molecule. Our results demonstrated that the polymer prepared via the photografting surface-modified method exhibited better selectivity for the template. Attempts to employ the new method in molecular imprinting techniques may introduce new applications for MIPs and facilitate probable protein separation and purification.

  13. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    Science.gov (United States)

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment. PMID:27433617

  14. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility

    International Nuclear Information System (INIS)

    In this study, melt blending was used to fabricate poly(lactic acid) (PLA)/ hydroxyapatite (HA) nanocomposites. Surface modifying HA nanoparticles (mHA) with dodecyl alcohol through esterification reaction could effectively improve the dispersibility of HA nanoparticles in PLA matrix and the interfacial interactions between PLA and HA nanoparticles, as revealed by field emission scanning electron microscopy (FESEM), rheology analysis, and dynamic mechanical thermal analysis (DMTA). mHA/PLA nanocomposite film demonstrated better cartilage cell attachment, spreading and proliferation than that of PLA and HA/PLA film. The good cytocompatibility could be due to the good dispersibility of the osteoinductive HA nanoparticles, good interfacial interactions between PLA and HA nanoparticles, and balanced hydrophobic/hydrophilic property. This newly developed mHA/PLA nanocomposites may be considered for bone tissue engineering applications. - Highlights: ► Dodecyl alcohol modifies HA nanoparticles via esterification reaction. ► The modified HA results in good dispersibility in PLA matrix. ► The interfacial interactions are improved because of the modified HA. ► The addition of HA and mHA results in good cell affinity and biocompatibility.

  15. Photocatalytic effects and surface morphologies of modified silicone-TiO2 polymer composites

    International Nuclear Information System (INIS)

    Research highlights: → PEG2000-Silicone displayed superior degradation behavior when subjected to UV irradiation in the presence of TiO2. → At 1450 cm-1 to Si-O-Si bending vibrations; its peak intensity did not undergo any apparent shift after 12 h. → The intensities of the signals for C-H vibrations at 1567 and 2908 cm-1 did not change in the modified silicone/TiO2 composite films. → After UV irradiation for 24 h, small cavities formed on the surface, but the film retained its integrity. - Abstract: To impart photocatalytic ability to silicone, we prepared composites incorporating 10 wt% TiO2 and studied their photodegradation under UV irradiation. The properties of the modified silicone/TiO2 composites were studied using FTIR, Raman, and UV-vis spectroscopy, scanning electron microscopy (SEM), and the photoinduced weight loss. We also studied the performance of these modified silicone/TiO2 composites as photocatalysts for the decomposition of the basic dye methylene blue (MB) under UV irradiation. From studies of the weight loss of the modified silicone/TiO2 composites, we found that the composites possessing longer polyoxyethylene chains were more resistant to photodegradation.

  16. A modified stitching algorithm for testing rotationally symmetric aspherical surfaces with annular sub-apertures

    Science.gov (United States)

    Hou, Xi; Wu, Fan; Yang, Li; Wu, Shi-bin; Chen, Qiang

    2006-02-01

    Annular sub-aperture stitching technique has been developed for low cost and flexible testing rotationally symmetric aspherical surfaces, of which combining accurately the sub-aperture measurement data corrupted by misalignments into a complete surface figure is the key problem. An existed stitching algorithm of annular sub-apertures can convert sub-aperture Zernike coefficients into full-aperture Zernike coefficients, in which use of Zernike circle polynomials represents sub-aperture data over both circle and annular domain. Since Zernike circle polynomials are not orthogonal over annular dominion, the fitting results may give wrong results. In this paper, the Zernike polynomials and existed stitching algorithm have been reviewed, and a modified stitching algorithm with Zernike annular polynomials is provided. The performances of a modified algorithm on the reconstruction precision are studied by comparing with the algorithm existed. The results of computer simulation show that the sub-aperture data reduction with the modified algorithm is more accurate than that obtained with the existed algorithm based on Zernike circle polynomials, and the undergoing matrix manipulation is simpler.

  17. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity.

    Science.gov (United States)

    Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong

    2013-01-29

    Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials. PMID:23265296

  18. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  19. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  20. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    International Nuclear Information System (INIS)

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (Ms) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are lower

  1. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer.

    Science.gov (United States)

    Bakhshi, Raheleh; Darbyshire, Arnold; Evans, James Eaton; You, Zhong; Lu, Jian; Seifalian, Alexander M

    2011-08-01

    Stent angioplasty is a successful treatment for arterial occlusion, particularly in coronary artery disease. The clinical communities were enthusiastic about the use of drug-eluting stents; however, these stents have a tendency to be a contributory factor towards late stage thrombosis, leading to mortality in a significant number of patients per year. This work presents an innovative approach in self-expanding coronary stents preparation. We developed a new nanocomposite polymer based on polyhedral oligomeric silsesquioxanes (POSS) and poly(carbonate-urea)urethane (PCU), which is an antithrombogenic and a non-biodegradable polymer with in situ endothelialization properties. The aim of this work is to coat a NiTi stent alloy with POSS-PCU. In prolonged applications in the human body, the corrosion of the NiTi alloy can result in the release of deleterious ions which leads to unwanted biological reactions. Coating the nitinol (NiTi) surface with POSS-PCU can enhance surface resistance and improve biocompatibility. Electrohydrodynamic spraying was used as the polymer deposition process and thus a few experiments were carried out to compare this process with casting. Prior to deposition the NiTi has been surface modified. The peel strength of the deposit was studied before and after degradation of the coating. It is shown that the surface modification enhances the peel strength by 300%. It is also indicated how the adhesion strength of the POSS-PCU coating changes post-exposure to physiological solutions comprised of hydrolytic, oxidative, peroxidative and biological media. This part of the study shows that the modified NiTi presents far greater resistance to decay in peel strength compared to the non-modified NiTi. PMID:21515031

  2. Phase Structure, Piezoelectric and Multiferroic Properties of SmCoO3-Modified BiFeO3-BaTiO3 Lead-Free Ceramics

    Science.gov (United States)

    Jiang, Na; Tian, Mijie; Luo, Lingling; Zheng, Qiaoji; Shi, Dongliang; Lam, Kwok Ho; Xu, Chenggang; Lin, Dunmin

    2016-01-01

    (0.75- x)BiFeO3-0.25BaTiO3- xSmCoO3 + 1 mol.% MnO2 lead-free multiferroic ceramics were synthesized by a conventional ceramic fabrication technique. The effects of SmCoO3 on phase structure, piezoelectricity and multiferroicity of the ceramics were studied. All the ceramics can be well sintered at a low sintering temperature of 960°C. The crystalline structure of the ceramics is transformed from rhombohedral to tetragonal symmetry with increasing the amount of SmCoO3. A morphotropic phase boundary of rhombohedral and tetragonal phases is formed at x = 0.01-0.04. A small amount of SmCoO3 is shown to improve the ferroelectric, piezoelectric and magnetoelectric properties of the ceramics. For the ceramics with x = 0.01-0.03, enhanced resistivity ( R ˜ 1.2 × 109 Ω cm to 2.1 × 109 Ω cm), piezoelectricity ( d 33 ˜ 65 pC/N to 106 pC/N) and ferroelectricity ( P r ˜ 6.38 μC/cm2 to 22.89 μC/cm2) are obtained. The ferromagnetism of the materials is greatly enhanced by the doping of SmCoO3 such that a very high magnetoelectric coefficient of ˜742 mV/(cm Oe) is obtained at x = 0.01, suggesting a promising potential in multiferroic devices.

  3. Supramolecular biosensors based on electropolymerised pyrrole-cyclodextrin modified surfaces for antibody detection.

    Science.gov (United States)

    Wajs, Ewelina; Fernández, Núria; Fragoso, Alex

    2016-06-01

    The self-assembly of an adamantane-appended polymer bearing an antigen fragment on a polypyrrole-cyclodextrin modified surface provides a highly sensitive immunosensor with low limits of detection for celiac disease related targets. The pyrrole-carboxylic acid films were formed on the surface of gold electrodes by electropolymerisation and followed by covalent attachment of cyclodextrin units. Surface plasmon resonance measurements confirmed the role of the host/guest interactions between adamantane moieties and β-cyclodextrin hosts in the formation of the supramolecular sensor interface. Furthermore, this novel electrochemical supramolecular platform was effective in the amperometric detection of anti-gliadin antibodies in spiked serum samples with very good signal recovery. PMID:27097527

  4. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles

    International Nuclear Information System (INIS)

    This paper presents the results of a study in which nanosized titanium dioxide (TiO2) crystal particles were coated onto the surface of palygorskite fibrous clay which had been modified by silver ions using titanium tetrachloride as a precursor. Coated TiO2 particles with the anatase structure were formed after calcining at 400 deg. C for 2 h in air. Various analytical techniques were used to characterize the surface properties of titanium dioxide particles on the palygorskite. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that TiO2 particles were supported on the surface of the palygorskite clays and their size was in the range of 3-6 nm. The titanium oxide coatings were found to be very active for the photocatalytic decomposition of methylene blue

  5. Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    International Nuclear Information System (INIS)

    We have observed a distance-dependent absorption linewidth of cold 87Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behaviour of the atoms near the surface. We observed an increase of the absorption linewidth by up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED

  6. Corrosion behaviour and in vitro/in vivo biocompatibility of surface-modified AZ31 alloy

    International Nuclear Information System (INIS)

    The present work evaluates the corrosion behaviour and the in vitro/in vivo biocompatibility of the AZ31 magnesium alloy, which fulfills the mechanical requirements of bone. The corrosion kinetic of as-received AZ31 alloy was not compatible with the cell growth. To improve its performance, the AZ31 alloy was surface modified by a chemical conversion treatment in hydrofluoric acid. The magnesium fluoride layer generated by the surface treatment of AZ31 alloy enhances its corrosion behaviour, allowing the in vitro growth of osteoblastic cells over the surface and the in vivo formation of a highly compact layer of new bone tissue. These results lead to consider the magnesium fluoride coating as necessary for potential use of the AZ31 alloy as biodegradable and absorbable implant for bone repair. (Author) 18 refs.

  7. Direct evidence for compressive elastic strain at ground surfaces of nanocomposite ceramics

    International Nuclear Information System (INIS)

    High-resolution grazing incidence x-ray powder diffraction has been used to provide direct evidence for the existence of a uniform compressive strain close to the surface of ground alumina/SiC nanocomposites. No such strain is found in ground surfaces of single-phase alumina or polished surfaces of nanocomposite. The strain in the ground nanocomposite is found to be perpendicular to the grinding direction and disappears on annealing at 1250 deg. C. Such a compressive stress provides a mechanism for enhancing the strength of the nanocomposite, by opposing any tensile loading tending to open surface flaws. The origin of the stresses probably lies in the enhanced grain boundary strength in the nanocomposite alumina-silicon carbide compared to alumina

  8. Direct evidence for compressive elastic strain at ground surfaces of nanocomposite ceramics

    Science.gov (United States)

    Tanner, B. K.; Wu, H. Z.; Roberts, S. G.

