WorldWideScience

Sample records for ceramic superconducting bi

  1. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  2. Studies on Bi-Sr-Ca-Cu-O glasses and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Singh, R.; Zacharias, E.

    1991-01-01

    Bi-Sr-Ca-Cu-O glasses and glass ceramics of various compositions were synthesised. The glass transition temperature varies from 396 to 422degC depending on the glass composition. The bulk glass ceramics of 4334, 4336, 2223 and 4246 compositions show superconductivity when the corresponding glass samples were heat-treated in air at 820degC for 3, 9, 12 and 24 h respectively. X-ray diffraction studies show that the superconducting phase present in all these compositions is Bi 2 Sr 2 Ca 1 Cu 2 O x . The 4334 glass ceramic is almost a single-phase material with a preferred orientation such that the c axis is normal to the sample surface. The 2223 glass ceramic has a higher T c (onset) than the other three compositions indicating the presence of high T c phase (110 K) also. ESR studies on the glass samples indicate the existence of Cu 2+ . The effect of heat treatment on ESR shows that the intensity of resonance decreases with increase in heat-treatment duration. This effect is more pronounced for the 4334 and 2223 compositions. The advantages of synthesizing superconducting materials by glass route are discussed in view of practical applications. (author). 9 refs., 6 figs

  3. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    International Nuclear Information System (INIS)

    Azlan Abdul Rahman; Nasri Abdul Hamid; Abdul Aziz Mohamed; Mohd Shahrul Nizam Abdullah; Samsul Isman; Hidayah Zainal

    2013-01-01

    Full-text: For practical applications of high-temperature superconductor ceramics, the compounds must be able to sustain extreme mechanical stress and external magnetic field. Bi-2212 superconductor is one of the existing superconductors that are commonly used in various applications. Improvement in the microstructure enhanced the connectivity of the adjacent grains within the superconducting grains, and as such improved the mechanical strength of the ceramics. The ability of the superconductor ceramics to sustain superconducting properties in external magnetic field is also required. The compounds must be able to maintain high transport critical current density (Jc) in magnetic field. Another potential application of superconductors is at the nuclear facilities. Thus, study on the impact of radiation exposure on the mechanical and superconducting properties is very important to gauge the viability of superconductor ceramics in such environment. In this study, the mechanical and superconducting properties between exposure and non-irradiated samples are compared. Characterization will be done by the temperature dependence on electrical resistance measurements, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and measurements of transport critical current (Jc) dependence on temperature in magnetic field. (author)

  4. Effect of lead addition on the formation of superconducting phases in Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Martinelli, A.E.

    1991-01-01

    Superconducting ceramics with starting composition Bi 2 - x Pb x Sr 2 Ca 2 Cu 3 O y (0,0 ≤ X ≤ 0,6) were prepared in order to investigate the effects of partial substitution of Pb for Bi and sintering time and atmosphere in the formation of superconducting phases. For all samples X-ray diffraction analyses were performed to estimate the amount of superconducting phases; superconductivity was analysed by dc electrical resistance and ac magnetic susceptibility measurements. The main results show that: a) the longer the sintering time (up to 168 h), the larger the volume fraction of superconducting phases with critical temperature (T c ) greater than the temperature of nitrogen liquefaction; b) by partially substituting Pb for Bi it is possible to restrain the formation of 2212 phase (T c = 80 K) and to enhance the amount of 2223 phase (T c = 105 K); C) a heat treatment under oxygen atmosphere before sintering enhances the formation of 2223 phase. (author)

  5. Superconducting glass-ceramics in BiSrCaCu2Al0.5Ox---Comparison between rod and powder compacted specimens

    International Nuclear Information System (INIS)

    Hirata, K.; Abe, Y.

    1991-01-01

    Superconducting properties are studied for glass-ceramics which were prepared by reheating glass rods and the glass powder compacts in the BiSrCaCu 2 Al 0.5 O x system, respectively. The glass-ceramic rod specimens obtained by reheating rod glass at 800--830 degree C for 50 h have a T c (R=0) of 85 K, while the disk specimens obtained by reheating the powered glass compacts in the same way do not exhibit superconductivity above 77 K. This difference in superconductivity between the specimens is discussed in terms of crystallization process and the amount of oxygen absorption of the specimens during heating

  6. Synthesis of the phase with T sub c =110 K in Bi(Pb)-Sr-Ca-Cu-O superconducting ceramics. Sintez fazy T sub c =110 K sverkhprovodyashchej keramiki sostava Bi(Pb)-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Dubovitskij, A V; Makarov, E F; Makova, M K; Merzhanov, V A; Topnikov, V N [AN SSSR, Moscow (USSR). Inst. Khimicheskoj Fiziki

    1991-05-01

    Synthesis of 110 K single-phase bismuth ceramics (BiPb){sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub x} was conducted in narrow temperature and time range. Diffusion of bismuth ions is proposed to be the decisive factor of synthesis of bismuth ceramics. The diffusion depends on prehistory of basic burden preparation and on its dispersivity and homogeneity in particluar. Optimal time of synthesis for lead doped ceramics of 2223 composition, synthesized from initial nitrate components, is equal to 65 h at 850 deg C. The role of Pb{sup 2+} ions is probably reduced to decrease of diffusion mobility of Bi{sup 3+} ions over the bismuth sublattice. Ceramics doping with CdO and CdCl{sub 2} compounds instead of lead stabilizes superconductivity in bismuth ceramics, but with worth superconducting parameters.

  7. Oxygen stoichiometry, superconductivity and structure of the Bi-2212 ceramics after thermal treatment in the inert atmosphere

    International Nuclear Information System (INIS)

    Bratukhin, P.V.; Aksenova, T.D.; Shavkin, S.V.; Komarov, A.O.; Voronkov, S.A.; Mozhaev, A.P.

    1993-01-01

    A complex study of the stoichiometry and superconducting properties has been performed as well as an X-ray structure analysis of Bi 1.6 Pb 0.4 Sr 2 Ca 1 Cu 2 O x ceramic samples after thermal treatment in the helium atmosphere. Annealing has been found to result in the reduction of the oxygen coefficient followed by the critical temperature rise and the decrease of the unit cell parameters which sharply distinguishes Bi2212 from Y123. Anisotropic widening of diffraction lines due to monoclinic distortions has been detected. Correlations between the monoclinic angle and the critical temperature have been disclosed. Structural changes in Bi2122 are 30-100 times smaller than in the Y123 structure under similar changes in T c

  8. Electronic structure of Pr doped into superconducting Bi-Pb-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Egorov, A.I.; Karazhanova, G.I.; Smirnov, Yu.P.; Sovestnov, A.E.; Tyunis, A.V.; Shaburov, V.A.

    1992-07-01

    The shift of K α 1 and K β 1 X-ray lines of Pr in HTS-ceramic Bi 1.7 Pb 0.3 Sr 2-x Pr x Ca 2 Cu 3 O y (0,10≤x≤0,50, refer to PrF 3 ) are measured experimentally. The valence m(x), the charge q(x) and the 4f(x)-, 5d(x)-levels population of Pr are determined from experimental shifts. It is found that the Pr valence is near 3; the small valence increasing m≅3,04 at x=0,1 is observed. The small of Pr 5d-electron localization in ceramics in comparison with PrF 3 is revealed (∼0,1-0,2 5d-electron per Pr-atom). The probable cause of the superconductivity suppression in Y 1-x Pr xB a 2 Cu 3 O 7-δ system is discussed. 26 refs.; 6 figs.; 1 tab

  9. Effect of Pb and Ag additions on electrical properties Bi2Sr2Ca2Cu3Ox superconductive ceramics

    International Nuclear Information System (INIS)

    Reddi, B.V.; Uskov, E.M.

    1990-01-01

    The influence of Pb and Ag additions on the electrical properties of Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting ceramics has been studied by Hall method. It was found that the Pb additions has more influence on the sample characteristics than Ag. It was found, that Hall EMF at 77 K equal to zero in the samples having some residue resistance

  10. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Ozmanyan, Kh.R.; Sandomirskij, B.B.

    1988-01-01

    A superconducting transition with T c0 =82-95 K and T c (R=0)=82-72 K was observed in volumetric and film Bi(Sr 1-x Ca x ) 2 Cu 3 O y samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured

  11. Superconductivity in Bi-Sr-Ca-Cu-O bulk and film ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanian, KH R; Sandomirskii, B B

    1988-07-01

    A superconducting transition with Tc0 = 82-95 K and Tc(R = 0) = 82-72 K was observed in Bi(Sr/1-x/Ca/x/)2Cu3O(y) bulk and film specimens obtained via a solid-phase reaction. Temperature dependences of the resistance, critical current, and magnetic susceptibility were measured.

  12. Conductivity and superconductivity of (Bi,Pb)-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Gazda, M.; Kusz, B.; Klimczuk, T.; Natali, R.; Stizza, S.

    2007-01-01

    The (Bi,Pb)-Sr-Ca-Cu-O glass-ceramics may be considered as disordered metal and superconductor. Depending on the heat treatment conditions the materials are either composed of the oval grains of the 2212 or 2201 phases embedded in the insulating matrix or they mainly contain the 2212 plate-like crystallites weakly connected one with another. The materials have large resistivity and usually large negative temperature coefficient of resistivity (TCR). The granular and disordered character of the materials is also reflected in their superconducting properties. Both the normal-state and superconducting properties correlate one with another. The glass-ceramic samples were obtained by annealing the amorphous solid at temperatures between 840 and 860 deg. C. The measurements of the temperature dependence of resistivity in annealed samples were carried out with the conventional four-terminal method in a temperature range from 3 to 300 K

  13. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanyan, Kh R; Sandomirskij, B B

    1988-07-10

    A superconducting transition with T/sub c0/=82-95 K and T/sub c/(R=0)=82-72 K was observed in volumetric and film Bi(Sr/sub 1-x/Ca/sub x/)/sub 2/Cu/sub 3/O/sub y/ samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured.

  14. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990. Ceramic transactions. Vol. 18

    International Nuclear Information System (INIS)

    Nair, K.M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A.S.

    1991-01-01

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics

  15. Grain boundaries and defects in superconducting Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Ramesh, R.; Bagley, B.G.; Tarascon, J.M.; Green, S.M.; Rudee, M.L.; Luo, H.L.

    1990-01-01

    Defects and structural interfaces in superconducting Bi-Sr-Ca-Cu-O have been characterized by transmission electron microscopy. The superconducting phase exhibits frequent variations in the stacking sequence (polytypoids). Dislocations, observed inside the grains, either introduce or accommodate the shear in the a-b plane and the local composition fluctuations. In general, the grains exhibit a platelike morphology with the a-b plane as the grain boundary plane. Grain boundaries along the short edge are generally disordered, whereas those near the long edge generally have a thin layer of the lower T c polytypoid. Coherent intragranular boundaries are also observed

  16. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  17. Quenching effect on properties of Bi-Sr-Ca-Cu-O superconducting ceramics of various composition

    International Nuclear Information System (INIS)

    Amitin, E.B.; Gromilov, S.A.; Naumov, V.N.; Royak, A.Ya.; Starikov, M.A.

    1989-01-01

    Bismuth ceramics quenching effect on superconducting properties of samples of various composition is investigated. Two types of quenching effect on sample properties are detected: an increase of superconducting transition temperature T c by 15-20 K; broadening of temperature interval of the phase transition without anynatable T c displacement. X ray diffraction investigations have not detected sufficient differences in diffraction patterns of quenched and non-quenched samples. Within the limits of composition analysis by oxygen (±3%) no change of its content prior to and after quenching is detected. A correlation between the presence of an amorphous phase in a sample and the type of quenching effect is observed: T c increases in ceramics where an amorphous component is detected

  18. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  19. Kinetics and thermodynamics of ceramic/metal interface reactions related to high T(sub c) superconducting applications

    Science.gov (United States)

    Notis, Michael R.; Oh, Min-Seok

    1990-01-01

    Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.

  20. Effect of lead content on nonstoichiometric Bi2-xPbySr2Ca2Cu3Oδ ceramic superconductors

    International Nuclear Information System (INIS)

    Diaz-Valdes, E.; Pacheco-Malagon, G.; Contreras-Puente, G.; Mejia-Garcia, C.; Andrade-Garay, G.; Ortiz-Lopez, J.; Conde-Gallardo, A.; Falcony, C.

    1993-01-01

    Ceramic superconducting samples of the type Bi 2-x Pb y Sr 2 Ca 2 Cu 3 O δ were processed with a nonstoichiometric content of Bi and Pb (x≠y) with respect to the 2223 phase in this system. The resistance vs. temperature characteristics and the presence of the 2223 and 2212 phases as a function of the sample preparation conditions and the lead content (Bi/Pb ratio) are reported. The growth of unwanted phases such as PbO was observed for those samples with a high content of Pb (y=0.9) and Bi (x=0.1). (orig.)

  1. Formation peculiarities of superconducting Bi-Sr-Ca -cuprates from glass ceramic quenched melts

    International Nuclear Information System (INIS)

    Furmakova, O.E.; Zinov'ev, S.Yu.; Glushkova, V.B.; Bugakov, A.G.; Sulejmanov, S.Kh.

    1992-01-01

    Specimens of varying composition of the Bi-Sr-Ca-Cu-O system, X-ray amorphous Alakes and glass ceramic ingots were prepared by means of different rate quenching of melts. Crystallization temperatures of flakes were determined and sequence of phase formation in both types of specimens during annealing was studied. Microstructure and distribution of elements by volume of specimen in initial and annealed ingot were investigated

  2. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  3. Density and critical current of metal-sheathed superconducting YBa2Cu3Oy ceramics deformed by hydroextrusion and subsequent drawing-rolling

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Gnesin, B.A.; Snegirev, A.A.

    1994-01-01

    The critical-current density j c in ceramic superconductors is strongly dependent on texture, which is determined by the orientation of ceramic grains with respect to the specimen axes and by the misalignment between grains. Y ceramics with prolate grains aligned parallel to the long axis of the specimen were obtained by melt solidification. Such ceramics exhibited j c = 18500 A/cm 2 at 77 K in zero magnetic field. Texturing was also achieved by rolling Ag-sheathed powder of superconducting ceramics. This method ensured critical current densities (2-7) x 10 3 A/cm 2 in Y, Bi, and Tl ceramics. In flat ceramic samples, the grains of a superconducting phase were oriented in such a way that the crystallographic c axis was perpendicular to the rolling plane. In this work, the authors studied the effect of rolling deformation on the current-carrying capacity j c and density p of metal-sheathed YBa 2 Cu 3 O y ceramics that were first subjected to hydroextrusion and drawing at ∼20, 550, and 700 degrees C. The data obtained for j c and p were compared with the texture factor

  4. Structural properties of superconducting Bi-2223/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalck Andersen, L.

    2001-05-01

    The structural properties of silver clad high-T{sub c} superconducting ceramic tapes of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) have been investigated by means of synchrotron X-ray diffraction (including the 3DXRD microscope setup), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). By synchrotron X-ray diffraction in situ studies of the phase development during the transformation of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} (Bi-2212) into Bi-2223, the stoichiometry changes and the texture have been performed during annealing in 8% O{sub 2} and in air. Furthermore, an annealing with two high temperature cycles has been performed to study the equilibrium phenomena. During heating (Ca,Sr){sub 2}PbO{sub 4} decomposes at temperatures between 700 deg. C and 840 deg.C. Simultaneously, the Bi-2212 lattice contracts, indicating an incorporation of Pb. Moreover, the grain mis-alignment decreases significantly. In air we have observed that Bi-2212 partly dissociates into (Ca,Sr){sub 2}CuO{sub 3} and a liquid at temperatures above 812 deg. C. At the annealing temperature Bi-2212 and (Ca,Sr){sub 2}CuO{sub 3} react with the liquid to form Bi-2223. The transformation mechanism is discussed. During cooling below {approx}750 deg.C (Ca,Sr){sub 2}CuO{sub 3} and the liquid mainly transform into Bi-2201. Below {approx}780 deg. C Bi-2223 decomposes to 3221. In addition, a two-step cooling experiment and a decomposition study have been performed in 8% O{sub 2}. By TEM the grain and colony size in the c-axis direction, the angles of c-axis tilt grain boundaries and the intergrowth content are investigated. A fully processed tape has on average 50% thicker grains than a tape after the 1st annealing. The angles of c-axis tilt grain boundaries are on average 14 deg. and 26 deg. for the fully processed tape and the tape after the 1st annealing, respectively. The intergrowth content (15%) and

  5. Investigation on the phase transformation of Bi-2223/Ag superconducting tapes during heating

    International Nuclear Information System (INIS)

    Huang, K.-T.; Qu, T.-M.; Xie, P.; Han, Z.

    2013-01-01

    Highlights: • In situ resistance measurement was carried out on Bi-2223/Ag superconducting tapes. • The oxygen partial pressure of the outlet gas in the heating process was monitored continuously. • The samples quenched in the heating process were studied by XRD and T c measurements. • The heating process contains three procedures: oxygen diffusion, Pb-rich phase evolution and liquid phase formation. -- Abstract: The phase transformation of Bi-2223/Ag superconducting tapes during heating was investigated. The resistance of the ceramic core as a function of the heating temperature was measured in situ. The pO 2 of the outlet gas in the heating process was also monitored continuously. By comparing the heating process with the X-ray diffraction and T c measurements taken from samples quenched at different temperatures, we have identified that the heating process could be divided into the following regions: (1) the oxygen diffusion (OD) region, which is mainly influenced by OD; (2) the Pb-rich phase evolution (PbE) region, in which the formation and decomposition of the Pb-rich phases occur; (3) the liquid phase formation (LF) region, in which resistance increased rapidly with increasing temperature

  6. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    International Nuclear Information System (INIS)

    Holcomb, M.J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material is disclosed. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy

  7. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    Science.gov (United States)

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  8. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

      DAFTAR PUSTAKA Abbas M.M., Abass L.K and Salman U., (2012, Influences of Sintering Time on the Tc of Bi2-xCuxPb0.3Sr2Ca2Cu3010+ High Temperature Superconductors, Energy Procedia 18, 215-224  Abbas, M.M., Abbas, L.K., Bahedh, H.S. 2015. Superconducting Properties of Bi2-SbxPb0,3Sr1,9Ba0,1Ca2Cu3O10+δ Compounds. Journal of Applied Science Research. 11. 22: 164-172 Darsono, N., Imaduddin, A., Raju, K., Yoon, D.H., (2015, Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling, J Supercond Nov Magn. E. Chew,. (2010, Superconducting Transformer Design And Construction, University of Canterbury, Christchurch, New Zealand. March Hamadneh, I., Halim, S. A., dan Lee, C. K., (2006,  Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared Via Coprecipitation Method at Different Sintering Time, J. Mater. Sci, 41: 5526-5530. Hermiz G.Y., Aljurani B.A., Beayaty M.A., (2014, Effect of Mn Substitution on the Superconducting Properties of Bi1.7Pb0,3Sr2Ca2-xMnxCu3O10+, International Journal Of Engineering and Advanced Technology (IJEAT. 3. 4: 213-217 John R Hull, (2003, Applications of high-temperature superconductors in power technology, Reports on Progress in Physics, Volume 66, Number 11 Lu, X.Y., Yi, D., Chen, H., Nagata, A. 2016. Effect of Sn, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes. Physics Procedia. 81: 129-132 Meretliev Sh., Sadykov K.B., Berkeliev A., (2000, Doping of High Temperature Superconductors, Turk J Phy.24: 39-48 Mohammed, N. H., Ramadhan A., Ali I. A., Ibrahim, I. H., dan Hassan, M. S, (2012, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, 3: 224-233. Roumie, M., Marhaba, S., Awad R., Kork M., Hassan I., Mawassi R., (2014, Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb-2223 Phase, Journal of Supercond Nov Magn, 27: 143-153 Serkan

  9. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  10. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  11. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  12. Introduction of artificial pinning centre in {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, P.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Elschner, S. [Hoechst AG, Frankfurt am Main (Germany)] [and others

    1994-12-31

    Considering the phase equilibrium diagram of the system Bi{sub 2}O{sub 3}-SrO-CaO-CuO, single phase {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics have been transformed by a simple annealing procedure into multi phase samples. The transformation results in the formation of second phases and in an increase of the intra grain critical current density at 1 T of five times. This increase is believed to express improved pinning properties of the superconducting crystals. The prepared pinning centres are believed to be e.g. coherent precipitates (Guinier-Preston-zones) within the superconducting crystals.

  13. Electro-physical properties of superconducting ceramic thick film prepared by partial melting method.

    Science.gov (United States)

    Lee, Sang Heon

    2013-05-01

    BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.

  14. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Lyuksyutov, Igor F; Wu Wenhao; Naugle, Donald G

    2011-01-01

    The superconducting properties of Pb 82 Bi 18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  15. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    Science.gov (United States)

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-02-01

    The superconducting properties of Pb82Bi18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb82Bi18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb82Bi18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  16. Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles

    International Nuclear Information System (INIS)

    Yildirim, G.

    2013-01-01

    Highlights: •Standard measurements such as bulk density, ρ-T, J ct , XRD, SEM and EDX examinations for characterization of the samples. •Role of Eu inclusions on the microstructural, electrical and superconducting properties of Bi-2223 phase. •Determination of metal to insulator transition due to Eu impurities in the Bi-2223 superconducting matrix. •From the Eu content level of x = 0.5 onwards, destruction of the superconducting phases. •Constant retrogression of the microstructural and superconducting properties with the Eu individuals. -- Abstract: This comprehensive study examines the change of the microstructural, electrical and superconducting properties of the Eu doped Bi 1.8 Pb 0.4 Eu x Sr 2 Ca 2.2 Cu 3.0 O y ceramic cuprates (with x ⩽ 0.7) produced by the conventional solid state reaction method at the constant annealing temperature of 840 °C for 24 h with the aid of the standard characterization measurements such as bulk density, dc resistivity (ρ-T), transport critical current density (J c ), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) examinations. For the full characterization of the pure and Eu doped Bi-2223 samples, the degree of granularity (from the bulk density and porosity measurements); the room temperature resistivity, onset–offset critical transition temperature, variation of transition temperature, hole carrier concentration, spin-gap opening temperature and thermodynamic fluctuations (from the dc resistivity experiments); the texturing, crystal structure, crystallite size, phase purity and cell parameters (from the XRD investigations); the variation of the flux pinning centers and the boundary weak-links between the superconducting grains (from the critical current density values); the crystallinity, specimen surface morphology, grain connectivity between the superconducting grains and grain size distribution (from the SEM examinations), the elemental compositions and

  17. Superconducting transition in TlBiTe/sub 2/ and TlTe compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kantser, V G; Popovich, N S; Sidorenko, A S

    1985-10-01

    On the basis of zone structure calculation for TlBiTe/sub 2/ and TlTe it is found that TlBiTe/sub 2/ is a narrow-gap semiconductor and TlTe is a p-metal. At Tsub(c)=0.19 K TlTe is found to experience the superconducting transition. In TlBiTe/sub 2/ superconductivity is not observed to occur up to 0.05 K, since there is a possibility of occupying the high density of states zones because they are remote from actual ones. The earlier discovered superconducting transition in TlBiTe/sub 2/ is inherent in the alien phase of TlTe.

  18. Synthesis and chemistry of the new Y-Based and Bi-Based high temperature superconducting perovskites

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Miceli, P.F.; Bagley, B.G.; Greene, L.H.; Hull, G.W.; Giroud, M.

    1988-01-01

    Chemical synstesis of the new high T c oxides using solid state reactions or solution techniques is shown. A solution process which allows the preparation of both homogeneous and dense ceramics and of superconducting thick films has been developed for the YBa 2 Cu 3 O 7 system. Physical measurements performed on homogeneous YBa 2 Cu 3-x Co x O y samples have shown that the Co substitution, associated with an uptake of oxygen, takes place on the Cu-O chains and that T c is depressed, leading ultimately to antiferromagnetic insulators whose magnetic structures are shown. Three phases of general formula Bi 2 Sr 2 Ca n-1 Cu n O y with n = 1,2 and 3 have been isolated in the Bi system and characterized for their structural and physical properties. These phases crystallize in the same pseudotetragonal unit cell differing one from the next by the stacking sequence along the c-axis, with the main feature being the presence of a sheared Bi-O double layer. The T c s of the n = 1,2 and 3 phases are 10 K, 85 K and 110 K respectively, but because of phase intergrowth, these values depend upon sample processing, making chemical substitutions within the Bi system quite complex as is discussed. Finally, we succeeded in making superconducting thick films (having zero resistance around 100 K) of the Bi-based and T1-based matrials via the decomposition of aqueous-glycerol solutions containing the salts of the elements

  19. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  20. Experimental formation of a fractional vortex in a superconducting bi-layer

    Science.gov (United States)

    Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.

    2018-05-01

    We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).

  1. Synthesis and chemistry of the new Y-Based and Bi-Based high temperature superconducting perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Tarascon, J.M.; Barboux, P.; Miceli, P.F.; Bagley, B.G.; Greene, L.H.; Hull, G.W.; Giroud, M.

    1988-12-01

    Chemical synstesis of the new high T{sub c} oxides using solid state reactions or solution techniques is shown. A solution process which allows the preparation of both homogeneous and dense ceramics and of superconducting thick films has been developed for the YBa{sub 2}Cu{sub 3}O{sub 7} system. Physical measurements performed on homogeneous YBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub y} samples have shown that the Co substitution, associated with an uptake of oxygen, takes place on the Cu-O chains and that T{sub c} is depressed, leading ultimately to antiferromagnetic insulators whose magnetic structures are shown. Three phases of general formula Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n = 1,2 and 3 have been isolated in the Bi system and characterized for their structural and physical properties. These phases crystallize in the same pseudotetragonal unit cell differing one from the next by the stacking sequence along the c-axis, with the main feature being the presence of a sheared Bi-O double layer. The T{sub c}s of the n = 1,2 and 3 phases are 10 K, 85 K and 110 K respectively, but because of phase intergrowth, these values depend upon sample processing, making chemical substitutions within the Bi system quite complex as is discussed. Finally, we succeeded in making superconducting thick films (having zero resistance around 100 K) of the Bi-based and T1-based matrials via the decomposition of aqueous-glycerol solutions containing the salts of the elements.

  2. Pb induces superconductivity in Bi2Se3 analyzed by point contact spectroscopy

    OpenAIRE

    Arevalo-López, P.; López-Romero, R. E.; Escudero, R.

    2015-01-01

    Some topological insulators become superconducting when doped with Cu and Pd. Superconductivity in a non-superconductor may be induced by proximity effect: i.e. Contacting a non-superconductor with a superconductor. The superconducting macroscopic wave function will induce electronic pairing into the normal compound. In the simplest topological insulator, Bi$_2$Se$_3$, superconductivity may be induced with Pb. We studied with point contact junctions formed by contacting Bi$_2$Se$_3$ crystals ...

  3. Chemical casting of high-Tc superconducting BiSCCO

    International Nuclear Information System (INIS)

    Toth, L.E.; Das, B.N.; Rayne, R.J.; Bender, B.A.; Lechter, W.L.; Hoff, H.A.; Osofsky, M.S.; Soulen, R.J. Jr.

    1989-01-01

    BiSCCO has been successfully cast into a number of useful shapes. This casting process differs significantly from traditional casting in that the process includes a change in the oxygen content of the melt. A heat treatment is required to restore the original chemistry, properly form the BiSCCO crystal structure and develop the superconducting properties. This paper emphasizes the microstructures of as-cast and heat treated BiSCCO. Casting causes considerable grain alignment of the BiSCCO platelets. The platelets align preferentially along the thermal gradients which exist during the solidification process

  4. Specific features of acoustic properties of ceramic Bi1.4Pb0.6Ca2Sr2Cu3Oy

    International Nuclear Information System (INIS)

    Gajduk, A.L.; Fil', V.D.; Burma, N.G.

    1991-01-01

    Anomalies of sound velocity and attenuation, as well as of heat capacity are revealed in the Pb-stabilized Bi ceramics of the composition 2-2-2-3 atare 60 K, which are interpreted as the second-order phase transition. The sensitivity of the anomalies to the quenched magnetic flux is indicative of the magnetic nature of the transition. Similar features also observed at the same temperature in the 1-2-3* type superconducting systems

  5. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    ). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of BiO 0.75 F 0.25 BiS 2 . The Tc in our sample is 5.3 K, at ambient pressure, ...

  6. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  7. Composite elements with superconducting ceramic materials and preparation process

    International Nuclear Information System (INIS)

    Drifford, M.; Lambard, J.

    1990-01-01

    Supraconducting ceramic powder is introduced in a ductile metal with an open porosity, then the tube is sealed at both ends and necked to form a composite element which is sintered and the ceramic becomes superconductive by gaseous diffusion. Then the composite element can be placed into a gasproof cladding [fr

  8. Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2.

    Science.gov (United States)

    Chen, Huimin; Li, Lin; Zhu, Qinqing; Yang, Jinhu; Chen, Bin; Mao, Qianhui; Du, Jianhua; Wang, Hangdong; Fang, Minghu

    2017-05-09

    The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi 2 with T c of ~4 K at 2.6 GPa. Both the higher upper critical field, μ 0 H c2 (0) ~ 7 Tesla, and the measured current independent of T c precludes that superconductivity is ascribed to the Bi impurity. The similarity in ρ ab (B) linear behavior at high magnetic fields measured at 2 K both at ambient pressure (non-superconductivity) and 2.6 GPa (superconductivity, but at the normal state), as well as the smooth and similar change of resistivity with pressure measured at 7 K and 300 K in zero field, suggests that there may be no structure transition occurred below 2.6 GPa, and superconductivity observed here may emerge in the same phase with Dirac fermions. Our findings imply that BaMnBi 2 may provide another platform for studying SC mechanism in the system with Dirac fermions.

  9. Masking ability of bi- and tri- laminate all-ceramic veneers on tooth-colored ceramic discs.

    Science.gov (United States)

    Farhan, Daniel; Sukumar, Smitha; von Stein-Lausnitz, Axel; Aarabi, Ghazal; Alawneh, Ahmad; Reissmann, Daniel R

    2014-01-01

    A predictable esthetic outcome is imperative when placing ceramic veneers. Discolored teeth pose a major challenge as sufficient material thickness is required to achieve a good esthetic result. There is limited evidence in the literature that compares the masking ability of multi-laminate veneers. The aim of this in-vitro study was to compare the masking ability of bi-laminate (BL) and tri-laminate (TL) all-ceramic veneers cemented on tooth-colored ceramic discs. A total of 40 veneers (shade A1, 10-mm diameter, 0.8-mm thick) were manufactured-20 BL veneers (0.4-mm pressable ceramic coping veneered with 0.4-mm thick enamel layer) and 20 TL veneers (0.4-mm coping veneered with 0.2-mm thick opaque interlayer and 0.2-mm thick enamel layer). A bonding apparatus was utilized to adhesively cement all veneers on the ceramic discs (shade A1), simulating teeth of light and dark color. The resulting groups (N = 10 each) were the reference groups (shade A1 ceramic base) BL-1 and TL-1 veneers, and the test groups (shade A4 ceramic base) BL-4 and TL-4 veneers. The color of the cemented veneers was measured using a spectrophotometer. The data were converted to CIE L*a*b* coordinates, and ΔE* were calculated to allow for statistical analysis. The color differences between the samples with the A1 and A4 ceramic bases were significantly lower when covered with TL veneers (mean ΔE*: 3.2 units) than with BL veneers (mean ΔE*: 4.0 units: p bi-laminate veneers. Patients with discolored/darker teeth may benefit from a more predictable esthetic result when teeth restored with tri-laminate rather than bi-laminate veneers. © 2014 Wiley Periodicals, Inc.

  10. Superconductive ceramics obtained with sol gel method

    International Nuclear Information System (INIS)

    Arcangeli, A.; Mosci, A.; Nardi, A.; Vatteroni, R.; Zondini, C.

    1988-01-01

    Several sol gel routes have been considered, studied and developed to produce large quantities of granulates which can be processed to obtain ceramics having good superconducting characteristics. In the considered process a mixture of commercial nitrates is atomized, at room temperature, in a solution 1:1 of Primene JMT and Benzene and a pale blue gel of the starting elements is suddently formed. The granulates obtained are free flowing, very reactive and well suited for pressing. For their intrinsic characteristics they could be very good precursors for the production of large quantities of superconductive ceramics in different forms. The precipitated gel is dried, calcinated, pressed in the form of cylindrical pellets which are sintered up to 960 degrees C. No griding or different thermal treatments are needed. The sintered material has low electric resistence, shows a clear Meissner effect and has a transition temperature of between 91 and 95 K

  11. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  12. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2. ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C GUPTA A K GANGULI. Volume 40 Issue 6 October 2017 pp 1121-1125 ...

  13. Superconductivity induced by oxygen doping in Y{sub 2}O{sub 2}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Gordon, Elijah E. [Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2017-08-14

    When doped with oxygen, the layered Y{sub 2}O{sub 2}Bi phase becomes a superconductor. This finding raises questions about the sites for doped oxygen, the mechanism of superconductivity, and practical guidelines for discovering new superconductors. We probed these questions in terms of first-principles calculations for undoped and O-doped Y{sub 2}O{sub 2}Bi. The preferred sites for doped O atoms are the centers of Bi{sub 4} squares in the Bi square net. Several Bi 6p x/y bands of Y{sub 2}O{sub 2}Bi are raised in energy by oxygen doping because the 2p x/y orbitals of the doped oxygen make antibonding possible with the 6p x/y orbitals of surrounding Bi atoms. Consequently, the condition necessary for the ''flat/steep'' band model for superconductivity is satisfied in O-doped Y{sub 2}O{sub 2}Bi. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  15. Reinforced fluropolymer nanocomposites with high-temperature superconducting Bi2Sr2CaCu2Oy

    Science.gov (United States)

    Jayasree, T. K.

    2014-10-01

    Bismuth Strontium Calcium Copper Oxide (Bi2Sr2CaCu2Oy)/Polyvinylidene fluoride (PVDF) nanocomposite was prepared and their thermal properties were analyzed. The composite consists of the polyvinylidene fluoride (PVDF) as an insulating polymer matrix, and homogenously distributed Bismuth strontium calcium copperoxide (2212) nanoparticles. SEM data shows flaky grains of the superconductor coated and linked by polymer. Differential scanning calorimetry (DSC) results indicated that the melting point was not affected significantly by the addition of BSCCO. However, the addition of superconducting ceramic resulted in an extra melting peak at a lower temperature (145°C). Thermogravimetric analysis of the samples shows that the onset decomposition temperature of the PVDF matrix was decreased by the addition of SC filler.

  16. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures

    Science.gov (United States)

    Du, Zengyi

    2018-01-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi2Se3 or Bi2Te3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect–induced superconductivity in the Bi2Te3 thin film on top of the iron-based superconductor FeTe0.55Se0.45. By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ4y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi2Te3/FeTe0.55Se0.45 heterostructures. PMID:29888330

  17. The inhomogeneities of (Pb,Bi)2223 superconducting tapes and their detection

    International Nuclear Information System (INIS)

    Leeuwen, S. van

    1999-05-01

    This thesis consists of two parts: first, the inhomogeneities that were observed in high temperature superconducting (Pb,Bi)2223 tapes were studied followed by the design of two rigs which were built to detect them. These investigations concentrated on (Pb,Bi)2223 phase high temperature superconducting tapes. Superconductors and their applications were briefly evaluated. It was found that high temperature superconductors have unique properties which cannot be duplicated by their counterparts. However, it was noted that there are significant improvements to be made before they can be commercially viable. An investigation was carried out into the variation of core density within cross sections and along lengths of (Pb,Bi)2223 tapes during fabrication. It was observed that rolling and thermal treatment brought about a non-uniform core density in both these aspects of tile tape. This was followed by an investigation into the effect of core density on the formation of the (Pb,Bi)2223 phase. It was shown that a high core density formed the (Pb,Bi)2223 phase at a slower rate than a lower core density under the thermal treatment. A high core density and a slow heating rate produced smaller 2212 grains at the end of the incubation period. Smaller 2212 grains were thought to be linked to the faster formation of the (Pb,B1)2223 phase. The highest Jc was from a high core density tape which had the smaller 2212 grains at the end of incubation period. Smaller 2212 grains were thought to aid a more homogeneous conversion to the (Pb,Bi)2223 phase. Alloy-sheathed (Pb,Bi)2223 superconducting tapes were produced in order to fabricate a more homogeneous core density. It was found that the alloy sheath (with an addition of 15% wt Ag in the precursor powder) changed the characteristics of the core in several ways: the formation of the (Pb,Bi)2223 phase was homogeneous across the thickness of the core, a smaller 2212 grain size was formed at the end of the incubation period and a higher

  18. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  19. Acoustic emission during fracture of ceramic superconducting materials

    International Nuclear Information System (INIS)

    Woźny, L; Kisiel, A; Łysy, K

    2016-01-01

    In the ceramic materials acoustic emission (AE) is associated with a rapid elastic energy release due to the formation and expansion of cracks, which causes generation and propagation of the elastic wave. AE pulses measurement allows monitoring of internal stresses changes and the development of macro- and micro-cracks in ceramic materials, and that in turn allows us to evaluate the time to failure of the object. In presented work the acoustic signals generated during cracking of superconducting ceramics were recorded. Results obtained were compared with other ceramic materials tested the same way. An analysis of the signals was carried out. The characteristics of the AE before destruction of the sample were determined, that allow the assessment of the condition of the material during operation and its expected lifetime. (paper)

  20. Texturing of superconducting Bi-Pb-Sr-Ca-Cu-O ceramics by combining the effect of a magnetic field and hot pressing in one direction; Texturation des ceramiques supraconductrices Bi-Pb-Sr-Ca-Cu-O par combinaison des effets du champ magnetique et de la contrainte uniaxiale a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Noudem, J G

    1995-10-27

    Superconducting Bi-(Pb)-Sr-Ca-Cu-O (Bi:2223) ceramics have a weak 77 K transport critical current density (Jc) due to porosity and the presence of misaligned platelets. In order to obtain higher critical current densities in these materials, it is necessary to increase their density and induce a preferential crystallographic orientation. We have developed a texturing process using solidification in a magnetic field combined with hot pressing. The experimental set-up provides a uniaxial pressure of 60 MPa and temperature up to 1100 deg C in a magnetic field of 8 T. Magnetic melt texturing (MMT) proved to be very effective in producing bulk oriented samples of polycrystalline Bi:2223 (crystallite c-axis oriented parallel to the field direction). These samples have Jc values of up to 1450 A/cm{sup 2} and a density of 5.1 g/cm{sup 3}. The texturing by hot pressing (HP) gives homogeneous, dense ({approx} 6 g/cm{sup 3}; 95 % of the theoretical limit) ceramics with a Jc of 2500 A/cm{sup 2}. Tapes of Ag/Bi:2223 provided by Alcatel Alsthom were also successful textured using HP. Finally we have demonstrated that the combination of solidification in a magnetic field with hot pressing (MMHPT) improves both the texture and density of the samples. Moreover the samples are very homogeneous and mechanically resistant. The 77 K transport critical current densities have values up to 3800 A/cm{sup 2} and 1100 A/cm{sup 2} along the (ab) and c-axis respectively. We have demonstrated that these samples are of potential use a current limiters. (author) 146 refs.

  1. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  2. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))

    Science.gov (United States)

    Schwartzkopf, Louis A.

    1991-10-01

    Fibers of Bi(2212) have been produce by pendant drop melt extraction. This technique involves the end of a rod of Bi(2212) melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 15 cm in length with the usual lateral dimensions, ranging from 20 um to 30 um. The fibers require a heat treatment to make them superconducting.

  3. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tafti, F. F.; Torikachvili, M. S.; Stillwell, R. L.; Baer, B.; Stavrou, E.; Weir, S. T.; Vohra, Y. K.; Yang, H. -Y.; McDonnell, E. F.; Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Jeffries, J. R.

    2017-01-01

    Extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P ≈ 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, P ≈ 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed.

  4. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    -off and full coil reaction. The coil was successfully tested at the NHMFL generating 33.8 T combined magnetic field in a 31.2 T background field. Multiple quenches occurred safely, which also illustrates that the insulation provided sufficient dielectric standoff. For Bi-2212 RW with a typical as-drawn diameter of 1.0-1.5 mm, this 15 microm thick insulation allows a very high coil packing factor of ~0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48. In addition to the commercial TiO2/polymer insulation, we have also investigated sol-gel based ceramic coatings through collaboration with Harran University and another TiO2 based insulation coating at the NHMFL. Since Bi-2212 superconducting coils employ the Wind-and-React (W&R) technology, there are some potential issues in processing Bi-2212 coils, in particular for coils with a large thermal mass and dense oxide insulation coating. For this study, several Bi-2212 test solenoids with an outer diameter (OD) of about 90 mm were built and heat treated in 1 bar flowing oxygen with deadweights applied so as to simulate large coil packs. After the heat treatment (HT), coils were epoxy impregnated and cut. Winding pack was checked using SEM in terms of conductor geometry and insulation. Some samples were extracted to measure transport critical current Ic and critical temperature Tc. The results are very promising: test coils presented low creep behavior after standard partial melt HT under mechanical load, and no Ic degradation was found due to the application of mechanical load, and no inadequate oxygenation issue was seen for thick coils with ceramic coating on the wire. However, coils were partially electrically shorted after 1 bar HT under mechanical load, and we believe that increasing insulation coating thickness is necessary. In addition, several small solenoids were manufactured to study OP processing of Bi-2212 coils. The preliminary results indicate that there are some gaps

  5. Piezoelectric properties enhanced of Sr0.6(BiNa)0.2Bi2Nb2O9 ceramic by (LiCe) modification with charge neutrality

    International Nuclear Information System (INIS)

    Fang, Pinyang; Xi, Zengzhe; Long, Wei; Li, Xiaojuan; Li, Jin

    2013-01-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T c ∼590 °C and d 33 ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr 0.6−x (LiCe) x/2.5 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d 33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T c ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed

  6. Microstructure and electrical properties of (1−x)[0.8Bi_0_._5Na_0_._5TiO_3-0.2Bi_0_._5K_0_._5TiO_3]-xBiCoO_3 lead-free ceramics

    International Nuclear Information System (INIS)

    Wang, Ting; Chen, Xiao-ming; Qiu, Yan-zi; Lian, Han-li; Chen, Wei-ting

    2017-01-01

    The (1−x)[0.8Bi_0_._5Na_0_._5TiO_3-0.2Bi_0_._5K_0_._5TiO_3]-xBiCoO_3 (x = 0, 0.02, 0.05, abbreviated as BNKT, BNKT-002Co, BNKT-005Co, respectively) lead-free ferroelectric ceramics were prepared via the solid state reaction method. The phase structure, microstructure, dielectric, ferroelectric, pyroelectric, and piezoelectric properties of the ceramics were investigated comparatively by using a combination of characterization techniques. All the samples exhibit typical X-ray diffraction peaks of ABO_3 perovskite structure. The doping of BiCoO_3 causes a decrease in lattice parameters and an increase in grain size of the ceramics. The Raman spectroscopy results suggest a lattice distortion due to the doping. It is found that BNKT-002Co and BNKT-005Co have higher depolarization temperatures compared with BNKT. The Curie-Weiss law and modified Curie-Weiss law explored a diffuse phase transition character for all the samples. The results of ultraviolet–visible diffuse reflectance suggests that BiCoO_3-doped ceramics possess higher defect concentration. The impedance analysis shows a temperature dependent relaxation behavior, and the activation energy for the electrical responses varies with the change of BiCoO_3 amount. The ferroelectric and piezoelectric properties of the ceramics decrease due to the doping of BiCoO_3. Based on the results of the Rayleigh analysis, it was suggested that the differences in the electrical properties among the ceramics are closely related to the change in oxygen vacancy concentration. - Highlights: • BNKT-xCo ceramics were prepared by solid-state reaction method. • Electrical properties of BNKT ceramics are changed by the doping of BiCoO_3. • The doping causes a decrease in lattice parameters and an increase in grain size. • T_d of the ceramics increases with increasing x. • Oxygen vacancies play key role in determining electrical properties of the ceramics.

  7. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi

    KAUST Repository

    Xu, Guizhou; Wang, Wenhong; Zhang, Xiaoming; Du, Yin; Liu, Enke; Wang, Shouguo; Wu, Guangheng; Liu, Zhongyuan; Zhang, Xixiang

    2014-01-01

    A large number of half-Heusler compounds have been recently proposed as three-dimensional (3D) topological insulators (TIs) with tunable physical properties. However, no transport measurements associated with the topological surface states have been observed in these half-Heusler candidates due to the dominating contribution from bulk electrical conductance. Here we show that, by reducing the mobility of bulk carriers, a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hallmarks of topological surface states, was experimentally revealed from the tilted magnetic field dependence of magnetoconductance in a topologically nontrivial semimetal LuPdBi. Besides the observation of a 2D WAL effect, a superconducting transition was revealed at T c ∼ 1.7â.K in the same bulk LuPdBi. Quantitative analysis within the framework of a generalized BCS theory leads to the conclusion that the noncentrosymmetric superconductivity of LuPdBi is fully gapped with a possibly unconventional pairing character. The co-existence of superconductivity and the transport signature of topological surface states in the same bulk alloy suggests that LuPdBi represents a very promising candidate as a topological superconductor.

