WorldWideScience

Sample records for ceramic membrane microfiltration

  1. PERFORMANCE EVALUATION OF CERAMICS MICROFILTRATION MEMBRANE FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    F.T. Owoeye

    2016-05-01

    Full Text Available Ceramic membranes are especially suitable for processes with high temperatures and harsh chemical environments or for processes where sterilizability of the membrane is important. The main objective of this work is to determine the evaluation of four different ceramic membranes with different material compositions. Ceramic disc type microfiltration membranes were fabricated by the mould and press method from different percentage compositions of clay, kaolin, sawdust and wood charcoal. The fabricated membranes were sintered at a temperature of 1100°C and characterized by an X-ray diffractometer and optical scanner. Compressibility tests and physical properties of the membranes were also examined. It was observed that, as the percentage composition of kaolin increased from 0 to 80% and the percentage composition of clay decreased from 80 to 0% respectively, the compressive stress of all the sample membranes increased, with an increase in compressive strain from 1.8 to 2.4. Sample A had the highest value of compressive stress from 1.8 to 2.2 compressive strain, but sample B had the highest value of compressive stress of 150MPa at a compressive strain of 2.4. Optical micrographs of all membranes showed the presence of uniformly distributed pores and no cracks were seen around them. It was concluded that, with increasing percentage of kaolin and decreasing percentage of clay, there was a decrease in porosity and water absorption, as well as a decrease in the mechanical properties of the fabricated membranes.

  2. Cake layers and long filtration times protect ceramic micro-filtration membranes for fouling

    OpenAIRE

    Lu, J

    2013-01-01

    The objective of this research was to decrease membrane fouling of a ceramic microfiltration system and at the same time increase the recovery. A conventional operation in micro- and ultrafiltration is an in-line coagulation and a frequent hydraulic backwash. The idea about these frequent backwashes is to limit the accumulation of fouling on the membrane. But the cake layer of iron or alum flocks can also protect the membrane for pore blocking and a frequent backwash can expose the membrane f...

  3. Cake layers and long filtration times protect ceramic micro-filtration membranes for fouling

    NARCIS (Netherlands)

    Lu, J.

    2013-01-01

    The objective of this research was to decrease membrane fouling of a ceramic microfiltration system and at the same time increase the recovery. A conventional operation in micro- and ultrafiltration is an in-line coagulation and a frequent hydraulic backwash. The idea about these frequent backwashes

  4. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  5. PROCESSING AND CHARACTERIZATION OF TUBULAR CERAMIC SUPPORT FOR MICROFILTRATION MEMBRANE PREPARED FROM PYROPHYLLITE CLAY

    Directory of Open Access Journals (Sweden)

    Abedallah Talidi

    2011-09-01

    Full Text Available Tubular macroporous support for ceramic microfiltration membranes were prepared by extrusion followed by sintering of the low cost pyrophyllite clay. Clay powders mixed with some organic additives can be extruded to form a porous tubular support. The average pore size of the membrane is observed to increase from 5 µm to 10.8 µm when sintering temperature increase from 900 °C to 1200 °C. However, with the increase in temperature from 900 °C to 1200 °C, the support porosity is reduced from 47% to 30% and flexural strength is increased from 4 MPa to 17 MPa. The fabricated macro-porous supports are expected to have potential applications in the pre-treatment and also can be used like support for membranes of ultra-filtration.

  6. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  7. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.

    Science.gov (United States)

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively. PMID:19699033

  8. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jedidi, I.; Saidi, S.; Khemakhem, S.; Larbot, A.; Elloumi-Ammar, N.; Fourati, A.; Charfi, A.; Salah, A.B.; Amar, R.B. [Science Faculty of Sfax, Sfax (Tunisia)

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700{sup o}C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24h then a sintering at 800{sup o}C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 {mu} m and the thickness was around 20 {mu} m. The membrane permeability was 475 l/h m{sup 2} bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 1001 h{sup -1} m{sup -2}). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  9. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. PMID:27265169

  10. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C.