    2005-02-01

    High-resolution grazing incidence x-ray powder diffraction has been used to provide direct evidence for the existence of a uniform compressive strain close to the surface of ground alumina/SiC nanocomposites. No such strain is found in ground surfaces of single-phase alumina or polished surfaces of nanocomposite. The strain in the ground nanocomposite is found to be perpendicular to the grinding direction and disappears on annealing at 1250°C. Such a compressive stress provides a mechanism for enhancing the strength of the nanocomposite, by opposing any tensile loading tending to open surface flaws. The origin of the stresses probably lies in the enhanced grain boundary strength in the nanocomposite alumina-silicon carbide compared to alumina.

  9. Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering

    OpenAIRE

    Saka, Muhammet; Yuzugullu, Bulem

    2013-01-01

    PURPOSE To evaluate the effects of surface treatments on shear bond strength (SBS) between microwave and conventionally sintered zirconia core/veneers. MATERIALS AND METHODS 96 disc shaped Noritake Alliance zirconia specimens were fabricated using YenaDent CAM unit and were divided in 2 groups with respect to microwave or conventional methods (n=48/group). Surface roughness (Ra) evaluation was made with a profilometer on randomly selected microwave (n=10) and conventionally sintered (n=10) co...

  10. Electronic and surface properties of Ga-doped In{sub 2}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Regoutz, A., E-mail: a.regoutz@imperial.ac.uk [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Egdell, R.G. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Morgan, D.J. [Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (United Kingdom); Palgrave, R.G. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Téllez, H.; Skinner, S.J.; Payne, D.J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Watson, G.W. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland); Scanlon, D.O. [University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-15

    Graphical abstract: - Highlights: • The solubility limit of Ga in In{sub 2}O{sub 3} was established to be around 6%. • Ga doping causes a reduction in band gap although the band gap of Ga{sub 2}O{sub 3} is larger than that of In{sub 2}O{sub 3}. • The reduction in band gap is attributed to the role of lone pairs at surfaces and grain boundaries. • A pronounced surface segregation of Ga is observed. - Abstract: The limit of solubility of Ga{sub 2}O{sub 3} in the cubic bixbyite In{sub 2}O{sub 3} phase was established by X-ray diffraction and Raman spectroscopy to correspond to replacement of around 6% of In cations by Ga for samples prepared at 1250 °C. Density functional theory calculations suggest that Ga substitution should lead to widening of the bulk bandgap, as expected from the much larger gap of Ga{sub 2}O{sub 3} as compared to In{sub 2}O{sub 3}. However both diffuse reflectance spectroscopy and valence band X-ray photoemission reveal an apparent narrowing of the gap with Ga doping. It is tentatively concluded that this anomaly arises from introduction of Ga{sup +} surface lone pair states at the top of the valence band and structure at the top of the valence band in Ga-segregated samples is assigned to these lone pair states. In addition photoemission reveals a broadening of the valence band edge. Core X-ray photoemission spectra and low energy ion scattering spectroscopy both reveal pronounced segregation of Ga to the ceramic surface, which may be linked to both relief of strain in the bulk and the preferential occupation of surface sites by lone pair cations. Surprisingly Ga segregation is not accompanied by the development of chemically shifted structure in Ga 2p core XPS associated with Ga{sup +}. However experiments on ion bombarded Ga{sub 2}O{sub 3}, where a shoulder at the top edge of the valence band spectra provide a clear signature of Ga{sup +} at the surface, show that the chemical shift between Ga{sup +} and Ga{sup 3+} is too small to be

  11. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    Science.gov (United States)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  12. Optimization of Adsorption Conditions of Cr (VI by PEI Modified BSG Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Xinlong Jiang

    2015-02-01

    Full Text Available Surface response optimization of Adsorption Conditions of Cr (VI wastewater by PEI modified brewer's grains (BSG with the factors of pH value, adsorbent concentration, adsorption time, amount of adsorbent and the response of adsorption rate were studied. The optimal parameters for adsorption conditions were of adsorbent concentration of 113.30 mg/L, adsorbent particle size of 60~80 mesh, pH 1.79, adsorbent amount of 4.99 g/L, adsorption time and temperature of 1.88 h and 30°C, respectively. The maximal absorption rate got 100.0%, adsorption capacity was 46.58 mg/g. The PEI modified BSG is a promising, cheap, efficient, new biological materials of adsorption for Cr (VI in wastewater.

  13. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces.

    Science.gov (United States)

    Alligrant, Timothy M; Dasari, Radhika; Stevenson, Keith J; Crooks, Richard M

    2015-10-27

    Here we report on the effect of DNA modification on individual collisions between Pt nanoparticles (PtNPs) and ultramicroelectrode (UME) surfaces. These results extend recent reports of electrocatalytic amplification (ECA) arising from collisions between naked surfaces, and they are motivated by our interest in using ECA for low-level biosensing applications. In the present case, we studied collisions between naked PtNPs and DNA-modified Au and Hg UMEs and also collisions between DNA-modified PtNPs and naked Au and Hg UMEs. In all cases, the sensing reaction is the catalytic oxidation of N2H4. The presence of ssDNA (5-mer or 25-mer) immobilized on the UME surface has little effect on the magnitude or frequency of ECA signals, regardless of whether the electrode is Au or Hg. In contrast, when DNA is immobilized on the PtNPs and the electrodes are naked, clear trends emerge. Specifically, as the surface concentration of ssDNA on the PtNP surface increases, the magnitude and frequency of the current transients decrease. This trend is most apparent for the longer 25-mer. We interpret these results as follows. When ssDNA is immobilized at high concentration on the PtNPs, the surface sites on the NP required for electrocatalytic N2H4 oxidation are blocked. This leads to lower and fewer ECA signals. In contrast, naked PtNPs are able to transfer electrons to UMEs having sparse coatings of ssDNA. PMID:26457645

  14. Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces.

    Science.gov (United States)

    Voss, Alexandra; Wei, HongYing; Zhang, Yi; Turner, Stuart; Ceccone, Giacomo; Reithmaier, Johann Peter; Stengl, Monika; Popov, Cyril

    2016-07-01

    Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of

  15. Experimental Investigation on Four Stroke Ceramic Heater Hot Surface Ignition C.I. Engine using Ethanol-Diesel Blends

    Directory of Open Access Journals (Sweden)

    Rama Udaya Marthandan R

    2012-09-01

    Full Text Available Many alternate fuels are being considered for automotive vehicles. Ethanol is one of the alcohol that seem most promising. Ethanol is an attractive alternative fuel from both natural and manufactured sources, because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in hot surface ignition C.I engines. Ethanol is produced from molasses, which is a by-product of sugarcane. Ethanol can be produced in large quantities at low cost from these molasses. The prime objective of present work is to find out suitable ethanol-diesel blends. Because of renewable nature, the ethanol is found to be more considerable for the use in hot surface ignition diesel engine. Ethanol is inflammable and its vapour form explosive mixtures with air and an excellent solvent for fuels . Isoamylnitrate additive is used to solubility of ethanol in diesel, that acts as a bridging agent through molecular compatibility and bonding to produce a blend, also used to satisfy the mixture homogeneity and prevent phase separation. Additive is used to increase their cetane number sufficiently with ignition improving to ensure that compression ignition will occur, and save the expense and complexity of engine components changes. The experimental investigations are carried out on four stroke single cylinder stabilized zirconia ceramic heater hot surface ignition diesel engine to evaluate the engine performance characteristics of brake specific fuel consumption, brake thermal efficiency and indicated thermal efficiency under steady state operating conditions at the specified speed of 1000rpm. The present work is investigate on ethanol-diesel blends with and without additive for their suitability of hot surface ignition four stroke single cylinder C.I engine on cylindrical type combustion chamber in varies ratios of ethanol-diesel blends. The blends are 100%diesel, 85%diesel with 10%ethanol and 5%additive, 75%diesel

  16. Surface Photochemistry: Benzophenone as a Probe for the Study of Modified Cellulose Fibres

    Directory of Open Access Journals (Sweden)

    L. F. Vieira Ferreira

    2007-01-01

    Full Text Available This work reports the use of benzophenone, a very well characterized probe, to study new hosts (i.e., modified celluloses grafted with alkyl chains bearing 12 carbon atoms by surface esterification. Laser-induced room temperature luminescence of air-equilibrated or argon-purged solid powdered samples of benzophenone adsorbed onto the two modified celluloses, which will be named C12-1500 and C12-1700, revealed the existence of a vibrationally structured phosphorescence emission of benzophenone in the case where ethanol was used for sample preparation, while a nonstructured emission of benzophenone exists when water was used instead of ethanol. The decay times of the benzophenone emission vary greatly with the solvent used for sample preparation and do not change with the alkylation degree in the range of 1500–1700 micromoles of alkyl chains per gram of cellulose. When water was used as a solvent for sample preparation, the shortest lifetime for the benzophenone emission was observed; this result is similar to the case of benzophenone adsorbed onto the “normal” microcrystalline cellulose surface, with this latter case previously reported by Vieira Ferreira et al. in 1995. This is due to the more efficient hydrogen abstraction reaction from the glycoside rings of cellulose when compared with hydrogen abstraction from the alkyl chains of the modified celluloses. Triplet-triplet transient absorption of benzophenone was obtained in both cases and is the predominant absorption immediately after laser pulse, while benzophenone ketyl radical formation occurs in a microsecond time scale both for normal and modified celluloses.

  17. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.; Nell, Kara M.; Clubb, Donald C.; Gill, Gary A.; Addleman, Raymond S.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.

  18. Surface functionalized nanostructured ceramic sorbents for the effective collection and recovery of uranium from seawater.