  8. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi

    KAUST Repository

    Xu, Guizhou

    2014-07-21

    A large number of half-Heusler compounds have been recently proposed as three-dimensional (3D) topological insulators (TIs) with tunable physical properties. However, no transport measurements associated with the topological surface states have been observed in these half-Heusler candidates due to the dominating contribution from bulk electrical conductance. Here we show that, by reducing the mobility of bulk carriers, a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hallmarks of topological surface states, was experimentally revealed from the tilted magnetic field dependence of magnetoconductance in a topologically nontrivial semimetal LuPdBi. Besides the observation of a 2D WAL effect, a superconducting transition was revealed at T c ∼ 1.7â.K in the same bulk LuPdBi. Quantitative analysis within the framework of a generalized BCS theory leads to the conclusion that the noncentrosymmetric superconductivity of LuPdBi is fully gapped with a possibly unconventional pairing character. The co-existence of superconductivity and the transport signature of topological surface states in the same bulk alloy suggests that LuPdBi represents a very promising candidate as a topological superconductor.

  9. Multiferroic properties of nanocrystalline BiFe1−xNixO3 (x=0.0–0.15) perovskite ceramics

    International Nuclear Information System (INIS)

    Chaudhari, Yogesh; Mahajan, Chandrashekhar M.; Singh, Amrita; Jagtap, Prashant; Chatterjee, Ratnamala; Bendre, Subhash

    2015-01-01

    Ni doped BiFeO 3 (x=0, 0.05, 0.1 and 0.15) nanocrystalline ceramics were synthesized by the solution combustion method (SCM) to obtain optimal multiferroic properties. The effect of Ni doping on structural, morphological, ferroelectric, magnetic and dielectric properties of BiFeO 3 was studied. The structural investigations by using X-ray diffraction (XRD) pattern confirmed that BiFe 1−x Ni x O 3 ceramics have rhombhohedral perovskite structure. The ferroelectric hysteresis measurements for BiFe 1−x Ni x O 3 (x=0, 0.05, 0.1, 0.15) compound at room temperature found to exhibit unsaturated behavior and presents partial reversal of polarization. The magnetic measurements demonstrated an enhancement of ferromagnetic property due to Ni doping in BiFeO 3 when compared with undoped BiFeO 3 . The variation of dielectric constant with temperature in BiFe 0.9 Ni 0.1 O 3 and BiFe 0.85 Ni 0.15 O 3 samples evidenced an apparent dielectric anomaly around 350 °C and 300 °C which corresponds to antiferromagnetic to paramagnetic phase transition of (T N ) of BiFeO 3 . The dependence of room temperature dielectric properties on frequency signifies that both dielectric constant (ε) and dielectric loss (tan δ) are the strong function of frequency. The results show that solution combustion method leads to synthesis of an excellent and reproducible BiFe 1−x Ni x O 3 multiferroic ceramics. - Highlights: • Synthesis of BiFe 1−x Ni x O 3 (x=0, 0.05, 0.1 and 0.15) multiferroic ceramics. • Solution Combustion Method (SCM). • Ferroelectric and dielectric properties of undoped and Ni doped BiFeO 3 ceramics. • High temperature synthesis of BiFe 1−x Ni x O 3 multiferroic ceramics. • First detailed report about SCM synthesized the BiFe 1−x Ni x O 3 ceramics

  10. Growth and superconducting properties of Bi2Sr2Ca2Cu3O10 single crystals

    International Nuclear Information System (INIS)

    Clayton, N; Musolino, N; Giannini, E; Garnier, V; Fluekiger, R

    2004-01-01

    Single crystals of Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) have been grown using the travelling solvent floating zone technique in an image furnace. Annealing the crystals under high pressures of O 2 increased their critical temperature to 109 K, and resulted in sharp superconducting transitions of ΔT c = 1 K. The superconducting anisotropy of Bi-2223 was found to be ∼ 50, from measurements of the lower critical field with the magnetic field applied parallel and perpendicular to the c-axis. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212), and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy

  11. Critical current of high Tc superconducting Bi223/Ag tapes

    NARCIS (Netherlands)

    Huang, Y.; ten Haken, Bernard; ten Kate, Herman H.J.

    1998-01-01

    The magnetic field dependence of the critical current of various high Tc superconducting Bi2223/Ag tapes indicates that the transport current is carried through two paths: one is through weakly-linked grain boundaries (Josephson junctions); another is through well-connected grains. The critical

  12. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    Kist, A.A.; Flitsiyan, E.S.

    1994-01-01

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  13. Ceramic superconductivity research at Alfred Univ

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1990-01-01

    A survey of the science and technology advances made by the research groups at Alfred will be presented. These ranges on the technology side from the first melt-textured and glass ceramic superconductors to recently demonstrating that 123 thin films can be deposited below the superconducting transition at atmospheric pressure using an aerosol plasma deposition technique. On the science side advances in understanding have come from looking at the crystal structures, high and low temperature reactions, phase equilibria, effects of doping and XRD standards. Recent advances will be summarized

  14. Superconductivity in the Bi-Sr-Ca-Cu-O compounds some characteristics

    International Nuclear Information System (INIS)

    Escudero, R.

    1989-01-01

    The authors have prepared 90% single phase bulk samples of the 110K superconducting phase of the Bi-Sr- Ca-Cu-O compounds with different Pb amounts. This paper presents critical superconducting temperatures (zero resistance) of up to 109K were measured in the bulk samples. X-ray powder diffraction patterns of the almost isolated 110K phase. Computer simulated diffractograms were obtained, which are in general agreement with the measured ones. A discussion of the role of Pb in the stability of the 110K phase in this compounds is presented. Tunnelling measurements were made using Bi-based material. The authors studied break junctions and point contact junctions. The energy gap was determined to be about 25.5 meV and the ratio 2Δ/KBTc = 7.5. The data also show structure at energies of 67 and 120 meV

  15. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  16. Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS₂-based superconductors LnO₀.₅F₀.₅BiS₂ (Ln = La, Ce, Pr, Nd).

    Science.gov (United States)

    Wolowiec, C T; White, B D; Jeon, I; Yazici, D; Huang, K; Maple, M B

    2013-10-23

    Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln=Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivity with critical temperatures Tc of 3.5 and 3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ∼0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln=La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln=La, Ce, Pr, Nd).

  17. The influence of Bi content on dielectric properties of Bi4–xTi3O12–1.5x ceramics

    Directory of Open Access Journals (Sweden)

    Hui Gong

    2017-06-01

    Full Text Available A kind of lead-free dielectric materials, such as the bismuth layered perovskite-type structure of Bi4–xTi3O12–1.5x (x=0.04,0.02,0,–0.02,–0.04, was prepared by the conventional solid-state method at 800∘C and sintered at 1100∘C. The variation of structure and electrical properties with different Bi concentration was studied. All the Bi4–xTi3O12–1.5x (x=0.04,0.02,0,–0.02,–0.04 samples exhibited a single structured phase. SEM could be a better approach to present the microstructure of Bi4–xTi3O12–1.5x (x=0.04,0.02,0,–0.02,–0.04 ceramics. It could be found that the grain size of Bi4.02Ti3O12.03 sintered at 1100∘C was smaller than that of others among the five samples through grain size mechanics. Through impedance spectra analysis, we knew, when the Bi content was fixed, that the dielectric constant and the loss values increased with the decrease of frequency. The Curie temperature of the five samples was about 670∘C. In particular, while at the frequency of 100kHz, the lowest loss was 0.001 when Bi content was 3.98. The Bi4.02Ti3O12.03 ceramics with the minimum grain size had highest dielectric constant and the relatively low loss. Due to its high Curie temperature, high permittivity and low loss, the Bi4Ti3O12 (BIT ceramics have a broad application prospect in high density memory, generator, sensor, ferroelectric tunnel junctions and so on.

  18. Method of forming a ceramic superconducting composite wire using a molten pool

    International Nuclear Information System (INIS)

    Geballe, T.H.; Feigelson, R.S.; Gazit, D.

    1991-01-01

    This paper describes a method for making a flexible superconductive composite wire. It comprises: drawing a wire of noble metal through a molten material, formed by melting a solid formed by pressing powdered Bi 2 O 3 , CaCO 3 SrCO 3 and CuO in a ratio of components necessary for forming a Bi-Sr-Ca-Cu-O superconductor, into the solid and sintering at a temperature in the range of 750 degrees - 800 degrees C. for 10-20 hours, whereby the wire is coated by the molten material; and cooling the coated wire to solidify the molten material to form the superconductive flexible composite wire without need of further annealing

  19. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.

    1988-01-01

    Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found

  20. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  1. Growth, characterization, and physical properties of Bi-Sr-Ca-Cu-O superconducting whiskers

    International Nuclear Information System (INIS)

    Kraak, W.; Thiele, P.

    1996-01-01

    Single crystal whiskers of the Bi-based high-T c superconductors have been grown directly from the stoichiometric melt. Conditions for the preferable growth of the (2212) phase and annealing conditions for the conversion from the (2212) phase to the (2223) and (2234) Bi-based superconducting phases are achieved. The orientation and chemical composition of the crystals were characterized by X-ray diffractometry and energy dispersive X-ray analysis. Characteristic structural properties of the whiskers (incommensurable modulation in b-direction, peculiarities of dislocation networks) have been revealed by transmission electron microscopy and electron diffraction. Some special features of the broad superconducting transition in multiphase whiskers have been examined by spatially resolved measurements using low-temperature scanning electron microscopy. (orig.)

  2. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    International Nuclear Information System (INIS)

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  3. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers

    Science.gov (United States)

    Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu

    2018-05-01

    We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.

  4. Microstructures and superconducting properties of Y-Ba-Cu and Bi-Sr-Ca-Cu oxide wires and coils prepared by the explosive compaction technique

    International Nuclear Information System (INIS)

    Hagino, S.; Suzuki, M.; Takeshita, T.; Takashima, K.; Tonda, H.

    1989-01-01

    It has been shown that explosive compaction technique can be used to densify metal, and ceramics powders and their mixtures. The authors discuss how they applied this technique to produce silver sheathed superconducting oxide wires and coils (Y-B-Cu-O and Bi-Sr-Ca-Cu-O). The wires and coils to be compacted were placed into metal tube and the tube was filled with SiC powder as a pressure propagating medium and the tube was compacted by a cylindrically axisymmetric method. The wires and coils compacted were then heat-treated in order to improve grain boundary connections of superconducting oxide crystalline grains. The oxide cores heat-treated were seen to be very dense, and a part of a Y-Ba-Cu oxide coil which was heat-treated optimally was found to have a critical current density higher than 13,000A/cm 2 at 77K

  5. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  6. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  7. Microstructure of laser floating zone (LFZ) textured (Bi,Pb)-Sr-Ca-Cu-O superconductor composites

    International Nuclear Information System (INIS)

    Fuente, G.F. de la; Ruiz, M.T.; Sotelo, A.; Larrea, A.; Navarro, R.

    1993-01-01

    Directionally solidified high temperature superconducting (Bi,Pb)-Sr-Ca-Cu-O pure ceramics and composites were obtained using a laser floating zone (LFZ) apparatus. The presence of secondary non-superconducting and metallic phases as well as their solidification habit have been analysed. The influence of the LFZ growth conditions and the precursor composition on the microstructure of the final products was studied using optical and electron microscopies. (orig.)

  8. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, Qiang; Zhu, Xiaohong; Xu, Yunhui; Gao, Haobin; Xiao, Yunjun; Liang, Dayun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-01-01

    Highlights: ► Structural properties of Bi 1−x La x FeO 3 ceramics are improved by La 3+ substitution. ► Significant magnetoelectric responses are observed in Bi 1−x La x FeO 3 ceramics. ► T C is lowered while T N is enhanced in the La-doped BiFeO 3 ceramics. ► Much higher dielectric constant is obtained in the La-doped BiFeO 3 ceramics. ► The ferroelectric properties are enhanced in the La-doped BiFeO 3 ceramics. - Abstract: Multiferroic Bi 1−x La x FeO 3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) (represented as B 1−x L x FO) ceramics were prepared using the conventional solid state reaction route. The effects of La 3+ doping on the density, phase structure, morphology, dielectric and ferroelectric properties were investigated. Judging from X-ray diffraction patterns, all the B 1−x L x FO ceramic samples were well crystallized in a pure perovskite phase while the crystal structure changed from rhombohedral to orthorhombic with increasing the La 3+ substitution. SEM observations clearly revealed that the grain size was remarkably decreased by La 3+ doping. As a result, the ferroelectric Curie temperature was lowered in the La-doped ceramics. However, the abnormal dielectric responses near the antiferromagnetic Néel temperature (T N ) demonstrated the existence of remarkable magnetoelectric coupling in the Bi 1−x La x FeO 3 ceramics, and the T N was shown to increase substantially with the increase in La 3+ doping content. It was found that the dielectric permittivity of the ceramics was significantly increased and the dielectric loss was slightly increased with the increase in La 3+ content. The dielectric constant ε r of the Bi 0.85 La 0.15 FeO 3 ceramic at 10 kHz reached as high as 1008, 20 times larger than that for pure BiFeO 3 . In addition, the ferroelectric properties of the B 1−x L x FO ceramics were improved and the remanent polarization was increased by La 3+ doping. This is probably because the A-site doping with more stable La 3+ could

  9. Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2

    OpenAIRE

    Huimin Chen; Lin Li; Qinqing Zhu; Jinhu Yang; Bin Chen; Qianhui Mao; Jianhua Du; Hangdong Wang; Minghu Fang

    2017-01-01

    The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi2 with T c of ~4?K at 2.6?GPa. Both the higher upper critical field, ? 0 H...

  10. Emergence of superconductivity in topological insulator Bi{sub 2}Se{sub 3} by Sr intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Shruti,; Maurya, V. K.; Srivastava, P.; Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India)

    2016-05-23

    Recently superconductivity wasreported by Sr intercalation in topological insulator Bi{sub 2}Se{sub 3}. In this report we extensively study anisotropic superconducting properties of Sr{sub 0.1}Bi{sub 2}Se{sub 3} with transition at ~2.9 through resistivity and DC magnetization measurement. We also discuss synthesis methodology for growth of single crystal Sr-Bi{sub 2}Se{sub 3}. The anisotropic properties of Sr{sub 0.1}Bi{sub 2}Se{sub 3} single crystals were studied using transport measurements. Using Ginzburg Landau formulas the upper critical field H{sub c2}(0) comes out to be 2.1 T and 1.4 T for magnetic field applied along the ab-plane and c-axis of the single crystalsand corresponding Ginzburg - Landau coherence lengths are ξ{sub ab} = 15.3 nm and ξ{sub c} = 10.2 nm. The sample shows weak electronic anisotropy Γ = 1.5. Hall resistivity is linear with field at 10 K.

  11. Microstructure and electrical properties of (1−x)[0.8Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.2Bi{sub 0.5}K{sub 0.5}TiO{sub 3}]-xBiCoO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119 (China); Chen, Xiao-ming, E-mail: xmchen@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119 (China); Qiu, Yan-zi [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119 (China); Lian, Han-li [School of Science, Xi’an University of Posts and Telecommunications, Xi’an, 710121 (China); Chen, Wei-ting [Department of Electrical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan (China)

    2017-01-15

    The (1−x)[0.8Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.2Bi{sub 0.5}K{sub 0.5}TiO{sub 3}]-xBiCoO{sub 3} (x = 0, 0.02, 0.05, abbreviated as BNKT, BNKT-002Co, BNKT-005Co, respectively) lead-free ferroelectric ceramics were prepared via the solid state reaction method. The phase structure, microstructure, dielectric, ferroelectric, pyroelectric, and piezoelectric properties of the ceramics were investigated comparatively by using a combination of characterization techniques. All the samples exhibit typical X-ray diffraction peaks of ABO{sub 3} perovskite structure. The doping of BiCoO{sub 3} causes a decrease in lattice parameters and an increase in grain size of the ceramics. The Raman spectroscopy results suggest a lattice distortion due to the doping. It is found that BNKT-002Co and BNKT-005Co have higher depolarization temperatures compared with BNKT. The Curie-Weiss law and modified Curie-Weiss law explored a diffuse phase transition character for all the samples. The results of ultraviolet–visible diffuse reflectance suggests that BiCoO{sub 3}-doped ceramics possess higher defect concentration. The impedance analysis shows a temperature dependent relaxation behavior, and the activation energy for the electrical responses varies with the change of BiCoO{sub 3} amount. The ferroelectric and piezoelectric properties of the ceramics decrease due to the doping of BiCoO{sub 3}. Based on the results of the Rayleigh analysis, it was suggested that the differences in the electrical properties among the ceramics are closely related to the change in oxygen vacancy concentration. - Highlights: • BNKT-xCo ceramics were prepared by solid-state reaction method. • Electrical properties of BNKT ceramics are changed by the doping of BiCoO{sub 3}. • The doping causes a decrease in lattice parameters and an increase in grain size. • T{sub d} of the ceramics increases with increasing x. • Oxygen vacancies play key role in determining electrical properties of the ceramics.

  12. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  13. Effect of epoxy impregnation on strain distribution of materials in Bi2223 superconducting coils by using synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinzhe, E-mail: xinzhe.jin@riken.jp [Center for Life Science Technologies, RIKEN, Yokohama-shi, Kanagawa 230-0045 (Japan); Osamura, Kozo [Research Institute for Applied Sciences, Sakyo-ku, Kyoto 606-8202 (Japan); Machiya, Shutaro [Daido University, Minami-ku, Nagoya 457-8530 (Japan); Kajiwara, Kentaro [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Shobu, Takahisa [Japan Atomic Energy Agency, Sayo, Hyogo 679-5148 (Japan); Maeda, Hideaki [Center for Life Science Technologies, RIKEN, Yokohama-shi, Kanagawa 230-0045 (Japan)

    2015-11-25

    Synchrotron X-rays have been used to observe strain distributions in composite materials such as superconducting wires with a thickness of less than about 2 mm. In applications that employ wound coils of superconducting wire, it is necessary to understand the strain distribution within the coiled wire. Superconducting wires such as Bi2223 and REBCO wires approximately 4–5 mm wide are commercially available. Coiled wires of this width are too thick to easily measure using conventional X-ray techniques, especially the inner strain, because the penetration depth tends to be around 2 mm. Therefore, the beam penetration must be improved, and it is known that the penetration depth of an X-ray beam depends upon the beam energy, beam intensity, measurement material, and measurement method. In this study, we used a white X-ray diffractometer at SPring-8 to develop a method of observing the strain distribution in Bi2223 superconducting coils winded by a 4.5 mm wide Bi2223 wire. We successfully observed a clear (400) peak of the Bi2223 phase by an appropriate measurement condition, and then observed the strains of each material in the Bi2223 coils with and without epoxy impregnation. This is the first time that we have obtained the strain of a Bi2223 phase in coiled wire using synchrotron X-ray diffraction. Further synchrotron-based study of superconducting coils will be useful in the development of advanced high-field magnets. The appropriate measurement method and the obtained measurement results are presented in this paper. - Highlights: • We successfully obtained clear peaks of Bi2223 phase in 4.5 mm thick coils. • The strain behaviors of materials in the coil correspond to a three turn cycle model. • A uniform strain distribution of the Bi2223 phase was obtained by epoxy impregnation.

  14. The defect structure of ceramic high Tc superconductors

    International Nuclear Information System (INIS)

    Van Tendeloo, G.; Amelinckx, S.; Zandbergen, H.W.; Verwerft, M.

    1989-01-01

    In this paper an overview is given of electron microscopy studies on the different ceramic superconductors: YBa 2 Cu 3 O 7 , Bi(Tl)-Sr(Ba)- Ca-Cu-O and Pb 2 Sr 2 Y 0.5 Ca 0.5 Cu 3 O x . Planar defects in these materials play an important role in the superconducting properties. Their structural characteristics are discussed

  15. Bi--Sr--Ca--Cu--O superconducting films fabricated using metal alkoxides

    International Nuclear Information System (INIS)

    Katayama, S.; Sekine, M.

    1991-01-01

    Superconducting films in the Bi--Sr--Ca--Cu--O systems were made using metal alkoxides. To prepare a dip-coating solution using a mixed alkoxide solution, insoluble Cu and Bi alkoxides were dissolved by modification with 2-dimethylaminoethanol and formation of a double alkoxide, respectively. Formation of the double alkoxides of Bi with Ca or Sr was confirmed using FT-IR and 1 H-NMR. Bi--Sr--Ca--Cu--O films on yttria-stabilized ZrO 2 and single crystal MgO(100) substrates were made using this solution. The films were closely oriented along the c-axis perpendicular to the substrate. The film on MgO(100) fired at 850 degree C for 48 h showed two resistance drops around 115 and 85 K, corresponding to the high-T c and low-T c phases, respectively, and zero resistance at 72 K

  16. Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2015-06-01

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  17. Phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Mao, Chaoliang; Liu, Zhen; Dong, Xianlin; Cao, Fei; Wang, Genshui, E-mail: genshuiwang@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2015-03-02

    The phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} lead-free ceramics were investigated systematically. The loss tangent of poled sample shows a broad peak when heating to about 80 °C, i.e., depolarization temperature T{sub d}. The polarization-electric field hysteresis loops at different temperature exhibit the feature of ferroelectric (FE)- antiferroelectric (AFE) phase transition and the co-existence of FE and AFE phase. The pyroelectric coefficients curve confirms its diffusion behaviors. The initial hysteresis loop and switching current curves under T{sub d} indicate the co-existence of FE and AFE phase. The domain morphology of transmission electron microscopy supports the co-existence of FE and AFE phase. Our work not only exhibit that the FE and AFE phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics but also they may be helpful for further investigation on lead-free ceramics.

  18. Dopant rearrangement and superconductivity in Bi2Sr2-xLaxCuO6 thin films under annealing

    International Nuclear Information System (INIS)

    Cancellieri, C; Lin, P H; Ariosa, D; Pavuna, D

    2007-01-01

    By combining x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS) and AC susceptibility measurements we investigate the evolution of structural and superconducting properties of La-doped Bi-2201 thin films grown by pulsed laser deposition (PLD) under different annealing conditions. We find that the main effect of oxygen annealing is to improve the crystal coherence by enabling La cation migration to the Sr sites. This activates the desired hole doping. Short-time Ar annealing removes the interstitial oxygen between the BiO layers, fine adjusting the effective hole doping. The superconducting critical temperature is consequently enhanced. However, longer annealings result in phase separation and segregation of the homologous compound Bi-1201. We attribute this effect to the loss of Bi during the annealing

  19. Bi-Sr-Ca-Cu-O superconducting thin films: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, M [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Boybay, M S [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Elbuken, C [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Andrews, M J [Los Alamos National Lab, PO Box 1663, Mail Stop B 296, Los Alamos, NM 87545 (United States); Hu, C R [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); Ross, J H [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States)

    2006-06-01

    The interest of this paper centers on fabrication and characterization and modeling of vortices in high temperature superconducting thin films. As a first step, the magnetic vertices of the superconducting matrix were modeled. As a second, Bi-Sr-Ca-Cu-O thin films were grown using Pulsed Laser Ablation (PLD) on single crystal MgO substrates as magnetic templates for the potential use for Nano and Microelectronic circuits, and were characterized by x-ray diffraction, electron, and atomic force microscopy. The third step (future work) will be observation and pinning of these vortices using Bitter decoration.

  20. Piezoelectric properties enhanced of Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} ceramic by (LiCe) modification with charge neutrality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Pinyang, E-mail: fpy_2000@163.com [Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Xi, Zengzhe; Long, Wei; Li, Xiaojuan [Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Li, Jin [Northwest Institute For Non-ferrous Metal Research, Xi’an 710016 (China)

    2013-09-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T{sub c} ∼590 °C and d{sub 33} ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr{sub 0.6−x}(LiCe){sub x/2.5}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9}(SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} (SBNBN) ceramic and the maximum of piezoelectric coefficient d{sub 33} of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T{sub c} ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed.

  1. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  2. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia; Wang, Lei; Chen, Yao; Wang, Dongliang; Yao, Yingbang; Ma, Yanwei

    2012-01-01

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  3. Structure and electrical properties of (1 − x) (Na0.5Bi0.5)0.94Ba0.06TiO3–x BiAlO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Fu, Peng; Xu, Zhijun; Chu, Ruiqing; Wu, Xueyan; Li, Wei; Li, Xiaodong

    2013-01-01

    Highlights: ► (1 − x) BNBT6–x BA ceramics were prepared by solid-state reaction method. ► Electrical properties of BNBT6 ceramics are improved by the addition of BA. ► (1 − x) BNBT6 - x BA ceramics at x = 0.0225 have the best electrical properties. - Abstract: (1 − x) (Na 0.5 Bi 0.5 ) 0.94 Ba 0.06 TiO 3 –x BiAlO 3 ((1 − x) BNBT6–x BA) lead-free piezoelectric ceramics were synthesized by conventional solid-state processes. Effects of BiAlO 3 (BA) on the structure and electrical properties of (Na 0.5 Bi 0.5 ) 0.94 Ba 0.06 TiO 3 (BNBT6) ceramics were investigated. X-ray diffraction (XRD) data shows that (1 − x) BNBT6–x BA ceramics form the pure perovskite phases, and the ceramics have the morphotropic phase boundary (MPB) when x r = 42.5 μC/cm 2 ), the highest piezoelectric coefficient (d 33 = 204 pC/N), the highest planar coupling factor (k p = 0.3292), the highest dielectric constant (ε r = 1687) and higher mechanical quality factor (Q m = 112)

  4. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  5. Radio frequency response of Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3O10+x superconducting tapes

    International Nuclear Information System (INIS)

    Grasso, G.

    2000-01-01

    The response of long (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 conductors fabricated by the oxide-powder-in-tube method to a radio frequency excitation was investigated while employed as the inductive part of large L-C resonating circuits. After removal of the outer silver sheath, superconducting devices cooled down to 77 K showed superior properties compared to equivalent non-superconducting circuits: Bi-based resonators, conceived for a working frequency in the range between 5 and 17 MHz, presented an improvement of the quality factor by a factor of 20. This result opens new perspectives for the application of Bi-based superconducting materials in the detection of a weak radio frequency signal, as in magnetic resonance imaging. (author)

  6. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  7. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  8. Synthesis and characterization of BNO (BiNbO4) ceramics added to 3% of ZnO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Pires Junior, G.F.M.; Rodrigues, H.O.; Sousa, D.G.; Sales, J.C.; Sombra, A.S.B.

    2012-01-01

    This work describes the synthesis and study of the structural characterization of ceramic BiNbO4 and density behavior when added 3% by weight of ZnO with a view to use in capacitors. The manufacture of BiNbO4 was made by conventional ceramic method. The powders were milled for two hours, calcined at 850 ° C for 3 h and characterized by XRD with Diffractometer Rigaku DMAXB of Co-α radiation. A more detailed XRD characterization was performed with the program DBWS9807a using the Rietveld refinement of crystal structures, which confirmed the achievement of phase -α-BiNbO4. Were made 'buks' with the calcined powder and these were sintered at 1025 ° C. In order to study the grain morphology and distribution of pores in the ceramic body, the surface of the sample with addition of 3% by weight of ZnO was analyzed by Scanning Electron Microscopy which confirmed a better densification. (author)

  9. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    Science.gov (United States)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  10. Co-doping induced coexistence of superconductivity and ferromagnetism in Bi{sub 3.9}Co{sub 0.1}O{sub 4}S{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Feng, Zhenjie, E-mail: fengzhenjie@t.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); Yin, Xunqing; Li, Qing; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Lu, Bo [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Jing, Chao; Cao, Shixun [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); Zhang, Jincang [Department of Physics, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China)

    2016-09-15

    Highlights: • Bi{sub 4}O{sub 4}S{sub 3} is a new discovered layered superconductor. Some doping effects, such as Ag, Cu, and Pb, are studied, the superconductivity is suppressed in these doping samples. We doped the Ni magnetic ions to the system, it is interesting that the superconductivity is not suppressed in x = 0.1 sample. Meanwhile, the coexistence of the superconductivity and magnetism is observed in the samples from the M-vs. –H loops. - Abstract: The effects of Co doping on the physical properties of the Bi{sub 4}O{sub 4}S{sub 3} system was studied. We discovered that stable Bi{sub 3.9}Co{sub 0.1}O{sub 4}S{sub 3} compound exhibits both long-range ferromagnetism and enhanced superconductivity with thermodynamic evidences for Tc ∼ 5.5 K. We found that there is an anomalous feature which represents superconducting transition in the hysteretic M-vs.-H loops for Bi{sub 3.9}Co{sub 0.1}O{sub 4}S{sub 3} at T = 3 K.

  11. Multiferroic properties of nanocrystalline BiFe{sub 1−x}Ni{sub x}O{sub 3} (x=0.0–0.15) perovskite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Yogesh [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425001, Maharastra (India); Department of Physics, Shri. Pancham Khemaraj Mahavidyalaya, Sawantwadi 416510, Maharastra (India); Mahajan, Chandrashekhar M. [Department of Engineering Sciences and Humanities (DESH), Vishwakarma Institute of Technology, Pune 411 016, Maharastra (India); Singh, Amrita [Magnetics and Advanced Ceramics Laboratory, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Jagtap, Prashant [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425001, Maharastra (India); Chatterjee, Ratnamala [Magnetics and Advanced Ceramics Laboratory, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Bendre, Subhash, E-mail: bendrest@gmail.com [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425001, Maharastra (India)

    2015-12-01

    Ni doped BiFeO{sub 3} (x=0, 0.05, 0.1 and 0.15) nanocrystalline ceramics were synthesized by the solution combustion method (SCM) to obtain optimal multiferroic properties. The effect of Ni doping on structural, morphological, ferroelectric, magnetic and dielectric properties of BiFeO{sub 3} was studied. The structural investigations by using X-ray diffraction (XRD) pattern confirmed that BiFe{sub 1−x}Ni{sub x}O{sub 3} ceramics have rhombhohedral perovskite structure. The ferroelectric hysteresis measurements for BiFe{sub 1−x}Ni{sub x}O{sub 3} (x=0, 0.05, 0.1, 0.15) compound at room temperature found to exhibit unsaturated behavior and presents partial reversal of polarization. The magnetic measurements demonstrated an enhancement of ferromagnetic property due to Ni doping in BiFeO{sub 3} when compared with undoped BiFeO{sub 3}. The variation of dielectric constant with temperature in BiFe{sub 0.9}Ni{sub 0.1}O{sub 3} and BiFe{sub 0.85}Ni{sub 0.15}O{sub 3} samples evidenced an apparent dielectric anomaly around 350 °C and 300 °C which corresponds to antiferromagnetic to paramagnetic phase transition of (T{sub N}) of BiFeO{sub 3}. The dependence of room temperature dielectric properties on frequency signifies that both dielectric constant (ε) and dielectric loss (tan δ) are the strong function of frequency. The results show that solution combustion method leads to synthesis of an excellent and reproducible BiFe{sub 1−x}Ni{sub x}O{sub 3} multiferroic ceramics. - Highlights: • Synthesis of BiFe{sub 1−x}Ni{sub x}O{sub 3} (x=0, 0.05, 0.1 and 0.15) multiferroic ceramics. • Solution Combustion Method (SCM). • Ferroelectric and dielectric properties of undoped and Ni doped BiFeO{sub 3} ceramics. • High temperature synthesis of BiFe{sub 1−x}Ni{sub x}O{sub 3} multiferroic ceramics. • First detailed report about SCM synthesized the BiFe{sub 1−x}Ni{sub x}O{sub 3} ceramics.

  12. Effect of superconducting transition on microcreep of high-TC ceramics

    International Nuclear Information System (INIS)

    Soldatov, V.P.; Natsik, V.D.; Chajkovskaya, N.M.

    1991-01-01

    Influence of N-S and S-N transition on microplastic deformation kinetics of YBa 2 Cu 3 O 7-δ ceramic samples by there deformation in liquid nitrogen under microscreep conditions is studied. Superconductivity disruption in the sample was achieved by critical value currents. It is shown, that N-S transition increases creep rate,whereas S-N transition slows it down. Microplastic deformation rate by sample state change may very by two-eight times. Influence of heat expansion on creep kinetics as probable associated effect is analyzed. Assumption is expressed, that stimulated transition effect on microplastic deformation of ceramic samples is related to change of their electron state in the area of Josephson contacts between grains

  13. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.; Wang, Chun-Ming

    2009-01-01

    The piezoelectric, dielectric, and electromechanical properties of the (KCe) co-substituted calcium bismuth niobate (CaBi 2 Nb 2 O 9 , CBN) were investigated. The piezoelectric activities of CBN ceramics were significantly enhanced and the dielectric loss tan δ decreased by (KCe) substitution. The Ca 0.9 (KCe) 0.05 Bi 2 Nb 2 O 9 ceramics possess the optimal piezoelectric properties, and the piezoelectric coefficient (d 33 ), Curie temperature (T C ), and electromechanical coupling factors (k p and k t ) were found to be 16 pC/N, 868 C, 8.6%, and 23.8%, respectively. The excellent dielectric and electromechanical spectra, together with the high piezoelectric activities and ultrahigh Curie temperature, make CBN ceramics promising candidates for high temperature piezoelectric applications. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    Science.gov (United States)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  15. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    International Nuclear Information System (INIS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, M. S.; Song, J. S.

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi 0.5 (Na 0.425 K 0.075 ) TiO 3 (BNKT) ceramic material with platelike Bi 4 Ti 3 O 12 (BiT) were investigated. The platelike Bi 4 Ti 3 O 12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 .deg. C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  16. The Effect of Temperature Dependence of AC Losses in a Bi-2223/Ag Insert of an 8-T Superconducting Magnet

    DEFF Research Database (Denmark)

    Wang, Lei; Wang, Qiuliang; Wang, Hui

    2016-01-01

    A conduction-cooled split-gap superconducting magnet system with a center field of 8 T has been designed and fabricated in the Institute of Electrical Engineering, Chinese Academy of Sciences. The system consists of two Bi-2223/Ag coils and six NbTi coils. Due to a large aspect ratio of the high-...... in the second case. Hence, it is a good way to reduce the ac losses by changing the charging sequences of the Bi-2223/Ag and NbTi cols. Afterward, the calculated results are compared with the experimental data, and they show a good agreement.......A conduction-cooled split-gap superconducting magnet system with a center field of 8 T has been designed and fabricated in the Institute of Electrical Engineering, Chinese Academy of Sciences. The system consists of two Bi-2223/Ag coils and six NbTi coils. Due to a large aspect ratio of the high......-temperature superconducting tape, there will be large ac losses when the magnet is ramped up and down. An accurate estimation of the total ac losses in the high-temperature superconducting coils is essential for the cryogenic system design. In the Bi-2223/Ag coils, the total ac losses mainly originate from two parts: One...

  17. Trapping control of phase development in zone melting of Bi-Sr-Ca-Cu-O superconducting fibres

    International Nuclear Information System (INIS)

    Costa, F M; Carrasco, M F; Silva, R F; Vieira, J M

    2003-01-01

    Highly-texturized polycrystalline fibres of the Bi-Sr-Ca-Cu-O system have been grown by the laser floating zone technique at seven different pulling rates: (1.1, 2.2, 4.17, 8.3, 16.7, 33.3, 60.5) x 10 -6 m s -1 . The assessment of the cation segregation at the solid/liquid interface allowed us to calculate their equilibrium and effective distribution coefficients. The equilibrium distribution coefficients (k 0,Bi = 0.55, k 0,Sr = 0.97, k 0,Ca = 1.67, k 0,Cu = 1.10) were estimated using the Burton, Primm and Slichter (BPS) theory by taking into account the determined effective values. The effective distribution coefficients tend to unity as long as the pulling rate increases. The composition profiles along the initial transient region of the solidified fibres show a fast approach to the nominal composition as the pulling rate increases. The outstanding effect of the growth speed on superconducting phase type development is explained based on the solute trapping phenomena. The sequence of crystallization for superconducting phases ('2212' → '4413' → '2201') with pulling rate is a spontaneous effect of the system thermodynamics in order to balance the Bi trapping. This phase sequence corresponds to the smallest change of Bi chemical potential from the liquid phase to the solid phase. A diagram of free energy curves of the interdendritic superconducting phases illustrates the partitionless solidification phenomena at the highest growth speed

  18. Synthesis and characterization of ceramics BNO (BiNbO4) added to 10% of CuO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Silva, P.M.O.; Rodrigues Junior, C.A.; Sombra, A.S.B.

    2012-01-01

    The study of the synthesis and structural characterization of ceramic BiNbO4 and behavior of density when added 10% by weight of CuO, with a view to applications in ceramic capacitors, are presented in this work. The BiNbO4 was prepared by conventional ceramic method. The milled powders were calcined for 2 hours at 850 °C for 3 hours and characterized by using a diffractometer Rigaku DMAXB of Co-α radiation. A more detailed characterization by XRD was performed using the program DBWS9807a using the Rietveld refinement of crystal structures, which confirmed the achievement of the α-BNO phase with orthorhombic structure. Were produced buks with the calcined powder, they were sintered at 925 °C. In order to study the grain morphology and distribution of pores in the ceramic body, the surface of the sample by adding 10% of CuO was analyzed by Scanning Electron Microscopy which confirmed a better densification. (author)

  19. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  20. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  1. Development of microstructure and superconductivity of silver-clad Bi(2223) composite tapes in the process of heat treatment

    International Nuclear Information System (INIS)

    Guo, Y.C.; Liu, H.K.; Dou, S.X.

    1994-01-01

    A systematic study on the development of phase composition, microstructure and superconducting properties (critical temperature Tc and critical current density J c ) in silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 composite tapes during the process of heat treatment has been conducted using X-ray diffraction, scanning electron microscopy and electrical measurements. The correlation between the tape's high Tc phase purity, microstructure and superconducting properties at different heat treatment stages has been carefully analysed and explained. The results indicate that pure high Tc phase, high degree of grain alignment, high mass density and good connection between grains are all essential for superconducting tapes to carry a large current. With the optimized process parameters, a critical current density J c up to 32665 A cm -2 (corresponding critical current, 42.3 A) at 77 K and self-magnetic field for silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 superconducting composite tapes has been achieved. (orig.)

  2. Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Zhou Changrong; Liu Xinyu; Li Weizhou

    2008-01-01

    The (0.82 - x)Bi 0.5 Na 0.5 TiO 3 -0.18Bi 0.5 K 0.5 TiO 3 -xBiFeO 3 (x = 0-0.07) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of BiFeO 3 addition on microstructure and electrical properties of the ceramics was investigated. The specimens with x ≤ 0.05 maintained a rhombohedral-tetragonal phase coexistence and changed into a rhombohedral phase when x > 0.05 in crystal structure. The addition of BiFeO 3 caused a promoted grain growth. All the specimens reveal a low-frequency dielectric dispersion in the frequency range of 40-1 MHz. The piezoelectric constant d 33 and the electromechanical coupling factor k p show an obvious improvement by the addition of small amount of BiFeO 3 , which shows optimum values of d 33 = 170 pC/N and k p = 0.366 at x = 0.03. Contrary to the enhancement of piezoelectric properties, Q m decreases with increasing BiFeO 3 content. The mechanisms of intrinsic and extrinsic contributions to the dielectric and piezoelectric responses have been proposed. Intrinsic contributions are from the relative ion/cation shift that preserves the ferroelectric crystal structure. The remaining extrinsic contributions are from the domain-wall motion and point defects

  3. Synthesis and optical properties of Pr and Ti doped BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vikash, E-mail: vikash.singh@abes.ac.in [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida (U.P.), India-201307 (India); Applied Science and Humanities, ABES EC, Ghaziabad (U.P), India-201009 (India); Sharma, Subhash; Dwivedi, R. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida (U.P.), India-201307 (India)

    2016-05-23

    Bi{sub 1-x}Pr{sub x}Fe{sub 1-x}Ti{sub x}O{sub 3} ceramics with x = 0.00, 0.10 and 0.20 were synthesized by solid state reaction method. Rietveld fitting of diffraction data reveals structural transition from rhombohedral phase (R{sub 3C}) for x ≤ 0.10 to orthorhombic phase (P{sub nma}) for x = 0.20. FTIR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations in these ceramics. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-600 nm, indicating optical band gap in the visible region for these samples.

  4. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  5. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C. S. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Hung, C.-M.; Anthoninappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Ting, Y.; Peng, Y.-T. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2013-09-28

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.90}Ca{sub 0.10})FeO{sub 2.95} (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  6. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics

    Science.gov (United States)

    Yang, F.; Han, M. Y.; Chang, F. G.

    2015-01-01

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727

  7. Structural, electric and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics obtained by co-precipitation route

    Directory of Open Access Journals (Sweden)

    Mohamed Afqir

    2018-03-01

    Full Text Available This paper presents a study of the structure and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics prepared by co-precipitation route and sintered at 850 °C. The materials were examined using XRD and FTIR methods. XRD data indicated the formation of well crystallized structure of the pure and doped SrBi2Nb2O9, without the presence of undesirable phases. FTIR spectra do not bring a significant shift in the band positions. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined through the frequency range [50 kHz–1 MHz]. In particular, the dielectric constant (ε′ and dielectric losses (tan δ of the SrBi2Nb2O9 and SrBi1.6Eu0.4Nb2O9 ceramics were measured as a function of temperature at various frequencies.

  8. Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO3-BiScO3 Linear Dielectric Ceramics.

    Science.gov (United States)

    Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Song, Hongzhou; Wang, Hongxian; Li, Longtu

    2017-06-14

    A novel lead-free (1 - x)CaTiO 3 -xBiScO 3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO 3 increasing, the dielectric constant of (1 - x)CaTiO 3 -xBiScO 3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 μC/cm 2 , 4.6 times higher than that of the pure CaTiO 3 . The energy density of 0.9CaTiO 3 -0.1BiScO 3 ceramic was 1.55 J/cm 3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm 3 . Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO 3 -BiScO 3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.

  9. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  10. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  11. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  12. Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi

    NARCIS (Netherlands)

    Pan, Y.; Nikitin, A.M.; Bay, T.V.; Huang, Y.K.; Paulsen, C.; Yan, B.H.; de Visser, A.

    2013-01-01

    We report superconductivity at Tc = 1.22 K and magnetic order at TN = 1.06\\ K in the semimetallic noncentrosymmetric half-Heusler compound ErPdBi. The upper critical field, Bc2, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T - 0 . Magnetic order is found below

  13. Proton induced changes of the texturing degree of superconducting YBaCuO ceramics

    International Nuclear Information System (INIS)

    Kalanov, M.U.

    2004-01-01

    Full text: The aim of this work was to improve conducting properties of superconducting yttrium ceramics by means of proton-induced increase in the texturing degree. The object were single-phase (98 %), isotropic YBa 2 Cu 3 O 7-δ (δ ≅ 0.05) ceramic pellets of 12 mm in diameter and 0.6 mm of thickness, with the average grain size of 14 μm, the lattice parameters a r ≅ 3.822, b r ≅ 3.883 and c r ≅ 11.673 A, the density ∼ 5.1 g.cm -3 , the specific resistance ∼ 3 mΩ· cm in the normal state, had the superconducting T c ≅ 91 K. The samples were irradiated at the cyclotron U-150 of the INP AS RUz with 18 MeV-protons within the range of fluences 1014 - 10 15 cm -2 at the beam current of 20 nA and 300 K. The structure characteristics of samples were determined at the diffractometer DRON-UM1 (λ CuKα 1.54178 A). Electrophysical parameters were measured with the four-probe technique at the direct current of 10 mA. The texturing degree was determined by the formula F t = P t - P o /1 - P o , where P o and P t are the ratios of the (00L) reflection intensity sum to that of all (HKL) structure lines for isotropic and textured ceramics, respectively. The diffraction spectrum of the sample irradiated with the proton fluence of 2·10 14 cm -2 demonstrated a noticeable decrease in the {HKL} reflection intensities and simultaneous increase in those of {00L}. By this the value of ρ (100 K) decreased in 3 times, and the T c by 0.3 K, the superconducting transition broadened and the resistivity slope of the temperature dependence increased. Further growth of the {{00L} line intensities at elevated doses (4·10 14 † 8·10 14 cm -2 ) did not occur, yet the ρ (100 K) value rose fast, the T c dropped, and the character of conductivity changed from metallic to semiconducting. Such anomaly in the structure characteristics and superconducting properties of the irradiated YBa 2 Cu 3 O 7-δ ceramics can be explained by formation of the texture on the sample surface

  14. Synthesis, structure and superconductivity in Ba1-xKxBiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.

    1989-01-01

    Ba 1-x K x BiO 3 (with x = 0.4) has the highest T c (30 K) of any copperless compound. The superconducting transition temperature of this material is expected to be at the limit of conventional electron-phonon coupling. Since this material is much simpler than the copper containing high-T c superconductors (it is cubic in its superconducting state and only sp electrons are involved in the transport properties), it should be much easier to unravel the nature of the superconducting pairing mechanism in this system. Understanding this system may help explain superconductivity in the more complex copper-oxide materials. In this paper, the authors report on the development of a synthesis method which allows the preparation of stoichiometric, single-phase materials with x between 0.0 and 0.5. The structural phase diagram was determined using powder neutron diffraction as a function of both composition and temperature. Superconductivity only occurs in the cubic perovskite phase which is stable for x larger than 0.3. At a x = 0.3 composition the material undergoes a semiconductor to metal transition with a maximum value for T c . As the K content is further increased, T c is reduced

  15. Composite metallic sheathes: the key to low-cost, high strength (Bi,Pb)2Sr2Ca2Cu3O10-based tapes?

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2007-01-01

    (Bi, Pb)(2)Sr2Ca2Cu3O10-based superconducting tapes were prepared by the powder- in- tube process, using a bimetallic sheath consisting of Ag and Ni. Ag was in contact with the superconducting ceramic core and acted as a protective layer against reaction between the external Ni sheath and the cor...