  11. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    Science.gov (United States)

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. PMID:27486951

  12. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  13. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  14. 电絮凝强化陶瓷微滤膜出水水质研究%Enhanced Effluent Quality of Ceramic Microfiltration Membrane Combined with Electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    周振; 姚吉伦; 庞治邦; 刘波

    2016-01-01

    In order to treat micro-polluted surface water more effective by using ceramic microfiltration mem-brane, electrocoagulation was employed to improve the effluent quality of ceramic membrane.Factors such as cur-rent density, influent flow and filtering mode that affected the effluent quality in hybrid process was studied.The optimized operating conditions were current density of 2.0 mA/cm2 , influent flow of 4 L/min and cross flow filtra-tion with 100%excretion rate.At the same time, the comparison of ceramic microfiltration membrane performance with chemical-coagulation and electrocoagulation pretreatment were conducted.The results indicated that conven-tional chemical coagulation was superior to electrocoagulation in organic matter removal and the gap in it raised with the increasing of Al3+concentration.%为提高陶瓷微滤膜净化微污染水的效果,采用电絮凝预处理工艺提高陶瓷膜的出水水质。研究了电流密度、进水流量以及过滤模式对组合工艺出水水质的影响,得到了最佳运行参数:电流密度2.0 mA/cm2,进水流量4 L/min,过滤模式为错流过滤浓水全排除。同时,对比了化学絮凝和电絮凝对陶瓷微滤膜出水水质的影响,结果表明:电絮凝对有机物的去除效果不及化学絮凝,两者的差距随着Al3+浓度的增加而增大。

  15. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2012-01-01

    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  16. PREPARATION MICRO-FILTRATION CERAMIC MEMBRANE FROM NATURAL ZEOLITE FOR PROCION RED MX8B AND METHYLENE BLUE FILTRATION

    Directory of Open Access Journals (Sweden)

    Dyah Choiriyah

    2015-12-01

    Full Text Available The study of ceramic membrane fabrication from natural zeolite and its utilization for filtration of procion red MX8B and methylene blue has been investigated. The purposes of this study are to determine the effect of pressure on membrane permeability and selectivity and utilize natural zeolite as ceramic membranes procion red MX8B and methylene blue filtration. The membrane was prepared by metide press pellets and then calcined at 850 oC. The membranes were characterized by mechanical test, flux and rejection of dye. The compression test of the membrane found the values of 1369.178 psi in dry conditions to 1388.933 psi in wet conditions. The flux test found that the higher the pressure applied, the flux was increase. However, the high pressure also decreased the selectivity. Rejection test found that the rejection of methylene blue filtration up to 70 %. Meanwhile, procion red MX8B filtration has rejectivity less than 20 %.

  17. Investigation of organic fouling of microfiltration membrane

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; CUI Chong-wei; MA Jun

    2005-01-01

    Because the natural organic matters (NOMs) and proteins are the principal foulants of microfiltration membranes in drinking water, the primary aim of this paper is to obtain a better understanding of the interactions between those foulants and the microfiltration membrane from a novel view of coagulation. Based on reviewed literature and our own analysis, the authors consider that the behaviors of NOMs in the fouling of microfiltration membrane are like a form of crystal growth, and we recognize that the extent of the membrane hydrophobicity plays an essential role in NOMs fouling. However, proteins' fouling is more affected by intermolecular interaction. Additionally, the effect of membrane surface chemistry is not as essential as it is in the situation of NOMs.

  18. Clarification of purple cactus pear juice using microfiltration membranes to obtain a solution of betalain pigments

    OpenAIRE

    Vergara, Cristina; Beatriz CANCINO-MADARIAGA; Andrés RAMÍREZ-SALVO; Sáenz, Carmen; Robert, Paz; Mariane LUTZ

    2015-01-01

    Summary Betalains are fruit pigments possessing health-giving properties. To isolate the pigments, the juice must be separated from the fruit matrix, which contains biopolymers. The aim of this study was to clarify cactus pear juice by microfiltration to obtain a clarified juice containing betalains. For this purpose, two 0.2 µm pore size microfiltration membranes (ceramic and polymeric) were tested. The permeates were clear, free of turbidity and high in betalains (20%), also containing poly...