    Science.gov (United States)

    Chouyyok, Wilaiwan; Pittman, Jonathan W; Warner, Marvin G; Nell, Kara M; Clubb, Donald C; Gill, Gary A; Addleman, R Shane

    2016-07-28

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials. PMID:27184739

  19. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Hee; Bhattarai, Govinda [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Aryal, Santosh [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Nan-Hee [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Min-Ho [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Tae-Gun [Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Jhee, Eun-Chung [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hak-Yong [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Yi, Ho-Keun, E-mail: yihokn@chonbuk.ac.kr [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of)

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH{sub 4}). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  20. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    International Nuclear Information System (INIS)

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  1. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Science.gov (United States)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  2. Photoluminescence and surface photovoltage spectroscopy studies of hydroxyapatite nano-Bio-ceramics

    International Nuclear Information System (INIS)

    Photoluminescence (PL) and surface photovoltage spectroscopy applied to nanostructural bioceramics hydroxyapatite (HAp) allowed to study electron (hole) energy states spectra of HAP and distinguish bulk and surface localized levels. Studied PL excitation spectra allowed obtaining an exact value of the energy band gap in HAP: E g=3.95 eV.This result is consistent with Eg value determined by the contact potential difference (ΔCPD) curves treatment method as E g=3.94 eV. Comparison between ΔCPD and PL spectra indicates that the energy spectra of electron - hole levels studied by two different experimental spectroscopy techniques are very similar. This comparison enables to conclude that all HAp samples have identical electron - hole states structures consisting of five bulk states and one surface state. It is assumed that the deep electron (hole) charged states may be responsible for high bioactivity of the HAp nanoceramics

  3. Magnetic and dielectric proprieties of multiferroic (1-x)Pb(Fe2/3W1/3)O3 -XPbTiO3 Ceramics prepared via a modified two-stage solid-state reaction

    OpenAIRE

    Bárbara Maraston Fraygola; Adelino de Aguiar Coelho; Ducinei Garcia; José Antônio Eiras

    2011-01-01

    Multiferroic Pb(Fe2/3W1/3)O3-PbTiO3 (PFW-PT) ceramics were synthesized via a modified two-stage solid-state reaction. This method utilized Fe2WO6, prepared at a first-stage, which was subsequently reacted with a stoichiometric amount of PbO and TiO2 at the second stage. This procedure efficiently suppressed the formation of lead tungstates and leads to getting dense ceramics. Electric and dielectric properties of (1-x)Pb(Fe2/3W1/3)O3 -xPbTiO3 solid solutions were investigated as a function of...

  4. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-11-01

    Full Text Available Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS, bone morphogenetic protein-2 immobilized on AMS (AMS + BMP, bio-active glass (BAG and two titanium coatings with different porosity (T1; T2. Four surfaces served as controls: uncoated Ti (Ti, Ti functionalized with BMP-2 (Ti + BMP, Ti surface with a thickened titanium oxide layer (TiO2 and a tissue culture polystyrene surface (TCPS. The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP; osteocalcin (OC; osteoprotegerin (OPG; vascular endothelial growth factor-A (VEGF-A]. Unrestrained cell proliferation was observed on (unfunctionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  5. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

    Science.gov (United States)

    Uba, Franklin I; Pullagurla, Swathi R; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoon-Kyoung; Shin, Heungjoo; Soper, Steven A

    2015-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  6. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Directory of Open Access Journals (Sweden)

    Emilia Adriane Silva

    2013-07-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20: Gc, no treatment (control; Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s. Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC (TC. The specimens were submitted to the shear bond strength (SBS test using a universal testing machine (1 mm/min. Failure mode was assessed using optical and scanning electron microscopy (SEM, together with the surface roughness (Ra of the resin cement in the bracket using interference microscopy (IM. 2-way ANOVA and the Tukey test were used to compare the data (p>0.05. RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0, but thermocycling did not (p=0.6974. Considering the SBS results (MPa, Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9 and Gt-TC showed the lowest (8.45±6.7. For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157 but the surface treatments did not (p=0.458. For the thermocycled and non-thermocycled groups, Ra (µm was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.

  7. Randomized Controlled Clinical Trial of All-Ceramic Single Tooth Implant Reconstructions Using Modified Zirconia Abutments: Radiographic and Prosthetic Results at 1 Year of Loading

    OpenAIRE

    Thoma, Daniel S.; Brandenberg, Francine; Fehmer, Vincent; Büchi, Dominik L.E.; Hämmerle, Christoph H.F.; Sailer, Irena

    2015-01-01

    This study aims to test whether or not veneering of the submucosal part of zirconia abutments with pink dental ceramic affects radiographic and technical outcomes of implant-supported single crowns (ISSC).

  8. Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys

    International Nuclear Information System (INIS)

    The mechanical performance of laser surface engineered ceramic composite (TiC/Al) coating on 2024 and 6061 Al alloy substrates has been evaluated using four-point bend test. The performance of the coating is expressed in terms of the cohesive strength of the coating. Load-displacement measurements carried out during the bend test helps to determine the load corresponding to crack initiation. This load required to initiate fracture in the coating provides a measure of the strength of the coating. A simplistic approach based on elementary beam theory and strength of material in conjunction with rule of mixture was adopted to calculate the cohesive strength of the composite coating. This approach is also further extended for attempts to evaluate apparent residual stress within the coating. Since process parameters exert a significant influence in controlling the end properties of the component, the effect of laser power and laser scan speed on the cohesive strength has also been investigated. It is observed that coatings with lower scan speeds have much higher cohesive strengths and they also seem to have good metallurgical bond with the substrate thus showing better mechanical behavior than the other high scan speeds used in this present study. The apparent residual stress in the coating appears to transform from compressive to tensile in nature with increasing laser scan speed eventually contributing to delamination of the coating

  9. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    International Nuclear Information System (INIS)

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features

  10. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  11. In vitro mineralization of surface-modified porous polycaprolactone scaffolds in simulated body fluid

    International Nuclear Information System (INIS)

    Porous polycaprolactone (PCL) scaffolds were fabricated by combination of porogen-leaching and freeze-drying processes. Ice particulates were used as porogen materials. The porous PCL scaffolds were modified by potassium hydroxide solution with concentration of 1 mol/L at room temperature for 8 h, subsequently biomineralized in simulated body fluid for 2 h and 8 h, respectively. The microstructure and characteristics of the PCL scaffolds were investigated by scanning electron microscope (SEM) and EDS. The results showed (1) PCL scaffolds had high degree of connectivity and different pore sizes. (2) Plate-like apatite was observed on the surface of the scaffolds after being immersed into SBF for 8 h

  12. In vitro mineralization of surface-modified porous polycaprolactone scaffolds in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ning Chengyun [College of Materials Science and Technology, South China University of Technology, Guangzhou (China); Wenzhou Medical College, Wenzhou (China)], E-mail: imcyning@scut.edu.cn; Cheng Haimei [College of Materials Science and Technology, South China University of Technology, Guangzhou (China); Zhu Wenjun [Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou (China); Yin Zhaoyi [College of Materials Science and Technology, South China University of Technology, Guangzhou (China); Chen Hao [Wenzhou Medical College, Wenzhou (China); Zheng Huade; Lei Shumei; Yin Shiheng [College of Materials Science and Technology, South China University of Technology, Guangzhou (China); Tan Guoxin [Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong 510006 (China)

    2008-11-15

    Porous polycaprolactone (PCL) scaffolds were fabricated by combination of porogen-leaching and freeze-drying processes. Ice particulates were used as porogen materials. The porous PCL scaffolds were modified by potassium hydroxide solution with concentration of 1 mol/L at room temperature for 8 h, subsequently biomineralized in simulated body fluid for 2 h and 8 h, respectively. The microstructure and characteristics of the PCL scaffolds were investigated by scanning electron microscope (SEM) and EDS. The results showed (1) PCL scaffolds had high degree of connectivity and different pore sizes. (2) Plate-like apatite was observed on the surface of the scaffolds after being immersed into SBF for 8 h.

  13. In vitro mineralization of surface-modified porous polycaprolactone scaffolds in simulated body fluid

    Science.gov (United States)

    Ning, Chengyun; Cheng, Haimei; Zhu, Wenjun; Yin, Zhaoyi; Chen, Hao; Zheng, Huade; Lei, Shumei; Yin, Shiheng; Tan, Guoxin

    2008-11-01

    Porous polycaprolactone (PCL) scaffolds were fabricated by combination of porogen-leaching and freeze-drying processes. Ice particulates were used as porogen materials. The porous PCL scaffolds were modified by potassium hydroxide solution with concentration of 1 mol/L at room temperature for 8 h, subsequently biomineralized in simulated body fluid for 2 h and 8 h, respectively. The microstructure and characteristics of the PCL scaffolds were investigated by scanning electron microscope (SEM) and EDS. The results showed (1) PCL scaffolds had high degree of connectivity and different pore sizes. (2) Plate-like apatite was observed on the surface of the scaffolds after being immersed into SBF for 8 h.

  14. Water vapor adsorption on meta lithium-zirconate ceramic breeding surfaces

    International Nuclear Information System (INIS)

    Water vapor adsorption on Li2ZrO3 surfaces in He and He+0.1%H2 purging gases was measured at temperatures from 100 to 500 C and H2O partial pressure from 1 to 20 Pa. The data sets, the best fitting empirical water adsorption isotherms and water desorption kinetics are reported and discussed. (orig.)

  15. Validation of the modified Becker's split-window approach for retrieving land surface temperature from AVHRR

    Science.gov (United States)

    Quan, Weijun; Chen, Hongbin; Han, Xiuzhen; Ma, Zhiqiang

    2015-10-01

    To further verify the modified Becker's split-window approach for retrieving land surface temperature (LST) from long-term Advanced Very High Resolution Radiometer (AVHRR) data, a cross-validation and a radiance-based (R-based) validation are performed and examined in this paper. In the cross-validation, 3481 LST data pairs are extracted from the AVHRR LST product retrieved with the modified Becker's approach and compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MYD11A1) for the period 2002-2008, relative to the positions of 548 weather stations in China. The results show that in most cases, the AVHRR LST values are higher than the MYD11A1. When the AVHRR LSTs are adjusted with a linear regression, the values are close to the MYD11A1, showing a good linear relationship between the two datasets ( R 2 = 0.91). In the R-based validation, comparison is made between AVHRR LST retrieved from the modified Becker's approach and the inversed LST from the Moderate Resolution Transmittance Model (MODTRAN) consolidated with observed temperature and humidity profiles at four radiosonde stations. The results show that the retrieved AVHRR LST deviates from the MODTRAN inversed LST by-1.3 (-2.5) K when the total water vapor amount is less (larger) than 20 mm. This provides useful hints for further improvement of the LST retrieval algorithms' accuracy and consistency.

  16. Surface science and model catalysis with ionic liquid-modified materials.

    Science.gov (United States)

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. PMID:21520462

  17. Synthesis, Surface Activities, and Aggregation Behaviors of Butynediol-ethoxylate Modified Polysiloxanes.

    Science.gov (United States)

    Du, Zhiping; Qin, Jieqiong; Wang, Wanxu; Zhu, Yanyan; Wang, Guoyong

    2015-11-01

    Five different butynediol-ethoxylate modified polysiloxanes (PSi-EO) were designed and synthesized via two-step reactions: the preparation of low-hydrogen containing silicone oil (LPMHS) by acid-catalyzed polymerization and the following hydrosilylation reaction with 1,4-bis(2-hydroxyethoxy)-2-butyne. The chemical composition of each product was confirmed by FT-IR, (1)H NMR, and (29)Si NMR. The surface activities and aggregation behaviors of PSi-EO surfactants in aqueous solution were studied systematically using surface tension, dynamic light scattering (DLS), transmission electron microscopy (TEM), and contact-angle methodologies. Relatively low critical aggregation concentration (15-34 mg·L(-1)) and surface tension (∼25 mN·m(-1)) were measured for PSi-EO aqueous solution. The rate of surface tension reduction increased both with increasing PSi-EO concentration and with increases in the proportion of hydrophilic moieties within the synthesized compounds. Furthermore, DLS and TEM studies revealed that PSi-EO self-assembled in aqueous solution to form spherical aggregates. Contact-angle measurements conducted upon low-energy paraffin film surfaces demonstrated that PSi-EO exhibited efficient spreading at concentrations above the critical aggregation concentration. PMID:26457562

  18. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Science.gov (United States)

    Xu, Jihai; Zhao, Wenjie; Peng, Shusen; Zeng, Zhixiang; Zhang, Xin; Wu, Xuedong; Xue, Qunji

    2014-08-01

    Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10-12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45-55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5-8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  19. Monitoring surface processes during heterogeneous asymmetric hydrogenation of ketones on a chirally modified platinum catalyst by operando spectroscopy.