  16. Composite superconducting wires produced by rapid coating in Bi-Sr-Ca-Cu-O metal oxide system

    International Nuclear Information System (INIS)

    Grozav, A.D.; Konopko, L.A.; Leoporda, N.I.

    1989-01-01

    Method for producing superconducting composite wires by dip coating of copper wires in metal-oxide BiSrCaCu 2 O x melt is developed. The thickness of the coating is regulated by the change of dip rate, melt viscosity and by the number of passages through the melt. Wire annealing at 700-800 deg C leads to the production of two phases, one of them being superconducting with T c =80K

  17. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  18. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  19. Superconducting properties of Bi-based ceramics with column 3A elements

    Czech Academy of Sciences Publication Activity Database

    Smrčková, O.; Sýkorová, D.; Rubešová, K.; Vašek, Petr

    2002-01-01

    Roč. 321, - (2002), s. 292-294 ISSN 0921-4526 R&D Projects: GA ČR GA106/99/1441; GA ČR GA104/99/1440 Institutional research plan: CEZ:AV0Z1010914 Keywords : Bi2223 * substitution B, Al, Ca, In * critical phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002

  20. Thermal-induced structural transition and depolarization behavior in (Bi0.5Na0.5)TiO3-BiAlO3 ceramics

    Science.gov (United States)

    Peng, Ping; Nie, Hengchang; Cheng, Guofeng; Liu, Zhen; Wang, Genshui; Dong, Xianlin

    2018-03-01

    The depolarization temperature Td determines the upper temperature limit for the application of piezoelectric materials. However, the origin of depolarization behavior for Bi-based materials still remains controversial and the mechanism is intricate for different (Bi0.5Na0.5)TiO3-based systems. In this work, the structure and depolarization behavior of (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3 (BNT-BA, x = 0, 0.02, 0.04, 0.06, 0.07) ceramics were investigated using a combination of X-ray diffraction and electrical measurements. It was found that as temperature increased, the induced long-range ferroelectric phase irreversibly transformed to the relaxor phase as evidenced by the temperature-dependent ferroelectric and dielectric properties, which corresponded to a gradual structural change from the rhombohedral to the pseudocubic phase. Therefore, the thermal depolarization behavior of BNT-BA ceramics was proposed to be directly related to the rhombohedral-pseudocubic transition. Furthermore, Td (obtained from thermally stimulated depolarization currents curves) was higher than the induced ferroelectric-relaxor phase transition temperature TFR (measured from dielectric curves). The phenomenon was quite different from other reported BNT-based systems, which may suggest the formation of polar nanoregions (PNRs) within macrodomains prior to the detexturation of short-range ferroelectric domains with PNRs or nanodomains.

  1. Preparation of textured Bi3TiNbO9 ceramics

    International Nuclear Information System (INIS)

    Zhou Zhiyong; Cheng Baozhu; Li Yuchen; Dong Xianlin

    2007-01-01

    Single phase of textured Bi 3 TiNbO 9 (BTNO) ceramics were prepared by a two-step sintering method: synthesizing seed-crystal platelets by molten-salt method with oxide mixture as precursor and then sintering the platelets via hot-pressing method. Molten-salt-synthesized fine BTNO plate-like crystallines (∼400 nm) had an orientation degree of 0.42. After hot-pressed under different conditions, textured BTNO ceramics with different orientation degree were obtained and the orientation degree of textured BTNO ceramics increased with the applied pressure as well as the sintering temperature. X-ray diffraction (XRD) patterns of textured BTNO revealed that the face perpendicular to the hot-pressing axis (-perpendicular ) exhibits stronger (0 0 l) diffraction peaks, while the face parallel to the hot-pressing axis (-parallel ) shows stronger (0 2 0)/(2 0 0) and weaker (0 0 l) diffraction peaks, which also can be apparently observed from SEM images. Highly oriented BTNO with a degree of 0.78 was obtained under an applied pressure of 60 MPa at 1050 deg. C

  2. Self-field AC losses in Bi-2223 superconducting tapes

    International Nuclear Information System (INIS)

    Mueller, K. H.; Leslie, K.E.

    1996-01-01

    Full text: The self-field AC loss in Bi-2223 silver sheathed tapes for AC currents of up to 100 A was measured at 77 K and frequencies of 60 Hz and 600 Hz using a lock-in amplifier. The frequency dependence indicated a purely hysteretic loss which can be well described in terms of the critical state model for a flat superconducting strip. The only parameter needed to predict the self-field AC loss is the critical current of the critical state. Because the loss voltage is extremely small compared with the inductive voltage, a very high accuracy of the lock-in amplifier phase setting is required. Unlike in loss measurements on cylindrical superconducting samples, in the case of the tape the measuring circuit leads have to be brought out from the surface forming a loop where the changing magnetic field induces an additional voltage. Only if the loop formed by the leads at the voltage tabs is large enough will the apparent power dissipation approach the real AC loss associated with the length of the sample probed

  3. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.

    1999-01-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays 60 Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year

  4. Structure and superconductivity in (Bi{sub 0.35}Cu{sub 0.65})Sr{sub 2}YCu{sub 2}O{sub 7} and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R.A.; Williams, S.P.; Greaves, C. [Univ. of Birmingham (United Kingdom)

    1994-12-31

    The recently reported (Bi/Cu)Sr{sub 2}YCu{sub 2}O{sub 7} phase has been studied by time of flight powder neutron diffraction. The proposed 1212 structure has been confirmed and refinements have shown the oxygen in the (Bi/Cu)O layer is displaced by 0.78{angstrom} from the ideal (1/2,1/2,0) site (P4/mmm space group) along (100). Bond Valence Sum calculations have suggested oxidation states of Bi{sup 5+} and Cu{sup 2+} for the cations in the (Bi/Cu)O layers. The material is non-superconducting and all attempts to induce superconductivity have been unsuccessful. Work on the related material (Ce/Cu)Sr{sub 2}YCu{sub 2}O{sub y} has shown the ideal Ce content to be 0.5 Ce per formula unit. The introduction of Ba (10%) onto the Sr site dramatically increases phase stability and also induces superconductivity (62K).

  5. Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

    Science.gov (United States)

    Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei

    2018-02-01

    (1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

  6. Superconductivity in Ba sub 1 sub - sub x K sub x BiO sub 3 : possible scenario of spatially separated Fermi-Bose mixture

    CERN Document Server

    Menushenkov, A P; Kuznetsov, A V; Kagan, M Y

    2001-01-01

    A new scenario for the metal-insulator phase transition and superconductivity in the perovskite-like bismuthates Ba sub 1 sub - sub x K sub x BiO sub 3 (BKBO) is proposed. It is shown that two types of charge carriers, the local pairs (real-space bosons) and the itinerant electrons, exist in the metallic compound BKBO (x >= 0.37). The real-space bosons are responsible for the charge transport in semiconducting BaBiO sub 3 and for superconductivity in the metallic BKBO. The appearance of the Fermi-liquid state as the percolation threshold is overcome (x >= 0.37) explains the observed metal-insulator phase transition. Because bosons and fermions occupy different types of the octahedral BiO sub 6 complexes, they are separated in real space, and therefore, the spatially separated Fermi-Bose mixture of a new type is likely to be realized in the bismuthates. The nature of superconductivity is consistently explained in the framework of this scenario. A new superconducting oxide Ba sub 1 sub - sub x La sub x PbO sub ...

  7. Growth of high T/sub c/ superconducting Bi4(Ca,Sr)6Cu4O/sub 16+//sub x/ crystals

    International Nuclear Information System (INIS)

    Morris, P.A.; Bonner, W.A.; Bagley, B.G.; Hull, G.W.; Stoffel, N.G.; Greene, L.H.; Meagher, B.; Giroud, M.

    1988-01-01

    To determine intrinsic properties of the newly discovered Bi-Ca-Sr-Cu-O high T/sub c/ superconductors, single crystals are necessary. Compositions in this system have been heat treated to survey the melting temperatures and phase field in which superconductivity is detected. The nucleation and growth of the 85 K phase from the melted composition Bi 4 Ca 3 Sr 3 Cu 4 O/sub 16+//sub x/ is observed to be a kinetically slow process which can be precluded by a sufficiently rapid quench, but post-anneals produce the 85 and 110 K phases in the quenched material. The melted composition (23% Bi 2 O 3 -46% CaO,SrO-31% CuO), after subsequent slow cooling, results in large discrete crystals of the 85 K superconducting phase and a residual flux

  8. Residual tensile stresses and piezoelectric properties in BiFeO3-Bi(Zn1/2Ti1/2O3-PbTiO3 ternary solid solution perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Weilin Zheng

    2016-08-01

    Full Text Available For low dielectric loss perovskite-structured (1-x-yBiFeO3-xBi(Zn1/2Ti1/2O3-yPbTiO3 (BF-BZT-PT (x = 0.04-0.15 and y = 0.15-0.26 ceramics in rhombohedral/tetragonal coexistent phase, structural phase transitions were studied using differential thermal analyzer combined with temperature-dependent dielectric measurement. Two lattice structural phase transitions are disclosed in various BF-BZT-PT perovskites, which is different from its membership of BiFeO3 exhibiting just one lattice structural phase transition at Curie temperature TC= 830oC. Consequently, residual internal tensile stresses were revealed experimentally through XRD measurements on ceramic pellets and counterpart powders, which are reasonably attributed to special structural phase transition sequence of BF-BZT-PT solid solution perovskites. Low piezoresponse was observed and argued extrinsically resulting from residual tensile stresses pinning ferroelectric polarization switching. Post-annealing and subsequent quenching was found effective for eliminating residual internal stresses in those BZT-less ceramics, and good piezoelectric property of d33 ≥ 28 pC/N obtained for 0.70BF-0.08BZT-0.22PT and 0.05 wt% MnO2-doped 0.70BF-0.04BZT-0.26PT ceramics with TC ≥ 640oC, while it seemed no effective for those BZT-rich BF-BZT-PT ceramics with x = 0.14 and 0.15 studied here.

  9. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-01-01

    Bi 2 O 3 -doped barium zirconate titanate ceramics, Ba 1-x Bi x (Zr 0.05 Ti 0.95 )O 3 , have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi 3+ substitutes A-site ion, and thereafter with higher Bi 3+ content, it enters the B-site sub lattice. Substitution of Bi 3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  10. BiFeO3-doped (Na0.5K0.5NbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Xueyi Sun et al

    2008-01-01

    Full Text Available Lead-free piezoelectric ceramics (1−x(Na0.5K0.5NbO3-xBiFeO3 (x=0~0.07 were synthesized by the solid-state reaction. Differential scanning calorimetry (DSC measurements revealed that an increase in the amount of BiFeO3 dopant resulted in a decrease in the orthorhombic-tetragonal and tetragonal-cubic phase transition temperature of the material. One percent BiFeO3 additive suppressed grain growth, which not only benefits the sintering of ceramics but also enhances the piezoelectric and ferroelectric properties, where d33=145pC/N, kp=0.31, Qm=80, Pr=11.3 μC cm−2 and Ec=16.5 kV cm−1. As xBF>0.01, both piezoelectric and ferroelectric properties decreased rapidly with an increasing amount of dopant.

  11. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  12. Study of the structure, dielectric and ferroelectric behavior of BaBi4+δTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2016-05-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi4+δTi4O15 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (Tm) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (Pr ~ 12.5 µC/cm2), low coercive fields (Ec ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d33 ~ 29 pC/N) is achieved in poled BaBi4Ti4O15 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  13. Development of Bi-based high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Swaminathan, G.

    1995-01-01

    In order to achieve the aim of developing suitable superconducting materials the main emphasis has to be made in the following areas viz., synthesizing powders, detailed study of sintering and phase conversion process in relation to the critical current density (J c ) on pellets and optimising of tape processing parameters. The bismuth system has been found to be more favourable for making wires and tapes because of its high transition temperature, good stability, does not require oxygen on cooling and is non-toxic. These have been the most convenient properties which made the BiSCO material the most popular one

  14. Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Nitish Kumar

    2016-12-01

    Full Text Available Ceramics of the composition BaBiO3 (BB were sintered in oxygen to obtain a single phase with monoclinic I2/m symmetry as suggested by high-resolution X-ray diffraction. X-ray photoelectron spectroscopy confirmed the presence of bismuth in two valence states — 3+ and 5+. Optical spectroscopy showed presence of a direct bandgap at ∼ 2.2eV and a possible indirect bandgap at ∼ 0.9eV. This combined with determination of the activation energy for conduction of 0.25eV, as obtained from ac impedance spectroscopy, suggested that a polaron-mediated conduction mechanism was prevalent in BB. The BB ceramics were crushed, mixed with BaTiO3 (BT, and sintered to obtain BT–BB solid solutions. All the ceramics had tetragonal symmetry and exhibited a normal ferroelectric-like dielectric response. Using ac impedance and optical spectroscopy, it was shown that resistivity values of BT–BB were orders of magnitude higher than BT or BB alone, indicating a change in the fundamental defect equilibrium conditions. A shift in the site occupancy of Bi to the A-site is proposed to be the mechanism for the increased electrical resistivity.

  15. FABRICATION AND MECHANICAL PROPERTIES OF Na0.5Bi0.5TiO3–BaTiO3 LEAD-FREE PIEZOELECTRIC CERAMICS

    Directory of Open Access Journals (Sweden)

    PAN YUSONG

    2014-03-01

    Full Text Available Piezoelectric ceramics with 0.94Na0.5Bi0.5TO3–0.06BaTiO3 compositions were fabricated by solid state mixed oxide method and sintered at different temperatures varying from 1050°C to 1150°C to obtain dense ceramics. Phase analysis using X-ray diffraction showed tetragonal perovskite structure of Na0.5Bi0.5TO3 with no BaTiO3 peak detected. The SEM observation revealed that the crystal grain size of the piezoelectric ceramics is on the nano-size dimensions under all the sintering temperature. The study on the compressive mechanical characteristics showed that the compressive strength of the 0.94Na0.5Bi0.5TO3–0.06BaTiO3 piezoelectric ceramics increases with the rise of sintering temperature and sintering time. The change behavior of the compressive strength with the rise of cold pressure presents increasing firstly and then decreases.

  16. Rietveld refinement and dielectric properties of (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})-(Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3}) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kaswan, Kavita, E-mail: kaswan.kavita@gmail.com; Agarwal, Ashish; Sanghi, Sujata; Singh, Ompal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar-125001 (India)

    2015-06-24

    (1-x)(Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})-x(Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3}) lead free ceramics (NBT, NBT-BBFO; x = 0.0, 0.1 respectively) have been synthesized by conventional solid state reaction method. Crystalline phase of sintered ceramics was investigated at room temperature using X-ray diffraction. Rietveld refinement of XRD data performed by FullProf revealed that both the samples exhibited rhombohedral structure with R3c space group. Dielectric properties of these ceramics were studied at different temperatures in a wide frequency range using impedance analyzer. Dielectric constant and dielectric loss were found to be increase with increase of BBFO content. The prepared ceramics exhibit a broad maximum in dielectric permittivity at 593K and dispersive permittivity at high temperatures. The NBT-BBFO sample shows a relaxor ferroelectric behavior at different frequencies.

  17. Study of the structure and ferroelectric behavior of BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Goyal, Parveen K. [Department of Physics, ARSD College, University of Delhi, Dhaula Kuan, New Delhi-110 021 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2015-06-24

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La{sup 3+} ions prefer to substitute A-site Bi{sup 3+} ions in the perovskite layers while for higher x values, La{sup 3+} ions get incorporated into the (Bi{sub 2}O{sub 2}){sup 2+} layers. A critical La content of x ∼ 0.2 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} is seen to exhibit a large remnant polarization (P{sub r}) with low coercive field (E{sub c}). The improvement in the ferroelectric properties of La substituted BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  18. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    Science.gov (United States)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  19. Structural, dielectric and magnetic properties of Mn modified xBiFeO{sub 3}-(1−x)BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhonghua, E-mail: zhdai@mail.xjtu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Liu, Lu; Ying, Guobing; Yuan, Ming [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ren, Xiaobing [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2017-07-15

    Manganese doped xBiFeO{sub 3}-(1−x)BaTiO{sub 3}(x=0.67–0.82) ceramics were prepared by solid-state method. The structural, dielectric and magnetic properties were investigated after annealing in vacuum at 773 K. X-ray diffraction analysis indicated that all samples crystallized in pure perovskite structure. The ceramics displays a typical ferroelectric loop, with a max remnant polarization P{sub r} of 25.6 µC/cm{sup 2}. The piezoelectric coefficient d{sub 33} of Manganese doped 0.67BiFeO{sub 3}0.33BaTiO{sub 3} is 139 pC/N and its temperature dependence of dielectric constant exhibits a broad anomaly. The Manganese doped 0.75BiFeO{sub 3}0.25BaTiO{sub 3} ceramic shows ferrimagnetism at room temperature, with remnant magnetization M{sub r} of 0.31 emu/g and ferrimagnetic transition temperature T{sub N} of ~420 °C. - Highlights: • In this manuscript, a technique combined Mn doping which is able to fabricate point defects and annealing in vacuum which can stabilize the unstable ion was investigated. We studied the electrical properties of Mn doped BiFeO{sub 3}-BaTiO{sub 3} ceramics after vacuum annealing treatment at appropriate temperature. • Our result is that Mn modification and heat treatment are effective methods to solve the problem of high leakage of BiFeO{sub 3}-BaTiO{sub 3} system ceramic prepared by solid-state method. It exhibited a enhanced field-induced ferromagnetic ordering with promising potential in spintronics and recording media applications.

  20. Study of the structure, dielectric and ferroelectric behavior of BaBi_4_+_δTi_4O_1_5 ceramics

    International Nuclear Information System (INIS)

    Khokhar, Anita; Goyal, Parveen K.; Sreenivas, K.; Thakur, O. P.

    2016-01-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi_4_+_δTi_4O_1_5 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T_m) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P_r ~ 12.5  µC/cm"2), low coercive fields (E_c ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d_3_3 ~ 29 pC/N) is achieved in poled BaBi_4Ti_4O_1_5 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi_4Ti_4O_1_5 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  1. Phonon and magnon scattering of Bi{sub 2}Fe{sub 4}O{sub 9} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Poorva, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Kumar, Ashwini, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India)

    2014-04-24

    We report the phonon structure of Bi{sub 2}Fe{sub 4}O{sub 9} ceramics as synthesized by solid-state reaction route. Rietveld refined X-ray diffraction patterns confirmed the formation of single-phase perovskite structure and all the peaks of Bi{sub 2}Fe{sub 4}O{sub 9} perfectly indexed to the orthorhombic (space group Pbam). Raman scattering measurements identifies 12A{sub g}+1B{sub 2g}+1B{sub 3g} Raman active optical phonon modes. Apart from phonon scattering, mode at 470 cm{sup −1} is observed which is due to magnon scattering. The P-E loop infers paraelectric nature of Bi{sub 2}Fe{sub 4}O{sub 9}.

  2. Preparation and electrical properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Ni Haimin; Luo Laihui; Li Weiping; Zhu Yuejin; Luo Haosu

    2011-01-01

    Research highlights: → Bi 0.47 Na 0.47 Ba 0.06 TiO 3 -KNbO 3 ceramics exhibit excellent piezoelectric properties. → The optimized properties of the ceramics: d 33 = 195 pC/N; k t = 58.9; Q m = 113; E c = 19.5 kV/cm. → KNbO 3 has diffused into the Bi 0.47 Na 0.47 Ba 0.06 TiO 3 lattices to form a new solid solution. → Macro-micro domain switching occurs at depolarization temperature T d . - Abstract: Lead-free (1 - x)Bi 0.47 Na 0.47 Ba 0.06 TiO 3 -xKNbO 3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO 3 (KN) has diffused into Bi 0.47 Na 0.47 Ba 0.06 TiO 3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d 33 = 195 pC/N; electromechanical coupling factor, k t = 58.9 and k p = 29.3%; mechanical quality factor, Q m = 113; remnant polarization, P r = 41.8 μC/cm 2 ; coercive field, E c = 19.5 kV/cm.

  3. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  4. Bi2(Sr, Ln)2CuOz (Ln = Nd, Sm) phases: stability, crystal growth and superconducting properties

    International Nuclear Information System (INIS)

    Faqir, H.; Kikuchi, M.; Syono, Y.; Mansori, M.; Satre, P.; Sebaoun, A.; Vacquier, G.

    2000-01-01

    Bi 2 (Sr,Ln) 2 CuO z (Ln = Nd, Sm) single crystals were successfully grown by a self-flux method from stoichiometric and (Bi, Cu)-rich melts. Thermal analysis and thermogravimetry were used to determine stability and the melting sequence of Bi 2 (Sr,Ln) 2 CuO z phases in air. As-grown crystals of the ideal Bi 2 (Sr,Ln) 2 CuO z phase, of dimensions 1x0.5x0.03 mm 3 , exhibit superconducting behaviour with critical temperature T c = 21 K for the Bi 1.9 Sr 1.6 Nd 0.6 CuO z crystal and Tc = 14 K for the Bi 1.8 Sr 1.6 Sm 0.6 CuO z crystal. The compositions of these crystals were homogeneous and close to the stoichiometric composition. We report on the growth of Bi 2 Sr 2-x Sm x CuO z single crystals of large dimensions 9x3x0.03 mm 3 using Bi 2 Sr 1.5 Sm 0.5 CuO z as precursor and Bi 2 CuO 4 as flux. (author)

  5. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    Science.gov (United States)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-03-01

    Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  6. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  7. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  8. Combinatorial processing libraries for bulk BiFeO3-PbTiO3 piezoelectric ceramics

    International Nuclear Information System (INIS)

    Hu, W.; Tan, X.; Rajan, K.

    2010-01-01

    A high throughput approach for generating combinatorial libraries with varying processing conditions for bulk ceramics has been developed. This approach utilized the linear temperature gradient in a tube furnace to screen a whole temperature range for optimized preparation. With this approach, the processing of 0.98[0.6BiFeO 3 -0.4PbTiO 3 ]-0.02Pb(Mg 1/3 Nb 2/3 )O 3 ceramic powders and pellets for high-temperature piezoelectric applications was demonstrated to identify the best synthesis conditions for phase purity. The dielectric property measurement on the as-processed solid solution ceramics confirmed the high Curie temperature and the improved loss tangent with the Pb(Mg 1/3 Nb 2/3 )O 3 doping. (orig.)

  9. Evidence for phonon-mediated coupling in superconducting Ba0.6K0.4BiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.; Dabrowski, B.; Richards, D.R.; Jorgensen, J.D.; Pei, S.; Zasadzinski, J.F.

    1989-01-01

    Superconducting Ba 0.6 K 0.4 BiO 3 , with a T c of 30 K, shows a large 18 O isotope effect which indicates that phonons are involved in the pairing mechanism. Infrared reflectivity measurements indicate a value for the superconducting gap consistent with moderate coupling (2Δ/k T c = 3.5 ± 0.5). A mediating energy for pairing of about 40 meV would be required to obtain a T c of 30 K. Strong coupling of electrons by optical phonons (which are present in this material with energies up to 80 meV) could account for the observed transition temperature. Recent tunneling spectroscopy shows the presence of strongly coupled optical phonons in the 40 to 70 meV region, indicating that superconductivity in this material may be phonon mediated

  10. Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control

    Science.gov (United States)

    Chen, Huanbei; Zhai, Jiwei

    2012-08-01

    Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.

  11. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Liu Jing; Shen Zhijian; Yan Haixue; Reece, Michael J.; Kan Yanmei; Wang Peiling

    2007-01-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d 33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 deg. C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d 33 above the permittivity peak, T m , show that the BLT ceramic has relaxor-like behavior

  12. On a possibility of cold fusion in deuterium-saturated YBa2Cu3O7-x ceramics in superconducting state

    International Nuclear Information System (INIS)

    Lipson, A.G.; Sakov, D.M.; Toporov, Yu.P.; Gromov, V.V.; Deryagin, B.V.

    1991-01-01

    A possibility to generate neutrons by deuterated YBa 2 Cu 3 O 7-x ceramics in superconducting (T c ) and normal (T>T c ) states is studied. The presented data points to a relationship between the processes of cold nuclear fusion and high-temperature superconductivity in YBa 2 Cu 3 O 7-x pellets deuterated at T c (77< T<90 K)

  13. Relaxations in Ba{sub 2}BiTaO{sub 6} ceramics investigated by impedance and electric modulus spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Joao Elias Figuereido Soares [Departamento de Fisica - CCET, Universidade Federal do Maranhao, Campus do Bacanga, 65085-580, Sao Luis -MA (Brazil); Paschoal, Carlos William de Araujo, E-mail: paschoal@ufma.br [Departamento de Fisica - CCET, Universidade Federal do Maranhao, Campus do Bacanga, 65085-580, Sao Luis -MA (Brazil); Silva, Eder Nascimento [Departamento de Fisica - CCET, Universidade Federal do Maranhao, Campus do Bacanga, 65085-580, Sao Luis -MA (Brazil); Mince, Kathryn A.; Lufaso, Michael W. [Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We have confirmed that the relaxation observed in Ba{sub 2}BiTaO{sub 6} is due to the conduction mechanism. Black-Right-Pointing-Pointer The conduction mechanism is the oxygen vacancies hopping. Black-Right-Pointing-Pointer We have explained because the activation energy for the Ba{sub 2}BiTaO{sub 6} is lower than observed for Ba{sub 2}BiSbO{sub 6} with basis in zero-point energy of both materials. Black-Right-Pointing-Pointer We have showed that a minor secondary phase is a minor secondary phase, which is common when the BBTO is obtained by ceramic method under air, does not change significantly the electrical properties of BBTO. -- Abstract: Impedance spectroscopy analysis of the dielectric properties of a Ba{sub 2}BiTaO{sub 6} ceramic was performed in the temperature range from room temperature to 500 K. The sample was prepared using conventional solid state synthesis under air and the X-ray diffraction shows the presence of Ba{sub 5}Ta{sub 4}O{sub 15} as a minor secondary phase (0.09%). The impedance data clearly show contributions of the grain and grain boundary. The results indicate that the conduction in Ba{sub 2}BiTaO{sub 6} is due to hopping of oxygen vacancies and that the impurities not influence the conduction mechanism.

  14. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  15. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A.

    2013-01-01

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-02-15

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. High temperature superconducting compounds II; Proceedings of the Second Symposium, Anaheim, CA, Feb. 20, 21, 1990

    International Nuclear Information System (INIS)

    Whang, S.H.; Dasgupta, A.; Laibowitz, R.

    1990-01-01

    Various topics relevant to the production and implementation of high-temperature superconducting compounds are highlighted including critical current; texturing; ceramics and novel processing; composites; deformation and consolidation; thin films; microstructures; tapes, filaments, and ribbons; and thermodynamics. The thermally activated flux creep, critical current density and current enhancement in high-temperature superconductors are addressed. Also discussed are the phase stability and microstructure of doped superconductors, mechanical considerations in the processing of high-Tc superconductors, fabrication and application of high current density, high RTc superconducting thin films and devices, the effect of substrate temperature and RF biasing on the composition of sputtered Bi-based superconducting thin films, and optical electron microanalysis of cuprate superconductors. The microstructure dependence of critical current density and fabrication of double-layered ribbons from cuprate are also discussed

  18. Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4-xLaxTi4O15 ceramics

    International Nuclear Information System (INIS)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O.P.; Shukla, A.K.; Sreenivas, K.

    2015-01-01

    Structural and electrical properties of Lanthanum substituted barium bismuth titanate BaBi 4-x La x Ti 4 O 15 (0 ≤ x ≤ 0.50) ceramics prepared by conventional solid-state reaction method have been investigated. Raman spectra reveals the distribution of lanthanum into the perovskite layers and (Bi 2 O 2 ) 2+ layers of BaBi 4 Ti 4 O 15 ceramics. Room temperature dielectric constant (ε′) increases and considerable reduction in the low frequency (10 −2 to 10 Hz) dielectric losses and in dc conductivity (σ dc ) are seen with lanthanum substitution. A critical La content of x ∼0.20 in BaBi 4-x La x Ti 4 O 15 exhibits a well-defined relaxor behavior as seen from the temperature and frequency dependence of the dielectric parameters ε′(T) and ε″(T). The dielectric data fit well to the modified Curie–Weiss law and the Lorentz-type relation and show increasing diffuseness in the phase transition with increasing La content. The temperature dependence of the characteristic relaxation time obtained from the Cole–Cole model shows a good fit to the non-linear Vogel–Fulcher relation. Improvements in the remnant polarization and a stable piezoelectric charge coefficient are seen up to a La content of x ∼0.20. The observed increase in dielectric loss and σ dc in addition to the diminished ferroelectric/piezoelectric properties for higher La content are explained in terms of changing oxygen vacancy concentration and structural relaxation due to the preferential incorporation of La into the (Bi 2 O 2 ) 2+ layers as evidenced through the Raman spectroscopy. - Highlights: • La distribution in BaBi 4-x La x Ti 4 O 15 ceramics is analyzed through Raman spectroscopy. • Low and a nearly constant loss over wide frequency range (10 −2 –10 7  Hz) obtained. • Critical La content x = 0.2 identified for high resistivity and ideal relaxor characteristics. • Improved P-E hysteresis loops and large remnant polarization measured. • Changes in the

  19. Elaboration and characterization of silver sheathed YBaCuO and BiSrCaCuO wires

    International Nuclear Information System (INIS)

    Regnier, P.; Chaffron, L.; Schmirgeld, L.

    1990-01-01

    We report on our recent progress in the elaboration of silver sheathed high-Tc superconducting wires. It is shown that careful optimization of the swaging and pressing stages leads to a compacity of nearly 100% for the green ceramic, which considerably reduces the problem of its shrinkage in the silver clad during sintering, and consequently increases the critical current density far above 10 3 A/cm 2 at 77 K. Electrical and microstructural characterization of the wires are presented and compared with other published data. In particular, for both YBaCuO and BiSrCaCuO ribbons, it is shown that the thinner the ribbon the higher the critical current density. But this effect is much more pronounced for BiSrCaCuO because, due to partial melting of the former ceramic during the elaboration process, there is a pronounced enhancement of its texture as its thickness is reduced

  20. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics

    Science.gov (United States)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2018-03-01

    The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.

  1. The structure and piezoelectric properties of (Ca1-xSrx)Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Zheng Liaoying; Li Guorong; Zhang Wangzhong; Chen, Daren; Yin Qinrui

    2003-01-01

    In this paper, the structure and piezoelectric properties of (Ca 1-x Sr x )Bi 4 Ti 4 O 15 ceramics (x=0-1.0) are investigated. The formation of single orthorhombic phase is verified by XRD. The dependence of dielectric and piezoelectric properties on x is also determined. The results show that the excellent properties could be found in the composition of x=0.4. In that composition, d 33 =14.9, T C =677 deg. C and the DC resistivity is decuplely higher than that of BST (SrBi 4 Ti 4 O 15 ) and CBT (CaBi 4 Ti 4 O 15 )

  2. Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Dessau, D.S.; Wells, B.O.; Shen, Z.; Spicer, W.E.; Arko, A.J.; List, R.S.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    Anomalous spectral weight transfer at the superconducting transition of single-crystalline Bi 2 Sr 2 CaCu 2 O 8+δ was observed by high-resolution angle-resolved photoemission spectroscopy. As the sample goes superconducting, not only is there spectral weight transfer from the gap region to the pileup peak as in BCS theory, but along the Γ-bar M direction there is also some spectral weight transfer from higher binding energies in the form of a dip. In addition, we note that at the superconducting transition there is a decrease (increase) in the occupied spectral weight for the spectra taken along Γ-bar M (Γ-X)

  3. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  4. Stable glass-ceramic sealants for solid oxide fuel cells: Influence of Bi{sub 2}O{sub 3} doping

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Ashutosh; Ferreira, Jose M.F. [Department of Ceramics and Glass Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Pascual, Maria J. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Diopside (CaMgSi{sub 2}O{sub 6}) based glass-ceramics in the system SrO-CaO-MgO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-La{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-SiO{sub 2} have been synthesized for sealing applications in solid oxide fuel cells (SOFC). The parent glass composition in the primary crystallization field of diopside has been doped with different amounts of Bi{sub 2}O{sub 3} (1, 3, 5 wt.%). The sintering behavior by hot-stage microscopy (HSM) reveals that all the investigated glass compositions exhibit a two-stage shrinkage behavior. The crystallization kinetics of the glasses has been studied by differential thermal analysis (DTA) while X-ray diffraction adjoined with Rietveld-R.I.R. analysis have been employed to quantify the amount of crystalline and amorphous phases in the glass-ceramics. Diopside and augite crystallized as the primary crystalline phases in all the glass-ceramics. The coefficient of thermal expansion (CTE) of the investigated glass-ceramics varied between (9.06-10.14) x 10{sup -6} K{sup -1} after heat treatment at SOFC operating temperature for a duration varying between 1 h and 200 h. Further, low electrical conductivity, good joining behavior and negligible reactivity with metallic interconnects (Crofer22 APU and Sanergy HT) in air indicate that the investigated glass-ceramics are suitable candidates for further experimentation as sealants in SOFC. (author)

  5. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  6. First assessment of Li2O–Bi2O3 ceramic oxides for high temperature carbon dioxide capture简

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá?ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O–Bi2O3 system. The compounds(Li7BiO6, Li5BiO5, Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 °C under the CO2 atmosphere to evaluate the carbonate formation, which is indicative of the capacity of CO2 capture. Moreover, Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g, which is considerably higher than those of other previously reported ceramics. Li7BiO6 is able to react with CO2 from 240 °C to approximately 660 °C showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  7. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi{sub 2}O{sub 3}-doped barium zirconium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi-110054 (India); Sreenivas, K, E-mail: omprakasht@hotmail.co [Department of Physics and Astrophysics, University of Delhi- 110007 (India)

    2009-03-21

    Bi{sub 2}O{sub 3}-doped barium zirconate titanate ceramics, Ba{sub 1-x}Bi{sub x}(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi{sup 3+} substitutes A-site ion, and thereafter with higher Bi{sup 3+} content, it enters the B-site sub lattice. Substitution of Bi{sup 3+} ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  8. Piezoelectric properties of lead-free submicron-structured (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics from nanopowders

    International Nuclear Information System (INIS)

    Pardo, Lorena; García, Alvaro; Brebøl, Klaus; Mercadelli, Elisa; Galassi, Carmen

    2010-01-01

    Submicron-structured (Bi 0.5 Na 0.5 ) 0.94 Ba 0.06 TiO 3 (BNBT6) ceramics were obtained from nanometric powder synthesized by sol–gel auto-combustion at 500 °C. Hot-pressing at low temperatures and a combination of this with recrystallization, still moderate in order to reduce the loss of volatile elements, have been tested. Material properties, including all losses, were determined at the resonances of thin discs using Alemany et al software. Ceramics hot-pressed at 700–800 °C for 2 h have a pseudo-cubic structure, a grain size of a few hundred nanometers and are homogeneous. Both their crystal structure and the lack of sintering prevent their poling. For ceramics hot-pressed at 950 °C for 3 h, Bi or Bi 0.5 Na 0.5 loss, together with low piezoelectric properties (d 33 = 60 pC N −1 , k p = 8.3% and k t = 9.5%), was observed. Recrystallization at 1000 °C-1 h of ceramics hot-pressed at 700 and 800 °C for 2 h keeps the submicron structure, reduces porosity and prevents off-stoichiometry. Mechanical and piezoelectric losses are also reduced and coupling factors increased (k p = 24.6%, k t = 36.4%). The best piezoelectric coefficient obtained in these ceramics (d 33 = 143 pC N −1 ) is comparable with those reported for coarse-grained ceramics

  9. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  10. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  11. Growth of superconducting Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+//sub x/ films on alumina, silicon, and fused quartz

    International Nuclear Information System (INIS)

    Hung, L.S.; Agostinelli, J.A.; Paz-Pujalt, G.R.; Mir, J.M.

    1988-01-01

    Interactions between superconducting Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+//sub x/ films and substrates were investigated by ion backscattering, x-ray diffraction, and four-point probe resistivity measurements. During annealing at temperatures above- 800 /sup 0/C, Bi/sub 2/Sr/sub 2/CaCu/sub 2/ oxide films rapidly reacted with alumina, Si, Si covered with SiO/sub 2/, and quartz, resulting in catastrophic failure. Zr-based barrier layers were used to minimize film-substrate interactions. When a single ZrO/sub 2/ layer was interposed between the superconducting oxide film and the underlying substrate, the Bi/sub 2/Sr/sub 2/CaCu/sub 2/ oxide films showed a large-grained polycrystalline microstructure and exhibited the orthorhombic structure. Films on sapphire showed transitions to the superconducting state beginning near 100 K with zero resistance achieved at 70 K. Films on Si and thermally grown SiO/sub 2/ showed a similar drop in resistance around 95 K, whereas the transition was broad and the zero resistance state was not reached. For films on quartz, high thermal stress caused cracking of the superconducting oxide film. Best results were achieved using a barrier composed of a Zr-Si-O mixed layer underneath ZrO/sub 2/. In this case, the films grown on Si and quartz were uniform and showed the onset to superconductivity at 95 K, attaining zero resistance at 70 K

  12. A-site substitution effect of strontium on bismuth layered CaBi4Ti4O15 ceramics on electrical and piezoelectric properties

    International Nuclear Information System (INIS)

    Tanwar, Amit; Verma, Maya; Gupta, Vinay; Sreenivas, K.

    2011-01-01

    Strontium substituted CaBi 4 Ti 4 O 15 ceramics with the chemical formula Ca 1-x Sr x Bi 4 Ti 4 O 15 (CSBT) (x = 0.0-1.0) have been prepared through conventional solid state route. The formation of single phase material with orthorhombic structure was verified from X-ray diffraction with incorporation of Sr substitution. Decrease in a-axis displacement of Bi ion in the perovskite structure in the CSBT ceramics were observed from the relative changes in soft mode (20 cm -1 ) in the Raman spectra, and increase in Sr incorporation shows the shift in ferroelectric to paraelectric phase transition temperature. The dielectric properties for all the CSBT ceramic compositions are studied as a function of temperature over the frequency range of 100 Hz-1 MHz. Curie's temperature was found to be function of Sr substitution and with increase in the Sr concentration the phase transition becomes sharper and phase transition temperature gets shifted towards lower temperature (790-545 deg. C). The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperature ( 33 ) whereas piezoelectric charge coefficient values were found comparable to that of PZT at room temperature. Relative changes in soft modes due to Sr incorporation results in high piezoelectricity in the CSBT ceramics.

  13. Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Fu, Peng; Xu, Zhijun; Chu, Ruiqing; Li, Wei; Wang, Wei; Liu, Yong

    2012-01-01

    Highlights: ► Gd 2 O 3 doped BNKT18 piezoelectric ceramics were designed and prepared. ► The electrical properties of the BNKT18 ceramics are improved with the addition of Gd 2 O 3 . ► The BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 has better electrical properties. -- Abstract: Gd 2 O 3 (0–0.8 wt.%)-doped 0.82Bi 0.5 Na 0.5 TiO 3 –0.18Bi 0.5 K 0.5 TiO 3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd 2 O 3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd 2 O 3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd 2 O 3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd 2 O 3 , and the BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 have the highest piezoelectric constant (d 33 = 137 pC/N), highest relative dielectric constant (ε r = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd 2 O 3 have the highest planar coupling factor (k p = 0.2463).

  14. Synthesis and electrical properties of BaBiO 3 and high resistivity BaTiO 3 –BaBiO 3 ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitish [Oregon State Univ., Corvallis, OR (United States); Univ. of New South Wales, Sydney, NSW (Australia); Golledge, Stephen L. [Univ. of Oregon, Eugene, OR (United States); Cann, David P. [Oregon State Univ., Corvallis, OR (United States)

    2016-12-01

    Ceramics of the composition BaBiO3 (BB) were sintered in oxygen to obtain a single phase with monoclinic II2/mm symmetry as suggested by high-resolution X-ray diffraction. X-ray photoelectron spectroscopy confirmed the presence of bismuth in two valence states - 3+ and 5+. Optical spectroscopy showed presence of a direct bandgap at ~ 2.2eV and a possible indirect bandgap at ~ 0.9eV. This combined with determination of the activation energy for conduction of 0.25eV, as obtained from ac impedance spectroscopy, suggested that a polaron-mediated conduction mechanism was prevalent in BB. The BB ceramics were crushed, mixed with BaTiO3 (BT), and sintered to obtain BT–BB solid solutions. All the ceramics had tetragonal symmetry and exhibited a normal ferroelectric-like dielectric response. Using ac impedance and optical spectroscopy, it was shown that resistivity values of BT–BB were orders of magnitude higher than BT or BB alone, indicating a change in the fundamental defect equilibrium conditions. A shift in the site occupancy of Bi to the A-site is proposed to be the mechanism for the increased electrical resistivity.

  15. Study of the structure, dielectric and ferroelectric behavior of BaBi{sub 4+δ}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Goyal, Parveen K., E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2016-05-23

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi{sub 4+δ}Ti{sub 4}O{sub 15} (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T{sub m}) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P{sub r} ~ 12.5  µC/cm{sup 2}), low coercive fields (E{sub c} ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d{sub 33} ~ 29 pC/N) is achieved in poled BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  16. Single Crystal Growth and Superconducting Properties of Antimony-Substituted NdO0.7F0.3BiS2

    Directory of Open Access Journals (Sweden)

    Satoshi Demura

    2017-12-01

    Full Text Available Antimony (Sb substitution of less than 8% was examined on a single crystal of a layered superconductor NdO0.7F0.3BiS2. The superconducting transition temperature of the substituted samples decreased as Sb concentration increased. A lattice constant along the c-axis showed a large decrease compared with that along the a-axis. Since in-plane chemical pressure monotonically decreased as Sb concentration increased, the suppression of the superconductivity is attributed to the decrease in the in-plane chemical pressure.

  17. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  18. Study of the variation of the E-I curves in the superconducting to normal transition of Bi-2212 textured ceramics by Pb addition

    Directory of Open Access Journals (Sweden)

    Sotelo, A.

    2006-06-01

    Full Text Available Vitreous cylinders with compositions Bi2-xPbxSr2CaCu2Oy, (x = 0, 0.2, 0.4 and 0.6 were prepared and used as precursors to fabricate textured bars through a laser floating zone melting method (LFZ. The resulting textured cylindrical bars were annealed, followed by their electrical characterization. The microstructure was determined and correlated with the electrical measured properties. The influence of Pb doping on the sharpness of the superconducting to normal transition on the E-I curves has been determined. The sharpest transitions have been obtained for samples doped with 0.4Pb.

    Se han preparado precursores de tipo vítreo en forma de cilindro con composiciones nominales Bi2-xPbxSr2CaCu2Oy, con x = 0, 0.2, 0.4 y 0.6. Estos cilindros se han utilizado como precursores para fabricar barras texturadas por medio de una técnica de fusión zonal inducida por láser (LFZ. Estas barras texturadas se recocieron a diferentes temperaturas y se caracterizaron eléctricamente. Además, se examinó su microestructura para correlacionarla con las propiedades eléctricas medidas. La variación de la transición del estado superconductor al normal se ha relacionado con el dopaje con Pb a través de las curvas E-I. Las mejores transiciones se han obtenido para muestras dopadas con 0.4 Pb.

  19. Stabilized superconducting materials and fabrication process

    International Nuclear Information System (INIS)

    Chevallier, B.; Dance, J.M.; Etourneau, J.; Lozano, L.; Tressaud, A.; Tournier, R.; Sulpice, A.; Chaussy, J.; Lejay, P.