  19. Effect of Different Pore Sizes of Ceramic Microfiltration Membrane on the Removing Rate of Bacteria of Pomegranate Juice%不同孔径陶瓷微滤膜对石榴汁除菌效果的影响

    Institute of Scientific and Technical Information of China (English)

    艾提亚古丽·买热甫; 热合满·艾拉; 张敬

    2012-01-01

    以新疆和田酸石榴为原料加工石榴汁,采用不同孔径的陶瓷微滤膜对石榴汁进行除菌过滤,对比不同孔径(0.10、0.22、0.45 μm)微滤膜的膜通量、石榴汁除菌率、营养成分含量及色值等指标的变化,确定适于石榴汁过滤除菌的陶瓷微滤膜的孔径与最佳工艺参数.结果表明,用于石榴汁过滤除菌的陶瓷微滤膜的适宜孔径为0.22 μm;最佳工艺参数为:过滤压力0.20 MPa,料液温度20℃.在此条件下,陶瓷微滤膜过滤的石榴汁可保持较高的膜通量,有效去除果汁中的悬浮物和有害微生物,较好地保留营养成分,石榴汁在120d储藏过程中的色泽变化轻微.陶瓷微滤膜过滤除菌可以作为一种除菌工艺代替石榴汁加工中的传统热杀菌工艺.%In this experiment, the Xinjiang Hetian acid pomegranate was used as raw materials, pomegranate juice was filtered for bacteria removing by using different pore sizes of ceramic microfiltration membrane, and comparing the changes of membrane flux, bacteria removing rate, nutritional contents and colour value of pomegranate juice with different pore sizes (0.10, 0.22, 0.45 μm) of ceramic microfiltration membrane, and the suitable pore size of ceramic microfiltration membrane and optimum technological parameter of bacteria removing of pomegranate juice were determined. The results indicated that, the suitable pore size of ceramic microfiltration membrane of bacteria removing of pomegranate juice was 0.22 μm. Optimum technological parameters were as follows: the filtering pressure was 0.20 MPa, the feed temperature was 20 ℃. Under these conditions, the pomegranate juice could keep high membrane flux, and the suspensions and harmful bacteria in juice could be removel effectively, the nutritional contents could be kept better, and the change of pomegranate juice colour during storage time (120 d) was not significant. The removing bacteria technology of ceramic microfiltration membrane

  20. Study of aqueous pectin solutions microfiltration process by ceramic membrane - doi: 10.4025/actascitechnol.v33i2.7000

    Directory of Open Access Journals (Sweden)

    Vitor Renan da Silva

    2011-04-01

    Full Text Available In this work, pressure effects, separation efficiency and resistive effects of microfiltration of pectin solution were investigated. Stabilized permeate flux values were obtained for solutions concentrations of 1.0 and 2.0 g L-1 under different pressure conditions of 0.4, 0.8, 1.2 and 1.6 bar. A full factorial design with two levels was applied to evaluate the effects of the pressure, temperature and concentration in the process resistances. The experiments were performed in a crossflow microfiltration system with multitubular membrane with nominal pore size of 0.44 µm and feed flow of 1.0 m³ h-1. Pectin retention coefficients and process resistances were obtained following the resistances in series model. It was observed that the highest values of permeate flux for concentration solution of 1.0 and 2.0 g L-1 were at pressure of 1.2 and 0.8 bar, respectively, however, the lowest obtained permeate flux were at 1.6 bar. The permeate flux and the polarization resistance increased, respectively, with increasing temperature and concentration. The results showed that the lowest value of the retention coefficient was 93.4% and the most significant resistance was due to fouling. The highest value of resistance was 4.13 x 109 m² kg-1 at temperature of 30°C and concentration of 2.0 g L-1.