    Science.gov (United States)

    Meemken, Fabian; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-11

    Surface processes occurring at the catalytic chiral surface of a cinchona-modified Pt catalyst during the asymmetric hydrogenation of activated ketones have been monitored for the first time using operando ATR-IR spectroscopy. Fundamental information about this catalytic system could be gained, including the chiral modification process of the catalyst, the surface interaction of reactant ketone with preadsorbed chiral modifier, the role of hydrogen as well as the influence of the product enantiomers in the catalytic cycle. The formation of a diastereomeric transient surface complex between ketone and chiral modifier was found to be related to the ketone consumption. Among the studied activated ketones, a correlation between stereoselection and the strength of the intermolecular hydrogen bond was identified. Dissociated hydrogen from the catalytic surface is found to play a crucial role in the formation of the diastereomeric surface complex. PMID:24777839

  20. Ceramic microstructure and adhesion

    Science.gov (United States)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  1. Development and characterization of MAO bioactive ceramic coating grown on micro-patterned Ti6Al4V alloy surface

    International Nuclear Information System (INIS)

    Highlights: • MAO combined with FPSP process is superior to the simple MAO. • The rougher dimple surface interspersed by fine pore structure exhibited better bioactivity. • The fatigue was improved due to the introduced residual compressive stress by FPSP. • The wear resistance was improved by the alleviated three body wear. - Abstract: In this paper, we describe a strategy for growing bioactive ceramic coatings on a micro-patterned Ti6Al4V alloy substrate using microarc oxidation (MAO) combined with fine particle shot-peening (FPSP) process, for the purpose to obtain the bio-activated titanium alloy with improved wear resistance and fatigue properties. The microstructure and phase composition of FPSP-MAO coating and simple MAO coating were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The bioactivity, tribology and fatigue properties of FPSP-MAO and simple MAO coated samples were evaluated comparatively. The results indicate that the FPSP-MAO5 coating with a rougher dimple surface interspersed by fine pore structure has better inducing capacity of biomimetic apatite compared with simple MAO5 coating. FPSP-MAO5 and FPSP-MAO10 coated samples exhibit an improved fatigue life, increasing by 12.6% and 8.4% in comparison to that of the simple MAO5 and MAO10 coated ones, which is possibly attributed to residual compressive stress induced in the substrate near the coating/substrate interface. The wear resistance of FPSP-MAO5 and MAO10 coatings was significantly improved caused by the alleviated three body wear due to the debris container effect of dimples structure

  2. Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems.

    Science.gov (United States)

    Kadlec, Karol; Adamska, Katarzyna; Voelkel, Adam

    2016-01-15

    The novel approach for hydroxyapatite (HA) surface characterization was proposed. The main aim of this investigation was to estimate surface properties of HA as a biomaterial in real system i.e. in simulated body fluid (SBF). One of the method, which might be used to reflect the influence of liquid environment on sorption properties of material being surrounded by this liquid, is called inverse liquid chromatography (ILC). The lowercase letters of LFER equation (e, s, a, b, v) served for this characterization. The sorption abilities of examined material were also estimated for two different aqueous mobile phases: deionized water and water solution of 0.1M Na2HPO4. It enabled to observe the change in physiochemical properties of surface, considered in Abraham model, dependence on ions concentration in the mobile phase. Moreover pH of every aquatic solution, normally about 7, was adjusted to 5.5 and 9 to observe the influence of hydrogen and hydroxyl ions concentration on HA sorption properties. PMID:26592574

  3. Polysiloxane surface modified with bipyrazolic tripodal receptor for quantitative lead adsorption

    International Nuclear Information System (INIS)

    A new silica gel compound modified N,N-bis(3,5-dimethylpyrazol-1-ylmethyl) amine (SiN2Pz) was synthesized and characterized by elemental analysis, FT-IR, 13C NMR of the solid state, nitrogen adsorption-desorption isotherm, BET surface area and BJH pore sizes. The new surface exhibits good chemical and thermal stability determined by thermogravimetry curves (TGA). The effect of pH and stirring time on the adsorption of Pb(II) were studied. The process of metal retention was followed by batch method and the optimum pH value for the quantitative adsorption of this toxic metal ion was 7. At this pH value, the new functionalized polysiloxane presents further improvements and shows higher affinity (123 mg of Pb2+/g of silica) for the effective adsorption of Pb(II) compared to others described sorbents. The extracted amounts of Pb(II) were determined by atomic absorption measurements.

  4. Biomechanical evaluation and surface characterization of a nano-modified surface on PEEK implants: a study in the rabbit tibia

    Directory of Open Access Journals (Sweden)

    Johansson P

    2014-08-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Per Kjellin,2 Fredrik Currie,2 Bruno Ramos Chrcanovic,1 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Promimic AB, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK is today frequently used as a biomaterial in different medical operations due to its excellent mechanical and chemical properties. However, the untreated surface of PEEK is bioinert and hydrophobic, and it does not osseointegrate in its pure form. The aim of this study was to evaluate a unique nano-modified surface of PEEK with respect to osseointegration. Forty-eight threaded, non-cutting PEEK implants were inserted bilaterally in the tibia of 24 rabbits. Half of the implants (n=24 were coated with nanocrystalline hydroxyapatite (test and the remaining implants (n=24 were left uncoated (control. Half of the animals (n=12 were euthanized after 3 weeks of healing and the remaining (n=12 after 12 weeks. The implant retention was measured with a removal torque apparatus. Surface analysis was performed with interferometry, scanning electron microscopy, and X-ray photon spectroscopy to relate the removal torque to the applied surface. The test implants revealed a significantly higher retention after 3 weeks (P=0.05 and 12 weeks (P=0.028 compared to controls. The result of the present study proves that the addition of nanocrystalline hydroxyapatite coating to PEEK surfaces significantly increases its removal torque and biocompatibility. Keywords: polyether ether ketone, hydroxyapatite, removal torque, nanotopography

  5. Notched Long-Period Fiber Grating with an Amine-Modified Surface Nanostructure for Carbon Dioxide Gas Sensing

    OpenAIRE

    Janw-Wei Wu; Chia-Chin Chiang

    2015-01-01

    This paper presents the fabrication and application of a notched long-period fiber grating (NLPFG) with an amine-modified surface nanostructure for carbon dioxide (CO2) gas sensing. The NLPFG with the modified surface nanostructure was fabricated by using inductively coupled plasma (ICP) etching with an Ag nanoparticle etching barrier. The experimental results show that the spectra were changed with the CO2 gas flow within 12 min. Thereafter, the spectra of the NLPFG remained steady and uncha...

  6. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive.

    Science.gov (United States)

    Gustafsson, Emil; Pelton, Robert; Wågberg, Lars

    2016-09-14

    The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values. PMID:27552256

  7. Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE.

    Science.gov (United States)

    Shahdost-Fard, Faezeh; Roushani, Mahmoud

    2016-07-01

    An ultrasensitive aptasensor was fabricated as an electrochemical nanotool based on the conformation switching of an aptamer (Apt). The Apt which was covalently attached on the surface of a glassy carbon electrode (GCE) covered with cadmium telluride (CdTe) quantum dots (QDs) works as a unique modifier for assaying cocaine. The Apt was combined with cocaine to form a three-way junction complex; this complex increased the steric hindrance of the modified GCE surface and resulted in a variation of the corresponding current of a redox probe. In the present study, DPV technique for cocaine detection was applied and resulted in an unprecedented detection limit (LOD) of 5.0±0.1pmolL(-1), which is more sensitive than previously reported methods. One of the greatest advantages of this aptasensor is the elimination of enzymes or antibodies. It is also relatively a highly sensitive, simple, reproducible, and controllable nanotool. Likewise, it can be easily miniaturized, which is a necessary condition for the high-throughput system and on-site applications. The offered nanotool has a great promise for the routine analysis of the ultra-trace amounts of cocaine, which is important for law enforcement and clinical medicine. It is notable to say that further attempts are under way in our laboratory for the construction of other aptasensors with higher performance for specific targets such as the detection of methadone (MTD) and ibuprofen (IBP). PMID:27154642

  8. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  9. Drilling and forming mechanisms of ground surfaces in engineering ceramics%工程陶瓷的磨削钻孔及表面形成机理

    Institute of Scientific and Technical Information of China (English)

    郑雷; 冯宝富; 王保卫; 袁军堂; 汪振华

    2009-01-01

    结合工程陶瓷的加工特性,采用特定组份的铜基结合剂烧结金刚石钻头对其进行孔加工试验研究.结合剂体积分数为48%Cu、30%Co、6%Ni、5%WC、5%Ti、4%Sn、2%Cr.根据烧结金刚石钻头的磨削加工特点,导出了唇面单颗金刚石磨粒的平均载荷的计算公式;在此基础上,结合陶瓷磨削表面的扫描电镜观察,分析了金刚石钻头磨削钻孔的陶瓷材料去除机理.结果表明,在试验条件下,陶瓷材料虽然以脆性断裂去除为主,但也有部分材料发生塑性变形去除.%The specially sintered diamond bits were developed for drilling engineering ceramics with composition (vol%) of bond matrix being 48% Cu, 30% Co, 6% Ni, 5% WC, 5% Ti, 4% Sn and 2% Cr. In view of the abrasive machining characteristics, the calculation expression of mean load per diamond on the lip face were set up, and accordingly the forming mechanism of ceramic ground surface was presented. Through SEM observations of ceramic ground surfaces, the material removal mechanisms were analyzed and verified. The results show that most of ceramic ground surfaces are formed through brittle fracture and few through ductile deformation.

  10. Structural Ceramics

    Science.gov (United States)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  11. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  12. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  13. Application Of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion And Surface Biofunctionalization.