    1989-01-01

    Superconducting ceramics are fluorinated at a temperature ≤ 120 0 C. Are also claimed new superconducting materials with a fluorine concentration gradient decreasing from the surface to the core. Superconductivity is stabilized and/or improved [fr

  20. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  1. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    Science.gov (United States)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  2. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  3. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  4. Novel phenomenon of magnetism and superconductivity in Fe-doped superconductor Bi{sub 4-x}Fe{sub x}O{sub 4}S{sub 3} (0 ≤ x ≤ 0.1)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai University, Department of Physics, Shanghai (China); Shanghai University, Materials Genome Institute, Shanghai (China); Wang, Difei; Yu, Chuan; Yin, Xunqing; Kang, Jian; Cheng, Cheng; Deng, Dongmei; Jing, Chao [Shanghai University, Department of Physics, Shanghai (China); Feng, Zhenjie; Cao, Shixun; Zhang, Jincang [Shanghai University, Department of Physics, Shanghai (China); Shanghai University, Materials Genome Institute, Shanghai (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai (China); Chu, Hao [California Institute of Technology, Department of Applied Physics, Pasadena, CA (United States); Li, Xiaolong [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2017-06-15

    We report the effects of Fe doping on the BiS{sub 2}-based superconductor Bi{sub 4}O{sub 4}S{sub 3}. It has been found that the superconducting transition temperature (T{sub C}{sup onset}) is slightly enhanced by Fe doping. The magnetic susceptibility results reveal the coexistence of superconductivity and long-range ferrimagnetism in these samples. A new magnetic transition temperature T{sub V} (Verwey transition) from the M-T curves at ∝112 K is observed. The isothermal magnetization curves (M-H) indicate a weak ferrimagnetism, which is probably due to the antiparallel ordering of Fe{sup 2+} and Fe{sup 3+} magnetic moments. The coexistence of superconductivity and ferro/ferrimagnetism makes bismuth oxysulfide superconductor a platform for understanding superconductivity from a new perspective. (orig.)

  5. Dielectric response and electric conductivity of ceramics obtained from BiFeO{sub 3} synthesized by microwave hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chybczyńska, K.; Markiewicz, E., E-mail: ewamar@ifmpan.poznan.pl; Błaszyk, M.; Hilczer, B.; Andrzejewski, B.

    2016-06-25

    BiFeO{sub 3} powder which formed ball-like structures resembling flowers was obtained by microwave hydrothermal synthesis. The flowers were of a dozen or so μm in diameter and the thickness of the crystallites forming petals could be controlled. The material was characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectric response of ceramics obtained from the powder contained three extrinsic contributions, which could be correlated with the differences in temperature variation of the ac conductivity. The dielectric relaxation between 150 K and 300 K was related to reorientations of Fe{sup 3+}–Fe{sup 2+} dipoles and characterized by an activation energy of 0.4 eV, which was independent of the petal thickness. The dielectric and electric response in the range 300 K ÷ 450 K usually ascribed to the grain boundary and interfacial polarization effect was diffused and could not be characterized. Above 450 K the activation energy of dc conductivity was 1.73 eV and 1.52 eV for ceramics consisting of crystallites of mean thickness of 160 nm and 260 nm, respectively. The energies, which are considerably higher than those reported earlier for BFO nanoceramics, were discussed considering the interactions between oxygen vacancies and size scaled ferroelectric domain walls, which in BiFeO{sub 3} are associated with electrostatic potential steps. - Highlights: • BiFeO{sub 3} with controllable thickness of crystallites was synthesized hydrothermally. • The powder and ceramics obtained were characterized by XRD, SEM and XPS methods. • Dielectric response of the ceramics is correlated with the ac conductivity. • Size-scaled ferroelectric domains and oxygen vacancies interact above 450 K.

  6. Dielectric and magnetic properties of Ba-, La- and Pb-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Radheshyam Rai

    2014-04-01

    Full Text Available The multiferroic Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3, (where M = Ba (DB, La (DL and Pb (DP has been synthesized by using solid-state reaction technique. Effects of Ba, La and Pb substitution on the structure, electrical and ferroelectric properties of Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 samples have been studied by performing X-ray diffraction, dielectric and magnetic measurements. The crystal structures of the ceramic samples have a tetragonal phase. The vibrating sample magnetometer (VSM measurement shows a significant change in the magnetic properties of Ba-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 as compared to La- and Pb-doped ceramics. It is seen that coercive field (HC and remanent magnetization (MR increases with Ba-doped ceramics but decreases for La- and Pb-doped ceramics.

  7. Preparation and electrical properties of MoO{sub 3}-modified SrBi{sub 2}Nb{sub 2}O{sub 9}-based lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhongran, E-mail: ruiqingchu@sohu.com [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Chu, Ruiqing, E-mail: rqchu@lcu.edu.cn [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Xu, Zhijun; Hao, Jigong; Wei, Denghu; Cheng, Renfei [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Li, Guorong [The State Key Lab of High Performance Ceramics and Superfinemicrostructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2016-05-05

    Lead-free piezoelectric ceramics, SrBi{sub 2}(Nb{sub 1-x}Mo{sub x}){sub 2}O{sub 9} (SBNM-x), were prepared by a conventional solid-state reaction method. The crystal structure, microstructure and electrical properties were systematically investigated. The X-ray diffraction analysis suggested that the substitution formed layered perovskite structure. Plate-like morphology of the grains which is characteristic for layer-structure Aurivillius compounds was clearly observed for all the samples. The excellent electrical properties (e.g., d{sub 33}∼18 pC/N, 2P{sub r}∼20.34 μC/cm{sup 2}) and a high Curie temperature (e.g., T{sub c}∼458 °C) are simultaneously obtained in the ceramics with x = 0.12. Additionally, thermal annealing studies indicated that piezoelectric constant (d{sub 33}) of SBNM-0.12 ceramic remains almost unchanged (16 pC/N, only decrease by 12%) at temperatures below 400 °C, demonstrating that the Mo-modified SBN-based ceramics are the promising candidates for high-temperature applications. - Highlights: • Higher valent cation Mo{sup 6+} substituted for B-site Nb{sup 5+} in the perovskite layers ions. • The piezoelectric constant (d{sub 33}) of SrBi{sub 2}Nb{sub 2}O{sub 9} ceramic is increased to be 18 pC/N. • The remnant polarization (2P{sub r}) of SrBi{sub 2}Nb{sub 2}O{sub 9} ceramic is increased to be 20.34 μC cm{sup −2}. • SBNM-x ceramics show good temperature stability for high temperature applications.

  8. Development of a theoretical model for polycrystalline superconducting anisotropic using the effective medium approximation

    International Nuclear Information System (INIS)

    Cruz-García, A.; Muné, P; Govea-Alcaide, E.

    2008-01-01

    Full text: In this paper, is a study of the transport properties in anisotropic polycrystalline superconducting. The presence of certain order of orientation of grains in polycrystalline superconducting (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+delta , is modeled by introducing a probability of orientation, gamma factor. In addition, is included in the model the concentration c, which characterize the contribution of porosity to the decrease in the conductivity of the Crystal, transparent. Assumes that pores and pimples are ellipsoid flattened with similar dimensions and takes into account the values of conductivity of beads in each direction. The calculation is based on the application of a generalization of the approximation of the effective way to the study of heterogeneous media, which is called coherent potential approximation (APC). The results are compared with an empirical model developed recently for samples of YBa 2 Cu 3 O 7 -delta (YBCO) which enriches its employment and applied to ceramic superconducting in general. (author)

  9. Structure and conductivity of nanostructured YBCO ceramics

    Science.gov (United States)

    Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.

    2017-12-01

    Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.

  10. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    Science.gov (United States)

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  11. Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics

    Directory of Open Access Journals (Sweden)

    Guo H.W.

    2011-01-01

    Full Text Available The Bi2O3-SiO2 (BS glass-ceramics were prepared by melt-quench technique, and the crystallization kinetics and phase transformation behavior were investigated in accordance with Kissinger and Johson-Mehl-Avrami equation, DSC, XRD and SEM. The results show that in the heat treatment process (or termed as re-crystallizing process Bi2SiO5 and Bi4Si3O12 crystals were found consequently. Respectively, the crystallization activation energies of the two crystals are Ep1=14.8kJ/mol and Ep2=34.1kJ/mol. And the average crystallization index of n1=1.73 and n2=1.38 suggested volume nucleation, one-dimensional growth and surface nucleation, one-dimensional growth from surface to the inside respectively. The meta-stable needle-like Bi2SiO5 crystals are easily to be transformed into stable prismatic Bi4Si3O12 crystals. By quenching the melt and hold in 850°C for 1h, the homogenous single Bi4Si3O12 crystals were found in the polycrystalline phase of the BS glassceramics system.

  12. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  13. Superconducting Properties of Lead-Bismuth Films Controlled by Ferromagnetic Nanowire Arrays

    Science.gov (United States)

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-03-01

    Superconducting properties of lead-bismuth (82% Pb and 18% Bi) alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench-condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and the material variety was observed.

  14. Giant strain with low cycling degradation in Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 lead-free ceramics

    International Nuclear Information System (INIS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-01-01

    Non-textured polycrystalline [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2](Ti_1_−_xTa_x)O_3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d_3_3* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 ceramics show great potential for large displacement devices.

  15. Dielectric properties of BaBi4Ti4O15 ceramics produced by cost-effective chemical method

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Bera, J.; Sinha, T.P.

    2009-01-01

    BaBi 4 Ti 4 O 15 , an Aurivillius compound, was synthesized by a cost-effective soft chemical route. The precursor was prepared by precipitating Bi- and Ba-oxalates inside a TiO 2 powder suspension. A phase pure orthorhombic BaBi 4 Ti 4 O 15 was synthesized by heating the precursor powder at 1000 deg. C. The phase formation behavior was investigated using TG-DSC and XRD. Densification behavior of the powder and microstructure development in sintered pellet was examined. Temperature dependent dielectric study of the ceramic has been investigated in the temperature range 300-780 K and frequency range of 1 kHz-1 MHz. The broad dielectric constant peaks at temperature T m was frequency dependent. The dielectric relaxation rate follows the Vogel-Fulcher relation with activation energy=0.2639 eV, relaxation frequency=4.95x10 21 Hz, and freezing temperature=620 K. All these parameters indicate that BaBi 4 Ti 4 O 15 is a relaxor ferroelectric.

  16. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  17. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  18. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  19. The modelling and control of failure in bi-material ceramic laminates

    International Nuclear Information System (INIS)

    Phillipps, A.J.; Howard, S.J.; Clegg, W.J.; Clyne, T.W.

    1993-01-01

    Recent experimental and theoretical work on simple, single phase, laminated systems has indicated that failure resistant ceramics can be produced using an elegant method that avoids many of the problems and limitations of comparable fibrous ceramic composites. Theoretical work on these laminated systems has shown good agreement with experiment and simulated the effects of material properties and laminate structure on the composite performance. This work has provided guidelines for optimised laminate performance. In the current study, theoretical work has been simply extended to predict the behaviour of bi-material laminates with alternating layers of weak and strong material with different stiffnesses. Expressions for the strain energy release rates of internal advancing cracks are derived and combined with existing criteria to predict the failure behaviour of these laminates during bending. The modelling indicates three modes of failure dictated by the relative proportions, thicknesses and interfacial properties of the weak and strong phases. A critical percentage of strong phase is necessary to improve failure behaviour, in an identical argument to that for fibre composites. Incorporation of compliant layers is also investigated and implications for laminate design discussed. (orig.)

  20. Self-field AC losses and critical currents in multi-tube Ag-Bi-2223 conductors

    Energy Technology Data Exchange (ETDEWEB)

    Ciszek, M; Ashworth, S P; Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); James, M P; Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Garre, R; Conti, S [Centro Ricerche Europa Metalli, Fornaci di Barga, LU (Italy)

    1996-05-01

    The purpose of this work was to investigate the influence of different technological treatments of silver sheathed Bi-2223 tapes on the critical current density and the AC transport losses. The tapes were produced using the 'tube-in-tube' technique, by including a silver rod in the centre of the superconducting powder during packing of the silver tube. The aim of the process is to increase the silver to superconductor surface area and thus also the alignment at the centre of the conductor ceramic core. AC transport losses were measured by means of an electrical method using sinusoidally varying currents in the frequency range 30-180 Hz. In this range the power losses are hysteretic. The measured variation in losses from those predicted by a critical state model is attributed to the complex geometry of superconducting regions existing in these tapes. (author)

  1. Effect of Al3+ substitution on the structural, magnetic, and electric properties in multiferroic Bi2Fe4O9 ceramics

    International Nuclear Information System (INIS)

    Huang, S.; Shi, L.R.; Tian, Z.M.; Yuan, S.L.; Zhu, C.M.; Gong, G.S.; Qiu, Y.

    2015-01-01

    Structural, magnetic, and electric properties have been investigated in polycrystalline Bi 2 (Fe 1−x Al x ) 4 O 9 (0≤x≤0.25) ceramics synthesized by a modified Pechini method. Structural analysis reveals that Al 3+ doped Bi 2 Fe 4 O 9 crystallizes in orthorhombic structure with Pbnm space group. Surface morphology of the end products is examined by scanning electron microscopy and the grain size has a tendency to decrease with increase in Al 3+ doping level. Compared with pure Bi 2 Fe 4 O 9 , room temperature coexistent multiferroic-like behavior is observed in Al 3+ doped Bi 2 Fe 4 O 9 . By analyzing magnetic properties, the Néel temperature monotonously shifts to low temperatures from ~260 K (x=0) to ~35 K (x=0.25). Moreover, the spin dynamic measured by the shift in ac magnetic susceptibility as a function of frequency provides a possibility of spin-glass-like behavior, which is further confirmed by fitting the critical slowing down power law and memory effect. - Graphical abstract: Compared with pure Bi 2 Fe 4 O 9 , room temperature weak ferromagnetic property and enhanced ferroelectric-like behavior can be achieved simultaneously with proper Al 3+ doping. - Highlights: • Bi 2 (Fe 1−x Al x ) 4 O 9 (0≤x≤0.25) ceramics are fabricated via a Pechini method. • Weak ferromagnetic and ferroelectric behaviors can be achieved simultaneously. • Spin-glass-like behavior is detected with proper Al 3+ doping. • The memory and aging effects are observed with proper Al 3+ doping

  2. Possible superconductivity in the Bismuth IV solid phase under pressure.

    Science.gov (United States)

    Valladares, Ariel A; Rodríguez, Isaías; Hinojosa-Romero, David; Valladares, Alexander; Valladares, Renela M

    2018-04-13

    The first successful theory of superconductivity was the one proposed by Bardeen, Cooper and Schrieffer in 1957. This breakthrough fostered a remarkable growth of the field that propitiated progress and questionings, generating alternative theories to explain specific phenomena. For example, it has been argued that Bismuth, being a semimetal with a low number of carriers, does not comply with the basic hypotheses underlying BCS and therefore a different approach should be considered. Nevertheless, in 2016 based on BCS we put forth a prediction that Bi at ambient pressure becomes a superconductor at 1.3 mK. A year later an experimental group corroborated that in fact Bi is a superconductor with a transition temperature of 0.53 mK, a result that eluded previous work. So, since Bi is superconductive in almost all the different structures and phases, the question is why Bi-IV has been elusive and has not been found yet to superconduct? Here we present a study of the electronic and vibrational properties of Bi-IV and infer its possible superconductivity using a BCS approach. We predict that if the Bi-IV phase structure were cooled down to liquid helium temperatures it would also superconduct at a T c of 4.25 K.

  3. Synthesis and Microstructure Properties of (Bi,Pb2Sr2Ca1Cu2Oy Ceramic Superconductor

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2015-11-01

    Full Text Available Properties of (Bi, Pb2Sr2Ca1Cu2Oy ceramic superconductors were prepared by the melt textured growth methods in order to investigate the effects of the slow cooling time on the microstructur.  Phase analyses of the samples by X-ray diffraction (XRD has been carried out to assess the effects of the slow cooling time. From XRD analyses, the addition to the sample of  the slow cooling time degrades formation of the high-Tc Bi-2212 phase. The possible reasons for the observed degradation in the microstructure properties due to the slow cooling time addition were discussed.

  4. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  5. The microscopic twins and their crystal phase in the high Tc Y-Ba-Cu-O and Dy-Ba-Cu-O superconductive ceramics

    International Nuclear Information System (INIS)

    Zu, Z.J.; Chen, Y.L.

    1988-01-01

    Most consider that the structure of Y-Ba- Cu-O and Dy-Ba-Cu-O stable superconductive crystals with high Tc is associated with the right-angled phase. The superconductivity is closely connected with the right-angled character of the crystalline texture; the better the right- angled character, the better the superconductivity. From statistical investigations of examples the authors have discovered that most of the Y-Ba-Cu-O and Dy-Ba-Cu-O superconductivity with high Tc ceramic crystals is in the monoclinic phase, which, consists of microscopic, lamellar, single twins. The long-columnar grains consisting of lamellar twin slabs show the optical characteristics of right-angled phase. The microscopic twinning and grain morphologies are summarized in this paper

  6. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi 4 Ti 4 O 15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 deg. C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (T c =790 deg. C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures ( 33 ). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  7. Study of multiferroic properties of Bi2Fe2WO9 ceramic for device application

    OpenAIRE

    Jyoshna Rout; R. N. P. Choudhary

    2016-01-01

    The Bi2Fe2WO9 ceramic was prepared using a standard solid-state reaction technique. Preliminary analysis of X-ray diffraction pattern revealed the formation of single-phase compound with orthorhombic crystal symmetry. The surface morphology of the material captured using scanning electron microscope (SEM) exhibits formation of a densely packed microstructure. Comprehensive study of dielectric properties showed two anomalies at 200∘C and 450∘C: first one may be related to magnetic whereas seco...

  8. Superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O3

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Scott, B.A.; Calise, J.A.

    1988-01-01

    We report the first infrared measurement of the superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O 3 . In our polycrystalline samples with T/sub c/≅9.5 K (x≅0.2) we obtain 2Δ≅3.2kT/sub c/, roughly in agreement with the weak-coupling Bardeen-Cooper-Schrieffer prediction, 2Δ = 3.5kT/sub c/, and with tunneling measurements of the gap. We do not observe any structure above the gap energy associated with strong coupling

  9. Dielectric properties of glasses prepared by quenching melts of superconducting Bi-Ca-Sr-Cu-O cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Varma, K. B. R.; Subbanna, G. N.; Ramakrishnan, T. V.; Rao, C. N. R.

    1989-07-03

    Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi/sub 2/(Ca,Sr)/sub /ital n/+1/Cu/sub /ital n//O/sub 2/ital n/+4/ with /ital n/=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.

  10. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  11. Electron source with the explosion-emission cathode on the base of Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1996-01-01

    Two electron sources with explosion-emission cathode on the basis of Bi 2 Sr 2 Ca 2 Cu 3 O x ceramics are described. The scheme of electron gun for formation of electron beams of microsecond length consists of vacuum chamber, flow-passage insulator and cathode with ceramic emitter. The pulse duration by 600 kV voltage equals 1 μs. The split anode, two short magnetic lenses and Rogovsky belt are used for production of low-energy beams. The nanosecond electrical beams with energy of 10-25 keV were produced through this electron source. The beam cross-sectional non-uniformity did not exceed 5% by the beam diameter of 1 cm. 11 refs., 4 figs

  12. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors.

    Science.gov (United States)

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-22

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS 2 F is a newly discovered member in the BiS 2 -based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the T c enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS 2 F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the T c enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS 2 -based superconductors.

  13. Magnetic properties and superconducting-fluctuation diamagnetism above Tc in Bi2-xPbxSr2CaCu2O8+δ (x=0.0, 0.1, 0.2, 0.3, 0.5) and

    International Nuclear Information System (INIS)

    Lee, W.C.; Cho, J.H.; Johnston, D.C.

    1991-01-01

    The magnetic susceptibilities χ(T) of the title compounds above and below T c are reported. For the Bi 2-x Pb x Sr 2 CaCu 2 O 8+δ (Bi 2:2:1:2) system, optimization of the phase purity and superconducting properties is found between x=0.2 and 0.3. The χ(T) data for these Bi 2:2:1:2 and for the two Bi 2:2:2:3 samples increase monotonically with temperature from T c up to at least 400 K, exhibiting strong negative curvature below ∼200 K. From theoretical fits to the data in the two-dimensional regime above T c using the static Lawrence-Doniach model as modified by Klemm, we conclude that the negative curvature in χ(T) for each sample arises from superconducting-fluctuation diamagnetism (SFD). The data are thus consistent with a superconducting order parameter of s-wave symmetry. From the fits to the data, the Ginzburg-Landau coherence lengths in the CuO 2 planes were obtained and found to be ξ ab (0)=20.4(2) A for Bi 2:2:1:2 and 11.8(4) A for Bi 2:2:2:3. The value for Bi 2:2:1:2 is comparable to those calculated from upper critical magnetic-field data for this compound (23.5--27.1 A). Our ξ ab (0) values for Bi 2:2:1:2 and Bi 2:2:2:3 are also comparable with that (13.6 A) found from our previous similar analysis of the SFD in YBa 2 Cu 3 O 7 . The possible role of the bridging oxygens out of the CuO 2 plane in Bi 2:2:2:3 and the influence of the dynamics in the fits to the SFD in the Bi-based compounds remain to be addressed

  14. Bi-Polaron Condensation in High Tc Superconductors

    International Nuclear Information System (INIS)

    Ranninger, J.

    1995-01-01

    On the basis of optical measurements-, photoemission-, EXAFS- and neutron scattering-experiments we conclude that itinerant valence electrons coexist with localized bi-polarons.Entering the metallic phase upon chemical doping, a charge transfer between the two electronic subsystems is triggered off. We show that as the temperature is lowered towards Tc this process leads to a delocalization of bi-polarons due to a precursor effect of superfluidity of those bi-polarons. Upon entering the superconducting phase, these bipolarons ultimately condense into a superfluid state which is expected to largely determine the superconducting properties of high Tc materials. (authors)

  15. the tj model and superconductivity

    African Journals Online (AJOL)

    DJFLEX

    Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).

  16. Anisotropic two-gap superconductivity and the absence of a Pauli paramagnetic limit in single-crystalline LaO0.5F0.5BiS2

    Science.gov (United States)

    Chan, Y. C.; Yip, K. Y.; Cheung, Y. W.; Chan, Y. T.; Niu, Q.; Kajitani, J.; Higashinaka, R.; Matsuda, T. D.; Yanase, Y.; Aoki, Y.; Lai, K. T.; Goh, Swee K.

    2018-03-01

    Ambient-pressure-grown LaO0.5F0.5BiS2 with a superconducting transition temperature Tc˜3 K possesses a highly anisotropic normal state. By a series of electrical resistivity measurements with a magnetic-field direction varying between the crystalline c axis and the a b plane, we present datasets displaying the temperature dependence of the out-of-plane upper critical field Hc2 ⊥(T ) , the in-plane upper critical field Hc2 ∥(T ) , as well as the angular dependence of Hc 2 at fixed temperatures for ambient-pressure-grown LaO0.5F0.5BiS2 single crystals. The anisotropy of the superconductivity, Hc2 ∥/Hc2 ⊥ , reaches ˜16 on approaching 0 K, but it decreases significantly near Tc. A pronounced upward curvature of Hc2 ∥(T ) is observed near Tc, which we analyze using a two-gap model. Moreover, Hc2 ∥(0 ) is found to exceed the Pauli paramagnetic limit, which can be understood by considering the strong spin-orbit coupling associated with Bi as well as the breaking of the local inversion symmetry at the electronically active BiS2 bilayers. Hence, LaO0.5F0.5BiS2 with a centrosymmetric lattice structure is a unique platform to explore the physics associated with local parity violation in the bulk crystal.

  17. Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route

    Directory of Open Access Journals (Sweden)

    Pooja Gautam

    2016-12-01

    Full Text Available Bi2/3Cu3Ti4O12 (BCTO ceramic was synthesized by the semi-wet route using metal nitrate solutions and solid TiO2 powder in a stoichiometric ratio. Fourier transform infrared (FTIR study of BCTO precursor powder and calcined ceramic showed the presence of alcoholic functional groups and the stretching band of Ti-O and Cu-O respectively. X-ray diffraction (XRD, scanning electron microscope (SEM and energy dispersive x-ray spectroscopy (EDX were employed to characterize the structure, surface morphology and purity of the sintered BCTO ceramic respectively. X-ray diffraction study confirmed the single phase formation of BCTO ceramic at 1073 K. The average dimension of grains calculated by SEM and AFM was found to be in the range of 0.73±0.2 µm with clear grain boundaries. Magnetic property was investigated over a wide temperature range 2–300 K at a magnetic field of 7 tesla. The Curie temperature was calculated by zero field cooled (MZFC and field cooled (MFC magnetization at 100 Oe applied field which was found to be 125 K. The sintered BCTO ceramic shows high dielectric constant (ε'=2.9×104 at 323 K and 100 Hz.

  18. Effects of out-of-plane disorder on the superconductivity of Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Roehler, Juergen; Trabant, Christoph; Frielingsdorf, Johanna; Djemour, Rabia [Universitaet Koeln, 50937 Koeln (Germany); Martovitsky, Victor [Lebedev-Institute, 119991 Moscow (Russian Federation); Dudy, Lenart; Dwelk, Helmut; Krapf, Alica [Humboldt Universitaet Berlin, 12489 Berlin (Germany)

    2008-07-01

    The effects of out-of-plane substitutional order/disorder on cuprate superconductivity remains to a large extent an unresolved issue. We have investigated the connection between superconductivity and the lattice effects arising from the heterovalent doping of Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}, x = 0.8-0.1. Decreasing lanthanum content tunes the compound through the entire underdoped and overdoped regimes. Cu-K and La- K EXAFS served as local structural probes, and single crystal X-ray diffraction for the determination of the basic unit cell, and the symmetry of the supercell. The oxygen atoms in the CuO{sub 2} planes were found significantly disordered, dependent on doping, and to exhibit minimum disorder around x{sub opt}=0.33. But the degree of substitutional disorder in the out-of-plane La environment turned out independent on the concentration of the La dopants, the superstructure symmetry, and the crystal growth parameters, whereas T{sub c} depends sensitively on them. No evidence was found for possible concentration dependent site changes of the La dopant from the nominal Sr to the Bi sites. We discuss the probably crucial role of the interstitial oxygen atoms for the superconducting properties of the Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}} system.

  19. Angle-resolved-photoemission study of Bi2Sr2CaCu2O8+δ: Metallicity of the Bi-O plane

    International Nuclear Information System (INIS)

    Wells, B.O.; Shen, Z.; Dessau, D.S.; Spicer, W.E.; Olson, C.G.; Mitzi, D.B.; Kapitulnik, A.; List, R.S.; Arko, A.

    1990-01-01

    We have performed high-resolution angle-resolved-photoemission experiments on Bi 2 Sr 2 CaCu 2 O 8+δ single crystals with different annealing histories. By depositing a small amount of Au on the surface, we were able to distinguish electronic states associated with the Bi-O surface layer. We found that the Bi-O atomic surface layer is metallic and superconducting for samples that were high-temperature annealed in oxygen but not for as-grown samples. The Cu-O plane is found to be superconducting in all samples

  20. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    International Nuclear Information System (INIS)

    Bedekar, M.M.

    1992-01-01

    The discovery of a new class of copper oxide superconductors has led to the development of three major systems that exhibit superconducting properties. The Bi-Sr-Ca-Cu-O superconductors offer intrinsic advantages due to the high T c , chemical inertness and tolerance for a range of compositions. However, thin film research on these materials has progressed more slowly than the other cuprate systems. This dissertation examines the film growth, by laser ablation, of the Bi-Sr-Ca-Cu-O superconductors and the effect of the deposition parameters such as the laser target interaction, substrate temperature, target to substrate distance, deposition and cooling pressure, target type and processing and the substrate type. CO 2 laser ablation was shown to give rise to a non-stoichiometric material transfer due to the low fluences and long pulse lengths. In situ superconducting thin films with T c(0) 's of 76 K could be deposited using the KrF laser at substrate temperatures of 5 degrees C to 20 degrees C below phases. Lower temperatures gave rise to a mixture of 2201 and glassy phases. An increase in the target to substrate distance led to a deterioration of the electrical and structural properties of the films due to a decrease in the energy for film formation. A maximum in T c(0) was observed at 450 mtorr as the deposition pressure was varied between 200 to 700 mtorr. Optimum oxygen incorporation could be achieved by cooling the films in high oxygen pressures and the best films were obtained with 700 torr cooling pressure. The oxygen deficiency of the hot pressed targets led to inferior properties compared to the conventionally sintered targets. The microwave surface resistance of the films measured at 35 GHz showed an onset at 80 K and dropped below that of copper at 30 K. The study of the laser ablation process in this system revealed the presence of a stoichiometric forward directed component and a diffuse evaporation component

  1. Effect of A-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics

    International Nuclear Information System (INIS)

    Qu Yanfang; Shan Dan; Song Jianjing

    2005-01-01

    A-site replacement is common used in optimizing the electric properties of Bi 0.5 Na 0.5 TiO 3 (abbreviated to BNT). The effect of Ba 2+ doping in BNT capacitor ceramics is investigated here. After the samples containing 6 at.% Ba 2+ was sintered at 1180 deg. C for 2 h, capacitor ceramics with enhanced dielectric properties was fabricated, compared with pure BNT ceramics. It can be concluded from the experiment results that Ba 2+ replaced the ions in A-site, and the lattice structure was altered, which led to the improvement of dielectric properties in BNT ceramics. Then we discussed the phase transformation process from room temperature to 400 deg. C according to the dielectric properties-temperature graphs

  2. Ferroelectric properties of bismuth-doped PMT-PT ceramics

    International Nuclear Information System (INIS)

    Hyun, June Won; Kim, Yeon Jung; Kim, Gang Bae

    2010-01-01

    This study examined the ferroelectric properties of Bi-doped 0.66(Pb (1-3x/2) Bi x )(Mg 1/3 Ta 2/3 )O 3 - 0.34PbTiO 3 ceramics for use as a piezoelectric transformer. The optimum conditions for obtaining samples with high density and improved electrical properties were a sintering temperature of 1200 .deg. C/4 h and the addition of 3 mol% Bi. The temperature dependent dielectric constant of the ceramics was examined at frequencies ranging from 1 kHz to 100 kHz. The broad dielectric constant anomaly coupled with a shift in the dielectric maximum towards higher temperature with increasing frequency indicates a relaxor-type behavior in the ceramics. The piezoelectric coefficient (d 33 ) and the planar coupling factor (K p ) increase with the addition of 3 mol% Bi, and then decrease with further addition of Bi. The dielectric constant and the dissipation factor at room temperature could be improved by the addition of 3 mol% Bi.

  3. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  4. Critical current density, irreversibility line, and flux creep activation energy in silver-sheathed Bi2Sr2Ca2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Shi, D.; Wang, Z.; Sengupta, S.; Smith, M.; Goodrich, L.F.; Dou, S.X.; Liu, H.K.; Guo, Y.C.

    1992-08-01

    Transport data, magnetic hysteresis and flux creep activation energy experimental results are presented for silver-sheathed high-T c Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting tapes. The 110 K superconducting phase was formed by lead doping in a Bi-Sr-Ca-Cu-0 system. The transport critical current density was measured at 4.0 K to be 0.7 x 10 5 A/cm 2 (the corresponding critical current is 74 A) at zero field and 1.6 x 10 4 A/cm 2 at 12 T for H parallel ab. Excellent grain alignment in the a-b plane was achieved by a short-melting method, which considerably improved the critical current density and irreversibility line. Flux creep activation energy as a function of current is obtained based on the magnetic relaxation measurements

  5. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    Science.gov (United States)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  6. Phase equilibria and homogeneity range of the high temperature superconducting compound (Bi,Pb)2+xSr2Ca2Cu3O10+δ

    International Nuclear Information System (INIS)

    Kaesche, S.

    1995-01-01

    For the superconducting cuprates (Bi,Pb) 2+x Sr 2 Ca 2 Cu 3 O 10+y phase equilibria, the homogeneity region, and the phase formation has been studied in the temperture range 800 to 890 C. Sintered samples were prepared by a solid state reaction starting from Bi 2 O 3 , PbO, CuO and carbonates CaCO 3 and SrCO 3 in a three-stage calcination process. For the phase identification polarization microscopy, X-ray diffraction and susceptibility measurements have been applied. Multi-phase regions were determined in the cross section of the quasi-ternary system (Bi,Pb) 2 O 3 -SrO-CaO-CuO with constant Bi/(Bi+Pb) ratio 0.84 taking into account the 2223-phase. The homogeneity region was determined as function of Sr, Ca, Bi and Pb concentration. Its maximum size was found at 850 C

  7. Microstructure origin of hot spots in textured laser zone melting Bi-2212 monoliths

    International Nuclear Information System (INIS)

    Lera, F; Angurel, L A; Rojo, J A; Mora, M; Recuero, S; Arroyo, M P; Andres, N

    2005-01-01

    Hot spots are one of the main limitations in the development of large-scale high-power applications with superconducting materials. The application of digital speckle interferometry to detect inhomogeneous heating on ceramic superconductors allows the determining of a hot spot location in these materials before any damage is caused to the material. The technique detects deformations that are induced in the material due to dilatation, attaining a resolution of 0.45 μm /fringe. In this paper this technique has been applied to analyse the heating generation in Bi-2212 superconducting monoliths at room temperature and in operation conditions. In the first case a homogeneous heating is obtained, leading to a parallel fringe pattern. In the second case, a situation with an inhomogeneous heating origin has been detected. Once the position of this hot spot is determined, microstructure studies have been performed to determine which defects are responsible for hot spot generation

  8. Characterization of superconducting coil for fault current limitation

    International Nuclear Information System (INIS)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres; Gomes Junior, George; Amorim, Helio Salim

    2010-01-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  9. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    OpenAIRE

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-01-01

    A new BiS2-based superconductor Bi2(O,F)S2 was discovered. This is a layered compound consisting of alternate stacking structure of rock-salt-type BiS2 superconducting layer and fluorite-type Bi(O,F) blocking layer. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2, which is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis length increased and decreased, respe...

  10. Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Sasiporn Prasertpalichat

    2016-06-01

    Full Text Available Lead free 0.94(Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics were prepared by conventional solid-state mixed oxide route with the A-site stoichiometry modified to incorporate donor-doping (through Bi-excess and acceptor-doping (through Na-excess. Both stoichiometric and nonstoichiometric ceramics exhibited a single perovskite phase with pseudo-cubic symmetry. A significant improvement in the dielectric properties was observed in Bi-excess compositions and a deterioration in the dielectric properties was observed in Na-excess compositions. Impedance spectroscopy was utilized to analyze the effects of A-site nonstoichiometry on conduction mechanisms. Compositions with Bi-excess resulted in an electrically homogeneous microstructure with an increase in resistivity by ∼3–4 orders of magnitude and an associated activation energy of 1.57eV which was close to half of the optical bandgap. In contrast, an electrically heterogeneous microstructure was observed in both the stoichiometric and Na-excess compositions. In addition, the Na-excess compositions exhibited low resistivities (ρ∼103Ω-cm with characteristic peaks in the impedance data comparable to the recent observations of oxide ion conduction in (Bi0.5Na0.5TiO3. Long term annealing studies were also conducted at 800∘C to identify changes in crystal structure and electrical properties. The results of this study demonstrates that the dielectric and electrical properties of 0.94(Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics are very sensitive to Bi/Na stoichiometry.

  11. Rietveld refinement, impedance spectroscopy and magnetic properties of Bi{sub 0.8}Sr{sub 0.2}FeO{sub 3} substituted Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Rekha [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Agarwal, Ashish; Sanghi, Sujata [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Sindhu, Monica [Department of Physics, MKJK College, Rohtak 124001, Haryana (India); Ahlawat, Navneet [Matu Ram Institute of Engineering and Management, Rohtak 124001, Haryana (India)

    2016-09-15

    We herein presented the investigation on the structural, electrical and magnetic properties of (1−x)(Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})–x(Bi{sub 0.8}Sr{sub 0.2}FeO{sub 3}) polycrystalline ceramic samples, with x=0.1, 0.3, 0.5 and 0.7. These samples were prepared by conventional solid state reaction method and the crystalline phase of prepared ceramics was identified with the help of X-ray diffraction pattern. Rietveld analysis of the obtained XRD data confirmed that all the synthesized samples adopt the rhombohedral crystal structure with R3c space group. Impedance spectroscopic measurements were performed on all the compositions in the frequency range 10 Hz–5 MHz to probe the electrical microstructure of polycrystalline (1−x)(Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})–x(Bi{sub 0.8}Sr{sub 0.2}FeO{sub 3}) ceramics, which changes significantly as a function of x (content of BSFO). A significant increase in dielectric constant has been observed with increase in BSFO concentration, which was attributed to enhancement of oxygen vacancies. Detailed study of impedance complex plane plots revealed the presence of non-Debye type relaxation for all the prepared systems and enabled us to separate the contribution from grains and grain boundaries. Equivalent circuit model (R{sub g}CPE{sub g})(R{sub gb}CPE{sub gb})(R{sub e}CPE{sub e}) was employed to explain the impedance data for all the prepared samples. The activation energies obtained from electric modulus as well as dc conductivity increase with increase in BSFO content, which approaches the value 1 eV and indicates an Arrehenius type thermally activated process. Remnant magnetization (M{sub r}) and coercive field (H{sub c}) are found to be increase with BSFO concentration. - Highlights: • (1−x)NBT–xBSFO (x=0.1, 0.3, 0.5, 0.7) ceramics were prepared. • There is no change in crystal structure. • These can be used as data storage materials.

  12. Synthesis and characterization of superconducting bismuthates

    International Nuclear Information System (INIS)

    Tang, Horngyi.

    1991-01-01

    A new electrosynthetic technique for low-temperature crystal growth of superconducting bismuthates was developed, and its utility demonstrated by growing various high-quality BiO 3 crystals. The crystals of Ba 1-x K x BiO 3 and Ba 1-x Rb x BiO 3 display their T c onset at 31.8k and 28k, respectively, using SQUID magnetometry. The structure of a KBiO 3 x H 2 O single crystal determined by single crystal x-ray diffraction confirms previous results from powder samples that it is isostructural with KSbO 3 . The crystals of Ba 1-x Cs x BiO 3 do not show superconductivity to 4k. Chemical vapor-transport experiments leading to the fabrication of MoS 2 /WSe 2 junctions were also performed and are described in detail

  13. The effect of texture in (Bi3.5Nd0.5)(Ti2.97Nb0.03)O12 ceramics

    Science.gov (United States)

    Cao, Ziping; Ding, Aili; Zheng, Xinsen; Qiu, Pingsun; Cheng, Wenxiu

    2004-11-01

    (Bi3.5Nd0.5) (Ti2.97Nb0.03)O12 ferroelectric ceramics was successfully prepared by a hot-pressing method. XRD diffraction confirms that the samples hold different texture in the sliced planes parallel and perpendicular to the hot-pressing axis, respectively. The anisotropy of ferroelectric, dielectric and piezoelectric properties were all observed in the textured ceramics. Due to the great improvement of ferroelectric and piezoelectric properties, the sample which was sliced along the direction parallel to the hot-pressing axis can be considered as a good candidate of high temperature piezoelectric materials.

  14. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    Science.gov (United States)

    Bedekar, M. M.; Safari, A.; Wilber, W.

    1992-11-01

    Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.

  15. A-site substitution effect of strontium on bismuth layered CaBi{sub 4}Ti{sub 4}O{sub 15} ceramics on electrical and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Tanwar, Amit, E-mail: amit07tanwar@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Verma, Maya; Gupta, Vinay; Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2011-10-17

    Strontium substituted CaBi{sub 4}Ti{sub 4}O{sub 15} ceramics with the chemical formula Ca{sub 1-x}Sr{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (CSBT) (x = 0.0-1.0) have been prepared through conventional solid state route. The formation of single phase material with orthorhombic structure was verified from X-ray diffraction with incorporation of Sr substitution. Decrease in a-axis displacement of Bi ion in the perovskite structure in the CSBT ceramics were observed from the relative changes in soft mode (20 cm{sup -1}) in the Raman spectra, and increase in Sr incorporation shows the shift in ferroelectric to paraelectric phase transition temperature. The dielectric properties for all the CSBT ceramic compositions are studied as a function of temperature over the frequency range of 100 Hz-1 MHz. Curie's temperature was found to be function of Sr substitution and with increase in the Sr concentration the phase transition becomes sharper and phase transition temperature gets shifted towards lower temperature (790-545 deg. C). The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperature (<500 deg. C) follows the power law and attributed to hopping conduction mechanism. Sr substitution results in the increase in piezoelectric coefficients (d{sub 33}) whereas piezoelectric charge coefficient values were found comparable to that of PZT at room temperature. Relative changes in soft modes due to Sr incorporation results in high piezoelectricity in the CSBT ceramics.

  16. Superconducting properties of modified YBa2Cu3O7-δ ceramics

    International Nuclear Information System (INIS)

    Kaleva, G.M.; Politova, E.D.; Kudinova, M.V.; Prutchenko, S.G.; Venevtsev, Yu.N.

    1993-01-01

    In connection with the promising practical applications of high temperature superconductors (HTSC) particular attention has been paid to studying the influence of dopant elements on the properties of HTSC ceramics. According to earlier work, replacement of the yttrium in the compound YBa 2 Cu 3 O 7-8 (1-2-3) by rare earth elements, excluding Ce, Pr, Tb, and Pm, has almost no influence on the superconducting transition temperature (T c ∼ 90 K). Of the alkaline metals, only Sr will displace Ba over a wide range of concentrations (up to 50 at %), but in this case T c is reduced to 86 K. The strongest influence on the superconducting properties results from replacement of copper by 3d transition metals. Introduction of 10 at.% Zn, Co, Fe, Ni, Ti, Mn, or Cr in place of the copper leads to a drastic lowering of T c . At the same time it has been reported that microadditions of individual elements (replacement of Cu by Pd, Ti, and Fe, at a level of 0.1-0.5 at.%,) may elevate conducting phase and improve the contacts between grains, so that, in particular, there is an increase in the critical current density. In view of the possible positive influence which introduction of small quantities of individual elements may have 1-2-3 compounds, in the present work, the authors have studied the action of dopant additions, including complex ones, on this phase, with the goal of improving its superconducting properties. Structural and superconducting properties were studied for samples of YBa 2 (Cu 1- x M x ) 3 O 7-δ , with M = Sb (I), Mn (II), and Sb 1/2 Mn 1/2 (III), and (1-x)Y 1/3 Ba 2/3 CuO 3-δ ·xSr(Sb 1/2 Mn 1/2 )O 3 (IV), using x-ray diffraction, electron microscopy, Mossbauer spectroscopy, as well as changes in the temperature dependence of the resistivity ρ(T)

  17. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  18. Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics

    Science.gov (United States)

    Moure, A.; Pardo, L.

    2005-04-01

    Ceramics of composition Bi3TiNbO9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900°C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100KHz, and 1MHZ and in the temperature range from 200°C up to the ferroparaelectric transition temperature. Values of ɛ'˜250 at 200°C are achieved in ceramics hot pressed at temperatures as low as 700°C for 1h.

  19. Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics

    International Nuclear Information System (INIS)

    Moure, A.; Pardo, L.

    2005-01-01

    Ceramics of composition Bi 3 TiNbO 9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900 deg. C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100 KHz, and 1 MHZ and in the temperature range from 200 deg. C up to the ferroparaelectric transition temperature. Values of ε ' ∼250 at 200 deg. C are achieved in ceramics hot pressed at temperatures as low as 700 deg. C for 1 h

  20. Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Goyal, Parveen K., E-mail: goyalphy@gmail.com [Department of Physics, ARSD College, University of Delhi, Dhaula Kuan, New Delhi 110 021 (India); Thakur, O.P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India); Shukla, A.K. [Department of Physics, Amity Institute of Applied Sciences, Amity University, Noida 201301 (India); Sreenivas, K., E-mail: kondepudysreenivas@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2015-02-15

    Structural and electrical properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.50) ceramics prepared by conventional solid-state reaction method have been investigated. Raman spectra reveals the distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics. Room temperature dielectric constant (ε′) increases and considerable reduction in the low frequency (10{sup −2} to 10 Hz) dielectric losses and in dc conductivity (σ{sub dc}) are seen with lanthanum substitution. A critical La content of x ∼0.20 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} exhibits a well-defined relaxor behavior as seen from the temperature and frequency dependence of the dielectric parameters ε′(T) and ε″(T). The dielectric data fit well to the modified Curie–Weiss law and the Lorentz-type relation and show increasing diffuseness in the phase transition with increasing La content. The temperature dependence of the characteristic relaxation time obtained from the Cole–Cole model shows a good fit to the non-linear Vogel–Fulcher relation. Improvements in the remnant polarization and a stable piezoelectric charge coefficient are seen up to a La content of x ∼0.20. The observed increase in dielectric loss and σ{sub dc} in addition to the diminished ferroelectric/piezoelectric properties for higher La content are explained in terms of changing oxygen vacancy concentration and structural relaxation due to the preferential incorporation of La into the (Bi{sub 2}O{sub 2}){sup 2+} layers as evidenced through the Raman spectroscopy. - Highlights: • La distribution in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} ceramics is analyzed through Raman spectroscopy. • Low and a nearly constant loss over wide frequency range (10{sup −2}–10{sup 7} Hz) obtained. • Critical La content x = 0.2 identified for high resistivity and ideal relaxor

  1. Effect of MnO2, Bi2O3, and ZnO additions on the electrical properties of lead zirconate titanate piezo ceramics

    International Nuclear Information System (INIS)

    Klimov, V.V.; Selikova, N.I.; Bronnikov, A.N.