  1. Cross-flow membrane microfiltration of a bacteriol fermentation broth.

    Science.gov (United States)

    Nagata, N; Herouvis, K J; Dziewulski, D M; Belfort, G

    1989-08-01

    Although cross-flow membrane filtration is a very attractive option for harvesting cells and recovering enzymes from cell homogenates, the process is not without its problems. Foremost of these is the deposit of dissolved and suspended solutes onto the membrane surface during operation. The formation of these dense and sometimes compressive sublayers (often called cakes) offers additional resistance to axial and permeate flows and often affects the retention characteristics of the process. In view of the complex nature of the sublayer formation process and its sensitivity to cross-flow velocity, this investigation was undertaken to determine the main factors responsible for the decline in performance during the harvesting of B. polymyxa broth by membrane microfiltration. System parameters varied include axial flow rate, concentration of cells, proteins and other components in the feed, membrane materials (ceramic, polypropylene, and stainless steel), and cleaning methods. To help explain the observed results, a new mass transport model-the solids flux model-based on the assumptions that back migration of particles from the sublayer or membrane surface is negligible and that particles that reach the solid-solution interface attach (stick) completely, is tested. Using a variety of diagnostic methods, magnesium ammonium phosphate precipitate is formed during steam sterilization of the medium and is implicated as the major foulant in this study. PMID:18588126

  2. A sacrificial-layer approach to prepare microfiltration membranes

    NARCIS (Netherlands)

    Li, X.-M.; Ji, Y.; He, T.; Wessling, M.

    2008-01-01

    The preparation of hydrophilic microfiltration membranes by a sacrificial layer via co-casting is reported in this paper. The membranes were fabricated using two polymer solutions. Selection of the sacrificial coating layer was based on solution blending between coating solution/PSf solution and co-

  3. Membrane Fouling in Microfiltration used for Cell Harvesting

    Institute of Scientific and Technical Information of China (English)

    Tahereh Kaghazchi; Farzin Zokaee; Abbas Zare

    2001-01-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  4. 陶瓷膜微滤除菌技术提高超高温灭菌乳品质%Microfiltration of ceramic membrane for improving UHT milk quality

    Institute of Scientific and Technical Information of China (English)

    孔凡丕; 刘鹭; 张书文; 吕加平

    2012-01-01

    In order to improve the quality of UHT milk, high somatic cell count (SCC) and low SCC raw milk were degermed by microfiltration (MF) with 1.4 /um ceramic membrane. Four groups of milk were obtained: low SCC milk, MF low SCC milk, high SCC milk and MF high SCC milk. Then the four groups of milk were sterilized with ultra high temperature (UHT) to prepare four groups of UHT milk, which were stored in 37℃ and the quality was evaluated between the microfiltration and non-microfiltration groups. The results showed that in the high SCC and low SCC raw milk, residual bovine plasmin activity was 4.1% and 3.28% left respectively after UHT, while it was almost eliminated during the procedure of "MF+UHT". Both the quality indexes of the "MF+UHT" milk, including non-casein protein (NCN), Ph value, acidity and fat globule particle size, changed littler than UHT milk without MF and the quality kept better. Relative to the low SCC groups, the quality improved much more in the high SCC groups through microfiltration. The results can provide a reference for the use of high somatic cell milk to produce high quality UHT milk.%为了提高UHT超高温灭菌乳的品质,利用孔径为1.4μm的纤维管状陶瓷膜对体细胞数量高低不同的2组原料乳进行微滤除菌,得到4组牛乳,分别为:低体细胞原料乳、低体细胞微滤乳、高体细胞原料乳和高体细胞微滤乳.然后对4组牛乳进行UHT灭菌处理,得到4种UHT乳,将其置于37℃下进行贮藏试验,通过试验对比了微滤和不微滤对于UHT乳品质的影响.结果表明:2组原料乳经UHT处理,纤溶酶活性分别残留了4.1%和3.28%,而在“微滤+UHT”的工艺组合下,乳中的纤溶酶活性未检出.与不微滤的2种UHT乳相比,2种微滤UHT乳在贮藏期间的非酪蛋白氮、pH值、酸度、脂肪球粒径等指标值的变化更小,其品质保持更好.相对低体细胞牛乳而言,微滤除菌对高体细胞牛乳所制备的UHT乳的品质改善作用

  5. Electrospun nylon 6 microfiltration membrane for treatment of brewery wastewater

    Science.gov (United States)

    Islam, Md. Shahidul; Sultana, Sormin; Rahaman, Md. Saifur

    2016-07-01

    Nylon 6 microfiltration membrane, for the treatment of brewery wastewater, was fabricated using an electrospinning technique, followed by hot-pressing. The fabricated membrane was robust and demonstrated highly hydrophilic property (water contact angle 39° at the touching point to the membrane surface and the water droplet was completely immersed into the membrane in 7 seconds), and higher porosity (65%) with pore sizes of 100 to 210 nm. The electrospun nylon 6 membrane showed higher pure water flux (850 LMH) at an applied pressure of 4 psi. The same membrane also demonstrated a 95% rejection rate of suspended solids (SS) in brewery wastewater treatment.