    Science.gov (United States)

    Chen, Si; Zhang, Jiang; Chen, Yingqi; Zhao, Sheng; Chen, Meiyun; Li, Xin; Maitz, Manfred F; Wang, Jin; Huang, Nan

    2015-11-11

    Magnesium metal as degradable metallic material is one of the most researched areas, but its rapid degradation rate restricts its development. The current anticorrosion surface modification methods require expensive equipment and complicated operation processes and cannot continue to introduce biofunction on modified surface. In this study, the GAHD conversion coatings were fabricated on the surface of magnesium alloys (MZM) by incubating in the mixture solution of gallic acid (GA) and hexamethylenediamine (HD) to decrease the corrosion rate and provide primary amines (-NH2), carboxyl (-COOH), and quinone groups, which is supposed to introduce biomolecules on MZM. Chemical structures of the MZM-GAHD and MZM-HEP-GAHD were explored by analyzing the results of FTIR and XPS comprehensively. Furthermore, it was proved that the heparin (HEP) molecules were successfully immobilized on MZM-GAHD surface through carbodiimide method. The evaluation of platelet adhesion and clotting time test showed that MZM-HEP-GAHD had higher anticoagulation than MZM-GAHD. Through electrochemical detection (polarization curves and electrochemical impedance spectroscopy Nyquist spectrum) and immersion test (Mg(2+) concentration and weight loss), it was proved that compared to MZM, both the MZM-GAHD and MZM-HEP-GAHD significantly improved the corrosion resistance. Finally, in vivo experimentation indicated that mass loss had no significant difference between MZM-1:1, MZM-HEP-1:1, and MZM. However, the trend still suggested that MZM-1:1 and MZM-HEP-1:1 possessed corrosion resistance property. PMID:26479205

  14. Electrochemical Investigation of Nitinol/Tantalum Hybrid Surfaces Modified by Alkylphosphonic Self-Assembled Monolayers

    International Nuclear Information System (INIS)

    Highlights: •Tantalum electrodeposition is combined with 1-dodecylphosphonic acid grafting on Nitinol plates. •XPS and SEM characterizations confirm the efficiency of surface treatments. •CV analysis identifies different trends in the blocking of electron transfers with the redox mediator. •FB and SG-TC modes of SECM are compared through approach curves and current maps. -- Abstract: The surface characteristics of bare and modified nickel-titanium samples (NiTi) are investigated by spectroscopic, microscopic and electrochemical techniques. The successful electrodeposition of a tantalum coating on NiTi and the effective grafting of 1-dodecylphosphonic acid SAMs on both pristine and Ta-covered NiTi surfaces are evidenced and quantified by XPS and SEM. Cyclic voltammetry performed on the different NiTi-based electrodes highlights their specificities regarding electron transfer to a redox probe present in solution (here ruthenium(III) hexamine). Finally, the samples electrochemical characteristics at a local scale are investigated by scanning electrochemical microscopy (SECM). The impact of the surface modifications on mass transport of the redox probe is analyzed through approach curves in the feedback mode, while the recording of current maps in feedback as well as in substrate-generation/tip-collection modes leads to the qualitative identification of electrochemically-active areas corresponding to precursor pitting corrosion sites

  15. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    Science.gov (United States)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-08-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  16. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    Directory of Open Access Journals (Sweden)

    Kim KM

    2014-12-01

    Full Text Available Kyoung-Min Kim,1 Mun-Hyoung Choi,2 Jong-Kwon Lee,3 Jayoung Jeong,3 Yu-Ri Kim,4 Meyoung-Kon Kim,4 Seung-Min Paek,2 Jae-Min Oh1 1Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Gangwon-do, 2Department of Chemistry, Kyungpook National University, Taegu, 3Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk-do, 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea Abstract: In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ~30 nm and ~70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV or positive (about +25 mV. Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. Keywords: ZnO nanoparticles, surface coating, surface charge, particle size, physicochemical properties

  17. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders.

    Science.gov (United States)

    Cappillino, Patrick J; Sugar, Joshua D; El Gabaly, Farid; Cai, Trevor Y; Liu, Zhi; Stickney, John L; Robinson, David B

    2014-04-29

    Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å. PMID:24738575

  18. Advanced ceramics: evaluation of the ground surface Cerâmicas avançadas: avaliação da superfície polida

    Directory of Open Access Journals (Sweden)

    E. C. Bianchi

    2003-09-01

    Full Text Available The aim of this research is to evaluate the influence of grinding and cutting conditions on surfaces of advanced ceramics ground with diamond grinding wheels containing a binding resin bond. The quality surface was analyzed by Scanning Electron Microscopy (SEM.O objetivo desta pesquisa é a avaliação da influência das condições de usinagem na superfície gerada de cerâmicas avançadas retificadas com rebolo diamantado com ligante resinóide. A qualidade superficial foi analisada utilizando-se a Microscopia Eletrônica de Varredura (MEV

  19. Electron-beam treatment of tungsten-free metal-ceramics. 1. Effect on the surface microstructure and resistance in metal cutting mode

    International Nuclear Information System (INIS)

    Effects of a pulsed electron beam treatment on the surface layers microstructure of TiC-based metal-ceramics with Ni-Cr alloy binder as well as on the ceramics stability under the cutting of metal conditions have been experimentally investigated. An increase of electron beam fluence or the quantity of irradiation pulses results in an increase of the strength of the cermet up to 652 m (5,0 J/cm2, 30 pulses), it is likely to be due to melting of a metallic binder in a subsurface layer and filling of microcracks in carbide particles with the melt. An increase of electron radiation fluence up to 180-200 J/cm2 results in a noticeable decrease of cermet stability

  20. Study on plasma-spraying coating bioactive ceramics onto silicon nitride surface as composite endosteal implants.

    Science.gov (United States)

    Xu, L L; Shi, S J

    1997-01-01

    The successful key of endosteal implants depends on the properties of implant materials which are very important for oral implantology at the present. Because silicon nitride has high strength and hydroxylapatite (HA) and flourapatite (FA) have good biocompatibility. In this paper, we apply silicon nitride as base material. Plasma spray HA, FA onto its surface as composite endosteal implants. Physical and chemical properties test, includes X-ray diffraction (XRD), scanning electronic microscope (SEM), EDAX and bonding strength test (push-out test). The results indicate: after plasma-spraying coating, crystalline phase of HA and FA unchanged and form a lot of pores among the crystal particles. Those pores benefit bone growing into them. It is very important for implants to be fixed in bone for long time, Ca/P ratio has no significant change. Bonding strength test results indicate: Si3N4-HA 23.6MPa, Si3N4-FA 27.12 MPa are higher than that of Ti-HA 15.07 MPa. On the basis of these studies, they are kinds of ideal implant materials. PMID:9731426

  1. Adsorption of hydrogen on clean and potassium modified low index copper surfaces: Cu(100) and Cu(110)

    International Nuclear Information System (INIS)

    The adsorption of atomic hydrogen has been studied on clean and potassium modified Cu(110) and Cu(100) surfaces. Two hydrogen induced states in the valence band have been found on the clean Cu(110) surface, an α state receding in the subsurface and a β state in the surface of the crystal. Upon annealing, hydrogen in the subsurface both diffuses to the surface and desorbs at 330 K, and diffuses into the bulk. Two states, αK and βK, have also been observed on the potassium modified surfaces, with the αK state assigned to a potassium-hydrogen bond and the βK state assigned to a Cu-hydrogen bond. The Cu(110) surface is significantly more reactive than the Cu(100) surface

  2. Preliminary studies on the effects of in situ synthesized polycrystalline particulates on the bonding strength of resin to zirconia ceramic surface

    Science.gov (United States)

    Tian, Yueming; Zhang, Lingling; Zhang, Zutai; Ding, Ning; Liu, Yan; Tian, Guozhong

    2015-12-01

    To develop a novel zirconia surface modification method to improve the shear bond strength of resin cement. Yttrium-stabilized tetragonal zirconia (Y-TZP) discs were cut from prefabricated ceramic blocks and polished through 1200-grit SiC abrasive. Based on the immersion time of zirconia disc in HF solution, zirconia samples were divided into four groups. Then, put samples to CaCl2 solution, dipped in NaOH solution from 20 °C to 80 °C in a water bath, kept at 80 °C for 2 h. After final sintering, surface appearance and chemical components were characterized with scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), respectively. The surface roughness of discs was measured as well. Shear bond strength of zirconia to resin cement was tested and the failure mode was analyzed. Three point bending tests were done to determine the flexural strength of samples. The statistical analysis was also done for all above data. ZrO2 polycrystalline particulates were in situ synthesized on the surface of zirconia substrates. The Ra values of the four groups were 0.27 ± 0.05 μm, 0.89 ± 0.34 μm, 1.04 ± 0.41 μm and 1.41 ± 0.38 μm, respectively. The treated group was statistically significant different from the control group (p 0.05). In the conclusion, in situ synthesized polycrystalline particulates on zirconium ceramic surface can effectively improve the bonding strength of resin, avoid micro cracks and maintain the mechanical strength of ceramics.

  3. Structure and tribological behavior of surface layer of laser modified X40CrMoV5-1 steel

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-08-01

    Full Text Available Purpose: The paper presents the effect of alloying with WC, TaC and TiC on structure and mechanical propertiesof the X40CrMoV5-1 steel surface layer using the HPDL (High Power Diode Laser.Design/methodology/approach: The microstructure of the alloyed layers which were formed on the surface ofthe investigated hot work steel was examined using optical microscope. The tribological wear relationships usingpin-on-disc test were specified for surface layers subject to laser treatment, determining the friction coefficient,and mass loss of the investigated surfaces. X-ray diffraction (XRD technique was used to investigate crystallinestructure and phases in the layers.Findings: The metallographic investigations on light microscope show that during alloying the X40CrMoV5-1hot work tool steel with the WC, TaC and TiC powder layer the obtained run face is characteristic of the highroughness, multiple pores, irregularity, and flashes at the borders. The changes of the surface layers hardnessformed as a result of remelting and alloying with ceramic powders containing carbides are accompanied withthe increased tribological properties.Research limitations/implications: In order to evaluate with more detail the possibility of applying thesesurface layers in tools, further investigations should be concentrated on the determination of the thermal fatigueresistance of the layers.Practical implications: The alloyed layers which were formed on the surface of the hot work steel have shownsignificant improvement. Good properties of the laser treatment make these layers suitable for various technicaland industrial applications.Originality/value: Structural and tribological behaviour of surface layer achieved by alloying and remeltingusing high diode power laser and selected ceramic powders were compared.