    2006-01-01

    The effect of manganese dioxide additions on the electrical properties of lead zirconate titanate (PZT) piezo ceramics has been investigated. The results demonstrate that, taken alone, manganese dioxide does not ensure the formation of hard PZT. The valence state of manganese in the piezo ceramics is shown to be 4+ if no other dopants are present and 3+ if manganese is introduced in combination with Bi and Zn. Microstructural examination indicates that the grain size of the singly doped ceramics is 5-15 μm, while that of the codoped ceramics is 1-3 μm. The polarization current curves of the piezo ceramics containing manganese, bismuth, and zinc oxides have extra maxima, which points to significant internal fields. The manganese is shown to reside at grain boundaries. The conclusion is made that it is the composition of Mn-containing intergranular phases, rather than the presence of manganese ions, that plays a key role in the formation of hard piezo ceramics [ru

  2. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    Science.gov (United States)

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-02-01

    A new BiS2-based superconductor, Bi2(O,F)S2, was discovered. It is a layered compound consisting of alternately stacked structure of rock-salt-type BiS2 superconducting layers and fluorite-type Bi(O,F) blocking layers. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2. This is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis lengths increased and decreased, respectively, and Tc increased to 5.1 K.

  3. Phases and structural characteristics of high Tc superconducting oxide in (Bi, Pb)-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chen, Zuyano; Li, Zhengrong; Qian, Yitai; Zhou, Quien; Cheng, Tingzhu

    1989-01-01

    The various phases, which are responsible for variant maximum d-value including 18.5 angstrom, 15.4 angstrom, 12.2 angstrom, 6.2 angstrom, 3.2 angstrom and possible 9.1 angstrom respectively, observed in high Tc superconducting complex oxide of (Bi,Pb)-Sr-Ca-Cu-O system are reported in this paper according to the result of X-ray diffraction on platelike crystals or crystallites synthesized under different preparation conditions. The phase of tetragonal system with c=3.21 angstrom, a=3.86 angstrom is possible parent structural unit and it is of great significance to the structure constitution of various phases with large lattice parameter c and structural characteristics of superconducting oxide. In view of the above a model of two-dimension stack-up which causes a stack in variant styles along c-axis and constitute various phases with different lattice parameter c is proposed and discussed

  4. Tensile damage and its influence on the critical current of Bi2223/Ag superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Nagai, T; Okuda, H; Oh, S S; Hojo, M; Tanaka, M; Sugano, M; Osamura, K

    2003-01-01

    We have studied the tensile behaviour of Bi2223 superconducting composite tapes at room temperature, and the influence of the tensile damages introduced at room temperature on the critical current I c and the n values at 77 K. In the measurement of the I c and n values, the overall composite with a gauge length 60 mm was divided into six elements with a gauge length of 10 mm in order to find the correlation of the I c and n values of the overall composite to those of the local elements which constitute the composite. From the measured stress-strain curve of the composite and the calculated residual strain of the Bi2223 filaments, the intrinsic fracture strain of Bi2223 filaments was estimated to be 0.09-0.12%. When the applied strain was lower than the onset strain of the filament damage, the original I c and n values were retained both in the overall composite and the elements. In this situation, while the overall voltage at the transition from superconductivity to normal conductivity of the composite was the sum of the voltages of the constituent elements, among all elements the overall voltage was affected more by the element with the lower I c (higher voltage). The damage of the filaments arose first locally, resulting in a reduction of the I c and n values in the corresponding local element, even though the other elements retained the original I c and n values. In this situation, the voltage of the overall composite stemmed dominantly from that of the firstly damaged weakest element, and the overall I c and n values were almost determined by the values of such an element. After the local element was fully damaged, the damage arose also in other elements, resulting in segmentation of the filaments. Thus, the I c and n values were reduced in all elements. The correlation of I c between the overall composite and the elements could be described comprehensively for non-damaged and damaged states from the voltage-current relation

  5. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  6. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  7. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    Science.gov (United States)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  8. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi_{2}Se_{3}

    Directory of Open Access Journals (Sweden)

    Tomoya Asaba

    2017-01-01

    Full Text Available The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi_{2}Se_{3} is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb-doped Bi_{2}Se_{3}. As a result, the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi_{2}Se_{3}.

  9. Electric field induced lattice strain in pseudocubic Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-modified BaTiO{sub 3}-BiFeO{sub 3} piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2016-04-25

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  10. Interplay of superconductivity and bosonic coupling in the peak-dip-hump structure of Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Miller, Tristan L.; Zhang, Wentao; Ma, Jonathan; Eisaki, Hiroshi; Moore, Joel E.; Lanzara, Alessandra

    2018-04-01

    Because of the important role of electron-boson interactions in conventional superconductivity, it has long been asked whether any similar mechanism is at play in high-temperature cuprate superconductors. Evidence for strong electron-boson coupling is observed in cuprates with angle-resolved photoemission spectroscopy (ARPES), in the form of a dispersion kink and peak-dip-hump structure. What is missing is evidence of a causal relation to superconductivity. Here we revisit the problem using the technique of time-resolved ARPES on Bi2Sr2CaCu2O8 +δ . We focus on the peak-dip-hump structure, and show that laser pulses shift spectral weight into the dip as superconductivity is destroyed on picosecond time scales. We compare our results to simulations of Eliashberg theory in a superconductor with an Einstein boson, and find that the magnitude of the shift in spectral weight depends on the degree to which the bosonic mode contributes to superconductivity. Further study could address one of the longstanding mysteries of high-temperature superconductivity.

  11. Second and third peaks in the non-resonant microwave absorption spectra of superconducting Bi2212 crystals

    CSIR Research Space (South Africa)

    Srinivasu, V V

    2010-04-01

    Full Text Available . Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: J. Phys. C 20, L559 (1987) 2. Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B 36, 7241 (1987) 3. Kachaturyan, K... 10.1007/s10948-009-0530-5 O R I G I NA L PA P E R Second and Third Peaks in the Non-resonant Microwave Absorption Spectra of Superconducting Bi2212 Crystals V.V. Srinivasu Received: 19 August 2009 / Accepted: 25 August 2009 ' Springer Science...

  12. Effect of sintering condition on the microstructure and electrical properties of lead-free (Na0.5K0.5NbO3 - Bi0.5(Na0.83K0.170.5TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Wang Chun Huy

    2017-01-01

    Full Text Available In this work, the piezoelectric ceramic system of the (1-x(Na0.5K0.5NbO3 - xBi(Na0.83K0.17TiO3 with composition close to the morphotropic phase boundary is studied. (Na0.5K0.5NbO3 with 0∼5 mole% Bi(Na0.83K0.17TiO3 has been prepared following the conventional mixed oxide process. The effect of sintering time on the properties of 0.97(Na0.5K0.5NbO3-0.03Bi(Na0.83K0.17TiO3 ceramics is discussed. For 0.97(Na0.5K0.5NbO3-0.03Bi(Na0.83K0.17TiO3 ceramics, the electromechanical coupling coefficients of the thickness mode kt and the piezoelectric constant d33 reach 0.46 and 155 p/CN, respectively, at the sintering of 1100 °C for 3 h. Dielectric and piezoelectric properties have maximum values at the sintering temperature of 1100 °C for 5 h. For 0.97(Na0.5K0.5NbO3 -0.03Bi(Na0.83K0.17TiO3 ceramics, the electromechanical coupling coefficients of the thickness mode kt and the piezoelectric constant d33 reach 0.56 and 190, respectively, at the sintering of 1100 °C for 5 h. The effect of prolonging the sintering time to the 0.97(Na0.5K0.5NbO3-0.03Bi(Na0.83K0.17TiO3 system is a helpful method on ceramic processing to improve densification and properties.

  13. Carrier doping into a superconducting BaPb0.7Bi0.3O3‑δ epitaxial film using an electric double-layer transistor structure

    Science.gov (United States)

    Komori, S.; Kakeya, I.

    2018-06-01

    Doping evolution of the unconventional superconducting properties in BaBiO3-based compounds has yet to be clarified in detail due to the significant change of the oxygen concentration accompanied by the chemical substitution. We suggest that the carrier concentration of an unconventional superconductor, BaPb0.7Bi0.3O3‑δ , is controllable without inducing chemical or structural changes using an electric double-layer transistor structure. The critical temperature is found to decrease systematically with increasing carrier concentration.

  14. The effect of texture in (Bi3.5Nd0.5)(Ti2.97Nb0.03)O12 ceramics

    International Nuclear Information System (INIS)

    Cao, Ziping; Ding, Aili; Zheng, Xinsen; Qiu, Pingsun; Cheng, Wenxiu

    2004-01-01

    (Bi 3.5 Nd 0.5 ) (Ti 2.97 Nb 0.03 )O 12 ferroelectric ceramics was successfully prepared by a hot-pressing method. XRD diffraction confirms that the samples hold different texture in the sliced planes parallel and perpendicular to the hot-pressing axis, respectively. The anisotropy of ferroelectric, dielectric and piezoelectric properties were all observed in the textured ceramics. Due to the great improvement of ferroelectric and piezoelectric properties, the sample which was sliced along the direction parallel to the hot-pressing axis can be considered as a good candidate of high temperature piezoelectric materials. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The mechanical deformation of superconducting BiSrCaCuO/Ag composites

    International Nuclear Information System (INIS)

    Han, Z.; Skov-Hansen, P.; Freltoft, T.

    1997-01-01

    The mechanical deformation of BiSrCaCuO/Ag composites made by the powder-in-tube method is a multi-step process. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. A key parameter is the core density, which changes during mechanical deformation. In this review, basic concepts of the classical mechanical deformation theory are briefly discussed. Simple descriptions of deformation processes like pressing, rolling, drawing and extrusion are also presented. The term 'freedom parameter', Δ f , is introduced to illustrate the influence of various constraint factors on the mass-flow behaviour. Simple pictures including mass redistribution and the powder-flow model are presented for interpreting the plastic deformation process of the composites. Experimental results are reviewed and our proposed pictures and models are applied for discussion. (author)

  16. A study of the formation processes of the 2212 phase in the Bi-based superconductor systems. [BiSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Lo; Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-04-15

    A study towards the identification of the reactions contributing to and accompanying the formation of the 2212 phase from oxides and carbonates by solid state reaction processes was conducted. The formation processes were investigated by thermal analysis, powder X-ray diffractometry and AC magnetic susceptometry. The 2212 phase was found to form from reactions between the 2201 phases (the non-superconducting pseudo-tetragonal and the superconducting monoclinic phases), Bi{sub 6}Ca{sub 7}O{sub 16}, CuO and SrCO{sub 3}. The 2201 phases were produced by the reactions of Bi-Sr-Cu-O or Bi-Sr-O compounds with SrCO{sub 3} or CuO. The 2201 phases could also be formed through the direct reaction between Bi{sub 2}CuO{sub 4} and SrCO{sub 3}. (orig.).

  17. Superconductivity in Bismuth. A New Look at an Old Problem.

    Science.gov (United States)

    Mata-Pinzón, Zaahel; Valladares, Ariel A; Valladares, Renela M; Valladares, Alexander

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan's formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy.

  18. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  19. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics; Vliyanie termoradiatsionnykh obrabotok na sintez vysokotempiraturnykh sverkhprovodyaschikh ittrievykh keramik

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Inst. Yadernoj Fiziki Natsionalnogo Yadernogo Tsentra Respubliki Kazakhstan, Almaty (Kazakhstan)

    1999-07-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays {sup 60}Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year.

  20. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  1. The effect of Bi2 O3 on the electrical properties of Zr O2: 3 wt% Mg O ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Cosentino, I.C.

    1991-01-01

    Zr O 2 : 3 wt% Mg O ceramic solid electrolytes have been prepared to study the effect of Bi 2 O 3 addition on densification and electrical conductivity. Microstructural characterization have been done by X-ray diffractometry, scanning electron microscopy and electron microprobe analyses. Electrical conductivity measurements have been done by two probe dc technique in the 400 0 C - 700 0 C temperature range. The results show that 5 wt% Bi 2 O 3 addition improves densification: 93% TD and 98% TD specimens are obtained from zirconia stabilized by powder mixture and by coprecipitation of oxides, respectively. Moreover, electrical conductivity values are found to be two orders of magnitude higher for Zr O 2 : 3 wt% Mg O with 5% Bi 2 O 3 . (author)

  2. Highly oriented Bi-system bulk sample prepared by a decomposition-crystallization process

    International Nuclear Information System (INIS)

    Xi Zhengping; Zhou Lian; Ji Chunlin

    1992-01-01

    A decomposition-crystallization method, preparing highly oriented Bi-system bulk sample is reported. The effects of processing parameter, decomposition temperature, cooling rate and post-treatment condition on texture and superconductivity are investigated. The method has successfully prepared highly textured Bi-system bulk samples. High temperature annealing does not destroy the growing texture, but the cooling rate has some effect on texture and superconductivity. Annealing in N 2 /O 2 atmosphere can improve superconductivity of the textured sample. The study on the superconductivity of the Bi(Pb)-Sr-Ca-Cu-O bulk material has been reported in numerous papers. The research on J c concentrates on the tape containing the 2223 phase, with very few studies on the J c of bulk sample. The reason for the lack of studies is that the change of superconducting phases at high temperatures has not been known. The authors have reported that the 2212 phase incongruently melted at about 875 degrees C and proceeded to orient the c-axis perpendicular to the surface in the process of crystallization of the 2212 phase. Based on that result, a decomposition-crystallization method was proposed to prepare highly oriented Bi-system bulk sample. In this paper, the process is described in detail and the effects of processing parameters on texture and superconductivity are reported

  3. Novel titanium dioxide ceramics containing bismuth and antimony

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-06-01

    Full Text Available Here, we developed one kind of novel TiO2 ceramics with colossal dielectric constant by chemical modifications (Bi3+ and Sb5+, and discussed the physical origin for giant dielectric constant. Effects of Bi and/or Sb on their microstructure, dielectric properties as well as its frequency and temperature stability were studied in detail. It was found that their dielectric properties are strongly sensitive to (Bi,Sb contents, and colossal dielectric permittivity (CP (104∼105 together with low dielectric loss (∼5.7% can be obtained in a wide composition range. In addition, all the ceramics possessed good frequency (102∼106 Hz and temperature (−150–200 °C stability of dielectric properties. In addition, the defects caused by the Bi volatilization may be the reason for higher dielectric properties of (Bi0.5Sb0.5xTi1−xO2 ceramics with respect to (A0.5Sb0.5xTi1−xO2 (A = In, Pr, Dy, Sm, Gd, Yb, Ga, Al, Fe or Sc. According to the results of complex impedance and XPS, the electron-pinned defect-dipoles may be suitable to explain the CP phenomenon, and oxygen vacancies-induced by Bi3+&Sb5+ substitution for Ti4+ should be responsible for conduction mechanism. We believe that this profound investigation can benefit the development of TiO2 ceramics as a CP material.

  4. Giant strain with low cycling degradation in Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Tan, Xiaoli, E-mail: xtan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-07-21

    Non-textured polycrystalline [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}](Ti{sub 1−x}Ta{sub x})O{sub 3} ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d{sub 33}* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} ceramics show great potential for large displacement devices.

  5. Simulation of the d.c. critical current in superconducting sintered ceramics

    International Nuclear Information System (INIS)

    Riedinger, R.; Habig, P.; Hlil, E.K.; Arnaud, M.; Boulesteix, C.

    1990-01-01

    The new superconducting high-T c sintered ceramics can be described in some case as a lattice of interconnected rods, in other cases as a more or less random packing of parallelepiped crystallites; their size is about a few microns. The d.c. critical current at zero voltage of such a material is not related to the critical current of the bulk material, but to its granular structure. Indeed, the critical current between two adjacent cells is governed by the critical current of the weak link between them; this link behaves within some limits as a Josephson junction, the critical current of which is known. For our present problem, the system can be modeled as a lattice of Josephson junctions. We present here results for the d.c. critical current at zero voltage of lattices of identical Josephson junctions in two dimensions. The influence of the finiteness of size of the sample is examined. The relationship with normal conductivity simulations and percolation is discussed

  6. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    Science.gov (United States)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  7. Conduction spectroscopy of a proximity induced superconducting topological insulator

    Science.gov (United States)

    Stehno, M. P.; Hendrickx, N. W.; Snelder, M.; Scholten, T.; Huang, Y. K.; Golden, M. S.; Brinkman, A.

    2017-09-01

    The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi1.5Sb0.5Te1.7Se1.3 and the stoichiometric BiSbTeSe2 have been used as three-dimensional TI. In the case of Bi1.5Sb0.5Te1.7Se1.3, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe2 with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.

  8. Soft x-ray photoemission spectroscopy of the Ba atomic layer deposition on the ceramic multiferroic BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Benemanskaya, G.V., E-mail: galina.benemanskaya@mail.ioffe.ru [Ioffe Institute, Politekhnicheskaya str. 26, St. Petersburg, 194021 (Russian Federation); Dementev, P.A.; Lapushkin, M.N. [Ioffe Institute, Politekhnicheskaya str. 26, St. Petersburg, 194021 (Russian Federation); Timoshnev, S.N. [St Petersburg Academic University, Khlopina str.8/3, St. Petersburg, 194021 (Russian Federation); Senkovskiy, B. [Helmholts-Zentrum Berlin, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2017-04-01

    Highlights: • Ba/BiFeO{sub 3} interface was studied by X-ray synchrotron- photoemission spectroscopy. • Ba adsorption is found to modify the Bi 4f, O 1s and Fe 2p core level spectra. • Ba induced charge transfer causes increasing in Bi-valency and O-ionicity. • Ba adsorption results in increasing the amount of Fe{sup 2+} ions in the surface region. - Abstract: Electronic structure of the ceramic multiferroic BiFeO{sub 3} and the Ba/BiFeO{sub 3} nanointerface is investigated in situ in an ultrahigh vacuum by synchrotron-based photoemission spectroscopy with the excited photon energy from 120 eV to 900 eV. The Bi 4f, O 1s, Fe 2p, and Ba 5p core-levels spectra are studied. The Ba atomic layer deposition is found to induce a significant change in spectra that is originated from the charge transfer between Ba adatoms and Bi, O surface atoms with increasing the Bi-valency and O-ionicity. The Fe 2p{sub 3/2} core level spectrum for the clean BiFeO{sub 3} is shown to contain both the Fe{sup 2+} and Fe{sup 3+} ion components with the atomic ratio of Fe{sup 2+}/Fe{sup 3+} ∼1. The Ba adsorption is found to increase the ratio up to ∼1.5. This new effect is clearly caused by recharge between Fe{sup 3+} ↔ Fe{sup 2+} ions with increasing the amount of Fe{sup 2+} ions.

  9. Phase transformation and impedance spectroscopic study of Ba substituted Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Rekha [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana (India); Agarwal, Ashish; Sanghi, Sujata [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana (India); Sindhu, Monica [Department of Physics, MKJK College, Rohtak, 124001, Haryana (India); Ahlawat, Navneet [Matu Ram Institute of Engineering and Management, Rohtak, 124001, Haryana (India)

    2016-08-15

    (Na{sub 0.5}Bi{sub 0.5}){sub 1−x}Ba{sub x}TiO{sub 3} (x = 0.05, 0.1 and 0.15) ceramics abbreviated as (NBBT1, NBBT2 and NBBT3) are fabricated by conventional ceramic fabrication technique. The analysis of X-ray diffraction pattern of the prepared ceramic performed by Rietveld refinement indicate that crystal structure is rhombohedral for NBBT1, tetragonal for NBBT3 and a phase boundary occurs for NBBT2. Impedance spectroscopy has been employed to study the electrical properties of these ceramics in the frequency range of 10 Hz to 5 MHz and in a temperature range of 303 K–723 K. Frequency and temperature dependent electrical data is analyzed in the framework of conductivity, impedance and electric modulus formalisms. Conductivity spectrum obeys double power law for NBBT1, which is evidenced from two different dispersion regions. While for NBBT2 and NBBT3 only single power law is observed. Relaxation frequency for impedance is found to increase with temperature and obeys Arrhenius relationship with activation energy ≈0.764, 0.527 and 0.471 eV for NBBT1, NBBT2 and NBBT3 respectively. Variation of dielectric constant and tanδ with frequency at different temperatures was analyzed with the help of Maxwell–Wagner and Koop's phenomenogical theory. The presence of peaks in plots showing frequency dependence of tanδ for NBBT2 and NBBT3 indicates relaxor behavior of these compositions. - Highlights: • (Na{sub 0.5}Bi{sub 0.5}){sub 1−x}Ba{sub x}TiO{sub 3} (x = 0.05, 0.1, 0.15) ceramics have been synthesized. • There is change in crystal structure with Ba doping. • NBBT2 and NBBT3 show relaxor behavior.

  10. Temperature dependence of the phonon structure in the high-temperature superconductor Bi2Sr2CaCu2O8 studied by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Kamaras, K.; Herr, S.L.; Porter, C.D.; Tanner, D.B.; Etemad, S.; Tarascon, J.

    1991-01-01

    We have investigated a ceramic sample of the high-temperature superconductor Bi 2 Sr 2 CaCu 2 O 8 (T c =85 K) by infrared and visible reflectance spectroscopy at several temperatures both below and above the superconducting transition. We find that the temperature variation in the vibrational region is associated with minima or antiresonance features of the optical conductivity, instead of maxima, indicating strong Fano-type electron-phonon interaction and implying that the phonon structure in the infrared is strongly affected by the ab-plane response

  11. Correlation of the superconducting transition to oxygen stoichiometry in single-crystal Ba1-xKxBiO3-y

    Science.gov (United States)

    Mosley, W. D.; Dykes, J. W.; Klavins, P.; Shelton, R. N.; Sterne, P. A.; Howell, R. H.

    1993-07-01

    Temperature-dependent positron-lifetime experiments have been performed from room temperature to 15 K on single crystals of the oxide superconductor Ba1-xKxBiO3-y. Results indicate that the filling of oxygen vacancies has a marked impact on the superconducting properties of this system. Cation defect concentrations were below the detectable limit of positron-annihilation-analysis techniques in this material, which is in sharp contrast to identical studies on polycrystalline samples. We find that the positron lifetime in these electrochemically deposited single crystals is determined by the oxygen stoichiometry of the lattice, but there is no experimental signature of strong positron localization. By performing a subsequent oxygen anneal on the crystals, the superconducting transition is sharpened and the onset is raised. The observed change in positron lifetime associated with this annealing procedure is in quantitative agreement with theory.

  12. Mechanical bending strength of (Bi0.5Na0.5 TiO3-based lead-Free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Hiroaki Takahashi

    2017-09-01

    Full Text Available (Bi0.5Na0.5TiO3 [BNT] is expected as one of candidate lead-free materials because these ceramics show relatively good high-power piezoelectric properties. In this study, we tried to understand the bending strength and fracture behavior of the BNT-based ceramics. To measure the bending strength, a three-point bending test on the basis of JIS was conducted using 12.0 × 4.0 × 1.0 mm3 specimens. An average bending strength, σA, of pure BNT ceramics sintered at 1100 °C for 2, 12 and 24 h were 217, 195 and 187 MPa, respectively. It is cleared that the σA increased with decreasing the sintering time, (grain size and pore size. We also investigated the bending strength of Nb2O5 doped BNT ceramics [BNT-Nb x, x = 0.05 ∼ 1.5 wt%] and MnCO3 doped BNT ceramics [BNT-Mn x, x = 0.5 and 1.0 wt%]. Values of the σA of BNT-Nb 0.5 and BNT-Mn 0.5 were 222, and 188 MPa, respectively. It is clarified that soft dopants (Nb can improve the bending strength of BNT-based ceramics. Additionally, hot-pressed BNT [HP-BNT] were sintered at 1050 °C for 5 h, and the σA of HP-BNT was 245 MPa.

  13. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  14. Microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process

    International Nuclear Information System (INIS)

    Lu, X.Y.; Nagata, A.; Sugawara, K.

    2008-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process were investigated. The tapes were then subjected to two heat treatments with an intermediate rolling. All the tapes were sintered at 835 deg. C for 24 h at initial sintering stage. A two-step sintering procedure was then used in the final sintering stage. In the first step, the tapes are sintered at 840-865 deg. C for 1 h. In the second step, they were sintered at 835 deg. C for 120 h. The results show that the first step sintering temperature has significant influence on the microstructure and the critical current density J c . The observed microstructures are consistent well with the different J c performances of the tapes first-step-sintered at different temperatures. The tape first-step-sintered at 850 deg. C, which has small secondary phases, stronger c-axis grain alignment, higher proportion of Bi-2223 phase, and no cracks, exhibits the highest J c value

  15. Oxygen stoichiometry and its influence on superconductivity in Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Krishnaraj, P.; Lelovic, M.; Eror, N.G.; Balachandran, U.

    1994-01-01

    Bi 2 Sr 2 CaCu 2 O 8+x (2212) was synthesized from freeze-dried precursors. The oxygen content of 2212 was determined as a function of temperature and oxygen partial pressure and the variation of Tc with oxygen content was determined. It was found that 2212 without excess oxygen (x = 0) is superconducting. This points to the role of the (Bi-O) ∞ layers as a source for holes in 2212. Four probe resistivity measurements were also performed on 2212. The nature of oxygen intercalation and oxygen removal in 2212 was studied by thermogravimetry and resistivity. It was also found that samples of 2212 with the same oxygen content had different T c 's depending on thermal history. This difference in T c is thought to arise from oxygen occupying different sites in the lattice while maintaining the same total oxygen content

  16. Structural and dielectric properties of four - layer Aurivillius - type Ba0.25Sr0.75Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Goyal, Parveen K.; Khokhar, Anita; Sreenivas, K.

    2013-01-01

    In the present study, a barium strontium bismuth titanate (Ba 0.25 Sr 0.75 Bi 4 Ti 4 O 15 , BSBT) ceramic composition has been prepared by conventional solid-state reaction. In order to study the structure of as synthesized BSBT ceramics, the X-ray powder diffraction (XRD), Raman and FTIR studies have been carried out on the powdered sample. X-ray diffraction analysis confirms the formation of a single phase four-layer Aurivillius-type ceramics that crystallizes in an orthorhombic structure with A2 1 am space group. The dielectric properties of the ceramics have been studied in the temperature range 30 - 600℃ temperature range at various frequencies (100 Hz to 1 MHz). A sharp dielectric anomaly was observed at ∼ 485℃ at all the frequencies corresponding to the ferroelectric to paraelectric phase transition. The ferroelectric behavior is confirmed from the Curie-Weiss law fitting of the dielectric data. (author)

  17. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation.

    Science.gov (United States)

    Spies, Benedikt Christopher; Witkowski, Siegbert; Butz, Frank; Vach, Kirstin; Kohal, Ralf-Joachim

    2016-10-01

    The aim of this study was to determine the success and survival rate of all-ceramic bi-layered implant-supported three-unit fixed dental prostheses (IS-FDPs) 3 years after implant placement. Thirteen patients (seven males, six females; age: 41-78 years) received two one-piece ceramic implants (alumina-toughened zirconia) each in the region of the premolars or the first molar and were finally restored with adhesively cemented bi-layered zirconia-based IS-FDPs (3 in the maxilla, 10 in the mandible) composed of CAD/CAM-fabricated zirconia frameworks pressed-over with fluor-apatite glass-ceramic ingots. At prosthetic delivery and the follow-ups after 1, 2 and 3 years, the restorations were evaluated using modified United States Public Health Service (USPHS) criteria. Restorations with minor veneer chippings, a small-area occlusal roughness, slightly soundable restoration margins, minimal contour deficiencies and tolerable color deviations were regarded as success. In case of more distinct defects that could, however, be repaired to a clinically acceptable level, IS-FDPs were regarded as surviving. Kaplan-Meier plots were used for the success/survival analyses. To verify an impact on subjective patients' perceptions, satisfaction was evaluated by visual analog scales (VAS). All patients were seen 3 years after implant installation. No IS-FDP had to be replaced, resulting in 100% survival after a mean observation period of 29.5 months (median: 30.7). At the 3-year follow-up, 7/13 IS-FDPs showed a veneer chipping, 13/13 an occlusal roughness and 12/13 minimal deficiencies of contour/color. Since six restorations showed a major chipping and/or a major occlusal roughness, the Kaplan-Meier success rate was 53.8%. However, patients' significantly improved perceptions of function, esthetics, sense, and speech at prosthetic delivery remained stable over time. Bi-layered zirconia/fluor-apatite IS-FDPs entirely survived the observation period but showed a high frequency of

  18. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  19. Effect of impregnation of ZrO2 on the chemical stability and the superconductivity of Y- and Bi-systems

    International Nuclear Information System (INIS)

    Muroya, Masaaki; Minamiyama, Hideaki

    1994-01-01

    The results are given concerning the influence of impregnation of Zr on chemical stability and superconductivity of YBa 2 (Cu 1-x · Zr x ) 3 O 7-y (123-system) and Bi 1.84 Zr x Pb 0.34 Sr 1.91 Ca 2.03 Cu 3.06 O y (2223-system) superconductors, when the samples are contacted with the solutions of acid (pH3), distilled water (pH5.6) and base (pH9), where x = 0-0.35. It is concluded that the low chemical stability was found in the case of YBZCO, barium hydroxide and/or barium carbonate were precipitated into the solutions, even though mechanical strength was increased by impregnation of Zr, and the chemical stability of Bi-system is high compared with that of the Y-system. 8 refs., 5 figs

  20. Study and characterization of the BNO (BiNbO_4) ceramic added with 3 wt. % CuO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Pires Junior, G.F.M.; Rodrigues, H.O.; Sombra, A.S.B.; Sales, J.C.

    2011-01-01

    The objective of this work is to synthesize and characterize the BNO (BiNbO_4) ceramic added with 3 wt. % CuO to improvements in densification. The BNO was prepared by conventional ceramic method. The powders milled for 2 h were calcined at 850 °C for 3 h. After calcination the powders we re characterized by X-ray diffraction (XRD). The detailed characterization of XRD was performed using the program DBWS9807a which uses the Rietveld method for refinement of crystal structures. The refinement confirmed the acquisition of isolated α-BNO phase with orthorhombic crystal structure (a = 5.6792Å, and b = 11.7081Å c = 4.9823Å; α = β = γ = 90) and density of the unit cell calculated 6.61g/cm3. Micrographs, to analyze densification behavior and grain size were obtained using a Scanning Electron Microscope model TESCAN manufactured by Bruker AXS detector. (author)

  1. Transport Barkhausen-like noise in uniaxially pressed Bi{sub 1.65}Pb{sub 0.35}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}}ceramic samples

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fornaris, I. [Departamento de Ciencias Basicas, Universidad de Granma, Apdo. 21, P.O. Box 85100, Bayamo (Cuba); Govea-Alcaide, E. [Departamento de Fisica, Universidad de Oriente, Patricio Lumumba s/n, P.O. Box 90500, Santiago de Cuba (Cuba); Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil); Alberteris-Campos, M. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Mune, P. [Departamento de Fisica, Universidad de Oriente, Patricio Lumumba s/n, P.O. Box 90500, Santiago de Cuba (Cuba); Jardim, R.F., E-mail: rjardim@if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2010-08-01

    We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi{sub 1.65}Pb{sub 0.35}Sr{sub 2}Ca{sub 2} Cu{sub 3}O{sub 10+{delta}}(Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f {approx} 1 Hz) with maximum amplitude B{sub max} {approx} 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B{sub a}(t{sub i}), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T{sub c} superconductors.

  2. Effect of Sintering Time and Diameter on Bi-Pb-Sr-Ca-Cu-O Superconducting Wire Formation with TiO2 Dopant by Silver (Ag Tube

    Directory of Open Access Journals (Sweden)

    Cindy Al Kindi

    2018-01-01

    Full Text Available Pengaruh waktu sintering dan diameter terhadap pembentukan kawat superkonduktor Bi-Pb-Sr-Ca-Cu-O dengan dopan TiO2 menggunakan tabung perak (Ag menjadi penting untuk dibahas karena hal ini berpengaruh terhadap adanya suhu kritis yang merupakan syarat penting superkonduktor. Pada penelitian ini ada beberapa tahap yang dilakukan yaitu preparasi bahan, proses permesinan, penarikan kawat dan proses perlakuan panas. Serbuk BPSCCO dengan dopan TiO2 dimasukkan ke dalam tabung perak (Ag dan dikalsinasi pada temperatur 820oC selama 20 jam, lalu proses penarikan (Rolling sampai diameter 6 mm dan 2,6 mm serta sintering dilakukan pada temperatur 850oC selama 9 jam dan 30 jam untuk masing-masing ukuran diameter dengan dua kali proses sintering. Hasil penelitian menunjukkan bahwa kawat superkonduktor memiliki suhu kritis yaitu Tc onset = 99 K dan Tc zero = 70 K. Waktu yang sangat berpengaruh pada pembentukan fasa superkonduktor yaitu sintering selama 9 jam sedangkan untuk ukuran diameter kawat yang memiliki suhu kritis yaitu 6 mm, sedangkan waktu sintering selama 30 jam dapat merubah fasa BPSCCO sehingga tidak terbentuk superkonduktor melainkan konduktor dan semikonduktor. Pada diameter 2,6 mm belum menjadi ukuran yang tepat pada pembentukan kawat superkonduktor.   The influence of sintering time and diameter on the formation of Bi-Pb-Sr-Ca-Cu-O superconducting wire with doped TiO2 by silver (Ag tube becomes important to be discussed because of the presence of critical temperature which is an essential condition in superconductors. In this research there are several steps must be done that is: material preparation, machine process, wire drawing and heat process. BPSCCO powder with dopant TiO2 filled into silver (Ag tube with calcination temperature at 820oC for 20 h, then rolling process to diameter 6 mm and 2,6 mm with sintering temperature at 850oC for 9 h and 30 h for each size of diameter by twice sintering process. The results showed that

  3. Melt processing of Bi-Ca-Sr-Cu-O superconductors

    International Nuclear Information System (INIS)

    Zanotto, E.D.; Cronin, J.P.; Dutta, B.

    1988-01-01

    Several Bi-Ca-Sr-Cu-O compositions were melted in Al/sub 2/O/sub 3/ or Pt crucibles at temperatures between 1050C and 1200C. As-quenched specimens crystallized from the upper surfaces, while the bottom layers were glassy. Glass formation was improved for higher Bi/sub 2/O/sub 3/ concentrations. The crystalline portions were highly conductive, while the glassy layers were insulating. Both did not show superconductivity down to 10K. Thermal treatment in air caused a dramatic effect on the electronic properties; and annealing at 865C for long periods converted the two types of specimens (previously glassy or crystalline) to superconductors, at least for one composition. Aluminum impurity (up to 8.6 atom. pct.) had no detectable effect on the transition temperatures, i.e., T/sub c/ 85K for all superconducting samples. The flake-like (Bi/sub 2/Ca/sub 1/Sr/sub 2/Cu/sub 2/) phase, reported by other authors, was responsible for superconductivity

  4. Microstructure, Piezoelectric, and Ferroelectric Properties of BZT-Modified BiFeO3-BaTiO3 Multiferroic Ceramics with MnO2 and CuO Addition

    Science.gov (United States)

    Guan, Shibo; Yang, Huabin; Chen, Guangcong; Zhang, Rui

    2018-02-01

    A new lead-free piezoelectric ceramic, 0.67BiFeO3-0.33BaTiO3-xBi(Zn0.5Ti0.5) O3 + 0.0035MnO2 + 0.004CuO, was prepared through the solid-state reaction route. The ceramic was sintered in the 950-990°C range. In this paper, the crystal structure of the sample is pure perovskite structure with a pseudo-cubic structure in the range of x = 0-0.05, and does not change greatly with the increase of x. The grain size increases first and then decreases with the increase of x. The addition of Bi(Zn0.5Ti0.5) O3(BZT) promoted the grain growth of the sample. The piezoelectric constant reached the maximum value of d 33 = 188 pC/N, electromechanical coupling coefficient k p = 0.301 and the remanent polarization P r = 61.20 μC/cm2 at x = 0.03. It has a high Curie temperature of T c = 420°C. On the other hand, the depolarization temperature reaches the maximum value, T d = 426°C, at x = 0. A small amount of BZT doping can improve the piezoelectric, dielectric, and ferroelectric properties of the samples. Therefore, this material can be considered as a promising lead-free piezoelectric ceramic material in the application field of high-temperature materials.

  5. Study of high field Nb3Sn superconducting dipoles: electrical insulation based made of ceramic and magnetic design

    International Nuclear Information System (INIS)

    Rochepault, E.

    2012-01-01

    In the framework of LHC upgrades, significant efforts are provided to design accelerator magnets using the superconducting alloy Nb 3 Sn, which allows to reach higher magnetic fields (≥12 T). The aim of this thesis is to propose new computation and manufacturing methods for high field Nb 3 Sn dipoles. A ceramic insulation, previously designed at CEA Saclay, has been tested for the first time on cables, in an accelerator magnet environment. Critical current measures, under magnetic field and mechanical stress, have been carried out in particular. With this test campaign, the current ceramic insulation has been shown to be too weak mechanically and the critical current properties are degraded. Then a study has been conducted, with the objective to improve the mechanical strength of the insulation and better distribute the stress inside the cable. Methods of magnetic design have also been proposed, in order to optimize the coils shape, while fulfilling constraints of field homogeneity, operational margins, forces minimization... Consequently, several optimization codes have been set up. They are based on new methods using analytical formulas. A 2D code has first been written for block designs. Then two 3D codes have been realized for the optimization of dipole ends. The former consists in modeling the coil with elementary blocs and the latter is based on a modeling of the superconducting cables with ribbons. These optimization codes allowed to propose magnetic designs for high field accelerator magnets. (author) [fr

  6. Nonphonon mechanism of superconductivity in compounds of transition metals

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zaitsev, R.O.

    1989-01-01

    The kinematical mechanism of superconductivity is applied to the Emery-Hirsch model for the CuO 2 and BiO 3 layers. A superconducting region due to strong kinematic interaction of p- and s, d-electrons are determined as a function of n p and n s,d -degrees of non-filling of 2p 6 ,6s 2 ,3d 10 shells of O 2 - ,Bi 3 + ,Cu + . The T c is calculated taking into account the spin flip relaxation time. Magnetostatic properties of a superconducting state in a weak magnetic field are investigated. Coefficients of the Ginzburg-Landau equation are calculated. The ground state energy of the Emery-Hirsch model is also calculated

  7. Effect of ZnO Nanoparticles on the Sintering Behavior and Physical Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Lead-Free Ceramics

    Science.gov (United States)

    Vuong, Le Dai; Truong-Tho, Nguyen

    2017-11-01

    Sintered Bi0.5(Na0.8K0.2)0.5TiO3 + x wt.% ZnO nanoparticle (BNKT- xZnOn) ceramics have been fabricated by conventional annealing with the aid of ultrasound waves for preliminary milling. Because of the presence of the liquid Bi2O3-ZnO phase at the eutectic point of 738°C, the sintering temperature decreased from 1150°C to 1000°C, and the morphology phase boundary of BNKT- xZnOn ceramics can be clarified by two separated peaks at (002)T and (200)T of 2 θ in the x-ray diffraction (XRD) patterns. The improvement of ferroelectric properties has been obtained for BNZT-0.2 wt.% ZnOn ceramics by the increase of remanent polarization up to 20.4 μC/cm2 and a decrease of electric coercive field down to 14.2 kV/cm. The piezoelectric parameters of the ceramic included a piezoelectric charge constant of d 31 = 78 pC/N; electromechanical coupling factors k p = 0.31 and k t = 0.34, larger than the values of 42 pC/N, 0.12 and 0.13, respectively, were obtained for the BNKT ceramics.

  8. Effects of Pb concentration on phase, microstructure and electrical properties of Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Lawita, P.; Siriprapa, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2012-01-01

    In this work, effects of Pb-doping concentration on phase, microstructure and electrical properties of bismuth lead lanthanum titanate (Bi 1−x Pb x ) 3.25 La 0.75 Ti 3 O 12 or BPLT ceramics when x = 0, 0.01, 0.03, 0.05, 0.07, 0.09 and 0.1 were investigated. Phase analysis by X-ray diffraction indicated the existence of orthorhombic phase for all BPLT powders and ceramics. Microstructural investigation using scanning electron microscope showed that all ceramics composed mainly of plate-like grains. An increase in PbO doping content reduced not only diameter and thickness of the grains but also density of the ceramics. Electrical conductivity was found to decrease while dielectric constant increased with Pb-doping concentration. Small reduction of remanent polarization and coercive field was observed in Pb-doped samples. - Highlights: ► We prepared bismuth lead lanthanum titanate ceramics by a solid state mixed-oxide method. ► The optimum sintering temperature was found to be 1150 °C. ► BPLT ceramic was identified by X-ray diffraction method to possess an orthorhombic structure. ► All samples shows plate-like morphology with varying grain size and orientation. ► Increasing Pb-doping content tended to decrease electrical conductivity values.

  9. On the relations among the pseudogap, electronic charge order and Fermi-arc superconductivity in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Oda, M; Liu, Y H; Kurosawa, T; Takeyama, K; Ido, M; Momono, N

    2008-01-01

    On the basis of STM/STS, break-junction tunneling and electronic Raman scattering experiments on Bi 2 Sr 2 CaCu 2 O 8+δ reported so far, we suggest that the static, electronic charge order is associated with inhomogeneous electronic states on antinodal parts of the Fermi surface that are outside the Fermi-arc around the node and responsible for the pseudogap, and coexists with the homogeneous superconductivity caused by the pairing of coherent quasiparticles on the Fermi-arc, the so-called 'Fermi-arc superconductivity', in the real space, although the two electronic orders or the corresponding energy gaps compete with each other in the k-space

  10. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    Science.gov (United States)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  11. Microstructural and magneto-transport properties of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 1−x}Gd{sub x}Cu{sub 2}O{sub 8+δ} superconducting ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Boudjadja, Y., E-mail: yazid.bouj@Gmail.com [NDT Laboratory, Faculty of Science and Technology, Jijel University, Jijel 18000 (Algeria); Amira, A.; Mahamdioua, N.; Saoudel, A. [NDT Laboratory, Faculty of Science and Technology, Jijel University, Jijel 18000 (Algeria); Menassel, S. [MSAR Unit, Physics Department, Constantine 1 University, Constantine 25017 (Algeria); Varilci, A.; Terzioglu, C.; Altintas, S.P. [Department of Physics, Faculty of Arts and Sciences, AIB University, Bolu 14280 (Turkey)

    2017-01-15

    This study aims to investigate the effect of Gd doping on the phase formation, microstructure, transport and magnetic properties of the Bi(Pb)-2212 system. A series of superconducting bulks with a nominal composition of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 1−x}Gd{sub x}Cu{sub 2}O{sub 8+δ} with x=0, 0.05, 0.10 and 0.15 are synthesized by the solid state synthesis route. The formed samples are characterized by means of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), electrical transport and magnetic measurements. The experiment results reveal that all the samples doped are composed of Bi-2212 phase and traces of Bi-2201 secondary phase when compared to the undoped sample. The refinement of cell parameters shows that the doping reduces the cell volume of the samples. The texture degree decreases with doping while the degree of orthorhombicity increases. Quantitative EDS analysis confirms that Gd atoms are successfully introduced into crystalline structure. The SEM micrographs show randomly distributed grains with a flake-like shape. The highest value of onset critical transition temperatures is obtained for x=0.10 and is about 90.22 K, which correlates well with the observed slope of resistivity and the hole concentration of the CuO{sub 2} layers. Magnetic hysteresis loops suggest that the diamagnetism, remanant magnetization and lower critical field are better for x=0.10. Based on the enhancements of both grain boundary weak-links and flux pinning centers, improvement of the critical current densities and flux pinning density is obtained with this kind of doping.

  12. Microwaves absorption in superconducting materials

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Fernandes, A.A.R.; Pereira, R.F.R.