  6. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.

  7. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-12-01

    Full Text Available The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al2O3-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  8. Application of microfiltration sterilizing of ceramic membrane in hami melon juice%陶瓷膜在哈密瓜汁微滤除菌工艺中的应用研究

    Institute of Scientific and Technical Information of China (English)

    张敬; 热合满·艾拉; 艾提亚古丽·买热甫

    2012-01-01

    哈密瓜汁对热敏感,为了减少因热处理导致的营养成分和风味物质的损失,采用无机陶瓷膜对哈密瓜汁进行微滤除菌。通过研究三种孔径膜的膜通量、微滤前后哈密瓜汁营养成分的变化及除菌效果,选择最适的膜孔径,并在此基础上选择最适的操作压力和进料温度,从而确定最佳的微滤除菌工艺参数。结果表明:最佳的工艺参数为膜孔径0.21.zm,操作压力O.2MPa,进料温度25℃。在此条件下处理的哈密瓜汁透光度可3998.8%,浊度为2.61NTU,菌落总数为13CFU·mL-1,其中大肠菌群、霉菌、酵母菌均未检出。%Hami melon juice is sensitive to the heat. In order to reduce the loss of nutrients and special flavor substances because of heat treatment,the microfiltration of inorganic ceramic membrane was used for sterilization of hami melon juice. The membrane flux,the changes of nutrients and the effects of sterilization were studied about three kinds of membrane pore size,and then the optimal membrane pore size,the optimal operating pressure and the optimal feed temperature was chosen. The experimental data indicated that the best processing parameters as follow=the membrane pore size was 0.2μm,operating pressure was 0.2MPa, and the feeding temperature was 25℃. In this processing condition=the transparency reached 98.8% ,the turbidities was 2.61NTU,the colony number of hami melon juice was 13CFU .mL-1. Coliforms,mycete,yeast were not detected in hami melon juice.

  9. Chemical cleaning of potable microfiltration and ultrafiltration membranes

    OpenAIRE

    Porcelli, Nicandro

    2009-01-01

    Concerns over possible waterborne disease forced drinking water supply companies in England and Wales to adopt microfiltration and ultrafiltration technologies rapidly. MF and UF membrane plants are designed to produce water of a consistent quality regardless of throughput and fluctuations in the feedwater quality. To operate well they need to maintain flux and balance the rate of fouling, and chemical cleaning performance is critical to this. Giant steps have been taken into characteriz...

  10. Treatment of Marble Processing Wastewaters by Ceramic Micro-Filtration Membrane%陶瓷微滤膜处理大理石加工废水的研究

    Institute of Scientific and Technical Information of China (English)

    金珊; 孙杰

    2011-01-01

    采用孔径为0.8μm的陶瓷膜处理大理石生产过程中产生的废水,研究了操作压差和膜面流速等对膜性能的影响,结果表明,合适的操作条件是操作压差0.07 MPa,膜面流速1.0 m/s,滤出液中固体颗粒的截留率在99.2%~99.8%,膜微滤过程对废水的pH值和COD值的影响不大,运行中膜通量稳定平均值为400L/(m2·h),料液的固体质量浓度大于55 g/L时,膜通量明显下降.对污染膜用清水清洗20 min和体积分数为1%的HNO3溶液清洗30 min,膜通量可以得到完全恢复.渗透液返回生产工序循环使用,截留液进入沉降池.%Treatment of marble processing wastewaters by ceramic micro-filtration membrane with pore size of 0.8 μm was performed.The effects of the transmembrane pressure and crossflow velocity on the MF performance were investigated.The experimental results show that the feasible transmembrane pressure is 0.07 MPa and crossflow velocity 1.0 m/s.The solid rejections of the permeate samples were from 99.2% to 99.8%.The MF process has no remarkable effect on the wastewater pH and COD, the membrane flux remained constant throughout the experiment, the average value is 400 L/(m2 · h).The flux was remarkable decline when the solid concentration of feed liquid is over 55 g/L.The membrane flux can be recovered completely after cleaned by the water with 20 minutes and nitric acid solution (volume fraction 1 %)with 30 minutes.The MF process allowed the treated water to be recycled into the process, whereas the concentrated stream (rich in particulate matter) turned into sedimentation pool.