  4. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Science.gov (United States)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  5. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Sheng-Jun Mao; Shi-Xiang Hou; Ru He; Liang-Ke Zhang; Da-Peng Wei; Yue-Qi Bi; Hui Jin

    2005-01-01

    AIM: To investigate the uptake difference between bovine serum albumin nanoparticle (BSA-NP) and bovine serum albumin nanoparticles with their surface modified byglycyrrhizin (BSA-NP-GL) and to develop a novel hepatocyte targeting BSA-NP-GL based on active targeting technology mediated by specific binding site of GL on rat cellular membrane. METHODS: Calcein loaded bovine serum albumin nanoparticles (Cal-BSA-NP) were prepared by desolvation process. Glycyrrhizin was conjugated to the surface reactive amino groups (SRAG) of Cal-BSA-NP by sodium periodate oxidization, which resulted in calcein-loaded bovine serum albumin nanoparticles with their surface modified by glycyrrhizin (Cal-BSA-NP-GL). The morphology of the two types of prepared nanoparticles (NP) was observed by transmission electron microscopy. The diameter of NP was measured with a laser particle size analyzer. The interaction between Cal-BSA-NP-GL and primary cultured hepatocytes was studied through cellular uptake experiments. The uptake amount of Cal-BSA-NPGL and Cal-BSA-NP by rat hepatocytes was determinedby fluorospectrophotometry. Uptake characteristics were investigated through experiments of competitive inhibition of specific binding site of GL. RESULTS: Both Cal-BSA-NP-GL and Cal-BSA-NP had regular spherical surfaces. The average diameter of CalBSA-NP-GL and Cal-BSA-NP was 77 and 79 nm respectively. The uptake amount of the two NP by hepatocytes reached its maximum at 2 h after incubation. The uptake amount of Cal-BSA-NP-GL by rat hepatocytes was 4.43-fold higher than that of Cal-BSA-NP. There was a significant difference in the uptake of Cal-BSA-NP-GL and Cal-BSA-NP by hepatocytes (P<0.01). The uptake of Cal-BSA-NP-GL was inhibited when GL was added previously to isolated rat hepatocytes, and the uptake of Cal-BSA-NP was not affected by GL.CONCLUSION: A binding site of GL is present on the surface of rat hepatocytes, BSA-NP-GL may be internalized via this site by hepatocytes and can be used as

  6. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions

    Directory of Open Access Journals (Sweden)

    Zhang W

    2014-09-01

    Full Text Available Wenji Zhang,1,3,* Xuedong Li,2,* Tiantian Ye,3 Fen Chen,3 Shihui Yu,3 Jianting Chen,3 Xinggang Yang,3 Na Yang,2 Jinsong Zhang,2 Jinlu Liu,2 Weisan Pan,3 Jun Kong2 1Department of Pharmaceutics, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, People’s Republic of China; 3Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China *These authors contributed equally to this work Abstract: This study was carried out to evaluate the ocular performance of a cationic Eudragit (EDU RS 100-coated nanostructured lipid carrier (NLC. The genistein encapsulated NLC (GEN-NLC was produced using the melt-emulsification technique followed by surface absorption of EDU RS 100. The EDU RS 100 increased the surface zeta potential from −7.46 mV to +13.60 mV, by uniformly forming a spherical coating outside the NLC surface, as shown by transmission electron microscopy images. The EDU RS 100 on the NLC surface effectively improved the NLC stability by inhibiting particle size growth. The obtained EDU RS 100-GEN-NLC showed extended precorneal clearance and a 1.22-fold increase in AUC (area under the curve compared with the bare NLC in a Gamma scintigraphic evaluation. The EDU RS 100 modification also significantly increased corneal penetration producing a 3.3-fold increase in apparent permeability coefficients (Papp compared with references. Draize and cytotoxicity testing confirmed that the developed EDU RS 100-GEN-NLC was nonirritant to ocular tissues and nontoxic to corneal cells. These results indicate that the NLC surface modified by EDU RS 100 significantly improves the NLC properties and exhibits many advantages for ocular use. Keywords

  7. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate

    Science.gov (United States)

    Wang, Lixia; Sun, Juncai; Kang, Bin; Li, Song; Ji, Shijun; Wen, Zhongsheng; Wang, Xiaochun

    2014-01-01

    A niobium carbide diffusion layer with a cubic NbC phase surface layer (∼6 μm) and a Nb and C diffusion subsurface layer (∼1 μm) is fabricated on the surface of AISI 304 stainless steel (304 SS) bipolar plate in a proton exchange membrane fuel cell (PEMFC) using plasma surface diffusion alloying. The electrochemical behaviour of the niobium carbide diffusion-modified 304 SS (Nb-C 304 SS) is investigated in simulated PEMFC environments (0.5 M H2SO4 and 2 ppm HF solution at 80 °C). Potentiodynamic, potentiostatic polarisation and electrochemical impedance spectroscopy measurements reveal that the niobium carbide diffusion layer considerably improves the corrosion resistance of 304 SS compared with untreated samples. The corrosion current density of Nb-C 304 SS is maintained at 0.058 μA cm-2 and 0.051 μA cm-2 under simulated anodic and cathodic conditions, respectively. The interfacial contact resistance of Nb-C 304 SS is 8.47 mΩ cm2 at a compaction force of 140 N cm-2, which is significantly lower than that of the untreated sample (100.98 mΩ cm2). Moreover, only a minor increase in the ICR of Nb-C 304 SS occurs after 10 h potentiostatic tests in both cathodic and anodic environments.

  8. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from UVI to UIV

  9. TESTING MODIFIED NEWTONIAN DYNAMICS WITH ROTATION CURVES OF DWARF AND LOW SURFACE BRIGHTNESS GALAXIES

    International Nuclear Information System (INIS)

    Dwarf and low surface brightness (LSB) galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and LSB galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a 0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a0, in the sense that lower surface brightness galaxies tend to have lower a0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a0 ∼ 0.7 x 10-8 cm s-2 is somewhat lower than derived from previous studies. Such lower fitted values of a0 could occur if external gravitational fields are important.

  10. Biomimetic Coating of Modified Titanium Surfaces with Hydroxyapatite Using Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Mohsin Nazir

    2015-01-01

    Full Text Available This study investigated the viability of coating commercially pure titanium (CPTi surfaces, modified via sandblasting and acid etching, with hydroxyapatite (HA/tricalcium phosphate coatings using a simulated body fluid (SBF solution. The samples were immersed in SBF from 3 to 7 days. The morphology and the chemistry of the HA/tricalcium phosphate coating were then analysed. Prior to immersion in SBF, the samples were sandblasted and acid etched to mimic the morphology and roughness of commercially available dental implants. The SBF aided in the formation of crystalline HA/tricalcium phosphate coatings on all the samples. The coatings were uniform and had roughness values higher than the underlying substrate. The highest roughness values for the coatings on the surfaces were obtained at 7 days of immersion in SBF with average Sa values of 2.9 ± 0.2 µm. The presence of HA/tricalcium phosphate on the surfaces was confirmed by the Scanning Electron Microscope (SEM, Energy Dispersive Spectrometer (EDS, the X-Ray Diffraction (XRD, and the Fourier Transform Infrared Spectrometer (FTIR analysis. This study shows that it is possible to obtain an adequate and uniform hydroxyapatite coating on pure titanium substrates in a shorter period of time with characteristics that favour the ultimate goal of implants therapy, that is, osseointegration.

  11. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines

    DEFF Research Database (Denmark)

    Janaszewska, Anna; Ciolkowski, Michal; Wróbel, Dominika;

    2013-01-01

    Modification of the surface groups of dendrimers is one of the methods to improve their biocompatibility. This article presents results of experiments related to the toxicity of a modified polyamidoamine (PAMAM) dendrimer of the fourth generation with 4-carbomethoxypyrrolidone surface groups (PAM...

  12. Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Singh Deepankar

    2008-01-01

    Full Text Available Abstract Polyamic acid, the precursor of polyimide, was used for the preparation of polyimide/multiwalled carbon nanotubes (MWCNTs nanocomposite films by solvent casting technique. In order to enhance the chemical compatibility between polyimide matrix and MWCNTs, the latter was surface modified by incorporating acidic and amide groups by chemical treatment with nitric acid and octadecylamine (C18H39N, respectively. While the amide-MWCNT/polyimide composite shows higher mechanical properties at low loadings (<3 wt%, the acid-MWCNT/polyimide composites perform better at higher loadings (5 wt%. The tensile strength (TS and the Young’s modulus (YM values of the acid-MWCNT/polyimide composites at 5 wt% MWCNT loadings was 151 and 3360 MPa, respectively, an improvement of 54% in TS and 35% in YM over the neat polyimide film (TS = 98 MPa; YM = 2492 MPa. These MWCNT-reinforced composites show remarkable improvement in terms of thermal stability as compared to that for pure polyimide film. The electrical conductivity of 5 wt% acid modified MWCNTs/polyimide nanocomposites improved to 0.94 S cm −1(6.67 × 10 −18 S cm−1for pure polyimide the maximum achieved so far for MWCNT-polyimide composites.

  13. Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination

    Science.gov (United States)

    Liu, Mingming; Xu, Li; Cheng, Weiqing; Zeng, Yu; Yan, Zhengyu

    2008-10-01

    A novel, sensitive and convenient determine technology based on the quenching of the fluorescence intensity of functionalized CdS quantum dots by sulfadiazine was proposed. Luminescent CdS semiconductor quantum dots (QDs) modified by thioglycollic acid (TGA) were synthesized with the microwave method. The modified CdS QDs are water-soluble, stable and highly luminescent. The possible mechanism for the reaction was also discussed. When sulfadiazine was added into the CdS QDs colloid solution, the surface of CdS QDs generates the electrostatic interaction in aqueous medium, which induces the quenching of fluorescence emission at 489 nm. Under optimum condition, the fluorescence intensity versus sulfadiazine concentration gave a linear response according Stern-Volmer equation with an excellent 0.9981 correlation coefficient. The linearity range of the calibration curve was 1.2 × 10 -5 to 2.13 × 10 -3 mol L -1. The limit of detection (3 δ) is 8.0 μmol L -1. The relative standard deviation for five determinations of 0.13 × 10 -3 mol L -1 sulfadiazine is 1.4%. The concentrations of sulfadiazine injections were determined by the proposed method with a satisfactory result.

  14. Simulation of physical sputtering of metal surface: certification of modified method of binary collisions

    International Nuclear Information System (INIS)

    A modified method of binary collisions and its application for simulation of metal surface sputtering is considered. The conventional methods possess an insufficient speed of response and incomplete adequacy to the experiment. The proposed model possesses a considerably higher speed of response and fuller account of factors affecting the spUttering process. A particular attention is given to the problem of experimental certification of the program. Using as an example physical sputtering of nickel and copper by nickel- and argon ions, respectively, a perfect agreement bitween model results and the experiment is shown: the sputtering coefficient dependence on the ion energy and incidence angle, angular- and energy distributions of sputtered atoms. Studies on prospects for using the new method are considered

  15. A generalized force-modified potential energy surface (G-FMPES) for mechanochemical simulations

    International Nuclear Information System (INIS)

    We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G** level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and The Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules are blue-shifted with increasing compressive 'pressure'. Some stationary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy minimum with a saddle point

  16. A generalized force-modified potential energy surface for mechanochemical simulations

    International Nuclear Information System (INIS)

    We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G∗∗ level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules are blueshifted with increasing compressive “pressure.” Some stationary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy minimum with a saddle point

  17. Production of octyl levulinate biolubricant over modified H-ZSM-5:Optimization by response surface methodology

    Institute of Scientific and Technical Information of China (English)

    Kakasaheb Y.Nandiwale; Sunil K.Yadava; Vijay V.Bokade

    2014-01-01

    The present study highlighted the use of modified H-ZSM-5 (Meso-HZ-5) as heterogeneous catalyst for the synthesis of octyl levulinate biolubricant by catalytic esterification of biomass derived renewable levulinic acid (LA) with n-octanol. The process variables such as catalyst loading (X1 ), n-octanol to LA molar ratio (X2 ) and reaction temperature (X3 ) were optimized through response surface methodology (RSM), using Box-Behnken model. Analysis of variance was performed to determine the adequacy and significance of the quadratic model. The yield of octyl levulinate was obtained to be 99%at optimum process parameters. The developed quadratic model was found to be adequate and statistically accurate with correlation value (R2) of 0.9971 to predict the yield of octyl levulinate biolubricant. The study was also extended on the validation of theoretical and experimental data, including catalyst reusability.