    1989-01-01

    Microwaves absorption measures in two superconductors ceramics systems, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O are compared with similars datas obtained in the same band of temperature by a conventional method, mutual inductance. The results suggest that the microwaves absorption can be used as single and non-destructive method for investigating the properties of ceramics superconductors. (C.G.C.) [pt

  13. Realization of superconductive films by screen printing

    International Nuclear Information System (INIS)

    Baudry, H.

    1988-01-01

    Screen printing is a promising method to manufacture superconductive lines making use of superconductive ceramics. An ink has been realized with YBa 2 Cu 3 0 7-x' and the process conditions defined by thermal analysis. A superconductive transition is observed after screen printing on MgO. The firing of the layer is made at 920 0 C followed by a reoxidation step at 420 0 C. The silver electrical contacts are also screen printed [fr

  14. Traveling wave tube oscillator/amplifier with superconducting rf circuit

    International Nuclear Information System (INIS)

    Jasper, L.J. Jr.

    1989-01-01

    This patent describes a device comprising: an electron gun for producing an electron beam; a collector for collecting the electron beam; a vacuum housing surrounding the electron beam and having an integral slow wave circuit, the circuit being made from superconducting ceramic material; means for maintaining the temperature of the superconducting ceramic below its critical temperature; means for extracting an output signal from the slow wave circuit; means for creating a magnetic field within the vacuum housing so that interaction between the electron beam and the slow wave circuit produces the output signal

  15. Development of Pb-rich (Bi, Pb) sub 3 Sr sub 2 Ca sub 2 Cu sub 1 O sub x phase during reformation of lead doped 2223 superconducting phase from melt quenched glass. [BiPbSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Oezkan, N; Glowacki, B A [IRC in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-05-01

    The reformation process of the lead doped superconducting 2223 phase from the melt quenched glass was investigated. It was shown that during the crystallisation of the glass a new lead rich phase, Bi{sub 0.5}Pb{sub 3}Sr{sub 2}Ca{sub 2}Cu{sub 1}O{sub x}, was formed and severe copper segregation was observed. The volume fraction of the high Tc 2223 phase increased with annealing time for an annealing temperature of 840degC. A glass sample annealed at 840degC for 150 h showed two superconducting transitions Tc = 107 K and Tc = 70 K. (orig.).

  16. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  17. Density and superconducting properties of metal-sheathed YBa2Cu3Oy ceramic processed by hydrostatic extrusion

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Artamoshin, A.V.; Prokopenko, V.M.

    1994-01-01

    Brittle materials can be deformed without cracking and rupturing using hydrostatic extrusion, which provides the greatest pore annihilation in powder-processed materials and allows large degrees of one-step deformation, which is favorable for texturing. Earlier, a casting slip prepared by mixing a starting powder of Y-based ceramic with an organic binder was conventionally extruded to produce a wire 150 μm in diameter. After special sintering, the critical-current density in the material attained a few hundred amperes per square centimeter at 77 K, and the wire could be rolled into a winding ≥0.3 m in diameter. Hydrostatic extrusion of an assembly composed of Y-based ceramic in a bimetallic Nb/Cu tube 30 mm in diameter was used to produce rods 6 mm in diameter; drawing of these rods yielded samples of wire 2 to 3 mm in diameter. It was shown that the extrusion pressure and strain substantially influence the yield of the rupture-free wire. No signs of rupturing, cracking, or necking were observed in wire extruded at pressures ≤700 MPa and degrees of deformation ≤50%. A pronounced instability of the hydrostatic extrusion, the appearance of defects, and even the rupture of the rods were caused by an increase in the pressure up to 2000 MPa and in the degree of one-step deformation up to 80%. In this work, the authors focus on the possibility of producing thin YBa 2 Cu 3 O y superconductors using only hydrostatic extrusion. They determined the parameters for the hydrostatic extrusion of the metal-sheathed YBa 2 Cu 3 O y ceramic to a diameter of 3 mm or to a rectangular cross section. Effects of the ceramic core, and of the reduction coefficient on superconducting-transition parameters and the critical-current density of the ceramic were examined

  18. Stabilized superconducting materials and fabrication process. Materiaux supraconducteurs stabilises et leur procede d'obtention

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, B; Dance, J M; Etourneau, J; Lozano, L; Tressaud, A; Tournier, R; Sulpice, A; Chaussy, J; Lejay, P

    1989-10-06

    Superconducting ceramics are fluorinated at a temperature {le} 120{sup 0}C. Are also claimed new superconducting materials with a fluorine concentration gradient decreasing from the surface to the core. Superconductivity is stabilized and/or improved.

  19. On the superconducting state in Ba0.6K0.4BiO3 perovskite oxide

    Science.gov (United States)

    Szcześniak, D.; Kaczmarek, A. Z.; Drzazga, E. A.; Szewczyk, K. A.; Szcześniak, R.

    2018-05-01

    We report study on the superconducting state in Ba0.6K0.4BiO3 (BKBO) perovskite oxide, motivated by the inconclusive results on the pairing mechanism in this compound. Our investigations are conducted within the Migdal-Eliashberg formalism, to account for the phonon-mediated superconducting phase. The considered doping level of the discussed material corresponds to the highest critical temperature in this compound, and allows simultaneous analysis of the oxygen isotope effect, for the O16 and O18 isotopes, respectively. We found that such effect is particularly visible for the critical values of the Coulomb pseudopotential (μC⋆) , which equals to 0.18 for the O16 and 0.16 for the O18 isotope in BKBO. Moreover, we determine the size of the superconducting energy band gap (Δg) and note that obtained values (9.68 meV and 9.55 meV for the O16 and O18, respectively) are in good agreement with the experimental predictions which give Δg ∼ 8.68 meV . Finally, we calculate the characteristic dimensionless parameters, such as the zero-temperature energy gap to the critical temperature, the ratio for the specific heat, as well as the ratio associated with the zero-temperature thermodynamic critical field, which suggest occurrence of the strong-coupling and retardation effects within the phonon-mediated scenario in the analyzed material. Where possible the dimensionless ratios are compared to the experimental estimates, and agrees with these which account for the strong-coupling character of the BKBO superconductor.

  20. Development of low AC loss windings for superconducting traction transformer

    International Nuclear Information System (INIS)

    Kamijo, H; Hata, H; Fukumoto, Y; Tomioka, A; Bohno, T; Yamada, H; Ayai, N; Yamasaki, K; Kato, T; Iwakuma, M; Funaki, K

    2010-01-01

    We have been developing a light weight and high efficiency superconducting traction transformer for railway rolling stock. We designed and fabricated a prototype superconducting traction transformer of a floor-mount type for Shinkansen rolling stock in 2004. We performed the type-test, the system-test, and the vibration-test. Consequently, we could verify that the transformer satisfied the requirement almost exactly as initially planned. However, there have been raised some problems to be solved to put superconducting traction transformer into practical use such that AC loss of the superconducting tape must be lower and the capacity of the refrigerator must be larger. Especially it is the most important to reduce the AC loss of superconducting windings for lightweight and high efficiency. The AC loss must be reduced near the theoretical value of superconducting tape with multifilament. In this study, we fabricated and evaluated the Bi2223 tapes as introduced various measures to reduce the AC loss. We confirmed that the AC loss of the narrow type of Bi2223 tapes with twist of filaments is lower, and we fabricated windings of this tape for use in superconducting traction transformer.

  1. Effect of Bi2O3 and Nb2O5 addition on the electrical properties of grain boundaries of SnO2 ceramics

    International Nuclear Information System (INIS)

    Gouvea, D.; Kobori, M.H.; Las, W.C.; Santilli, C.V.; Varela, J.A.

    1990-01-01

    Grain boundary phenomena in SnO 2 ceramics are widely explored in gas sensor fabrication. On the other hand, the high electronic mobility in the conduction band and the energy gap width of 3,5 eV are characteristics which can lead to the formation of an intergranular potential barrier similar to those encountered in ceramic varistors. In this work, the Nb 2 O 5 and Bi 2 O 3 influence on the electrical transport mechanisms through grain boundaries in SnO 2 ceramics was investigated. The samples were characterized by measuring the electrical conductivity as a function of electric field for temperatures from 25 0 C to 200 0 C. The results were analyzed by models which are based on phenomena that occur at interfaces between semiconducting materials. (author) [pt

  2. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-01-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen’s size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics. PMID:26816646

  3. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics.

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-12-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen's size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics.

  4. Relaxor behaviour and dielectric properties of BiFeO3 doped Ba ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Ba1−Bi(Ti0.9Zr0.1)1−FeO3 ( = 0–0.075) ceramics are prepared using a conventional solid state reaction method. X-ray diffraction shows the presence of a single phase. Addition of Bi3+ and Fe3+ strongly influences the crystal structure and dielectric properties of the ceramics. The evolution from a ...

  5. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  6. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    Science.gov (United States)

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics.

  7. Impedance spectroscopy and morphology of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared by soft chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Rout, S.K. [Department of Chemical and Biomolecular Engineering, KAIST (Korea, Republic of); Department of Applied Physics, BIT, Mesra, Ranchi (India)], E-mail: drskrout@gmail.com; Hussian, Ali; Lee, J.S. [School of Materials Science and Engineering University of Ulsan (Korea, Republic of); Kim, I.W. [Department of Physics, University of Ulsan (Korea, Republic of); Woo, S.I. [Department of Chemical and Biomolecular Engineering, KAIST (Korea, Republic of)], E-mail: siwoo@kaist.ac.kr

    2009-05-27

    In this work, we have synthesized polycrystalline SrBi{sub 4}Ti{sub 4}O{sub 15} (SBiT) ceramics by soft chemical method. These ceramics were structurally characterized by analysis of X-ray diffraction (XRD) patterns, indicates that SBiT ceramics present an orthorhombic structure. Scanning electron micrograph shows that the grains exhibit a plate like morphology. Dielectric relaxations of the SBiT ceramics were investigated in the temperature range 100-700 deg. C. Using the Cole-Cole model, an analysis of the dielectric loss with frequency was performed, assuming a distribution of relaxation time. The presence of the peaks in temperature dependent dielectric loss indicates that the hoping of charge carriers is responsible for the relaxation. Impedance studies shows a non-Debye type relaxation, and relaxation frequency shift to higher side with increase in temperature. A significant shift in impedance loss peaks towards higher frequency side indicates conduction in material and favoring the long range motion of mobile charge carriers. The Nyquist plot shows overlapping semicircles, for grain and grain boundary of SBiT ceramics. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated process and the spectra follow the universal power law. The hopping frequency shifts towards higher frequency side with increase of temperature, below which the conductivity is frequency independent. The variation of dc conductivity confirms that the SBiT ceramics exhibits negative temperature coefficient of resistance behavior in high temperature.

  8. Structural relaxation in the magnetically treated glass ceramic Bi1.8Pb0.2Sr2CaCu2Ox

    International Nuclear Information System (INIS)

    Alekseenko, V.I.; Volkova, G.K.; Konstanminova, T.E.; Nosolev, I.K.; Popova, I.B.

    1994-01-01

    Structure relaxation in Bi 1.8 Pb 0.2 Sr 2 CaCu 2 O x amorphous glass ceramics after the treatment using weak pulse magnetic field is studied using microindentation, X-ray structure analysis and inner friction techniques. Structure relaxation after substance treatment using pulse magnetic field is detected to occur at room temperature and to result in its strengthening (increase of microhardness-H v ) and in reduction of inner microstress level.9 refs., 4 figs

  9. Inducing phase decomposition and superconductivity of Bi2Sr2CaCu2Oy single crystals treated in sulphur atmosphere at low temperature

    International Nuclear Information System (INIS)

    Chen, Q.W.; China Univ. of Science and Technology, Hefei, AH; Wu, W.B.; Qian, Y.T.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Li, F.Q.; Zhou, G.E.; Chen, Z.Y.; Zhang, Y.H.

    1995-01-01

    As it has been pointed out, phase decomposition which may be hard to be detected in a polycrystalline system and is likely to correlate with changes in both oxygen content and microstructure, has been observed frequently in annealed single crystals especially at higher temperatures (> 500 C). This is still an open question to some degree because the mechanism of phase decomposition is very complex and is dominated by the composition of the Bi-2212 phase, the condition of heat treatment, and the atmosphere. Hence, inducing oxygen loss at low temperature to avoid the evaporation of Bi atoms and other undetected structure changes which would occur at higher temperature annealing undoubtedly provides important information about the relationship between oxygen loss and phase decomposition, as well as the relationship between oxygen content and superconductivity. In this note, we report on the results of treatments of Bi 2 Sr 2 CaCu 2 O y single crystals in sulphur atmosphere at 160 C. (orig.)

  10. Charge Fluctuations in the NdO1-xFxBiS2 Superconductors

    Science.gov (United States)

    Athauda, Anushika; Mizuguchi, Yoshikazu; Nagao, Masanori; Neuefeind, Joerg; Louca, Despina

    2017-12-01

    The local atomic structure of superconducting NdO1-xFxBiS2 (x = 0.2 and 0.4) is investigated using neutron diffraction and the pair density function analysis technique. In the non-superconducting x = 0.2 composition, ferrodistortive displacements of the pyramidal sulfur ions break the tetragonal symmetry and a superlattice structure emerges with peaks appearing at h + k odd reflections superimposed on the even reflections of the P4/nmm symmetry. In the superconducting x = 0.4 composition, similar ferrodistortive displacements are observed but with different magnitudes coupled with in-plane Bi distortions which are indicative of charge fluctuations.

  11. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  12. Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Alikin, D. O.; Turygin, A. P.; Shur, V. Ya.; Walker, J.; Rojac, T.; Shvartsman, V. V.; Kholkin, A. L.

    2015-01-01

    BiFeO 3 (BFO) is a classical multiferroic material with both ferroelectric and magnetic ordering at room temperature. Doping of this material with rare-earth oxides was found to be an efficient way to enhance the otherwise low piezoelectric response of unmodified BFO ceramics. In this work, we studied two types of bulk Sm-modified BFO ceramics with compositions close to the morphotropic phase boundary (MPB) prepared by different solid-state processing methods. In both samples, coexistence of polar R3c and antipolar P bam phases was detected by conventional X-ray diffraction (XRD); the non-polar P nma or P bnm phase also has potential to be present due to the compositional proximity to the polar-to-non-polar phase boundary. Two approaches to separate the phases based on the piezoresponse force microscopy measurements have been proposed. The obtained fractions of the polar and non-polar/anti-polar phases were close to those determined by quantitative XRD analysis. The results thus reveal a useful method for quantitative determination of the phase composition in multi-phase ceramic systems, including the technologically most important MPB systems

  13. Preparation of thin layers of BiSrCaCuO by method MOCVD

    International Nuclear Information System (INIS)

    Beran, P.; Stejskal, J.; Strejc, A.; Nevriva, M.; Sedmibudsky, D.; Leitner, J.

    1999-01-01

    Preparation of superconducting material on the basis mixed oxides of BiSrCaCuO by chemical vapour deposition (CVD) method is described. Surface morphology and concentration profiles of elements were analyzed by scanning electron microscope and microprobe. Phase of layers was analysed by X-ray diffraction (radiation of Cu kα ). Samples of thin layers were characterized by magnetic susceptibility in temperature interval 10 to 150 K. Obtained results confirm formation of superconducting phases Bi 2 Sr 2 Ca 1 Cu 2 O x and Bi 2 Sr 2 Xa 2 Cu 3 O x

  14. (Na, K)NbO3-Based Ceramics for Self-Powered Energy Harvesting Applications.

    Science.gov (United States)

    Kim, Jinhwan; Koh, Jung-Hyuk

    2015-03-01

    Self-powered energy harvesting technologies have been intensively investigated by employ- ing Pb-free piezoelectric materials. One such Pb-free piezoelectric material, the ceramic 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3, was prepared by employing the conventional mixed oxide method. 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics were prepared and the effect of sintering temperature on the microstructure, piezoelectric and ferroelectric properties were system- atically investigated for energy harvesting applications. The crystal structure of 0.97(Na0.5K0.5)NbO3- 0.03(Bi0.5Na0.5) TiO3 Pb-free piezoelectric ceramics, sintered at temperatures between 1080 °C and 1160 °C, was examined by X-ray diffraction analysis. The dielectric properties of 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics were measured from 1 kHz to 1 MHz for the various sintering temperatures. We expect that optimization of sintering parameters can improve the piezoelectric and ferroelectric properties of 0.97 (Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics for energy harvesting.

  15. The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics

    International Nuclear Information System (INIS)

    Huang, Yinpeng; Luo, Laihui; Wang, Jia; Zuo, Qianghui; Yao, Yongjie; Li, Weiping

    2015-01-01

    Na 0.5 Bi 0.5−x−y Yb x Pr y TiO 3 (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb 3+ and Pr 3+ doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr 3+ and Yb 3+ ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr 3+ and Yb 3+ ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr 3+

  16. Resistive and magnetoresistive properties of BiSrCaCuO granulated films

    International Nuclear Information System (INIS)

    Mal'tsev, V.A.; Kulikovskij, A.V.; Kustikov, E.V.; Morozov, D.Yu.; Sokolov, Yu.S.

    1995-01-01

    Transport properties of superconducting bridges produced by laser etching of granulated films BiSrCaCuO have been studied. Analysis of nonlinear voltammetric characteristics of the bridges permits making the conclusion on the change in the character of conductivity (two-dimensional-three dimensional system), when approaching the critical point. Measurements of magnetoresistance of the samples suggest a possibility of application of high-temperature superconducting bridges in Bi-system as sensors of weak magnetic fields. 11 refs.; 4 figs

  17. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  18. Phase formations in the KOH-BaO2-KI(I2)-Bi2O3 system

    International Nuclear Information System (INIS)

    Klinkova, L.A.; Barkovskij, N.V.; Nikolajchik, V.I.

    2004-01-01

    Phase composition of electrochemical synthesis products in the system KOH-BaO 2 -KI(I 2 )-Bi 2 O 3 and its influence on superconducting properties of bismuth-containing oxides are studied by the methods of X-ray phase and elementary analyses, electron diffraction in transmission electron microscope and by measuring temperature dependence of magnetic susceptibility. It was been ascertained that in the presence of iodine introduced as KI or I 2 oxoiodides KBi 6 O 9 I and Bi 5 O 7 I are formed in the system above, giving rise to a change in the composition of synthesis products in KOH-BaO 2 -Bi 2 O 3 matrix system towards formation of superconducting oxides K n Ba m Bi m+n O y rich in bismuth, which are characterized by low values of superconducting transition point [ru

  19. BiCaSrCuO superconductors

    International Nuclear Information System (INIS)

    Polvi, V.M.; Niemi, K.J.

    1989-01-01

    BiCaSrCuO and BiPbCaSrCuO powders have been synthesized. Different research methods (SEM,EDS,XRF,SRD,DTA) have been used to characterize the bulk specimen and wires. Resistance and current density measured as a function of temperature are reported. The ceramic products contained several phases. Lead containing specimen gave the best results and the synthesis was easily reproducible

  20. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Bera, J.

    2010-01-01

    Four-layer Aurivillius compound BaBi 4-x La x Ti 4 O 15 (x = 0.1-1.0) is synthesized by a modified chemical route. X-ray diffraction analysis confirms the formation of single-phase Aurivillius compound. The crystal structure of compound changes from orthorhombic to pseudo-tetragonal at x = 0.5. BaBi 4-x La x Ti 4 O 15 shows typical relaxor behaviour. With increasing La 3+ substitution, shift of T m towards lower temperature and increased relaxor behaviour is observed. The substitution also results in a marked improvement in the remnant polarization and coercive field. The Cole-Cole plots show the presence of two semicircular arcs, suggesting the existence of grain and grain-boundary effects. The dc-conductivity and activation energies for both grain and grain boundary are evaluated. The ceramics with x = 0.3 presents the lowest conductivity among all compositions.

  1. Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics

    International Nuclear Information System (INIS)

    Zhou Changrong; Liu Xinyu

    2008-01-01

    The effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi 1/2 Na 1/2 )Ti 1-x (Zn 1/3 Nb 2/3 ) x O 3 (BNTZN-100x) lead-free piezoelectric ceramics was investigated. X-ray diffraction analysis shows that the materials are mono-perovskite phase. The morphotropic phase boundary (MPB) of BNTZN-100x ceramics between rhombohedral and tetragonal locates in the range of 0.5% ≤ x ≤ 2.0%. Temperature dependence of dielectric constant shows that these compounds are relaxor ferroelectrics. The compositions near the MPB exhibit relatively high piezoelectric properties. The piezoelectric constant (d 33 ) and the electromechanical coupling factor (k t ) show the maximum values of d 33 = 97 pC N -1 and k t = 0.46 at x = 2.0% and x = 1.0%, respectively. The BNTZN-100x ceramics are good candidate for use as ultrasonic transducer ceramics for high anisotropic with high k t value and low k p value

  2. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  3. Growth of layered superconductor β-PdBi{sub 2} films using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, N.V., E-mail: denisov@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Matetskiy, A.V.; Tupkalo, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-04-15

    Highlights: • Bulk β-PdBi{sub 2} is layered material with advanced properties of topological superconductor. • We present a method for growing β-PdBi{sub 2} films of a desired thickness. • Method utilizes MBE growth of β-PdBi{sub 2}, using Bi(111) film on Si(111) as a template. • Electronic and superconducting properties of the films are similar to those of bulk β-PdBi{sub 2}. - Abstract: Bulk β-PdBi{sub 2} layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi{sub 2} films from a single β-PdBi{sub 2} triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi{sub 2} crystals. Ability to grow the β-PdBi{sub 2} films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  4. Synthesis of BiFeO3 by carbonate precipitation

    Indian Academy of Sciences (India)

    tional ceramic synthesis approach of mixing and heating the oxides of Bi and Fe ... −1 . Phase identification was carried out by X-ray powder diffraction using a PAN analytic ... of the total Fe ions in the starting solution have entered the. Bi2CO5 ...

  5. Processing of Bi2.1Sr1.8Ca1.1Cu2O8 source material for float-zone fiber growth

    International Nuclear Information System (INIS)

    Peszkin, P.N.; Raymakers, R.J.; Feigelson, R.S.; Moulton, L.V.; Lu, Z.

    1991-01-01

    Bi 2.1 Sr 1.8 Ca 1.1 Cu 2 O 8 fibers having excellent superconducting properties can be grown by a laser-heated float zone process. In order to maintain stable growth conditions and thereby obtain fibers free of diameter fluctuations and voids, dense ceramic starting material containing only the 2212 phase is required. In this study various processing parameters, including calcining and sintering temperatures and times, grain size of the powders used, and pressing pressures were optimized to yield dense, chemically homogeneous starting material. It was found that under most conditions there was no increase in the density on sintering. Retrograde densification was the usual situation except at higher pressures and was found to depend on pressing pressure, calcination history, and sintering temperature. Cold-pressing at higher pressures (100 000 psi) yielded denser but chemically inhomogeneous material. Ceramic samples sintered for long times (>48 h) yielded source rods that produced instabilities during fiber growth, presumably due to preferential loss of mass during sintering

  6. Advanced ceramics: the present and the perspectives

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1990-04-01

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author) [pt

  7. Effect of yttrium doping on structural and electrical properties of Bi2Sr1.9Ca0.1−xYxCu2O7+δ (Bi-2202 cuprate ceramics

    Directory of Open Access Journals (Sweden)

    Yazid Boudjadja

    2016-09-01

    Full Text Available In this work, we report on the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1−xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.10 are elaborated in air by conventional solid state reaction and characterized by X-ray diffraction (XRD, scanning electronic microscopy (SEM combined with EDS spectroscopy, density, Vickers microhardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers microhardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.10, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

  8. Magnetoresistance oscillations in topological insulator microwires contacted with normal and superconducting leads

    Science.gov (United States)

    Konopko, Leonid; Nikolaeva, Albina; Huber, Tito E.; Rogacki, Krzysztof

    2018-05-01

    Recent efforts to detect and manipulate Majorana fermions in solid state devices have employed topological insulator (TI) nanowires proximity coupled to superconducting (SC) leads. This combination holds some promises for the fundamental physics and applications. We studied the transverse magnetoresistance (MR) of polycrystal Bi2Te2Se and single-crystal Bi0.83Sb0.17 TI microwires contacted with superconducting In2Bi leads. Bi2Te2Se has a simple band structure with a single Dirac cone on the surface and a large non-trivial bulk gap of 300 meV. The semiconducting alloy Bi0.83Sb0.17 is a strong topological insulator due to the inversion symmetry of bulk crystalline Bi and Sb. To study the TI/SC interface, we prepared Bi2Te2Se and Bi0.83Sb0.17 glass-coated microwire samples using superconducting alloy In2Bi (Tc = 5.6 K) to provide a contact of one side of the microwires with copper leads and gallium to provide a contact of the other side of microwires with copper leads. The MR oscillations equidistant in a transverse magnetic field (up to 1 T) at the TI/SC interface were observed at various temperatures (4.2 K-1.5 K) in both the Bi2Te2Se and Bi0.83Sb0.17 samples. In the Bi2Te3 sample with a diameter of d = 17 μm, this oscillations exist with a period of ΔB = 18 mT; in the Bi0.83Sb0.17 sample with d = 1.7 μm MR oscillations are characterized by a period of ΔB = 46 mT. The observed oscillations cannot be referred to the Shubnikov de Haas oscillations because they are not periodic in an inverse magnetic field and their amplitude decreases with increasing magnetic field. Most probably, transverse MR oscillations arise owing to the appearance of highly conducting edge states on the planar boundary of SC/TI.

  9. Interaction at interface between superconducting yttrium ceramics and copper or niobium

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Medved', N.V.; Myshlyaeva, M.M.

    1992-01-01

    Light metallography, scanning electron microscopy and local energy dispersion analysis have been used to study the interaction of Y-ceramics with copper and niobium. Samples in the form of wire of two types were employed, that is, consisting of ceramic core YBaCuO and Cu shell or a ceramic core YBaCuO and bimetallic Cu/Nb shell. The interaction of the ceramics with the shell metal began already at 500 deg with the formation at the interafaces Cu-YBaCuO of oxide layers containing ceramic elements, and in the ceramic core - nonsuperconducting phases. A thin Al-layer placed between the ceramics and the shell appreciably decreased the reactability of the ceramics with respect to copper and niobium

  10. Superconducting oxide thin films by ion beam sputtering

    International Nuclear Information System (INIS)

    Kobrin, P.H.; DeNatale, J.F.; Housley, R.M.; Flintoff, J.F.; Harker, A.B.

    1987-01-01

    Superconducting thin films of ternary copper oxides from the Y-Ba-Cu-O and La-Sr-Cu-O systems have been deposited by ion beam sputtering of ceramic targets. Crystallographic orientation of the polycrystalline films has been shown to vary with substrate identity, deposition temperature and annealing temperature. The onset of the superconductive transition occurs near 90K in the Y-Ba-Cu-O system. Fe impurities of < 0.2% have been found to inhibit the superconducting transition, probably by migrating to the grain boundaries

  11. Near-net-shape fabrication of continuous Ag-Clad Bi-Based superconductors

    International Nuclear Information System (INIS)

    Lanagan, M. T. et al.

    1998-01-01

    We have developed a near-net-shape process for Ag-clad Bi-2212 superconductors as an alternative to the powder-in-tube process. This new process offers the advantages of nearly continuous processing, minimization of processing steps, reasonable ability to control the Bi-2212/Ag ratio, and early development of favorable texture of the Bi-2212 grains. Superconducting properties are discussed

  12. Electrospinning synthesis of superconducting BSCCO nanowires

    International Nuclear Information System (INIS)

    Duarte, Edgar A.; Quintero, Pedro A.; Meisel, Mark W.; Nino, Juan C.

    2013-01-01

    Highlights: •Bi 2 Sr 2 CaCu 2 O 8+x nanowires 150 nm to 250 nm thick are synthesized using the electrospinning. •Bi 2 Sr 2 CaCu 2 O 8+x nanowires are obtained after a heat treatment at 850 °C. •Bi 2 Sr 2 CaCu 2 O 8+x nanowires show a T c = 78.7 K consistent with bulk superconductor behavior. -- Abstract: This paper presents the synthesis and characterization of Bi 2 Sr 2 CaCu 2 O 8+x superconducting nanowires. Bi 2 Sr 2 CaCu 2 O 8+x nanowires with a T c = 78.7 K are synthesized using the electrospinning process employing sol–gel precursors. A sol–gel methodology is used to obtain a homogeneous PVP solution containing Bi, Sr, Ca, and Cu acetates. Mats of randomly oriented nanowires and aligned nanowires are also collected. After a heat treatment at 850 °C in ambient atmosphere using heating rates of 100 and 400 °C/h, fully crystallized Bi 2 Sr 2 CaCu 2 O 8+x nanowires are obtained. The morphology, microstructure, and crystal structure of these nanowires are then examined to reveal a rectangular morphology having typical wire thickness in the range of 150–250 nm, and a wire width between 400 and 600 nm. DC magnetization studies are conducted to investigate the critical transition temperature (T c ) of Bi 2 Sr 2 CaCu 2 O 8+x nanowires and to compare their magnetic properties to those of bulk Bi 2 Sr 2 CaCu 2 O 8+x powder. The T c for the commercial powder is observed at 78.6 K, and that of the obtained nanowires at 78.7 K. These results point to the superconducting nature of Bi 2 Sr 2 CaCu 2 O 8+x nanowires, and the potential of the electrospinning process for the synthesis of this superconductor material

  13. Effect of excess bismuth on the dielectric and piezoelectric properties of strontium bismuth niobate ceramics

    International Nuclear Information System (INIS)

    Verma, Maya; Tanwar, Amit; Sreenivas, K.

    2013-01-01

    Excess Bismuth Strontium Bismuth Niobate (Sr 2 Bi 2 Nb 2 O 9 + x wt% Bi 2 O 3 ) ceramics were prepared using conventional solid state reaction method by varying x in the range (x=0%wt - 20%wt). X-ray diffraction studies reveal no significant shift in the peak positions as the Bi content increases from 0.0 to 5%wt. However, at a higher content of Bi beyond x = 5wt% secondary phases relating to Bi 2 O 3 are identified. The c-axis orientation is found to be minimum for SBN ceramic prepared with 5% excess bismuth whereas with further increase in excess Bi 2 O 3 addition during processing, SBN ceramics show a much stronger c-axis orientation. Room temperature dielectric constant measured at 100 KHz is found to increase from 117 to 130 with increase in Bi content from x = 0 to 10wt% suggesting Bi addition has make up for the bismuth losses at higher sintering temperature (1200℃), however with further increase in Bi content (x > 10wt%), the dielectric constant decreases, and could be due to the increased probability of segregation of Bi on the grains of SBN ceramics. The improvement in ferroelectric properties were obtained when the bismuth excess is increased from 0% to 5%. It may be observed that on increasing the excess bismuth to 5%, the transition temperature increases from 424 to 450℃, while further increasing to 10%, transition becomes slightly diffused and phase transition temperature gets decreased to 398℃, which may be due to the formation of secondary phase. 5% excess Bi is found to enhance the dielectric and ferroelectricity properties, and any further increase of Bi in excess (>10%) during processing is found to degrade the electrical and functional properties of SBN. (author)

  14. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  15. Production of ferroelectric ceramic SrBi_2Nb_2O_9 (SBN) by high energy milling and their characterization

    International Nuclear Information System (INIS)

    Sancho, E.O.; Pires Junior, G.F.M.; Rodrigues, H.O.; Sombra, A.S.B.; Sales, J.C.

    2011-01-01

    Bismuth compounds, such as SrBi_2Nb_2O_9 (SBN), lead-free, is an alternative to the use of PZT because of its excellent ferroelectric properties, especially regarding the change of polarization. SBN is synthesized by the method of the solid state by high energy ball milling in reactive polymer with zirconia beads, which were subsequently doped with Bi_2O_3 and La_2O_3 aiming to promote intentional changes in the chemical structure of the ceramic, resulting in changes in properties electrical, magnetic and optical materials. The quantitative analysis obtained by Rietveld refinement confirmed the orthorhombic crystal structure with lattice parameters (a = 5.5158 Å, b = 5.5133 Å and c = 25.0765 Å, α = β = γ = 90 °) for indices convergence S = 1.72 (goodness of fit), where S is given by the ratio RWP / Rexp. And, the Raman shifts at 174, 204, 570 and 834 cm-1 indicated the formation of SBN perovskita type. (author)

  16. NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-08-01

    The oxygen NMR shift and the Cu nuclear spin-lattice relaxation rate (1/T1) were measured in Bi2.1Sr1.9Ca0.9Cu2.1O8+δ single crystals. While both the shift and 1/(T1T) decrease sharply near Tc, 1/(T1T) becomes nearly constant at low temperatures, indicating a gapless superconducting state with finite density of states at the Fermi level. From the oxygen shift data, the residual spin susceptibility at T=0 is estimated to be 10% of the value at room temperature. Our results are most consistent with a d-wave pairing model with strong (resonant) impurity scattering.

  17. Electromechanical characterization of superconducting wires and tapes at 77 K

    CERN Document Server

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  18. Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} ceramics [A = W, Mo and x = 0, 0.025

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Prasun; Franco, Adolfo Jr. [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil)

    2017-10-15

    The synthesis, micro-structure, spectroscopic, and dielectric properties of SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} [with A=W, Mo and x = 0, 0.025] ceramics were systematically studied. A relative density of ≥98% was obtained for all the samples using a two-step solid state sintering process. XRD images showed that a single phase layered perovskite structure of SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) was formed. The orthorhombic structure with A2{sub 1}am phase group was found up to ∝2.5 at.% substitution of W and Mo into the SBN matrix. SEM revealed the rod-like grain structure similar to the Maxwell-Wagner (MW) parallel plate capacitor model in SBN ceramic, whereas smaller heterogeneous grain structure was observed in W and Mo donor doped ceramics. The initial high value of real and imaginary part of relative permittivity also indicated the presence of interfacial MW relaxation in the SBN ceramics. The experimental data fit well to the theoretical data obtained from MW polarization model in SBN ceramics. The possible origin of the difference of the properties present in the doped sample has been explained based on grain size, orientation, and modification done in the ceramic matrices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Shi, D.

    1992-01-01

    This patent describes a method for forming a ceramic oxide superconductor. It comprises heating a ceramic oxide to a temperature above its melting point to form a liquid; introducing calcium or copper into the ceramic oxide liquid to the extent that the ceramic oxide is supersaturated with calcium or copper; quenching the ceramic oxide liquid so as to convert the ceramic oxide to a glass supersaturated with calcium or copper; and annealing the calcium or copper and the ceramic oxide in forming grains in the ceramic oxide and a precipitate of the calcium or copper within the grains of the ceramic oxide so as to form superconducting phases in the ceramic oxide

  20. Effect of Ba addition on the structural, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Suchanicz J.

    2015-06-01

    Full Text Available Lead-free (Na0.5Bi0.51-xBaxTiO3 (x = 0, 0.04 and 0.06 ceramics were fabricated by conventional solid phase sintering process. X-ray diffraction analysis shows that obtained specimens possess the perovskite structure. The microstructure study shows a dense structure, in good agreement with the relative density determined by the Archimedes method (above 95 %. Electric permittivity anomaly is shifted to low temperature after Ba doping of NBT. The pyroelectric and hysteresis loops measurements show that polarization and coercive field increases and decreases, respectively, after Ba doping of NBT. The obtained results are discussed in terms of ions/lattice imperfections, which create local electromechanical fields. The investigated ceramics are considered to be promising candidates for lead-free electronic materials.

  1. Nd{sup 3+}-doped TeO{sub 2}-Bi{sub 2}O{sub 3}-ZnO transparent glass ceramics for laser application at 1.06 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian [Central South of University, School of Materials Science and Engineering, Changsha (China)

    2017-04-15

    The high crystallinity transparent glass ceramics based on Nd{sup 3+}-doped 70TeO{sub 2}-15Bi{sub 2}O{sub 3}-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd{sub 2}O{sub 3} content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd{sub 2}O{sub 3} enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi{sub 2}Te{sub 4}O{sub 11} in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd{sub 2}O{sub 3} content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd{sub 2}O{sub 3} content due to the obvious energy migration among Nd{sup 3+}. According to the extreme strong emission band around 1062 nm and the optimum Nd{sub 2}O{sub 3} content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications. (orig.)

  2. Dirac state in a centrosymmetric superconductor α -PdBi2

    Science.gov (United States)

    Dimitri, Klauss; Hosen, M. Mofazzel; Dhakal, Gyanendra; Choi, Hongchul; Kabir, Firoza; Sims, Christopher; Kaczorowski, Dariusz; Durakiewicz, Tomasz; Zhu, Jian-Xin; Neupane, Madhab

    2018-04-01

    Topological superconductor (TSC) hosting Majorana fermions has been established as a milestone that may shift our scientific trajectory from research to applications in topological quantum computing. Recently, superconducting Pd-Bi binaries have attracted great attention as a possible medium for the TSC phase as a result of their large spin-orbit coupling strength. Here, we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) study on the normal state electronic structure of superconducting α -PdBi2 (Tc=1.7 K). Our results show the presence of Dirac states at higher-binding energy with the location of the Dirac point at 1.26 eV below the chemical potential at the zone center. Furthermore, the ARPES data indicate multiple band crossings at the chemical potential, consistent with the metallic behavior of α -PdBi2 . Our detailed experimental studies are complemented by first-principles calculations, which reveal the presence of surface Rashba states residing in the vicinity of the chemical potential. The obtained results provide an opportunity to investigate the relationship between superconductivity, topology, and the Majorana fermion, as well as explore pathways to possible future platforms for topological quantum computing.

  3. Growth of Ba1-zSrzBiO3-y single crystals and the prospects for its application for liquid phase epitaxy of Ba1-xKxBiO3-δ superconductor

    International Nuclear Information System (INIS)

    Soldatov, A.G.; Barilo, S.N.; Shiryaev, S.V.; Finskaya, V.M.

    2002-01-01

    In order to get a substrate for liquid phase epitaxy of the Ba 1-x K x BiO 3-δ (BKBO) superconducting films a possibility to grow single crystals of the Ba 1-z Sr z BiO 3-y (BSBO) solid solution series was investigated. The BSBO crystals with z = 0; 0.2; 0.29; 0.45; 0.49; 0.50; 0.54; 0.58 were obtained by crystallization from melt. The temperature versus composition phase diagram of the BaO · 1/2Bi 2 O 3 -SrO · 1/2Bi 2 O 3 system was constructed. A comparative analysis of the effect of cation composition and oxygen nonstoichiometry on the BSBO lattice parameters was carried out. The growth features of superconducting BKBO films onto BSBO substrates are discussed [ru

  4. Ac susceptibility studies on Bi-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chakravarti, Arani; Mukherjee, C.D.; Ranganathan, R.; Chatterjee, N.; Raychaudhuri, A.K.

    1991-01-01

    We report the low a.c. susceptibility data χ'(T,Hsub(rms)), χsup(double inverted commas)(T,Hsub(rms)) for the newly prepared superconducting system Bi x Sr 4 Ca 2 Cu 4 O y (x=0.5, 1.0 and 1.5) containing Bi at concentrations lower than that in the conventional Bi-based system. The experimental results are discussed in the light of existing theories. (author). 10 refs., 3 figs

  5. Alternative designs of high-temperature superconducting synchronous generators

    OpenAIRE

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  6. Mechanical characterisation of superconducting BSCCO powder and numerical modelling of the OPIT process

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Eriksen, Morten; Toussaint, F.

    2000-01-01

    Silver/BSCCO composite superconducting tapes are produced using BSCCO-2212 ceramic powder. The manufacturing process implies a large number of forming operations including drawing and rolling. The numerical simulation of the flat rolling process is of a great interest to anticipate the shape...... of the silver/composite tape. In order to achieve these goals, the plastic properties of superconducting BSCCO-2212 ceramic powder are investigated with three mechanical tests. Results obtained from diametrical, uniaxial and die compaction tests are used to fit the parameters of the Drucker...

  7. Electrical transport effects due to oxygen content modifications in a Bi2Sr2CaCu2O8+δ superconducting whisker

    International Nuclear Information System (INIS)

    Cagliero, Stefano; Agostino, Angelo; Bonometti, Elisabetta; Truccato, Marco

    2007-01-01

    We report a set of resistivity measurements along the a-axis of a Bi 2 Sr 2 CaCu 2 O 8+δ microscopic superconducting whisker. The effect of the storage environment on sample ageing has been studied, considering both an air atmosphere at 273 K and a helium atmosphere at about 300 K for an overall storage time of about 100 days. It is clearly shown that the material underwent a remarkable resistivity increase of 26% at 260 K accompanied by a decrease in the critical temperature of 0.6 K during the whole ageing period. The helium atmosphere increased the average process rate by about two orders of magnitude. The present results are in agreement with previous findings on room temperature structural modifications in Bi 2 Sr 2 CaCu 2 O 8+δ whiskers and can be ascribed to oxygen depletion phenomena from the material

  8. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  9. Effects of Out-of-Plane Disorder on the Nodal Quasiparticle and Superconducting Gap in Single-Layer Bi_2Sr_1.6Ln_0.4CuO_6 delta (Ln = La, Nd, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.

    2011-01-04

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi{sub 2}Sr{sub 1.6}Ln{sub 0.4}CuO{sub 6+{delta}} (Ln = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region.

  10. Piezoelectric properties of nonstoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics

    International Nuclear Information System (INIS)

    Jain, Rajni; Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2005-01-01

    The effect of poling on the structural, dielectric, and piezoelectric properties has been investigated for sol-gel-derived strontium bismuth tantalate (SBT) [Sr 1-x Bi 2+2x/3 Ta 2 O 9 ] ceramics with x=0.0,0.15,0.30,0.45. The dielectric and ferroelectric properties are found to improve with increase in x up to 0.3. Beyond x>0.3 the properties are found to degrade due to the limited solid solubility and the presence of a mixed phase of bismuth tantalate (BiTaO 4 ) is detected with x=0.45. Poling treatment reduces the dielectric dispersion and dielectric loss in the frequency range (0.1-100 kHz). The resonance and antiresonance frequencies increase with increase in x (x=0-0.30), and the corresponding minimum impedance decreases. The measured coupling coefficients (k p ) are small (0.0967-0.1) for x=0-0.30, and the electromechanical quality factor (Q m =915) is a maximum for the Sr 0.7 Bi 2.2 Ta 2 O 9 composition (x=0.30). The estimated piezoelectric charge coefficient (d 31 ) and piezoelectric voltage coefficient (g 31 ) are 5.2 pC/N and 5.8x10 -3 V m/N, respectively. The positive values of d 31 and g 31 and the low dielectric permittivity of SBT yield a high value for the hydrostatic coefficients, despite the low charge coefficient of d 33 =24 pC/N. The maximum values of charge coefficient (d h =34 pC/N) and voltage coefficient (g h =39x10 -3 V m/N) are obtained for Sr 0.7 Bi 2.2 Ta 2 O 9 composition, and the estimated hydrostatic figure of merit (d h g h x10 -15 =1215 m 2 /N) is high

  11. Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Kazhugasalamoorthy, S.; Jegatheesan, P.; Mohandoss, R.; Giridharan, N.V.; Karthikeyan, B.; Joseyphus, R. Justin; Dhanuskodi, S.

    2010-01-01

    Pure BiFeO 3 (BFO) and La-modified BiFeO 3 (Bi 1-x La x FeO 3 with x = 0.2 and 0.4) ceramic powders were synthesized at relatively low temperature by ferrioxalate precursor method. Pure compositions did not yield phase pure powders and contain secondary phases. At the same time, La-modification at different concentration levels in BFO promoted the formation of perovskite phase with the elimination of secondary phases and phase pure ceramic powders were obtained for the composition Bi 1-x La x FeO 3 with x = 0.4. Further, the effect of lanthanum substitution on the morphology, electrical and magnetic properties was also investigated.

  12. Coulomb-Gas scaling law for a superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films in magnetic fields

    Science.gov (United States)

    Zhang; Deltour; Zhao

    2000-10-16

    The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.

  13. Destruction of superconductivity in the Bi2Sr2Ca1-xGdxCu2-yLiyO8+d system

    International Nuclear Information System (INIS)

    Jayaram, B.; Lanchester, P.C.; Weller, M.T.