  11. 重组毕赤酵母产华根霉脂肪酶的陶瓷膜微滤除菌工艺研究%Pilot scale ceramic membrane microfiltration for Pichia pastoris cells separation in production of Rhizopus chinensis lipase

    Institute of Scientific and Technical Information of China (English)

    谢甲有; 喻晓蔚; 徐岩

    2012-01-01

    在重组毕赤酵母生产脂肪酶的提取中,应用并优化了陶瓷膜微滤除菌工艺,确定了最佳条件为膜截留分子量500 kDa、膜操作压力0.3 MPa、温度20℃、湿菌体含量35%,先对发酵液稀释1.5倍后再进行洗滤.40L处理量的小试结果显示,在5h处理时间内,能获得高达92.70%的酶活回收率.560 L处理量的中试放大,酶活回收率为89.91%,耗时5.5h.在膜的清洗与再生中,采用2% NaClO和2%NaOH在60℃、0.3 MPa膜压力下进行清洗40 min,清水膜通量恢复率为98.14%.陶瓷膜与板框除菌的比较试验发现,两种方法都获得了微生物限量合格的产品和较高的酶活回收率,但陶瓷膜微滤的滤液微生物检出量更低,处理时间较短,动力能耗更低,易与超滤膜耦合提取,废水产生量更少,菌体废渣易于回收,是一种节能减排、清洁环保的新型除菌工艺.%In this research, ceramic rrEmbrane microfiltration was applied to separate Pichia pastoris cells in the process of production of Rhizopus chinensis lipase. The optimal conditions were 500 kDb MWCO with trans-membrane pressure of 0.3 MPa, ternpreture of 20 ℃ , wet cell content of 35% (w/v) and 1.5 times dilution of the fermentation broth before rricrcfiltration sterilization with ceramic membrane. In the 40 L broth microfiltrating treatment, the results showed that the lipase activity recovery of 92.70% was obtained after 5 h operation. Scaling up to 560 L, the lipase activity recovery of 89.91% was obtained after 5.5 h operation. On the industrial production scale, the total membrane area of ceramic membrane microfiltraticn could be increased to 115% -120%, based on the unit membrane area treatment capacity of 17017m2. After rinsing with 2% NaClO and 2% NaOH at 60 ℃ and 0.3 MPa for 40 minutes, the recovery of ceramic membrane could reach 98.14% of the water flux. Gmpared with frame filter, both methods could achieve high lipase activity recovery and qualified products

  12. Mechanism of Coalescence Demulsification with Microfiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    邹财松; 骆广生; 孙永; 戴猷元

    2003-01-01

    A study on the membrane coalescence demulsification was carried out with four working systems of water/n-butyl alcohol, water/n-octanol, water/30% TBP(in kerosene) and water/kerosene. The membranes made of polytetrafluoroethylene (PTFE) with 1.0μm pore size were used. The results indicated that the excellent demulsification efficiency for emulsions with various oil contents was obtained. A conductivity probe was used to study the demulsification mechanism. An electrode probe was designed and used to determine the oil content near the membrane surface. The obtained data showed that the oil content in the permeated stream was much higher than that in the feed emulsion. A physical mechanism to explain the membrane demulsification was put forward.