  18. A generalized force-modified potential energy surface for mechanochemical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gopinath, E-mail: Gopinath.Subramanian@usm.edu [School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39402 (United States); Mathew, Nithin [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Leiding, Jeff [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-10-07

    We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G{sup ∗∗} level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules are blueshifted with increasing compressive “pressure.” Some stationary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy minimum with a saddle point.

  19. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic.

    Science.gov (United States)

    Guarda, G B; Correr, A B; Gonçalves, L S; Costa, A R; Borges, G A; Sinhoreti, M A C; Correr-Sobrinho, L

    2013-01-01

    SUMMARY Objectives : The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods : A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3-air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6-acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm(2) (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results : The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1-3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4-6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and

  20. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Cappelletti, Piergiulio; Langella, Alessio; Mercurio, Mariano; Serri, Carla; Biondi, Marco; Mayol, Laura

    2015-06-01

    In view of zeolite potentiality as a carrier for sustained drug release, a clinoptilolite-rich rock from California (CLI_CA) was superficially modified with cetylpyridinium chloride and loaded with diclofenac sodium (DS). The obtained surface modified natural zeolites (SMNZ) were characterized by confocal scanning laser microscopy (CLSM), powder X-ray diffraction (XRPD) and laser light scattering (LS). Their flowability properties, drug adsorption and in vitro release kinetics in simulated intestinal fluid (SIF) were also investigated. CLI_CA is a Na- and K-rich clinoptilolite with a cationic exchange ability that fits well with its zeolite content (clinoptilolite=80 wt%); the external cationic exchange capacity is independent of the cationic surfactant used. LS and CLSM analyses have shown a wide distribution of volume diameters of SMNZ particles that, along with their irregular shape, make them cohesive with scarce flow properties. CLSM observation has revealed the localization of different molecules in/on SMNZ by virtue of their chemical nature. In particular, cationic and polar probes prevalently localize in SMNZ bulk, whereas anionic probes preferentially arrange themselves on SMNZ surface and the loading of a nonpolar molecule in/on SMNZ is discouraged. The adsorption rate of DS onto SMNZ was shown by different kinetic models highlighting the fact that DS adsorption is a pseudo-second order reaction and that the diffusion through the boundary layer is the rate-controlling step of the process. DS release in an ionic medium, such as SIF, can be sustained for about 5h through a mechanism prevalently governed by anionic exchange with a rapid final phase. PMID:25919666

  1. In vitro properties of surface-modified solid lipid microspheres containing an antimalarial drug:halofantrine

    Institute of Scientific and Technical Information of China (English)

    Anthony A Attama; Collins N Igbonekwu

    2011-01-01

    Objective:To formulate and evaluatein vitro, surface-modified solid lipid microspheres containing halofantrine using lipid matrix formed from goat fat and a phospholipid (P90H). Methods: The model drug, halofantrine in an increasing concentration of1%, 2%, 3%, 4% and5% w/w was incorporated into surface-modified solid lipid microspheres formulated by hot homogenization. Effect of drug concentration on the encapsulation efficiency was studied. The dispersion was evaluated using particle size, particle morphology, pH and encapsulation efficiency. The drug formulation with highest encapsulation efficiency was selected and used for the release studies and compared with the release from a commercial dosage form (Halfan® 250 mg tablet, Glaxo-Smithkline, Mayenne France) using simulated gastric fluid (SGF pH1.2), simulated intestinal fluid (SIF pH7.2) and phosphate buffer (pH6.8) as biorelevant media. Results were analyzed statistically and the level of significance was taken to beP<0.05). Results:Discrete and spherical solid lipid microspheres were produced. The particle size of the dispersion was low (32.48-33.87 μm) with minimal particle growth and high encapsulation efficiencies(86.8%-91.0%) after3 months. The pH of the microspheres dispersion changed appreciably after3 months.In vitro release result obtained revealed sustained and controlled drug release from the lipid microspheres compared with the tablet dosage form.Conclusions:Formulation of halofantrine as solid lipid microspheres presents a better alternative to the conventional tablet formulation as thein vitro dissolution of the highly lipophilic halofantrine was highly improved.

  2. Bright reddish-orange emission and good piezoelectric properties of Sm2O3-modified (K0.5Na0.5)NbO3-based lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Reddish orange-emitting 0.948(K0.5Na0.5)NbO3-0.052LiSbO3-xmol%Sm2O3 (KNN-5.2LS-xSm2O3) lead-free piezoelectric ceramics with good piezoelectric properties were fabricated in this study, and the photoluminescence and electrical properties of the ceramics were systematically studied. Results showed that Sm2O3 substitution into KNN-5.2LS induces a phase transition from the coexistence of orthorhombic and tetragonal phases to a pseudocubic phase and shifts the polymorphic phase transition (PPT) to below room temperature. The temperature stability and fatigue resistance of the modified ceramics were significantly improved by Sm2O3 substitution. The KNN-5.2LS ceramic with 0.4 mol. % Sm2O3 exhibited temperature-independent properties (25–150 °C), fatigue-free behavior (up to 106 cycles), and good piezoelectric properties (d33* = 230 pm/V, d33 = 176 pC/N, kp = 35%). Studies on the photoluminescence properties of the samples showed strong reddish-orange emission upon blue light excitation; these emission intensities were strongly dependent on the doping concentration and sintering temperature. The 0.4 mol. % Sm2O3-modified sample exhibited temperature responses over a wide temperature range of 10–443 K. The maximum sensing sensitivity of the sample was 7.5 × 10−4 K at 293 K, at which point PPT occurred. A relatively long decay lifetime τ of 1.27–1.40 ms and a large quantum yield η of 0.17–0.19 were obtained from the Sm-modified samples. These results suggest that the KNN-5.2LS-xSm2O3 system presents multifunctional properties and significant technological potential in novel multifunctional devices

  3. Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate polymer surfaces

    Directory of Open Access Journals (Sweden)

    Elena P Ivanova

    2008-09-01

    Full Text Available Elena P Ivanova1, Natasa Mitik-Dineva1, Radu C Mocanasu1, Sarah Murphy1, James Wang2, Grant van Riessen3, Russell J Crawford11Faculty Life and Social Sciences; 2IRIS, Swinburne University of Technology, Hawthorn, Victoria, Australia; 3Centre for Materials and Surface Science, La Trobe University, Melbourne, Victoria, AustraliaAbstract: This study reports the adhesion behavior of two bacterial species, Vibrio fischeri and Escherichia coli, to the photoresistant poly(tert-butyl methacrylate (P(tBMA polymer surface. The data has demonstrated that ultraviolet irradiation of P(tBMA was able to provide control over bacterial adhesion tendencies. Following photolithography, several of the surface characteristics of P(tBMA were found to be altered. Atomic force microscopy analysis indicated that photolithographically modified P(tBMA (henceforth termed ‘modified polymer’ appeared as a ‘nanosmooth’ surface with an average surface roughness of 1.6 nm. Although confocal laser scanning microscopy and scanning electron microscopy analysis clearly demonstrated that V. fischeri and E. coli presented largely different patterns of attachment in order to adhere to the same surfaces, both species exhibited a greater adhesion propensity towards the ‘nanosmooth’ surface. The adhesion of both species to the modified polymer surface appeared to be facilitated by an elevated production of extracellular polymeric substances when in contact with the substrate.Keywords: poly(tert-butylmethacrylate polymeric surfaces, surface nanotopography, bacterial attachment, extracellular polymeric substances

  4. An evaluation of the impact of surface coatings on the heat transfer in high temperature ceramic recuperators

    International Nuclear Information System (INIS)

    Engineering ceramics, particularly silicon carbide (SiC), are increasingly being used as materials in high temperature recuperators for preheating combustion air from furnace exhaust gases. As typical flue gases from these furnaces may contain sodium, potassium, halides, etc. that may attack SiC, protective coatings, such as alumina, zirconia, and others, have been investigated as a means of increasing the life and reliability of these SiC recuperators. This paper presents a study to determine the effect of coating properties, such as emissivity and thermal conductivity, on the heat transfer performance of these high temperature ceramic recuperators

  5. Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces

    Directory of Open Access Journals (Sweden)

    Gbureck Uwe

    2007-07-01

    Full Text Available Abstract Background Chemical bonding of the drug onto surfaces by means of spacer molecules is accompanied with a reduction of the biological activity of the drug due to a constricted mobility since normally only short spacer molecule like aminopropyltrimethoxysilane (APMS are used for drug coupling. This work aimed to study covalent attachment of heparin to titanium(oxide surfaces by varying the length of the silane coupling agent, which should affect the biological potency of the drug due to a higher mobility with longer spacer chains. Methods Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl-propylamine (APMS, N- [3-(Trimethoxysilylpropyl]ethylenediamine (Diamino-APMS and N1- [3-(Trimethoxy-silyl-propyl]diethylenetriamine (Triamino-APMS. The amount of bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the tolidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption to the modified surfaces was researched using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring technique. Results Zeta-potential measurements confirmed the successful coupling reaction; the potential of the unmodified anatase surface (approx. -26 mV shifted into the positive range (> + 40 mV after silanisation. Binding of heparin results in a strongly negatively charged surface with zeta-potentials of approx. -39 mV. The retaining biological activity of heparin was highest for the spacer molecule Triamino-APMS. QCM-D measurements showed a lower viscosity for adsorbed fibrinogen films on heparinised surfaces by means of Triamino-APMS. Conclusion The remaining activity of heparin was found to be highest for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug

  6. Comparative Evaluation of the Antibacterial Efficacy of Type II Glass lonomer Cement, Type IX Glass lonomer Cement, and AMALGOMER™ Ceramic Reinforcement by Modified “Direct Contact Test”: An in vitro Study

    Science.gov (United States)

    Assudani, Harsha G; Patil, Vidyavathi; Kukreja, Pratibha; Uppin, Chaitanya; Thakkar, Prachi