    1991-01-01

    We have measured the T c , resistivity, and magnetoresistivity of a series of Bi 2 Sr 2 Ca 1-x Gd x Cu 2-y Li y O 8+d samples, with x=0 and 0.4 and 0≤y≤0.6. We find that the suppression of T c , the logarithmic variation of the resistivity above the superconducting transition, and the field-independent nature of the temperature variation of magnetoresistivity illustrate the enhancement of the Coulomb interaction with increasing normal-state resistivity (ρ n ). We also find a gradual crossover from a logarithmic to an exponential dependence with increasing ρ n

  14. Design and Test of a Thermal Triggered Persistent Current System using High Temperature Superconducting Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Keun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kang, Hyoungku [Electro-Mechanical Research Institute, Hyundai Heavy Industries, Yongin (Korea, Republic of); Ahn, Min Cheol [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yang, Seong Eun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yoon, Yong Soo [Department of Electrical Engineering, Ansan College of Technology, 671 Choji-Dong, Danwon-Gu, Ansan, 425-792 (Korea, Republic of); Lee, Sang Jin [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Ko, Tae Kuk [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2006-06-01

    A superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as high uniformity of magnetic field and reduced thermal loss. A high temperature superconducting (HTS) persistent current switch (PCS) system was designed and tested in this research. The HTS PCS was optimally designed using two different HTS tapes, second generation coated conductor (CC) HTS tape and Bi-2223 HTS tape by the finite element method (FEM) in thermal quench characteristic view. The CC tape is more prospective applicable wire in these days for its high n value and critical current independency from external magnetic field than Bi-2223 tape. Also a prototype PCS system using Bi-2223 tape was manufactured and tested. The PCS system consists of a PCS part, a heater which induces the PCS to quench, and a superconducting magnet. The test was performed in various conditions of transport current. An initial current decay appeared when the superconducting magnet was energized in a PCS system was analyzed. This paper would be foundation of HTS PCS researches.

  15. Effect of MnO2 doping and temperature treatment on optical energy band gap properties in Zn-Bi-Ti-O varistor ceramics

    International Nuclear Information System (INIS)

    Ghazali, M. S. M.; Abdullah, W. R. W.; Zakaria, A.; Kamari, H. M.; Rizwan, Z.

    2016-01-01

    In this study, the optical band-gap energy ( Eg ) was investigated with respect to MnO 2 and sintering temperatures on ZnO based varistor ceramics. Eg of the ceramic (99-x) mol% ZnO + 0.5 mol% Bi 2 O 3 + 0.5 mol% TiO 2 + × MnO 2 where × = 0, 0.2, 0.4, 0.6 and 0.8 mol%, were determined using UV-Vis spectrophotometer. The samples was prepared through solid-state route and sintered at the sintering temperature from 1110, 1140 and 1170 °C for 45 and 90 min in open air. At no doping of MnO 2 , the values of Eg are 2.991 ± 0.001, 2.989 ± 0.001 eV for 45 and 90 min sintering time; respectively. Eg was decreased to 2.192 ± 0.001 eV at 1140 °C at 45 min sintering time. Similar result of Eg was observed at longer heat treatment. Further addition of dopant causing the Eg decreases rapidly to 2.099 and 2.106 ± 0.001 eV at 45 and 90 min sintering time; respectively. XRD analysis indicates that there is hexagonal ZnO and secondary phases, Zn 2 MnO 4 , Bi 4 Ti 3 O 12 and Zn 2 Ti 3 O 8 . The relative density of the sintered ceramics decreased or remain constant with the increase of MnO 2 concentration for 45 min sintering time, however, further prolong sintering time; the relative density decreases form 90.25 to 88.35%. This indicates the pores are increasing with the increase of heat treatment. The variation of sintering temperatures to the optical band gap energy of based ZnO varistor doped with MnO 2 due to the formation of interface states. (paper)

  16. Magnetic properties of bi-, tri- and multicrystals of 3D topological insulator Bi{sub 1−x}–Sb{sub x}(0.06⩽x⩽0.2)

    Energy Technology Data Exchange (ETDEWEB)

    Muntyanu, F.M. [Institute of Electronic Engineering and Industrial Technologies, Academy of Sciences of Moldova, Chisinau 2028 (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Gilewski, A., E-mail: andrzej.gilewski@ml.pan.wroc.pl [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Nenkov, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Leibniz-Institut fur Festkorper und Werkstofforschung, Dresden 01171 (Germany); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Institute of Low Temperatures and Structural Research, Polish Academy of Sciences, Wroclaw 50950 (Poland); Zaleski, A.J. [Institute of Low Temperatures and Structural Research, Polish Academy of Sciences, Wroclaw 50950 (Poland); Fuks, G. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Leibniz-Institut fur Festkorper und Werkstofforschung, Dresden 01171 (Germany); Chistol, V. [Technical University of Moldova, Chisinau 2004 (Moldova, Republic of)

    2014-03-01

    The magnetic properties of bi-, tri- and multicrystals of 3D topological insulator Bi{sub 1−x}Sb{sub x}(0.06superconducting phases associated with adjacent and central layers of the crystallite interfaces of the bicrystals are identified. It has been found that due to the different stress structure the transition temperature T{sub c} for one superconducting phase changes considerably, from 8.3 to 36 K, while for another superconducting phase, T{sub c} remains within the range 3.7–4.6 K. In tricrystals and bicrystals with high contents of structural disorder and topological defects, ferromagnetic hysteresis loops and magnetic field expulsion have been observed simultaneously.

  17. Processing Y- and Bi-based superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Dos Santos, D.I.; von Stumberg, A.W.; Graham, S.W.; Singh, J.P.; Youngdahl, C.A.; Goretta, K.C.; Shi, D.; Poeppel, R.B.

    1989-01-01

    This paper reports on bulk specimens of YBa 2 Cu 3 O x and Bi 2 Sr 2 CaCu 2 O y formed and then processed by sintering in the solid state, in the presence of a liquid phase, or by sinter forging. Both Y- and Bi-based superconductors are difficult to densify by solid-state sintering but easy to densify in the presence of a liquid phase. Effects of sintering conditions on superconducting properties are, however, different between the two materials. These differences will be discussed. Attempts to texture microstructures and increase J c by sinter-forging techniques have been successful for Y-based superconductors, but unsuccessful for Bi-based superconductors

  18. High performance Bi0.5Na0.5TiO3-BiAlO3-K0.5Na0.5NbO3 lead-free pyroelectric ceramics for thermal detectors

    Science.gov (United States)

    Liu, Zhen; Ren, Weijun; Peng, Ping; Guo, Shaobo; Lu, Teng; Liu, Yun; Dong, Xianlin; Wang, Genshui

    2018-04-01

    Both high pyroelectric properties and good temperature stability of ferroelectric materials are desirable when used for applications in infrared thermal detectors. In this work, we report lead-free ternary 0.97(0.99Bi0.5Na0.5TiO3-0.01BiAlO3)-0.03K0.5Na0.5NbO3 (BNT-BA-KNN) ceramics, which not only exhibits a large pyroelectric coefficient (p ˜ 3.7 × 10-8 C cm-2 K-1) and figures of merit (Fi, Fv, and Fd) but also shows excellent thermal stable properties. At room temperature, Fi, Fv, and Fd are determined as high as 1.32 × 10-10 m/V, 2.89 × 10-2 m2/C, and 1.15 × 10-5 Pa-1/2 at 1 kHz and 1.32 × 10-10 m/V, 2.70 × 10-2 m2/C, and 1.09 × 10-5 Pa-1/2 at 20 Hz, respectively. During the temperature range of RT to 85 °C, the achieved p, Fi, Fv, and Fd do not vary too much. The high depolarization temperature and the undispersed ferroelectric-ergodic relaxor phase transition with a sharp pyroelectric coefficient peak value of ˜400 × 10-8 C cm-2 K-1 are suggested to be responsible for this thermal stability, which ensures reliable actual operation. The results reveal the BNT-BA-KNN ceramics as promising lead-free candidates for infrared thermal detector applications.

  19. AC loss in superconducting wires operating in a wind turbine like generator

    DEFF Research Database (Denmark)

    Seiler, Eugen; Zirngibl, Thomas; Mijatovic, Nenad

    2010-01-01

    We have manufactured a small circular superconducting coil impregnated with epoxy fibreglass. The coil was wound from a Bi-2223/Ag superconducting wire and it was tested in liquid nitrogen at 77 K. Current-voltage characteristic and the AC losses of the coil were measured and compared...

  20. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  1. Superconductivity: materials and applications; La supraconductivite: materiaux et apllications

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Kircher, F. [CEA Saclay, 91 - Gif sur Yvette (France); Leveque, J. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN - UHP, 54 - Vandoeuvre les Nancy (France); Tixador, P. [INP/Institut Neel, 38 - Grenoble (France)

    2008-07-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  2. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-01-01

    Graphical abstract: Faraday hysteresis loops for Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 film on glass-ceramic substrate (a), Bi 2.8 Y 0.2 Fe 5 O 12 film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO 2 /Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi 2.8 Y 0.2 Fe 5 O 12 , Bi 2.5 Gd 0.5 Fe 3.8 Al 1.2 O 12 , Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 and Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO 2 films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO 2 films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  3. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  4. Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics

    Science.gov (United States)

    Verma, Maya; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    Lanthanum doped SrBi2Nb2O9 ceramics with the chemical formula SrBi2-xLaxNb2O9 (SBLN) (x =0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 °C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x =0.4).

  5. Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Verma, Maya; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    Lanthanum doped SrBi 2 Nb 2 O 9 ceramics with the chemical formula SrBi 2-x La x Nb 2 O 9 (SBLN) (x=0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La 3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO 6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 deg. C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x=0.4)

  6. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  7. Electronic structure of bismuth in high-temperature superconductor Bi1.6Pb0.4Sr2Ca2.5Cu3.5Oσ

    International Nuclear Information System (INIS)

    Band, I.M.; Egorovm, A.I.; Karazhanova, G.I.

    1990-01-01

    The shifts of K α1 X-ray of bismuth in the HTS-ceramic Bi 1.6 Pb 0.4 Sr 2 Ca 2.5 Cu 5 O σ and Bi 2 O 3 are measured experimentally. It is shown that bismuth is threevalent in the HTS-ceramic. From comparison of the experimental values of shifts with theoretical values calculated within the framework of different modifications of Hartree-Fock method the effective charge at the bismuth atoms in these compounds is determined: q(Bi 2 O 3 )=1.5+2.0, q(Bi 1.6 Pb 0.4 Sr 2 Ca 2.5 Cu 3.5 O σ )= 1.6+2.1. It was suggested, That the Bi significant covalence degree in HTS-ceramic may be a cause of noticeable contribution of the Bi 6p-states in the density of states at Fermi-level. 13 refs.; 1 fig.; 2 tabs

  8. Effects of process variables on the properties of YBa2Cu3O(7-x) ceramics formed by investment casting

    Science.gov (United States)

    Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.

    1993-01-01

    An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.

  9. Investigation of structural and electrical properties of (1 - x) Bi0.5Mg0.5TiO3-(x) PbTiO3 ceramic system

    International Nuclear Information System (INIS)

    Rai, Radheshyam; Sinha, Abinhav; Sharmac, Seema; Sinha, N.K.P.

    2009-01-01

    [(BiMg 0.5 Ti 0.5 O 3 ) 1-x ][PbTiO 3 ] x (BMT-PT) ceramic powders of different compositions were prepared by solid-state reaction method. X-ray diffraction analysis of the compounds suggest the structural change (rhombohedral to tetragonal) in these ceramics. SEM photographs exhibit the uniform distribution of grains with less porosity. Polarization vs. electric field (P-E) studies show maximum remanent polarization (P r ∼ 7.9 μC/cm 2 ) for composition x = 0.34. The dielectric peaks were found to be broadened that indicates the existence of diffuse phase transition. Diffusivity (γ) study of phase transition in these compounds provided values between 1 and 2 indicating the variation of degree of disorderness in the system.

  10. Synthesis, structural and dielectric properties of SrBi2- x La x Nb2O9 ceramics prepared by hydrothermal treatment

    Science.gov (United States)

    Afqir, Mohamed; Tachafine, Amina; Fasquelle, Didier; Elaatmani, Mohamed; Carru, Jean-Claude; Zegzouti, Abdelouahad; Daoud, Mohamed

    2018-01-01

    SrBi2- x La x Nb2O9 ( x = 0.2, 0.4 and 0.6) Aurivillius materials were prepared by hydrothermal treatment. The powder prepared by this method is highly pure and not agglomerated. The morphology of the samples was characterized by SEM. The dielectric properties of all the compositions were investigated in the temperature range from 25 °C to 500 °C and in the frequency range between 100 Hz and 1 MHz. The dielectric properties at room temperature of the proposed materials can match up with La-doped SrBi2Nb2O9 ceramics prepared via the solid-state reaction method. Partial substitution of bismuth by lanthanum greatly affects the ferroelectric-paraelectric transition temperature, as the ferroelectric-paraelectric phase transition becomes diffuse and the Curie temperature shifts toward lower temperatures typically from 375 to 290 °C. The conductivity results obtained for the samples are explained taking into account the metal-binding energies.

  11. Solidification of Bi2Sr2Ca1Cu2Oy and Bi2Sr1.75Ca0.25CuOy

    International Nuclear Information System (INIS)

    Holesinger, T.G.; Miller, D.J.; Viswanathan, H.K.; Chumbley, L.S.

    1993-01-01

    The solidification processes for the compositions Bi 2 Sr 2 CaCu 2 O y (2212) and Bi 2 Sr 1.75 Ca 0.25 CuO y (2201) were determined as a function of oxygen partial pressure. During solidification in argon, the superconducting phases were generally not observed to form for either composition. In both cases, the solidus is lowered to approximately 750 degree C. Solidification of Bi 2 Sr 1.75 Ca 0.25 CuO y in Ar resulted in a divorced eutectic structure of Bi 2 Sr 2-x Ca x O y (22x) and Cu 2 O while solidification of Bi 2 Sr 2 CaCu 2 O y in Ar resulted in a divorced eutectic structure of Bi 2 Sr 3-x Ca x O y (23x) and Cu 2 O. Solidification of Bi 2 Sr 1.75 Ca 0.25 CuO y in O 2 resulted in large grains of 2201 interspersed with small regions containing the eutectic structure of 22x and CuO/Cu 2 O. Solidification of Bi 2 Sr 2 CaCu 2 O y in partial pressures of 1%, 20%, and 100% oxygen resulted in multiphase samples consisting of 2212, 2201, some alkaline-earth cuprates, and both divorced eutectic structures found during solidification in Ar. For both compositions, these latter structures can be attributed to oxygen deficiencies present in the melt regardless of the overpressure of oxygen. These eutectic structures are unstable and convert into the superconducting phases during subsequent anneals in oxygen. The formation process of the 2212 phase during solidification from the melt was determined to proceed through an intermediate state involving the 2201 phase

  12. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  13. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  14. Effect of Pb and Cr Substitutions on Phase Formation and Excess Conductivity of Bi-2212 Superconductor

    International Nuclear Information System (INIS)

    Khir, F. L. M.; Mohamed, Z.; Yusuf, A. A.; Yusof, M. I. M.; Yahya, A. K.

    2010-01-01

    The influence of Pb and Cr substitutions on the superconducting properties of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) superconductors is reported. The samples were prepared from Bi 2-x Pb x Sr 2 Ca 2-y Cr y Cu 3 O 10-δ (x = 0-0.3, y = 0-0.3) starting composition by the solid-state-reaction method. XRD analysis showed formation of pure Bi-2212 for (x = 0, y = 0), (x = 0.3, y = 0.2,) and (x = 0.3, y = 0.2,) starting compositions. Excess conductivity analysis based on Asmalazov-Larkin theory on single-phased Bi2212 samples showed 2D to 3D transition in superconducting fluctuation behavior (SFB) for all the samples. Highest 2D-3D transition temperature, T 2D-3D was observed at Pb and Cr substitutions of x = 0.3, and x = 0.2, respectively.

  15. Crystal substructure and physical properties of the superconducting phase Bi4(Sr,Cr)6Cu4O16μ/sub x/

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Le Page, Y.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.; Giroud, M.; Hwang, D.M.

    1988-01-01

    We have isolated a high-T/sub c/ phase in the Bi-Sr-Ca-Cu-O system of composition Bi 4 (Sr,Ca) 6 Cu 4 O 16 μ/sub x/. The crystal substructure has a tetragonal unit cell (a = 3.817 A, c = 30.6 A) with similarities to both the oxygen-defect perovskites YBa 2 Cu 3 O 7 √/sub x/ and the K 2 NiF 4 structure of La 2 CuO 4 . The oxygen content, determined by titration and thermogravimetric analysis (TGA) experiments, corresponds to a formal oxidation state Cu(2.15). Oxygen can be reversibly depleted in an argon ambient in an amount corresponding to the reduction of the Cu(III) into Cu(II). The compound has a metalliclike resistance above its T/sub c/ near 85 K. Processing this precursor compound by heating to temperatures near its melting point (885 0 C) produces a sharp resistivity drop near 110 K that we show by ac susceptibility and Meissner effect is due to a superconducting transition

  16. Spin-on Bi4Sr3Ca3Cu4O16μ/sub x/ superconducting thin films from citrate precursors

    International Nuclear Information System (INIS)

    Furcone, S.L.; Chiang, Y.

    1988-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system have been synthesized from homogeneous liquid citrate precursors by a spin-coating and pyrolysis method. Films prepared on SrTiO 3 substrates of [100] orientation show strongly textured orientations with the c axis of the predominant Bi 4 Sr 3 Ca 3 Cu 4 O 16 μ/sub x/ phase normal to the film plane. In a single coating and firing, crack-free films of 0.2--0.5 μm thickness are obtained. For films fired to peak temperatures of 850--875 0 C, linearly decreasing resistance with temperature is observed, with rho (300 K)∼460 μΩ cm and rho (300 K)rho (100 K)∼2.4. Clear onsets of superconductivity are observed at 90--100 K, with occasional films showing smaller resistant drops at 110--120 K. For all films, T/sub c/ (R = 0) occurs in the range 70--75 K. High critical current densities at 4.2 K of 5--8 x 10 5 Acm 2 are measured by direct transport

  17. Electronic Raman scattering in Bi2Sr2CaCu2O8=δ

    International Nuclear Information System (INIS)

    Quilty, J.W.; Trodahl, H.J.; Pooke, D.

    1996-01-01

    Full text: High-T c superconductors exhibit a definite Electronic Raman Scattering (ERS) continuum, which most materials do not. Typically, the continuum is relatively flat in the normal state, while below T c the ERS spectrum shows reduced scattering at the lowest Raman shifts and a peak close to the superconducting gap energy. The behaviour below T c is due to the breaking of Cooper pairs and reflects the superconducting density of states, hence revealing the superconducting gap. Through an appropriate choice of incident and scattered polarisation vectors, the electronic Raman continuum of high-T c superconductors may also be used to reveal information on the symmetry of the superconducting gap. Previous studies of the electronic continuum show that a broad peak associated with the superconducting gap forms in the continuum below T c in these materials, when compared to the normal-state. We report temperature and polarisation dependent ERS measurements on differently-doped Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals, within a temperature range of 300 K to 10 K

  18. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  19. Evidence for charge transfer in Bi-based superconductors studied by positron annihilation

    International Nuclear Information System (INIS)

    Tang, Z.; Wang, S.J.; Gao, X.H.; Ce, G.C.; Zhao, Z.X.

    1993-01-01

    We have measured Doppler-broadening annihilation radiation (DBAR) spectra and positron lifetimes in normal and superconducting states for three kinds of Bi-based superconductors: Bi2212, Pb-doped Bi2223, Pb- and F-doped Bi2223. The difference spectra after deconvolution between two states show a sharpening effect with increasing temperature; the F-doped sample has the greatest amplitude in difference spectra but nearly the same positron lifetimes as the Pb-doped sample. The results are interpreted in terms of charge transfer between the Cu-O and Bi-O planes. The role of oxygen defects in charge transfer is discussed. (orig.)

  20. Analysis of thermodynamic properties for high-temperature superconducting oxides

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shanker, J.

    1993-01-01

    Analysis of thermodynamic properties such as specific heat, Debye temperature, Einstein temperature, thermal expansion coefficient, bulk modulus, and Grueneisen parameter is performed for rare-earth-based, Tl-based, and Bi-based superconducting copper oxides. Values of thermodynamic parameters are calculated and reported. The relationship between the Debye temperature and the superconducting transition temperature is used to estimate the values of T c using the interaction parameters from Ginzburg. (orig.)

  1. Oxygen permeability of perovskite-type BaBi1-xLaxO3-δ

    International Nuclear Information System (INIS)

    Yaremchenko, A.A.; Kharton, V.V.; Viskup, A.P.; Naumovich, E.N.; Samokhval, V.V.

    1998-01-01

    Oxygen permeability, electrical conductivity, and thermal expansion of BaBi 1-x La x O 3-δ (x = 0, 0.2, and 0.4) perovskite-like solid solutions have been found to decrease with lanthanum content. Thermal expansion coefficients of the ceramics are (11.9--12.8) x 10 -6 K -1 . Oxygen transport through the BaBi(La)O 3-δ dense ceramic membranes within the membrane thickness range of 0.6 < d < 1.2 mm has been shown to be limited by both bulk ionic conductivity and surface exchange rate

  2. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  3. Study of Bi-2212 phase doped Sn(Pb) by means of pat

    International Nuclear Information System (INIS)

    Ma Qingzhu; Huang Xiaoqian; Xiong Xiaotao

    1997-01-01

    Investigation on the effect of Sn/Pb-doped Bi-2212 superconductors has been carried out by the simultaneous measurements of the spectra of positron annihilation lifetime and positron Doppler broadening, together with X-ray diffraction. The results of samples with different doping level show the occupation of Sn atoms on Bi sites. At weak doping level, Sn doping results in a enhancement of cooperation between layers and increment of superconducting transition temperature. At the strong doping level, Sn atoms occupy the sites of Cu-O layers, and at the same time, the other nonsuperconducting phases appear, which results in a decline of the superconducting transition temperature

  4. Superconductivity in the unconventional high pressure phase bismuth-III

    Energy Technology Data Exchange (ETDEWEB)

    Semeniuk, Konstantin; Brown, Philip; Vasiljkovic, Aleksandar; Grosche, Malte [University of Cambridge (United Kingdom)

    2015-07-01

    One of the most surprising developments in high pressure research was the realisation that many elements assume very unexpected high pressure structures, described in terms of extremely large or even infinite unit cells. Elemental bismuth, which has been known to undergo a series of pressure induced structural transitions between 25 kbar and 80 kbar, is an interesting example: the intermediate pressure Bi-III phase has a complex 'host-guest' structure consisting of two incommensurate sublattices. Since the unit cell is infinitely large, the description of electronic and lattice excitations is problematic. Apart from its metallic character and the observation of superconductivity at low temperature, little is known about the electronic structure in this phase. We investigate the electrical resistivity within the metallic Bi-III phase under high hydrostatic pressure and in applied magnetic field using a piston cylinder cell. Superconductivity is observed below 7.1 K, and we extract the temperature dependence of the upper critical field, which exceeds 2 T at low temperature. The normal state resistivity exhibits an approximately linear temperature dependence. This could be attributed to strong scattering from low-lying excitations, as caused by an unusually soft phonon spectrum. The results suggest that strong coupling superconductivity arises within the host-guest structure of Bi-III out of an unusual electronic state.

  5. Superconductivity: actual stage forcasting and subsidies for national policy

    International Nuclear Information System (INIS)

    Morato, S.P.

    1987-01-01

    An overview on the situation of metallic superconductors, their applications and market, and a brief history about the superconductivity at high T c (new ceramic superconductors), describing the actual level of research and development in the world and national plans are presented. Some comments about incentives and markets for rare earths are done. The scientific and technological challengers are discussed and some suggestions to lead a superconductivity national program are proposed. (M.C.K.) [pt

  6. Deutsche Keramische Gesellschaft e.V. Annual meeting 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The abstracts of 20 papers cover the following subject areas: Microfracture mechanisms in Al 2 O 3 ceramics; modelling and measurement of the thermal shock behaviour of ceramics; fibre-reinforced carbon; preparation of super-conducting fibres consisting of Bi-Sr-Ca-Cu-oxide prepared by the glass-ceramics manufacturing route; high-temperature failure of vitrous bonded Al 2 O 3 ; creep behaviour of whisker-reinforced oxide ceramics; platelet-reinforced mullite ceramics; effect of age-hardening on the mechanical behaviour and the microstructure of Y-doped Si 3 N 4 ; methods of fatigue life prediction for ceramic materials. (MM) [de

  7. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  8. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  9. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  10. Synthesis, microstructure and dielectric properties of (Sr,Bi)TiO{sub 3} borosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, C.R. [Lucknow Univ. (India). Advanced Glass and Glass-Ceramic Research Lab.; Rice Univ., Houston, TX (United States). Dept. of Materials Science and Nano Engineering; Manpoong, C.W.; Gautam, S.S.; Tamuk, M. [North Eastern Regional Institute of Science and Technology, Itanagar (India). Dept. of Mechanical Engineering; Singh, A.K.; Madheshiya, A. [Lucknow Univ. (India). Advanced Glass and Glass-Ceramic Research Lab.

    2016-07-01

    Strontium bismuth titanate glass compositions were prepared with the conventional melt quench method in the glass system 60[(Sr{sub 1-x}Bi{sub x}).TiO{sub 3}]-39[2SiO{sub 2}B{sub 2}O{sub 3}]-1[CeO{sub 2}]. X-ray diffraction and transmission electron microscopy analyses of the glass samples confirmed their amorphous nature. Scanning electron microscopy and contact angle measurements were performed to study the surface morphology of the major phase crystallites. The addition of CeO{sub 2} resulted in development of well-interconnected crystallites formed as major phase of perovskite strontium titanate. The dielectric constant (ε{sub r}) and dissipation factor (tan δ) were studied as a function of temperature. The effective value of the dielectric constant, ε{sub r}, was observed for glass-ceramic sample SBTC0.0850S with composition, x = 0.0, which is the order of 90 000 at low frequency, 1 Hz.

  11. On the enhancement of energy storage density in Bi0.9Ho0.1FeO3 ceramics

    Science.gov (United States)

    Ethilton, S. John; Rajesh, R.; Ramachandran, K.; Giridharan, N. V.

    2018-04-01

    Polycrystalline Bi1-xHoxFeO3 (x = 0, 0.05, 0.1) samples are prepared by conventional solid state route. The XRD pattern shows R3c phase. The maximum electrical polarizations in the above three materials are found to be 0.067μC / cm2, 0.329μC / cm2 and 0.565μC / cm2 respectively. Here the holmium is chosen for the reason that the leakage current can be reduced very much thereby the multiferroic property can be enhanced. Based on this experience it is decided to study the energy storage density in these ceramic materials with Ho as dopant. It is found that there is a good enhancement from 12% to 30% efficiency on energy storage density.

  12. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  13. Analysis of flat rolling of superconducting silver/ceramic composites

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Nielsen, Morten Storgård; Eriksen, Morten

    2001-01-01

    The flat rolling process from wire to tape is presumably the most crucial link in the chain of mechanical processes leading from loose powder and silver tubes to the final superconducting Ag/BSCCO tape. In order to improve the critical current density of the superconducting filaments, one must...... process these to the highest possible density without at the same time introducing failures as large cracks and macroscopic shear bands. In order to analyse and optimise the process, the interaction between the involved materials and their very different mechanical properties must be taken into account...

  14. A study on the development of high Tc superconducting materials

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1990-01-01

    The microstructure, crystal structure and formation kinetics for the superconducting phases were studied in the lead-doped BiSrCaCuO system. The formation kinetics was also investigated in the samples with different Pb/Bi ratio and it was observed that the 30 % Pb addition is most perferable for the formation of the high T c phase. The formation of the high T c phase was delayed by the excessive addition of Pb. The lattice parameter (c) of the unit cell of both low T c and high T c phases increased with increasing Pb content. Superconducting thin film was sucessfully prepared by chemical vapor deposition (CVD). Film deposited on MgO substrate showed a T c , onset of 85 K and did not reach to zero resistivity down to 77 K. Superconducting 124 phase in Y-system, which is more stable than 123 phase at high temperature showed a T c , onser of 84 K. Additionally, 0.1 mole of Pb, Sn and Ca was substituted for yttrium in 124 phase, respectively. For Pb and Sn-subsituted specimens, 124 phase was formed and for Ca substituted specimen, 124 phase was not formed and revealed no superconductivity down to 77 K. For Sn-substituted specimens, 124 phase was formed but showed no superconductivity down to 77 K. (author)

  15. Superconducting properties of clustered PbBi films

    International Nuclear Information System (INIS)

    Lobb, C.J.; Tinkham, M.; Klapwijk, T.M.; Smith, A.D.; Harvard Univ., Cambridge, MA

    1981-01-01

    Superconducting films with high resistance/square have been widely studied as a model of the Kosterlitz-Thouless transition. We show that the behavior of high R clean films near the thickness at which electrical conduction begins is dominated by a few paths across the film and thus should not be interpreted as a Kosterlitz-Thouless transition. Instead, this behavior is consistent with a simple percolation model for the connectivity fluctuations across the film. (orig.)

  16. Method for producing ceramic bodies

    International Nuclear Information System (INIS)

    Prunier, A.R. Jr.; Spangenberg, S.F.; Wijeyesekera, S.

    1992-01-01

    This patent describes a method for preparing a superconducting ceramic article. It comprises heating a powdered admixture comprising a source of yttria (Y 2 O 3 ), a source of barium monoxide and a source of cupric oxide to a temperature of from about 800 degrees Centigrade to 900 degrees Centigrade to allow the admixture to be densified under pressure to more than about 65 percent of the admixture's theoretical density but low enough to substantially preclude melting of the admixture; applying to the heated admixture isostatic pressure of between about 80,000 psi (5.5 x 10 2 MPa) and about the fracture stress of the heated admixture, for a period of time of from about 0.1 second to about ten minutes to form a densified article with a density of more than about 65 percent of the admixture's theoretical density; and annealing the densified article in the presence of gaseous oxygen under conditions sufficient to convert the densified article to a superconducting ceramic article having a composition comprising YBa 2 Cu 3 O 7 - x where O < x < 0.6

  17. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N. [Taurida National V.I. Vernadsky University, Vernadsky Av., 4, 95007 Simferopol (Ukraine); Salyuk, O.Y., E-mail: olga-saliuk@yandex.ru [Institute of Magnetizm NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  18. Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Tu, C. S., E-mail: 039611@mail.fju.edu.tw [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Chang, L.-Y. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Chang, W. C. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2014-05-07

    Spontaneous magnetization and photovoltaic (PV) effects have been measured in (Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramics for x = 0.05, 0.10, and 0.15. The substitution of Ba{sup 2+} ion in the A site of the perovskite unit cell can effectively enhance the ferromagnetic magnetization. The heterostructure of indium tin oxide (ITO) film/(Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramic/Au film exhibits significant PV effects under illumination of λ = 405 nm. The PV responses decrease with increasing Ba concentration. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.95}Ba{sub 0.5})FeO{sub 2.95}/Au can reach 0.006%. A theoretical model based on optically excited current in the depletion region between ITO film and (Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramics is used to describe the I-V characteristic, open-circuit voltage (V{sub oc}), and short-circuit current density (J{sub sc}) as a function of light intensity.

  19. Optical temperature sensing by upconversion luminescence of Er doped Bi5TiNbWO15ferroelectric materials

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-12-01

    Full Text Available The Er3+ doped Bi5TiNbWO15 ceramics have been synthesized using conventional solid-state reaction techniques. The crystal structure, ferroelectric properties, UC emission properties and especially the temperature sensing behaviors were systematically studied. With increasing Er3+ content, the investigation of XRD pattern, the ferroelectric loop and the UC emission indicated that the Er3+ ions dopants preferentially substituted the A sites of Bi3TiNbO9 and then Bi2WO6. Based on fluorescence intensity ratio (FIR technique, the observed results implied the ceramics were promising candidates for temperature sensors in the temperature range of 175 K −550 K. More importantly, this study provided a contrast of temperature sensitivity between emission from the same part (Bi3TiNbO9 in bismuth layered-structure and emission from the different part (Bi3TiNbO9 and Bi2WO6 in bismuth layered-structure for the first time.

  20. Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature

    Science.gov (United States)

    Hui, Jin; Yong, Li; Mou-Sheng, Song; Lin, Chen; Xiao-Peng, Jia; Hong-An, Ma

    2016-07-01

    In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100-1200 °C. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).

  1. Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics

    International Nuclear Information System (INIS)

    Hussain, Ali; Rahman, Jamil Ur; Zaman, Arif; Malik, Rizwan Ahmed; Kim, Jin Soo; Song, Tae Kwon; Kim, Won Jeong; Kim, Myong Ho

    2014-01-01

    The structure, field-induced strain, polarization and dielectric response of lead-free SrZrO 3 -modified Bi 1/2 (Na 0.80 K 0.20 ) 1/2 TiO 3 (abbreviated as BNKT–SZ100x, with x = 0–0.05) ceramics were investigated. The X-ray diffraction analysis of BNKT–SZ100x ceramics reveals no remarkable change in the crystal structure within the studied composition range. Around critical composition (x = 0.03) at a driving field of 6 kV mm −1 , large unipolar strain of 0.37% (S max /E max = 617) was obtained at room temperature. The ferroelectric and piezoelectric properties of BNKT ceramics were significantly increased at 2 mol%. At x = 0.02, remnant polarization reached a maximum value of 34 μC cm −2 , while the piezoelectric constant (d 33 ) attained maximum value of 190 pC/N. These results indicate that BNKT–SZ100x ceramics can be considered as promising candidate materials for lead-free piezoelectric actuator applications. - Highlights: • BNKT–SZ ceramics were synthesized by a conventional solid state reaction process. • Field-induced strain and piezoelectric constant were increased at critical composition. • BNKT–SZ100x ceramics at x = 0.03 exhibit a large field induced dynamic piezoelectric coefficient. • BNKT–SZ100x ceramics at x = 0.02 exhibit a high static piezoelectric constant. • The depolarization temperature of BNKT–SZ100x ceramics decrease with increase in SZ content

  2. Comparative study of irreversibility effects in Nb foil and high temperature superconducting ceramics by μSR

    International Nuclear Information System (INIS)

    Grebinnik, V.G.; Duginov, V.N.; Zhukov, V.A.

    1990-01-01

    We present the results of investigation of superconducting niobium and high temperature ceramical superconductor La 1.9 Sr 0.1 CuO 4 by the μSR technique. The experiments with the niobium sample have confirmed high reliability of the μSR-technique in determining such characteristics of type II superconductors as T c , H c1 , H c2 , the magnetic field penetration depth λ, and the critical current density J c . The analysis of the field dependences of the distribution width and mean value of the magnetic fields on the muon when the samples are magnetized was carried out. One has revealed qualitative difference in the behaviour of the magnetic dield distribution width in Nb and LaSrCuO. While the niobium data are well described in the frame of the critical state model, application of the similar approach to the high-T c superconductor did not give satisfactory description of our experimental results. 10 refs.; 4 figs

  3. Observation of Dirac state in half-Heusler material YPtBi

    OpenAIRE

    Hosen, M. Mofazzel; Dhakal, Gyanendra; Dimitri, Klauss; Choi, Hongchul; Kabir, Firoza; Sims, Christopher; Pavlosiuk, Orest; Wisniewski, Piotr; Durakiewicz, Tomasz; Zhu, Jian-Xin; Kaczorowski, Dariusz; Neupane, Madhab

    2018-01-01

    The prediction of non-trivial topological electronic states hosted by half-Heusler compounds makes them prime candidates for discovering new physics and devices as they harbor a variety of electronic ground states including superconductivity, magnetism, and heavy fermion behavior. Here we report normal state electronic properties of a superconducting half-Heusler compound YPtBi using angle-resolved photoemission spectroscopy (ARPES). Our data reveal the presence of a Dirac state at the zone c...

  4. 56th (fiscal 1997) Meeting on Cryogenics and Superconductivity; Dai 56 kai 1997 nendo shunki teion kogaku chodendo gakkai koen gaiyoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-14

    In the meeting, 266 papers were made public which deal with the following fields: GM refrigerators, pulse tube refrigerators, cold storage equipment, Bi-2212 system, coil application, superconducting generators, LHD/ITER/accelerators, cable-in conduit conductors, electromagnetic phenomena/proximity effect, oxide cable, Nb3Sn, Nb3Al, metal materials, WE-NET, friction/organic materials, composite materials, Nb3Sn, Nb3Al wires, strand wire structure analysis, hybrid superconducting wire, Y system, Bi system, low temperature device, measurement, high magnetic field NMR magnet, oxide NMR application, Bi-2223 system wire, pinning, NbTi ac wire, pinning/ac loss, various characteristics, superconducting application, refrigerating system, heat transfer, cryostat, Hg/Ti/Y system wire, ac loss/application, superconducting electric power storage system and the development of element technology therefor, current limiter/magnetic flotation, stability and drift of strand conductors, stability, ITER, LHD/accelerator/SLIM, oxide application, conductor stability test and others, and quench of ac cable.

  5. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  6. Mechanical and physical properties of Bi-2223 and Nb3Sn superconducting materials between 300 K and 7 K

    International Nuclear Information System (INIS)

    Nyilas, Arman; Osamura, Kozo; Sugano, Michinaka

    2003-01-01

    Within the framework of IEC/TC90-WG5 and VAMAS/TWA16, superconducting (SC) materials are investigated with respect to their mechanical properties between 300 K and 7 K. Besides the mechanical tests, physical and electrical properties are also determined for high T c SC-tapes. The mechanical tests comprised the characterization of tensile properties at ambient temperature as well as at 7 K of Nb 3 Sn-reacted strands, Bi2223 tapes, pure silver tapes, silver bars, silver alloy tapes and bare filaments extracted from Bi-2223 tapes. All these investigations are carried out using a variable temperature helium gas flow cryostat equipped with a servo hydraulic tensile machine (MTS, model 810). For the load measurements specially developed, highly sensitive cryogenic proof in situ working load cells are used. For the strain determination of the wires, a high resolution ultra-light double extensometer system with a specially developed low noise signal conditioner is used. The engineering parameters such as yield strength and elastic modulus are evaluated using the obtained data with newly developed software. For the tiny and brittle filaments load versus displacement data are obtained. A determined master line (Young's modulus versus machine compliance) established by thin 0.125 mm O wires of different pure metals is used for the Young's modulus estimation of filaments. For the 4 K electrical voltage-current measurements under magnetic fields of up to 13 T, an existing test facility is used for the high T c tapes. No dependency between applied strain up to 0.3% and the critical current under magnetic field could be observed for the selected specific Bi-2223 tapes. In addition, thermal expansion curves of Bi-2223 tapes along with pure silver and silver alloy (AgMg) are determined between 290 K and 7 K using in situ working extensometers. The coefficient of thermal expansion is evaluated by the determined thermal expansion versus temperature curve

  7. Superconduction at 77 K

    International Nuclear Information System (INIS)

    Mueller, H.G.

    1989-01-01

    This general paper deals with the advantages which may result from the use of ceramic high-temperature superconductors. The use of these new superconductors for generators and electric motors for ship propulsion is regarded as a promising potential defense application. Furthermore, SMES (Superconducting Magnetic Energy Storage) can be used as a 'power compressor' for future high-performance weapon systems such as electromagnetic cannons, high-energy lasers, and high power microwaves. (MM) [de

  8. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  9. Higher critical current density achieved in Bi-2223 High-Tc superconductors

    Directory of Open Access Journals (Sweden)

    M.S. Shalaby

    2016-07-01

    Full Text Available Bi2Sr2Ca2Cu3Ox (Bi-2223 were prepared using a solid state reaction method at different sintering times and temperatures. Structural phase identifications have been done using X-Ray analysis and refinement by Reitveld method which proves the coexistence of Bi-2223 and Bi-2212 phases. The critical transition temperature Tc and critical current density Jc values were measured using superconducting quantum interference device magnetometer (SQUID and by the magneto-optics technique. A remarkable rapid decrease to the diamagnetic signal in the magnetization versus temperature M(T at 110 K and Jc around 1.2 × 107 A/m2 at 5 K are confirmed for the Bi-2223 compound.

  10. Design and application consideration of high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  11. Fabrication of Ba-K-Bi-O thick film artefacts with improved critical currents

    International Nuclear Information System (INIS)

    Moore, J.C.; Salter, C.J.; Jenkins, R.J.; Grovenor, C.R.M.; Jones, H.

    1993-01-01

    The Ba-K-Bi-O system has a maximum T c of around 30K for a composition of Ba 0.6 K 0.4 BiO 3 . Fabrication of good quality single phase samples is extremely difficult and requires careful control of the fabrication conditions. Successful synthesis procedures for Ba-K-Bi-O powder and melt cast material which allow some control of the potassium content of the product were established by Hinks et al. The process is based on a melt and sinter step in an inert atmosphere which creates oxygen vacancies and allows potassium to enter the lattice. The oxygen vacancies are then filled by a subsequent oxygen anneal to obtain superconductivity. Ba-K-Bi-O is, therefore, metastable and consequently difficult to synthesise. There have been few reports of transport measurements and even fewer reports of transport critical currents for bulk material. It is often accepted that Ba-K-Bi-O has an intrinsically low critical current, and extremely poor critical current densities of 0.05 Acm -2 have been quoted for melt cast material. It has been suggested that the presence of weak links is the cause. However, there has been little research into the relationship between process conditions and superconducting properties for melt processed Ba-K-Bi-O to confirm this. (orig.)

  12. Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics

    International Nuclear Information System (INIS)

    Du Hongliang; Zhou Wancheng; Luo Fa; Zhu Dongmei; Qu Shaobo; Li Ye; Pei Zhibin

    2008-01-01

    Lead-free ceramics (1 - x)(K 0.5 Na 0.5 )NbO 3 -x(Bi 0.5 K 0.5 )TiO 3 [(1 - x)KNN-xBKT] were synthesized by conventional solid-state sintering. The phase structure, microstructure and electrical properties of (1 - x)KNN-xBKT ceramics were investigated. At room temperature, the polymorphic phase transition (from the orthorhombic to the tetragonal phase) (PPT) was identified at x = 0.02 by the analysis of x-ray diffraction patterns and dielectric spectroscopy. Enhanced electrical properties (d 33 = 251 pC N -1 , k p = 0.49, k t = 0.50, ε 33 T / ε 0 =1260, tan δ = 0.03 and T C = 376 deg. C) were obtained in the ceramics with x = 0.02 owing to the formation of the PPT at 70 deg. C and the selection of an optimum poling temperature. The related mechanisms for high piezoelectric properties in (1 - x)KNN-xBKT (x = 0.02) ceramics were discussed. In addition, the results confirmed that the selection of the optimum poling temperature was an effective way to further improve the piezoelectric properties of KNN-based ceramics. The enhanced properties were comparable to those of hard Pb(Zr, Ti)O 3 ceramics and indicated that the (1 - x)KNN-xBKT (x = 0.02) ceramic was a promising lead-free piezoelectric candidate material for actuator and transducer applications

  13. Study of multiferroic properties of Bi2Fe2WO9 ceramic for device application

    Directory of Open Access Journals (Sweden)

    Jyoshna Rout

    2016-09-01

    Full Text Available The Bi2Fe2WO9 ceramic was prepared using a standard solid-state reaction technique. Preliminary analysis of X-ray diffraction pattern revealed the formation of single-phase compound with orthorhombic crystal symmetry. The surface morphology of the material captured using scanning electron microscope (SEM exhibits formation of a densely packed microstructure. Comprehensive study of dielectric properties showed two anomalies at 200∘C and 450∘C: first one may be related to magnetic whereas second one may be related to ferroelectric phase transition. The field dependent magnetic study of the material shows the existence of small remnant magnetization (Mr of 0.052emμ/g at room temperature. The existence of magneto-electric (ME coupling coefficient along with above properties confirms multi-ferroic characteristics of the compound. Selected range temperature and frequency dependent electrical parameters (impedance, modulus, conductivity of the compound shows that electric properties are correlated to its microstructure. Detailed studies of frequency dependence of ac conductivity suggest that the material obeys Jonscher’s universal power law.

  14. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    International Nuclear Information System (INIS)

    Cagliero, Stefano; Khan, Mohammad Mizanur Rahman; Agostino, Angelo; Truccato, Marco; Orsini, Francesco; Marinone, Massimo; Poletti, Giulio; Lascialfari, Alessandro

    2009-01-01

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90 C have been performed on two sets of samples, which were monitored by means of X-rays diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi 2 Sr 2 CuCa 2 O 8+x (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers. (orig.)

  15. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cagliero, Stefano; Khan, Mohammad Mizanur Rahman [Torino Universita, ' NIS' Centre of Excellence, Dip. Chimica Generale e Chimica Organica, and CNISM UdR, Turin (Italy); Torino Universita, ' NIS' Centre of Excellence, Dip. Fisica Sperimentale, and CNISM UdR, Turin (Italy); Agostino, Angelo [Torino Universita, ' NIS' Centre of Excellence, Dip. Chimica Generale e Chimica Organica, and CNISM UdR, Turin (Italy); Truccato, Marco [Torino Universita, ' NIS' Centre of Excellence, Dip. Fisica Sperimentale, and CNISM UdR, Turin (Italy); Orsini, Francesco; Marinone, Massimo; Poletti, Giulio [Universita degli Studi di Milano, Istituto di Fisiologia Generale e Chimica Biologica, Milan (Italy); CNR-INFM-S3 NRC, Modena (Italy); Lascialfari, Alessandro [Universita degli Studi di Milano, Istituto di Fisiologia Generale e Chimica Biologica, Milan (Italy); CNR-INFM-S3 NRC, Modena (Italy); Universita degli Studi di Pavia, INFM-CNR c/o Dipartimento di Fisica A. Volta, Pavia (Italy)

    2009-05-15

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90 C have been performed on two sets of samples, which were monitored by means of X-rays diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi{sub 2}Sr{sub 2}CuCa{sub 2}O{sub 8+x} (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers. (orig.)