  13. 声强对板式陶瓷膜微滤超细TiO2悬浆液过程的影响%Effect of Acoustic Intensity on Plate Ceramic Membrane Microfiltration of Fine TiO2 Suspension

    Institute of Scientific and Technical Information of China (English)

    熊伟; 崔鹏; 印美娟; 王凤来; 陈亚中

    2012-01-01

    采用声强测量仪测量了超声发生器的声强分布,研究了声强对板式陶瓷膜错流微滤超细TiO2悬浆液性能的影响,以优化膜组件的位置.结果表明,声强在三维空间均存在不均匀分布,且声强是影响膜微滤性能的主要因素,滤饼层质量变化率R和超声强化因子E与声强呈近似正相关关系.膜面平均声强约0.5 W·cm-2时,R超过0.23,E可达1.2左右;平均声强约0.6 W·cm-2时,R超过04,E可达1.3左右.超声与膜微滤组合的优化方式为:膜组件同向放置于换能器上方并处于声场近场区内.%Distribution of acoustic intensity in ultrasonic generator was measured by ultrasonic power measuring meter. In order to optimize the location of membrane module in ultrasonic generator, effect of acoustic intensity on cross-flow microfiltration of fine TiO2 suspension with plate ceramic membrane was investigated. The results show that the distribution of acoustic intensity in three-dimensional space of ultrasonic generator is non-uniform, and acoustic intensity influences membrane microfiltration process significantly. The acoustic intensity is positively correlated with the mass change rate of cake layer R and the ultrasonic enhancement factor E. When the average acoustic intensity on membrane surface is about 0.5 W-cm , R is higher than 0.23 and E is about 1.2, and when the average acoustic intensity on membrane surface is about 0.6 Wcm"2, R is bigger than 0.4, and E is about 1.3. The optimized location found for ultrasonic-enhanced membrane microfiltration module is as follows: the ultrasonic irradiation direction is the same as the direction of permeation flux; membrane module is placed on top of the transducer and in the near field of the ultrasonic field.

  14. Membrane Fouling in Microfiltration of Sanitary Landfill Leachate for Removals of Colour and Solids

    Institute of Scientific and Technical Information of China (English)

    Emad S.M.Ameen; Abdullrahim Mohd Yusoff; Mohd Razman Salim; Azmi Aris; Aznah Nor Anuar

    2013-01-01

    In this research,the treatability of solids from sanitary landfill leachate by microfiltration membrane was investigated and the fouling of the membrane was carefully studied.Continuous microfiltration process was carried out for 21 h in experimental system involved coagulation with Moringa oleifera followed by filtration using submerged hollow fibre microfiltration membrane (MFM).Coagulation with M.Oleifera,air diffusers and back flush technique were used for preventing or alleviating fouling of the membrane.The hollow fibre MFM showed high removals of 98%,91% and 99% for turbidity,colour and total suspended solids respectively.It was obtained at the beginning of the filtration.However,quality of the filtrate rapidly declined during the filtration process.Fouling was found to proceed according to the classical cake filtration model.Coagulation with M.Oleifera as well asthe back-flush technique could not fully restore the deterioration occurred to the membrane.

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  16. Estudo do processamento por microfiltração de soluções aquosas de pectina em membranas cerâmicas = Study of aqueous pectin solutions microfiltration process by ceramic membrane

    Directory of Open Access Journals (Sweden)