    2016-01-01

    ABSTRACT Background: Streptococcus mutans (ATCC25175) has a profound effect on the incidence of dental decay in the human population. Many studies have been performed to assess the antimicrobial activity of different cements. However, little or no information is available about the antibacterial properties of Type II glass ionomer cement (GIC), Type IX GIC, and AMALGOMER™ ceramic reinforcement (CR). Aim: To comparatively evaluate the antibacterial activity of Type II GIC, Type IX GIC, and AMALGOMER™ CR by modified direct contact test. Materials and methods: The total sample size was 72 which was divided into four study groups. Six wells were coated by each: Type II GIC, Type IX GIC, AMALGOMER™ CR, and control group (only S. mutans). Statistical analysis was done using analysis of variance and the intergroup comparison was done using post hoc Tukey test. Results: AMALGOMER™ CR was found to have a better antibacterial effect as compared with Type II and IX GIC. Conclusion: AMALGOMER™ CR can serve as a valuable cement in pediatric dentistry due to its anticariogenic property. How to cite this article: Hugar SM, Assudani HG, Patil V, Kukreja P, Uppin C, Thakkar P. Comparative Evaluation of the Antibacterial Efficacy of Type II Glass lonomer Cement, Type IX Glass Ionomer Cement, and AMALGOMER™ Ceramic Reinforcement by Modified “Direct Contact Test”: An in vitro Study. Int J Clin Pediatr Dent 2016;9(2):114-117. PMID:27365930

  7. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  8. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  9. Modifying the surface electronic properties of YBa2Cu3O7-delta with cryogenic scanning probe microscopy

    OpenAIRE

    Urazhdin, S.; Neils, W. K.; Tessmer, S. H.; Birge, Norman O.; Van Harlingen, D. J.

    2003-01-01

    We report the results of a cryogenic study of the modification of YBa2Cu3O7-delta surface electronic properties with the probe of a scanning tunneling microscope (STM). A negative voltage applied to the sample during STM tunneling is found to modify locally the conductance of the native degraded surface layer. When the degraded layer is removed by etching, the effect disappears. An additional surface effect is identified using Scanning Kelvin Probe Microscopy in combination with STM. We obser...

  10. Load-deflection and surface properties of coated and conventional superelastic orthodontic archwires in conventional and metal-insert ceramic brackets

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2012-01-01

    Full Text Available Background: Properties of coated archwires, which have been introduced for esthetic demands during orthodontic treatments, along with the use of tooth-colored brackets, are not clear. The aim of this study is to compare the load-deflection and surface properties of coated superelastic archwires with conventional superelastic archwires in conventional and metal-insert ceramic brackets. Materials and Methods: In this experimental study, 3 types of archwires including ultraesthetic polycoated, ultraesthetic epoxyresin coated and conventional (uncoated superelastic nickel-titanium (NiTi archwires were used in each of 2 types of brackets including conventional and metal-insert ceramic. To simulate oral environment, all specimens were incubated in artificial saliva using thermocycling model and then were tested in three-bracket bending test machine. Loading and unloading forces, plateau gap and end load deflection point (ELDP were recorded. Archwires were investigated with a stereomicroscope before and after the experiment. Two-way ANOVA and Tukey tests were used at P<0.05. Results: Epoxyresin archwires produced lower forces (19 to 310 gr compared to polycoated (61 to 359 gr and NiTi (61 to 415 gr (P<0.0001. The maximum ELDP (0.43 mm was observed in epoxyresin archwires (P<0.001. Coatings of some epoxyresin wires were torn and of polycoated wires peeled off. Conventional ceramic bracket produced higher loading forces with polycoated and NiTi archwires and lower unloading forces with all 3 types of archwires compared to metal-insert type (P<0.05. Conclusion: Epoxyresin-coated archwire had the lowest force and highest ELDP. Coatings were not durable in these experimental conditions. Conventional ceramic bracket produced higher frictional force compared to metal-insert type.

  11. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-01-01

    Full Text Available Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM, and (ii test the model's performance in simulating actual evapotranspiration (ET, soil moisture and surface runoff for the coterminous United States (US. Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ DGVM instead of dynamically simulating them. We then ran LH using historical (1982–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01 in the Everglades of Florida over the years 1996–2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01 with the observed over the years 1984–2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52 with observed values over the years 1982–2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating

  12. Quantitative and Qualitative Analysis of Surface Modified Cellulose Utilizing TGA-MS

    Directory of Open Access Journals (Sweden)

    Daniel Loof

    2016-05-01

    Full Text Available With the aim to enhance interfacial adhesion of a hydrophobic polymer matrix and cellulosic fibers and fillers, chemical surface modifications with silane coupling agents are performed. Thermogravimetric analysis (TGA could be used to determine the degree of surface functionalization. However, similar thermal properties of treated and untreated cellulose hamper a precise determination of silane loading. This contribution deals with quantitative determination of silane loading combining both TGA and elemental analysis. Firstly, silane modified celluloses were studied by FT-IR, Raman, solid state NMR spectroscopy, and polarized light microscopy in order to determine functional groups and to study the impact of chemical treatment on cellulose morphology. Secondly, thermal stability and pyrolysis processes were studied by TG-MS analysis. In order to determine the exact silane loading, the mass percentages of the appropriate elements were quantified by elemental analysis and correlated with the charred residues determined by TGA yielding a linear dependency. With that correlation, it was possible to determine silane loadings for additional samples utilizing simple TGA measurements. The main advantage of that approach is that only one calibration is necessary for routine analyses of further samples and TGA-MS coupling gives additional information on thermal stability and pyrolysis routes, simultaneously.

  13. Polysiloxane surface modified with bipyrazolic tripodal receptor for quantitative lead adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Radi, Smaail, E-mail: radi_smaail@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Equipe de Chimie Bio-organique et Macromoleculaire, Unite Associee au CNRST URAC 25, Departement de Chimie, Faculte des Sciences, Universite Med I, BP 524, 60 000 Oujda (Morocco); Tighadouini, Said; Toubi, Yahya [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Equipe de Chimie Bio-organique et Macromoleculaire, Unite Associee au CNRST URAC 25, Departement de Chimie, Faculte des Sciences, Universite Med I, BP 524, 60 000 Oujda (Morocco); Bacquet, Maryse [Universite des Sciences et Technologies de Lille, UMET: Unite Materiaux et Transformations UMR8207, Equipe Ingenierie des Systemes Polymeres, Batiment C6 salle 119-59655 Villeneuve d' Ascq (France)

    2011-01-15

    A new silica gel compound modified N,N-bis(3,5-dimethylpyrazol-1-ylmethyl) amine (SiN{sub 2}Pz) was synthesized and characterized by elemental analysis, FT-IR, {sup 13}C NMR of the solid state, nitrogen adsorption-desorption isotherm, BET surface area and BJH pore sizes. The new surface exhibits good chemical and thermal stability determined by thermogravimetry curves (TGA). The effect of pH and stirring time on the adsorption of Pb(II) were studied. The process of metal retention was followed by batch method and the optimum pH value for the quantitative adsorption of this toxic metal ion was 7. At this pH value, the new functionalized polysiloxane presents further improvements and shows higher affinity (123 mg of Pb{sup 2+}/g of silica) for the effective adsorption of Pb(II) compared to others described sorbents. The extracted amounts of Pb(II) were determined by atomic absorption measurements.

  14. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    Science.gov (United States)

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; Del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-04-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  15. Surface-modified CAU-10 MOF materials as humidity sensors: impedance spectroscopic study on water uptake.

    Science.gov (United States)

    Weiss, Alexander; Reimer, Nele; Stock, Norbert; Tiemann, Michael; Wagner, Thorsten

    2015-09-01

    Metal-organic frameworks (MOFs) are crystalline microporous materials with tunable chemical and physical properties. By combining various metal clusters with different interconnecting organic linkers, the pore structure, crystallinity, as well as the surface properties can be modified. In the present work, modification of the organic linker molecules is utilized to synthesize CAU-10 type MOFs with variable affinity of the pore surface to water. In principle, this should influence the accessibility of the pores for water vapor and therefore offer a tool to control its sorption properties. For a deeper understanding we studied the water sorption characteristics and compared the results to the conductive and dielectric properties studied by impedance spectroscopy. Spectra in a wide frequency range from 1 mHz to 1 MHz were recorded. Data analysis is performed using the Havriliak-Negami model. The MOFs are also tested as sensitive layers for capacitive humidity sensing by correlating the change in permittivity of the materials with the amount of physisorbed water. Such an MOF-based sensor was tested with respect to environmental monitoring and compared to a commonly used commercial humidity sensor. PMID:26227316

  16. Sulfated N-Myristoyl Chitosan as a Surface Modifier of Liposomes.

    Science.gov (United States)

    Yoshioka, H; Kazama, S; Tanizawa, H; Hirota, S; Kamiya, M

    1993-01-01

    Sulfated N-myristoyl chitosan (S-M-chitosan), which is strongly electrolytic and water soluble as well as partly hydrophobic due to long alkyl chains, was synthesized to be used as a liposome-surface modifier. The effects of the treatment with an aqueous S-M-chitosan solution on the stability of the liposome suspension prepared from hydrogenated egg yolk lecithin were examined on several points. A suspension of large liposomes prepared by the Bangham method was precipitated by standing for a day, but the precipitation was restrained when the sample was treated with S-M-chitosan solution. The turbidity of a small liposome suspension was changed greatly after the suspension was freeze-thawed, but the change was small in the treated sample. A similar result was obtained when the suspension was freeze-dried following the addition of water. These results come from the facts that the surface of the liposome was coated with S-M-chitosan and negatively charged as ascertained by the measurement of zeta potential and the electron microscopic observation. The repulsive force between charges was considered to be the origin of the stabilization. It was also shown from an ESR experiment that the treatment suppressed the elution rate of the material incorporated into the liposomes. PMID:27280984

  17. Automatic detection method for mura defects on display film surface using modified Weber's law

    Science.gov (United States)

    Kim, Myung-Muk; Lee, Seung-Ho

    2014-07-01

    We propose a method that automatically detects mura defects on display film surfaces using a modified version of Weber's law. The proposed method detects mura defects regardless of their properties and shapes by identifying regions perceived by human vision as mura using the brightness of pixel and image distribution ratio of mura in an image histogram. The proposed detection method comprises five stages. In the first stage, the display film surface image is acquired and a gray-level shift performed. In the second and third stages, the image histogram is acquired and analyzed, respectively. In the fourth stage, the mura range is acquired. This is followed by postprocessing in the fifth stage. Evaluations of the proposed method conducted using 200 display film mura image samples indicate a maximum detection rate of ˜95.5%. Further, the results of application of the Semu index for luminance mura in flat panel display (FPD) image quality inspection indicate that the proposed method is more reliable than a popular conventional method.

  18. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Science.gov (United States)

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  19. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  20. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    Science.gov (United States)

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona. PMID:25961528