  16. Role of vanadium in Bi-2223 ceramics

    Indian Academy of Sciences (India)

    Previous reports ([1–7] and also, [9]) on V-substituted samples of Bi2Sr2Ca2Cu3Os have mostly pointed out that V ... Two series of V-substituted samples were prepared by partial replacement of V at two different sites; viz. the ..... also evaluated the phase composition on the basis of our susceptibility plots. This has also.

  17. Research On Bi-Based High-Temperature Superconductors

    Science.gov (United States)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  18. Determination of the fraction of amorphous phases in superconducting samples

    International Nuclear Information System (INIS)

    Gomes Junior, G.G.; Ogasawara, T.; Amorim, H.S.

    2010-01-01

    The study phase formation of high critical temperature superconducting (Bi, Pb) - 2223 by partial melting and recrystallization aims to improve the microstructure of the material. Was used for X-ray diffraction characterization of the phases present. The DDM method (Derivative Difference Minimization) was used for the refinement of structures, quantification of the phases and determination the fraction of this amorphous. The advantage this method is not necessary to introduce an internal standard to determine the amorphous fraction. Were observed in the powder precursor phases (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x (Bi, Pb) -2223, 93% of the sample, Bi 2 Sr 2 CaCu 2 O y (Bi-2212) and Bi 2 Sr 2 CuO z (Bi-2201). The powder precursor was heat treated at 820-870 deg C. To minimize volatilization of lead, the material was placed in silver crucibles closed. To get a high recovery of (Bi, Pb) - 2223, the material was cooled slowly, due to slow kinetic of formation of this phase. We observed a partial recovery phase (Bi, Pb) -2223. (author)

  19. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    Science.gov (United States)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  20. Low Temperature Broad Band Dielectric Spectroscopy of Multiferroic Bi6Fe2Ti3O18 Ceramics

    Directory of Open Access Journals (Sweden)

    Lisińska-Czekaj A.

    2016-09-01

    Full Text Available In the present research the tool of broadband dielectric spectroscopy was utilized to characterize dielectric behavior of Bi6Fe2Ti3O18 (BFTO Aurivillius-type multiferroic ceramics. Dielectric response of BFTO ceramics was studied in the frequency domain (Δν=0.1Hz – 10MHz within the temperature range ΔT=-100°C – 200°C. The Kramers-Kronig data validation test was employed to validate the impedance data measurements and it was found that the measured impedance data exhibited good quality justifying further analysis. The residuals were found to be less than 1%, whereas the “chi-square” parameter was within the range χ2~10−7−10−5. Experimental data were analyzed using the circle fit of simple impedance arc plotted in the complex Z”-Z’ plane (Nyquist plot. The total ac conductivity of the grain boundaries was thus revealed and the activation energy of ac conductivity for the grain boundaries was calculated. It was found that activation energy of ac conductivity of grain boundaries changes from EA=0.20eV to EA=0.55eV while temperature rises from T=-100°C up to T=200°C. On the base of maxima of the impedance semicircles (ωmτm=1 the relaxation phenomena were characterized in terms of the temperature dependence of relaxation times and relevant activation energy was calculated (EA=0.55eV.

  1. Bending strain study of Bi-2223/Ag tapes using Hall sensor magnetometry

    International Nuclear Information System (INIS)

    Lahtinen, M.; Paasi, J.; Sarkaniemi, J.; Han, Z.; Freltoft, T.

    1996-01-01

    The influence of room temperature bending on critical current (I c ) of Bi-2223/Ag tapes is studied by Hall sensor magnetometry, four-point method and scanning electron microscopy. Hall sensor magnetometry allows one to assess tape homogeneity and the amount of mechanical damage caused by bending. The microstructure of the Bi-2223 ceramic is found to strongly affect the tape behavior under bending strain. In a tape with moderate I c = 6.1 A at 77 K and a porous ceramic core, crack propagation took place normal to the Ag-ceramic interface, whereas in tapes with dense core, I c above 10 A at 77 K, cracks propagated in the tape plane. In monofilamentary tapes core homogeneity correlated with good bending strain performance. In multifilamentary tapes crack propagation between filaments was prohibited by the Ag matrix, thus leading to enhanced strain tolerance. In the high I c tapes studied, bending to 25 mm radius resulted in 1%--2% I c degradation

  2. Study and characterization of the BBT (BaBi4Ti4O15) ceramic added with 1 wt. % Nb2O5

    International Nuclear Information System (INIS)

    Silva, P.M.O.; Sales, A.J.M.; Freitas, D.B.; Oliveira, R.G.M.; Sombra, A.S.B.; Sales, J.C.

    2012-01-01

    This study aims to synthesize and characterize the ceramic BBT (BaBi 4 TI 4 O 15 ) doped with 1% by mass of the densification Nb2O5 to improve the products. The phase of the BBT has been found by solid state reaction. The mixed oxides starting processed by high-energy milling in planetary mill reactor polymer and spheres of zirconia and calcined at 850°C/3h. Later, 'bulks' prepared with the calcined powder were sintered at 950°C/3h. The calcined powder was characterized by X-ray diffraction data and refined by the beta 3.2 DBWSTools program using the Rietveld method. The grain morphology and distribution of pores on the surface of the 'bulks' were analyzed by Scanning Electron Microscopy. The result confirmed the refined to obtain the single phase with tetragonal structure BaBi 4 TI 4 O 15 density of 5.088 g/cm3 calculated in the unit cell. SEM analysis by SEM showed improved densification of the doped. (author)

  3. LT-STM/STS observation of definite superconducting gap states on the multistage crystal surface of Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Murakami, Hironaru; Aoki, Ryozo

    1996-01-01

    Low temperature STM/STS observations have been carried out on cleaved BSCCO crystal surfaces. The authors have succeeded in detection of a special layer, probably a CuO 2 or Ca layer exposed on the surface. The STS spectrum which was reproducibly observed on this special site shows a considerably anisotropic but distinct superconducting gap structure with a definite and flat gap bottom region. This gap structure shows significantly different characteristic from another gap structure observed on the BiO layer, which shows a rounded shape at the gap bottom region without any indication of a finite gap state

  4. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Science.gov (United States)

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  6. In situ observations of crack formation in multi-filament Bi-2223 HTS tapes

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, Andy; Skov-Hansen, P.

    2002-01-01

    High temperature superconducting tapes (BSCCO filaments embedded in Ag) were subjected to Uniaxial tension in an environmental scanning electron microscope, allowing in situ observation of cracking of the ceramic filaments. The first cracks were found to appear in the ceramic filaments at a strain...... around 0.15%, More cracks formed with increasing strain. The cracks covered the entire thickness of the filament. but did not Continue into the surrounding (ductile) Ag matrix. These 'tunnel cracks' appeared somewhat zigzag, indicating intergranular cracking mode. At low strains, crack blunting occurred...... at the ceramic/Ag interfaces of the tunnel cracks, At higher strain 'split cracks' formed at the tunnel cracks. The split cracks ran parallel with the ceramic/Ag interface just inside the ceramic layer....

  7. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    International Nuclear Information System (INIS)

    Tomita, M; Muralidhar, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y

    2013-01-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (I c ) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi 2 Sr 2 Ca 2 Cu 3 O y or YBa 2 Cu 3 O y (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed. (paper)

  8. Test results for a Bi-2223 HTS racetrack coil for generator applications

    International Nuclear Information System (INIS)

    Salasoo, L.; Herd, K.G.; Laskaris, E.T.; Hart, H.R. Jr.; Chari, M.V.K.

    1996-01-01

    Testing, results and analysis of a Bi-2223 model superconducting generator coil produced under the DOE Superconductivity Partnership Initiative are presented. The test arrangement enables coil energization with dc and transient currents over a range of operating temperatures to explore coil performance under conditions analogous to those that would be experienced by a superconducting generator field coil. Analytical calculations of coil ac and ohmic losses and temperature rise compare well with experimental measurements. Good performance is predicted for a typical 3-phase fault condition. Coil steady state and transient performance can be predicted with confidence for full scale superconductor application

  9. The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics

    Science.gov (United States)

    Li, Linhao; Li, Ming; Sinclair, Derek C.

    2018-04-01

    The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.

  10. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuaki, E-mail: ytakeda@g.ecc.u-tokyo.ac.jp [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimoyama, Jun-ichi; Motoki, Takanori [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Kishio, Kohji [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko [Sumitomo Electric Industries, Ltd. 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024 (Japan)

    2017-03-15

    Highlights: • Fabrication conditions of Bi2223 bulks was reconsidered in terms of high J{sub c}. • Pressure of uniaxial pressing and heat treatment conditions were investigated. • The best sample showed higher J{sub c} than that of practically used Bi2223 bulks. - Abstract: Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain J{sub c} properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain J{sub c}. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain J{sub c} of 2.0 kA cm{sup −2} at 77 K and 8.2 kA cm{sup −2} at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  11. Research briefing on high-temperature superconductivity

    Science.gov (United States)

    1987-10-01

    The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.

  12. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    CERN Document Server

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M

    2015-01-01

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  13. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis.

    Science.gov (United States)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten; Gotfredsen, Klaus

    2013-10-01

    The purpose of this clinical study was to describe outcome variables of all-ceramic and metal-ceramic implant-supported, single-tooth restorations. A total of 59 patients (mean age: 27.9 years) with tooth agenesis and treated with 98 implant-supported single-tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation of crowns, cement excess and technical complications. The aesthetic outcome was assessed by using the Copenhagen Index Score, and the patient-reported outcomes were recorded using the OHIP-49 questionnaire. The statistical analyses were mainly performed by using mixed model of ANOVA for quantitative data and PROC NLMIXED for ordinal categorical data. The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three abutment materials. The frequency of biological complications was higher at restorations with all-ceramic restorations than metal-ceramic crowns. Loss of retention, which was only observed at metal-ceramic crowns, was the most frequent technical complication, and the marginal adaptations of all-ceramic crowns were significantly less optimal than metal-ceramic crowns (P = 0.020). The professional-reported aesthetic outcome demonstrated significantly superior colour match of all-ceramic over metal-ceramic

  14. Flux Dynamics and Time Effects in a Carved out Superconducting Polycrystalline Bi-Sr-Ca-Cu-O Sample

    Energy Technology Data Exchange (ETDEWEB)

    Olutas, M [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory 14280 Bolu (Turkey); Yetis, H [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory 14280 Bolu (Turkey); Altinkok, A [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory 14280 Bolu (Turkey); Soezeri, H [National Metrology Institute TUBITAK PO Box 21, 41470, Gebze-Kocaeli (Turkey); Kilic, K [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory 14280 Bolu (Turkey); Kilic, A [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory 14280 Bolu (Turkey); Cetin, O [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory 14280 Bolu (Turkey)

    2006-06-01

    Systematic slow transport relaxation (V-t curves) and magnetovoltage measurements (V-H curves) have been carried out in a carved out superconducting polycrystalline Bi-Sr-Ca-Cu-O sample as a function of current (I), temperature (T), and external field (H). The V-t curves reveal the details of the time evolution of the penetrated state within the granular structure of the sample and also give a direct evidence of the relaxation of the flux trapped inside the drilled hole on the time scale of the experiment. On the other hand, V-H curves exhibit several unusual interesting properties upon cycling of the external magnetic field in forward and reverse directions, and, in addition to irreversibilities, strong reversible effects are observed, which is associated with the trapping of the macroscopic flux bundles in the drilled hole. It is also observed that the field sweep rate influences dramatically the reversible and irreversible behavior of V-H curves. The experimental results were mainly interpreted in terms of current and field induced organization of the vortices.

  15. Flux Dynamics and Time Effects in a Carved out Superconducting Polycrystalline Bi-Sr-Ca-Cu-O Sample

    International Nuclear Information System (INIS)

    Olutas, M; Yetis, H; Altinkok, A; Soezeri, H; Kilic, K; Kilic, A; Cetin, O

    2006-01-01

    Systematic slow transport relaxation (V-t curves) and magnetovoltage measurements (V-H curves) have been carried out in a carved out superconducting polycrystalline Bi-Sr-Ca-Cu-O sample as a function of current (I), temperature (T), and external field (H). The V-t curves reveal the details of the time evolution of the penetrated state within the granular structure of the sample and also give a direct evidence of the relaxation of the flux trapped inside the drilled hole on the time scale of the experiment. On the other hand, V-H curves exhibit several unusual interesting properties upon cycling of the external magnetic field in forward and reverse directions, and, in addition to irreversibilities, strong reversible effects are observed, which is associated with the trapping of the macroscopic flux bundles in the drilled hole. It is also observed that the field sweep rate influences dramatically the reversible and irreversible behavior of V-H curves. The experimental results were mainly interpreted in terms of current and field induced organization of the vortices

  16. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  17. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  18. Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salak, A.N., E-mail: salak@ua.pt [Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pushkarev, A.V.; Radyush, Yu.V.; Olekhnovich, N.M. [Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka Street, 19, 220072 Minsk (Belarus); Shilin, A.D.; Rubanik, V.V. [Institute of Technical Acoustics of NAS of Belarus, Lyudnikov Avenue, 13, 210023 Vitebsk (Belarus)

    2017-03-15

    Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of the BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in Bi

  19. Raman scattering, microstructural and dielectric studies on Ba{sub 1-x}Ca{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil; Kundu, Swarup [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Ochoa, D.A.; Garcia, J.E. [Department of Applied Physics, Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); Varma, K.B.R., E-mail: kbrvarma@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2012-10-15

    Polycrystalline powders of Ba{sub 1-x}Ca{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (where x = 0, 0.25, 0.50, 0.75 and 1) were prepared via the conventional solid-state reaction route. X-ray diffraction (XRD) and Raman scattering techniques have been employed to probe into the structural changes on changing x. XRD analyses confirmed the formation of monophasic bismuth layered structure of all the above compositions with an increase in orthorhombic distortion with increase in x. Raman spectra revealed a redshift in A{sub 1g} peak and an increase in the B{sub 2g}/B{sub 3g} splitting with increasing Ca content. The average grain size was found to increase with increasing x. The temperature of the maximum dielectric constant (T{sub m}) increased linearly with increasing Ca-content whereas the diffuseness of the phase transition was found to decrease with the end member CaBi{sub 4}Ti{sub 4}O{sub 15} showing a frequency independent sharp phase transition around 1048 K. Ca doping resulted in a decrease in the remnant polarization and an increase in the coercive field. Ba{sub 0.75}Ca{sub 0.25}Bi{sub 4}Ti{sub 4}O{sub 15} ceramics showed an enhanced piezoelectric coefficient d{sub 33} of 15 pC N{sup -1} at room temperature. Low values of dielectric losses and tunability of temperature coefficient of dielectric constant ({tau}{sub {epsilon}}) in the present solid-solution suggest that these compounds can be of potential use in microwave dielectrics at high temperatures. Highlights: Black-Right-Pointing-Pointer Ba{sub 1-x}Ca{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (0 {<=} x {<=} 1) ceramics with four-layer Aurivillius structure were fabricated. Black-Right-Pointing-Pointer X-ray diffraction and Raman scattering techniques have been employed to probe into the structural changes on changing x. Black-Right-Pointing-Pointer Curie temperature (T{sub C}) was found to increase with increase in Ca-doping whereas the diffuseness of phase transition decreased. Black-Right-Pointing-Pointer Temperature

  20. Study of the structural and electrical behavior of Bi(Mg,TiO3 modified (Ba,CaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Md. Kashif Shamim

    2016-12-01

    Full Text Available The ability of BaTiO3 to form solid solutions with different dopants (both iso- and aliovalent makes it versatile for various applications. In the present study, (Ba,CaTiO3 (BCT is modified with Bi(MgTiO3 (BMT in search for new lead-free ferroelectric material and improve their properties. For this purpose, BCT acts as a main base material and BMT acts as a modifier to fabricate a multifunctional material. In this study, we report the structural and electrical properties of lead free piezo-ceramics (1−x(Ba0.8Ca0.2TiO3–xBi(Mg0.5Ti0.5O3 with x=0.2, 0.4, 0.5 prepared by solid-state sintering technique. Single perovskite phase with tetragonal structure is obtained for all the compositions, which is reconfirmed by the Raman Spectroscopic study. Dielectric study confirm the temperature stable behavior of the dielectric permittivity values above 300∘C. The dielectric constant value decreases with increase in BMT doping content. Impedance Spectroscopic study confirms non-Debye type dielectric relaxation in the specimen. The Nyquist plot and conductivity studies show the negative temperature coefficient of resistance behavior (NTCR of the samples.

  1. Stable Ferroelectric Behavior of Nb-Modified Bi0.5K0.5TiO3-Bi(Mg0.5Ti0.5)O3 Lead-Free Relaxor Ferroelectric Ceramics

    Science.gov (United States)

    Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2018-03-01

    Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.

  2. Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212

    Science.gov (United States)

    He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun

    2015-03-01

    Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.

  3. Preparation of a ceramic superconductor from ultrafine particles by freeze-dry process in Ba-Y-Cu-O system

    International Nuclear Information System (INIS)

    Chen Zuyao; Qian Yitai; Wan Yanjian; Rong Jingfang; Zhang Han; Pan Guoqiang; Zhao Yong; Zhang Qirui

    1989-01-01

    Freeze-dry technique is first reported for preparing ceramic ultrafines. The single-phase complex oxide Ba 2 YCu 3 O/sub 9-δ/, a poly-crystallized compound, and ceramic superconductor have been synthesized successfully. The experimental results show that not only is the ceramic superconductor obtained uniform with fine particles and excellent superconductivity, but the conditions for solid reactions are relatively limited

  4. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  5. Systematics in Bi-2201, -2212 and -2223 superconductors studied by positron annihilation radiation measurements

    International Nuclear Information System (INIS)

    Sanyal, D.; Banerjee, D.; De, Udayan

    1998-01-01

    Positron lifetimes in Bi 2 Sr 2 Ca (n-1) Cu n O (2n+4+δ) or Bi-22(n-1)n superconducting compounds for n=1, 2 and 3 have been determined from positron annihilation lifetime (PAL) spectroscopy of associated γ-radiations. Bulk lifetime is shown to increase systematically with increase of n, the number of CuO 2 -layers in the Bi-22(n-1)n compound. Positron annihilation probing of structural units of this perovskite-like crystal system has thus been demonstrated

  6. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming

    2013-09-07

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  7. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming; Zhou, Wenke; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  8. Thick Bi2Sr2CaCu2O8+δ films grown by liquid-phase epitaxy for Josephson THz applications

    Science.gov (United States)

    Simsek, Y.; Vlasko-Vlasov, V.; Koshelev, A. E.; Benseman, T.; Hao, Y.; Kesgin, I.; Claus, H.; Pearson, J.; Kwok, W.-K.; Welp, U.

    2018-01-01

    Theoretical and experimental studies of intrinsic Josephson junctions (IJJs) that naturally occur in high-T c superconducting Bi2Sr2CaCu2O8+δ (Bi-2212) have demonstrated their potential for novel types of compact devices for the generation and sensing of electromagnetic radiation in the THz range. Here, we show that the THz-on-a-chip concept may be realized in liquid-phase epitaxial-grown (LPE) thick Bi-2212 films. We have grown μm thick Bi-2212 LPE films on MgO substrates. These films display excellent c-axis alignment and single crystal grains of about 650 × 150 μm2 in size. A branched current-voltage characteristic was clearly observed in c-axis transport, which is a clear signature of underdamped IJJs, and a prerequisite for THz-generation. We discuss LPE growth conditions allowing improvement of the structural quality and superconducting properties of Bi-2212 films for THz applications.

  9. Electronic Structure, Irreversibility Line and Magnetoresistance of Cu_0_._3Bi_2Se_3 Superconductor

    International Nuclear Information System (INIS)

    Yi He-Mian; Chen Chao-Yu; Sun Xuan; Xie Zhuo-Jin; Feng Ya; Liang Ai-Ji; Peng Ying-Ying; He Shao-Long; Zhao Lin; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Zhou Xing-Jiang; Chen Chuang-Tian; Xu Zu-Yan; Gu Gen-Da

    2015-01-01

    Cu_xBi_2Se_3 is a superconductor that is a potential candidate for topological superconductors. We report our laser-based angle-resolved photoemission measurement on the electronic structure of the Cu_xBi_2Se_3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi_2Se_3 topological insulator remains robust after the Cu-intercalation, while the Dirac cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper critical field at zero temperature of ∼4000 Oe for the Cu_0_._3Bi_2Se_3 superconductor with a middle point T_c of 1.9K. The relation between the upper critical field H_c_2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cu_0_._3Bi_2Se_3 superconductors up to room temperature. These observations provide useful information for further study of this possible candidate for topological superconductors. (paper)

  10. Rietveld refinement and dielectric studies of Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Kaswan, Kavita, E-mail: kaswan.kavita@gmail.com; Agarwal, Ashish; Sanghi, Sujata; Rangi, Manisha; Jangra, Sandhaya; Singh, Ompal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2016-05-23

    Polycrystalline Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3} ceramic has been synthesized via conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c). With increase in temperature, the values of dielectric constant (ϵ′) and dielectric loss (tan δ) are found to be increase at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. Further the ac conductivity data is analyzed by using Jonscher’s universal power law. The values of frequency exponent ‘s’ lies in the range 0.2 ≤ s ≤ 0.7 and decreases with increase in temperature which can be explained on the basis of CBH (Correlated Barrier Height) model.

  11. High temperature superconducting films by rf magnetron sputtering

    International Nuclear Information System (INIS)

    Kadin, A.M.; Ballentine, P.H.

    1989-01-01

    The authors have produced sputtered films of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O by rf magnetron sputtering from an oxide target consisting of loose reacted powder. The use of a large 8-inch stoichiometric target in the magnetron mode permits films located above the central region to be free of negative-ion resputtering effects, and hence yields reproducible, uniform stoichiometric compositions for a wide range of substrate temperatures. Superconducting YBCO films have been obtained either by sputtering at low temperatures followed by an 850 0 C oxygen anneal, or alternatively by depositing onto substrates heated to ∼600 - 650 0 C and cooling in oxygen. Films prepared by the former method on cubic zirconia substrate consist of randomly oriented crystallites with zero resistance above 83 K. Those deposited on zirconia at medium temperatures without the high-temperature anneal contain smooth partially oriented crystallites, with a slightly depressed T/sub c/ ∼75K. Finally, superconducting films have been deposited on MgO using a BiSrCaCu/sub 2/O/sub x/ powder target

  12. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  13. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  14. Ideal metastability fields and field penetration in type-I and type-II superconducting InBi single spheres

    International Nuclear Information System (INIS)

    Pettersen, G.; Parr, H.

    1979-01-01

    In a continuation of earlier work on the InBi alloys system, we have studied the superconducting properties of small, single spheres of InBi 0.80, 1.24, 1.70, 2.15, and 2.65 at.% Bi. The transition temperatures are 3.538, 3.659, 3.796, 3.908, and 4.044 +- 0.008 K. Assuming the penetration depth lambda to be proportional to y = 1(1-t 4 )/sup 1/2/, we determine lambda/sub o/ = dlambda/dy to be 810, 950, 1065, undetermined, and 1720 A +- 3%, respectively. The field dependence of lambda was studied up to the ideal superheating field H/sub sh/. We find lambda (H/sub sh/)/lambda (H = 0) = 1.53, 1.52, 1.42, undetermined, and 1.41 +- 0.05, respectively. Thus the relative increase in lambda close to H/sub sh/ is roughly independent of composition. These are the first measurements of lambda (H) in ''strong'' fields for type-II superconductors. The Ginzburg-Landau parameter kappa was determined from H/sub c/3. We find kappa/sub c/3(t = ) = 0.454, 0.636, 0.835, 0.984, and 1.22. The knowledge of H/sub c/ limits the accuracy to 2--5%. Ideal superheating was observed both in the type-I and type-II region. At t = 1, we find H/sub sh//H/sub c/ = 1.80, 1.48, 1.28, 1.17, and 1.13 +- 3--8%. This roughly agrees with numerical calculations of H/sub sh/(kappa). Thus, ideal superheating of the Meissner state to well above H/sub c/ is firmly established even for type-II superconductors. The results for H/sub sh/ are in good agreement with numerical calculations from Ginzburg-Landau theory. Assuming these theoretical results to hold, kappa (t = 1) can be calculated self-consistently from H/sub c/3 and H/sub sh/ for all metals investigated by the single-sphere method, giving values considered to be more accurate than any other available. Finally, we have obtained qualitative and quantitative results on the intermediate and mixed states in our spheres

  15. Superconductivity in alkaline earth-substituted La2CuO/sub 4-y/

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Mueller, K.A.; Takashige, M.

    1987-01-01

    La 2 CuO/sub 4-y/ ceramics containing a few percent of Ca 2+ , Sr 2+ , and Ba 2+ ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba 2+ -containing samples). The onset temperature La 2 CuO/sub 4-y/ with Sr 2+ is higher and its superconductivity-induced diamagnetism larger than that found with Ba 2+ and Ca 2+ . This is proof that the electronic change resulting from alkaline earth-doping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr 2+ is close to that of La 3+ for which it presumably substitutes

  16. Systematics in Bi-2201, -2212 and -2223 superconductors studied by positron annihilation radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, D.; Banerjee, D. [Department of Physics, University of Calcutta, Calcutta (India); De, Udayan [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta (India)

    1998-12-01

    Positron lifetimes in Bi{sub 2}Sr{sub 2}Ca{sub (n-1)}Cu{sub n}O{sub (2n+4+{delta}}{sub )} or Bi-22(n-1)n superconducting compounds for n=1, 2 and 3 have been determined from positron annihilation lifetime (PAL) spectroscopy of associated {gamma}-radiations. Bulk lifetime is shown to increase systematically with increase of n, the number of CuO{sub 2}-layers in the Bi-22(n-1)n compound. Positron annihilation probing of structural units of this perovskite-like crystal system has thus been demonstrated.

  17. Fe-doping effect on the Bi{sub 3}Ni superconductor microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Silvio Henrique; Monteiro, Joao Frederico Haas Leandro; Leal, Adriane Consuelo da Silva; Andrade, Andre Vitor Chaves de; Souza, Gelson Biscaia de; Siqueira, Ezequiel Costa; Serbena, Francisco Carlos; Jurelo, Alcione Roberto, E-mail: arjurelo@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica

    2017-05-15

    The substitution effects of Fe ion on the structure of the intermetallic Bi{sub 3}Ni{sub 1-x}Fe{sub x} (0 ≤ x ≤ 0.10) superconductor were studied. The morphology of samples consists of an inhomogeneous laminar slab-like microstructure. The main phase corresponds to Bi{sub 3}Ni{sub 1-x}Fe{sub x} with an orthorhombic structure (Pnma), but with very small quantities of impurities of BiNi and Bi as revealed by X-ray diffraction. SEM and AFM reveal that the Bi3{sub N}i1{sub -x}Fe{sub x} phase consists of two regions. One region is Bi richer and Ni and Fe poorer than the other region.Raman spectroscopy revealed two phonon modes at room temperature. No significant changes were observed in the spectra with Fe doping and in different regions of the Bi{sub 3}Ni{sub 1-x}Fe{sub x} phase. Superconductivity is observed below a transition temperature T{sub C} = 4 K and regardless of iron doping. (author)

  18. Substitution effect of Sr2+ by Ca2+ on structure and superconducting properties of Bi2Sr1.6La0.4CuO6+δ (Bi-2201) ceramics

    Science.gov (United States)

    Boudjaoui, S.; Amira, A.; Mahamdioua, N.; Altintas, S.; varilci, A.; Terzioglu, C.

    2018-02-01

    In this work, the effect of Ca2+ iso-valence substitution for Sr2+ on properties of Bi2Sr1.6La0.4CuO6+δ superconductors is presented. Samples series with nominal composition of Bi2Sr1.6-xCaxLa0.4CuO6+δ (x= 0, 0.2, 0.4, 0.6 and 0.8) are prepared by a solid-state reaction method. When Ca content is increased, the X-ray diffraction technique shows that the cell parameters a and c decrease, while b one is almost constant. The scanning electron microscopy analysis reveals that the substitution has no significant effect on the porosity and the grain size of the samples. The physical properties of the samples are studied by the analysis of the magneto-resistivity curves measured under magnetic fields in the range 0-1 T. As Ca is added, the results show that the high temperature transition appears and is pushed up to 94.87 K for x=0.8. The substitution also improves the bulk onset critical transition temperature, the transition width, the residual resistivity, the activation energy of vortices and the irreversibility field. The best results are seen for x=0.4 of Ca content.

  19. Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator

    Science.gov (United States)

    Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.

    2015-03-01

    Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.

  20. Summaries of reports of the 30. Conference on low-temperature physics. Pt. 1. Fundamental questions of superconductivity including HTSC

    International Nuclear Information System (INIS)

    1994-01-01

    Thesis of reporsts of the 30th Conference on low-temperature physics are presented. Fundamental problems of superconductivity are discussed including HTSC in bulk crystals, in thin films of Josephson junctions, ceramics and heterostructures. Specific features of superconductor structure and magnetic properties and also different mechanisms of superconductivity are analyzed

  1. Fabrication of Superconducting Traction Transformer for Railway Rolling Stock

    International Nuclear Information System (INIS)

    Kamijo, H; Hata, H; Fujimoto, H; Inoue, A; Nagashima, K; Ikeda, K; Yamada, H; Sanuki, Y; Tomioka, A; Uwamori, K; Yoshida, S; Iwakuma, M; Funaki, K

    2006-01-01

    We designed a floor type single-phase 4 MVA superconducting traction transformer for Shinkansen rolling stock. In this study, we fabricated a prototype superconducting traction transformer based on this design. This transformer of the core-type design has a primary winding, four secondary windings and a tertiary winding. The windings are wound by Bi2223 superconducting tapes and cooled by subcooled liquid nitrogen. The core is kept at room temperature. The cryostat is made of GFRP with two holes to pass core legs through. The outer dimensions are about 1.2m x 0.7m x 1.9m excluding the compressor. Its weight is 1.71t excluding that of refrigerator and compressor. The transformer was tested according to Japanese Industrial Standards (JIS)-E5007. We confirmed that the performance of transformer has been achieved almost exactly as planned. The rated capacity is equivalent to 3.5MVA in the superconducting state

  2. A new quantum interferometer effect in superconducting oxide ceramics

    International Nuclear Information System (INIS)

    Chela Flores, J.; Shehata, L.N.

    1987-08-01

    On the basis of a phenomenological approach to type II high T c superconductivity, we suggest that in the lanthanum compounds the Mercereau effect for a coupled junction pair should display and ex-dependent shift in the period of modulation of the tunnelling current. (author). 14 refs

  3. Magnetic properties and critical current density of bulk MgB2 polycrystalline with Bi-2212 addition

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Zhu, X T; Cheng, C H; Zhao, Y

    2005-01-01

    Bulk samples of MgB 2 were prepared with 0, 3, 5, and 10 wt% Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) particles, added using a simple solid-state reaction route in order to investigate the effect of inclusions of a material with higher T c than the superconducting matrix. The density, diamagnetic signal, and critical current density, J c , of the samples change significantly with the doping level. It is found that J c is significantly enhanced by the Bi-2212 addition. Microstructural analysis indicates that a small amount of Bi-2212 is decomposed into Cu 2 O and other impurity phases while a significant amount of unreacted Bi-2212 particles remains in MgB 2 matrix, and these act as effective pinning centres for vortices. The enhanced pinning force is mainly attributable to these highly dispersed inclusions inserted in the MgB 2 grains. Despite the effectiveness of the high-T c inclusions in increasing superconducting critical currents in our experiment, our results seem to demonstrate the superiority of attractive centres over repulsive ones. A pinning mechanism is proposed to account for the contribution of this type of pinning centre in MgB 2 superconductors. (rapid communication)

  4. Influence of pulse electric current on structure and superconducting properties of high temperature superconductor

    International Nuclear Information System (INIS)

    Rajchenko, A.I.; Flis, A.A.; Chernenko, L.I.; Kryuchkova, N.I.

    1998-01-01

    The influence of high-density pulse current treatment at room temperature on structure and superconducting properties of HTSC Y Ba 2 Cu 3 O x ceramics is studied. The structures of the samples are found to undergo appreciable changes as the density of pulse current is gradually increased from its minimum value; as a certain threshold value is attained, there occurs a melting-off of coarse grains with a partial destroying of intergrain contact areas followed by superconductivity loss. A further increase in the treatment current density results in a restoration of the superconducting properties probably due to the occurrence of aligned-with-current superconducting bridges between the melted-off grains. The superconducting transition temperature in the samples does not charge but subsequent thermal treatment causes this temperature to increase

  5. Ferroelectric and piezoelectric properties of non-stoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics prepared from sol-gel derived powders

    International Nuclear Information System (INIS)

    Jain, Rajni; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K.

    2004-01-01

    Ceramic compositions of strontium bismuth tantalate (SBT) [Sr 1-x Bi 2+2x/3 Ta 2 O 9 ] with x = 0.0, 0.15, 0.30, 0.45 prepared from a sol-gel process have been studied. Stoichiometric and non-stoichiometric phases stable within the series have been investigated for their structural, dielectric, ferroelectric, and piezoelectric properties. Sintering at 1000 deg. C produces a single homogeneous phase up to x = 0.15. With x > 0.15 an undesirable BiTaO 4 phase is detected and a higher sintering temperature (1100 deg. C) prevents the formation of this phase. The ferroelectric to paraelectric phase transition temperature (T c ) increases linearly from 325 to 455 deg. C up to x = 0.30, and with x > 0.30, it tends to deviate from the linear behavior. At x = 0.45 a broad and a weak transition is observed and the peak value of dielectric constant (ε' max ) is significantly reduced. The piezoelectric coefficient (d 33 ), remnant polarization (2P r ), and coercive field (2E c ) values increase linearly up to x = 0.30. The degradation in the electrical properties for x > 0.30 are attributed to the presence of undesirable BiTaO 4 phase, which is difficult to identify by X-ray powder diffraction analysis (XRD) due to the close proximity of the peaks positions of BiTaO 4 and the SBT phase

  6. The effect of texture on the properties of Bi3.15Nd0.85Ti3O12 ceramics prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang Hongtao; Yan Haixue; Zhang Xiaodong; Reece, Mike J.; Liu Jing; Shen Zhijian; Kan Yanmei; Wang Peiling

    2008-01-01

    Bi 3.15 Nd 0.85 Ti 3 O 12 ceramic, which is a three-layer ferroelectric Aurivillius phase, was prepared by spark plasma sintering. The effect of texture on the anisotropy of dielectric, ferroelectric and piezoelectric properties was studied. X-ray diffraction showed that samples perpendicular to the hot-pressing direction had a-b-axis preferred texture, whereas, samples parallel to hot-pressing direction had c-axis preferred orientation. The dielectric constant, remanent polarization and piezoelectric constant of samples with orientation close to a-axis are larger than those of samples with orientation close to c-axis. Their Curie points are all about 410 deg. C

  7. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  8. Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic

    Science.gov (United States)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha

    2018-05-01

    Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).

  9. Thick films of Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O by solution processes

    International Nuclear Information System (INIS)

    Barboux, P.; Tarascon, J.M.; Shokoohi, F.; Wilkens, B.J.; Schwartz, C.L.

    1988-01-01

    We have prepared superconducting thick films of the Bi-based and the Tl-based cuprates via the decomposition of aqueous-glycerol solutions containing the salts of the elements. Preliminary results are presented in this work. The substrates are coated prior to heat treating, either by dipping or by spraying on various substrates heated at 200 0 C. Short firing times are required in order to minimize the loss of the constituent Bi (Tl). We find that nitrates of the constituents dissolved in a water-glycerol solution increase the reaction rate in comparison to pure nitrate aqueous solutions. They also help to produce the correct superconducting phase before some reaction with the substrate occurs or too much of the constituent Bi (Tl) is lost during heating to form the superconducting phase. However, the thallium phases cannot be obtained if the films are not fired in the presence of a high pressure of thallium in a sealed capsule. The films are composed of platelets, a few microns large, that are on average oriented parallel to the substrate with their c axis normal. The Bi films show an onset temperature at 85 K and zero resistance at 75 K while the Tl films show an onset temperature of 105 K and zero resistance at 95 K. The critical currents obtained to date are quite low (∼50 A/cm 2 at 77 K for the thallium phase)

  10. Crystal chemistry of Ruddlesden-Popper type structures in high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Dwivedi, Anurag; Cormack, A.N.

    1991-01-01

    Similar structural patterns have been noticed in the systems La-Cu-O, La-Ni-O and Bi and Tl-containing superconducting oxides. The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite strucutres) is seen in these oxides which is similar in many respects to what is seen in the system Sr-Ti-O. However, there are some significant differences, for example the rocksalt and perovskite blocks in new superconducting compounds are not necessarily electrically neutral, unlike in the Sr-Ti-O system. It, thus, becomes necessary to create oxygen vacancies in the basic perovskite structure of Bi-containing compounds, when the width of the perovskite slab changes on addition of extra Cu-O planes. Results of atomistic simulations suggest that these missing oxygen ions allows the Cu-O planes to buckle in Bi-series of compounds. This is also supported by the absence of buckling in the Sr-Ti-O series of compounds and the first member of Bi-containing compounds in which there are no missing oxygen ions. Additional results on the phase stability of polytypoid structure in la-Cu-O system and defect chemistry of compounds of La N i-O system are presented. (author). 14 re fs., 7 figs., 4 tabs

  11. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis

    DEFF Research Database (Denmark)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten

    2013-01-01

    -tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow......-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation...... and PROC NLMIXED for ordinal categorical data. RESULTS: The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three...

  12. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  13. Modulation-free bismuth-lead cuprate superconductors: BiPbSr1+xL1-xCuO6 and BiPbSr2Y1-xCaxCu2O8

    International Nuclear Information System (INIS)

    Manivannan, V.; Gopalakrishnan, J.; Rao, C.N.R.

    1991-01-01

    Modulation-free BiPbSrLCuO 6 (L=La, Pr, Nd) and BiPbSr 2 YCu 2 O 8 , which are isotypic with the n=1 and 2 members of the Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 family, have been prepared and characterized. These parent compounds are nonsuperconducting, but when doped with holes by substitution chemistry give modulation-free superconducting cuprates of the general formulas BiPbSr 1+xL1-x CuO 6 and BiPbSr 2 Y 1-x Ca x Cu 2 O 8 , exhibiting maximum T c 's of 24 and 85 K, respectively. Significantly, the hole concentration at the maximum T c is 0.12 in the cuprate family with a single Cu-O layer and 0.22 in that with two Cu-O layers

  14. Oxygen stoichiometry and the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Bagley, B.G.

    1989-01-01

    Methods for determining the oxygen content in high Tc materials, such as thermogravimetric analysis and chemical analysis, are discussed. Consideration is given to La-based cuprates, Y-based cuprates, and Bi-based cuprates. Superconducting transition temperatures are analyzed as a function of the Cu(1)-O(4) bond lengths for several different compositions in the Y-based system. 28 references

  15. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics

    Science.gov (United States)

    Li, Feng; Chen, Guorui; Liu, Xing; Zhai, Jiwei; Shen, Bo; Li, Shandong; Li, Peng; Yang, Ke; Zeng, Huarong; Yan, Haixue

    2017-05-01

    In this study, the electrocaloric effect (ECE) of Bi0.5Na0.5TiO3-0.06BaTiO3 (BNT-0.06BT) ceramic has been directly measured using a home-made adiabatic calorimeter. The maximum adiabatic temperature change (ΔT) approaches 0.86 K under an electric field of 5 kV/mm at 110 °C, which provides experimental evidence for optimizing the ECE near the type-I pseudo-first-order phase transition (PFOPT). Most importantly, a considerable ΔT value can be maintained over a wide temperature range well above the temperature of the PFOPT under a high electric field. In addition, ΔT is closely related to the structural transition and electric field strength. This work provides a guideline to investigate the high ECE in BNT-based ferroelectric ceramics for applications in cooling technologies.

  16. Electric Field-Induced Large Strain in Ni/Sb-co Doped (Bi0.5Na0.5) TiO3-Based Lead-Free Ceramics

    Science.gov (United States)

    Li, Liangliang; Hao, Jigong; Xu, Zhijun; Li, Wei; Chu, Ruiqing

    2018-02-01

    Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1- x (Ni0.5Sb0.5) x O3 (BNBT6.5- xNS) have been fabricated using conventional solid sintering technique. The effect of (Ni, Sb) doping on the phase structure and electrical properties of BNBT6.5 ceramics were systematically investigated. Results show that the addition of (Ni, Sb) destroyed the ferroelectric long-range order of BNBT6.5 and shifted the ferroelectric-relaxor transition temperature ( T F-R) down to room temperature. Thus, this process induced an ergodic relaxor phase at zero field in samples with x = 0.005. Under the electric field, the ergodic relaxor phase could reversibly transform to ferroelectric phase, which promotes the strain response with peak value of 0.38% (at 80 kV/cm, corresponding to d 33 * = 479 pm/V) at x = 0.005. Temperature-dependent measurements of both polarization and strain confirmed that the large strain originated from a reversible field-induced ergodic relaxor to ferroelectric phase transformation. The proposed material exhibits potential for nonlinear actuators.

  17. Ba2ErNbO6: A new perovskite ceramic substrate for Bi(2223 ...

    Indian Academy of Sciences (India)

    Unknown

    318 ... production of high quality superconducting films of these compounds for suitable electronic applications. Substrates ... for high temperature superconducting films is the chemi- ... pared by dip-coating technique and the structure of the dip.

  18. Rapid processing of ferrite ceramics with promising magneto-dielectric characteristics

    Directory of Open Access Journals (Sweden)

    Zhuohao Xiao

    2017-12-01

    Full Text Available Ferrite ceramics, Ni0.88Zn0.07Co0.05Fe1.98O4, with the addition of 4wt.% Bi2O3 as sintering aid, were fabricated by using a simple one-step processing without involving the step of calcination. X-ray diffraction (XRD results indicated that single phase ferrite ceramics can be achieved after sintering at 1000∘C for 2h. The samples demonstrated relative densities in the range of 97–99%. Desired magneto-dielectric properties have been approached by adjusting the sintering temperature and sintering time duration. This technique is believed to be applicable to other ceramic materials.

  19. Bi sub 2 Sr sub 2 Ca sub n sub - sub 1 Cu sub n O sub y films sputtered on substrates of Bi sub 2 Sr sub 2 CuO sub y single crystals

    CERN Document Server

    Katsurahara, K; Matsumoto, K; Fujiwara, N; Tanaka, H; Kishida, S

    2003-01-01

    We prepared Bi sub 2 Sr sub 2 CaCu sub 2 O sub y (Bi-2212) films on substrates of Bi sub 2 Sr sub 2 CuO sub y (Bi-2201) single crystals by a rf magnetron sputtering method, where He and O sub 2 mixture sputtering gas and an off-axis geometry were used. The EPMA measurement indicated that the films deposited on the Bi-2201 single crystal had approximately the same composition as those on MgO substrate, which showed a Bi-221 single-phase. The film deposited on the Bi-2201 single crystal post-annealed at 500degC for 0.5h showed a metallic temperature dependent resistance in the normal state and the superconducting transition (T sub c sup o sup n sup s sup e sup t) of about 80 K. Therefore, the Bi-2212 films are considerate to grow on the substrate of the Bi-2201 singe crystal. (author)

  20. Direct observation of interlayer Josephson vortices in heavily Pb-doped Bi2Sr2CaCu2Oy by scanning superconducting quantum interference device microscopy

    International Nuclear Information System (INIS)

    Kasai, Junpei; Hasegawa, Tetsuya; Okazaki, Noriaki; Koinuma, Hideomi; Nakayama, Yuri; Shimoyama, Jun-ichi; Kishio, Kohji; Motohashi, Teruki; Matsumoto, Yuji

    2006-01-01

    Josephson vortices trapped in cross-sectional edge surfaces of Pb 0.6 Bi 1.4 Sr 2 CaCu 2 O y has been directly observed by using a scanning superconducting quantum interference device (SQUID) microscope. The magnetic field distribution B z around each vortex is substantially anisotropic, compared with the usual vortex in the ab-plane, and is extended over 100 μm toward the in-plane direction. By fitting a theoretical B z function to experimental ones, c-axis penetration depth λ c was estimated to be 11.2 ±0.7 μm, which is in good agreement with the literature value, 12.6 μm, obtained from the Josephson plasma edge frequency. (author)