    Vítor Renan da Silva

    2011-04-01

    Full Text Available Neste trabalho foram avaliados os efeitos da pressao, a eficiencia de separacao e os efeitos resistivos na microfiltracao de solucoes aquosas de pectina. O valor do fluxo de permeado estabilizado foi determinado para solucoes com concentracoes de 1,0 e 2,0 g L-1 submetidas a pressoes de 0,4; 0,8; 1,2 e 1,6 bar. Um delineamento fatorial completo com dois niveis foi realizado para se avaliar os efeitos da pressao, temperatura e concentracao nas resistencias doprocesso. Os ensaios foram conduzidos em um sistema de microfiltracao tangencial com membranas multitubulares com tamanho nominal de poro de 0,44 ƒÝm e vazao de alimentacao de 1,0 m3 h-1. Determinaram-se os coeficientes de retencao de pectina e as resistencias seguindo omodelo das resistencias em serie. Os maiores fluxos de permeados para solucoes com 1,0 e 2,0 g L-1 foram observados, respectivamente, a pressao de 1,2 e 0,8 bar, enquanto os menores fluxos foram observados a 1,6 bar. O fluxo de permeado e a resistencia por polarizacao elevam-se com o aumento da temperatura e da concentracao, respectivamente. O coeficiente de retencao minimo observado foi de 93,4 % e a resistencia mais significativa foi a do fouling. A maior resistencia foi de 4,13 x 109 m2 kg-1 para temperatura de 30¢XC e concentracao de 2,0 g L-1. In this work, pressure effects, separation efficiency and resistive effects of microfiltration of pectin solution were investigated. Stabilized permeate flux values were obtained for solutions concentrations of 1.0 and 2.0 g L-1 under different pressure conditions of 0.4, 0.8, 1.2 and 1.6 bar. A full factorial design with two levels was applied to evaluate the effects of the pressure, temperature and concentration in the process resistances. The experiments were performed in a crossflow microfiltration system with multitubular membrane with nominal pore size of 0.44 ƒÝm and feed flow of 1.0 m3 h-1. Pectin retention coefficients and process resistances were obtained following

  17. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    OpenAIRE

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-01-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane h...

  18. Supported microporous ceramic membranes

    Science.gov (United States)

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  19. Binding of Estrone to Microfiltration Hollow Fibre Membranes in Filtration of Solutions Containing Trace Estrone

    OpenAIRE

    Chang, Sheng; Waite, T. D.; Schäfer, Andrea; Fane, Anthony G.

    2002-01-01

    Increased concern is being paid to the health and environmental risk caused by trace natural and synthetic hormones discharged from sewage treatment plant (STPs). This study, which is part of a larger project on investigation of hybrid membrane processes for trace hormones removal, focuses on binding of hormones to microfiltration hollow fibre membranes in filtration of solutions containing trace hormones. The adsorption capacity of the membrane, kinetics of adsorption and deso...

  20. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.

    Science.gov (United States)

    Yoshida, Keitaro; Tashiro, Yosuke; May, Thithiwat; Okabe, Satoshi

    2015-06-01

    In order to examine the interactions between physicochemical properties of specific extracellular polymeric substances (EPS) and membrane biofouling, we investigated the impacts of hydrophilic colanic acid, as a model extracellular polysaccharide component, on initial bacterial attachment to different microfiltration (MF) membranes and membrane biofouling by using Escherichia coli strains producing different amounts of colanic acid. In a newly designed microtiter plate assay, the bacterial attachment by an E. coli strain RcsF(+), which produces massive amounts of colanic acid, decreased only to a hydrophobic membrane because the colanic acid made cell surfaces more hydrophilic, resulting in low cell attachment to hydrophobic membranes. The bench-scale cross-flow filtration tests followed by filtration resistance measurement revealed that RcsF(+) caused severe irreversible membrane fouling (i.e., pore-clogging), whereas less extracellular polysaccharide-producing strains caused moderate but reversible fouling to all membranes used in this study. Further cross-flow filtration tests indicated that colanic acid liberated in the bulk phase could rapidly penetrate pre-accumulated biomass layers (i.e., biofilms) and then directly clogged membrane pores. These results indicate that colanic acid, a hydrophilic extracellular polysaccharide, and possible polysaccharides with similar characteristics with colanic acid are considered as a major cause of severe irreversible membrane fouling (i.e., pore-clogging) regardless of biofilm formation (dynamic membrane).

  1. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  2. Ordered ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  3. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms.

    Science.gov (United States)

    Wang, Sen; Liu, Charles; Li, Qilin

    2011-01-01

    Organic polymers are commonly used as coagulants or flocculants in pretreatment for microfiltration (MF). These high molecular weight compounds are potential membrane foulants when carried over to the MF filters. This study examined fouling of three MF membranes of different materials by three commonly used water treatment polymers: poly(diallyldimethylammonium) chloride (pDADMAC), polyacrylamide (PAM), and poly(acrylic acid-co-acrylamide (PACA) with a wide range of molecular weights. The effects of polymer molecular characteristics, membrane surface properties, solution condition and polymer concentration on membrane fouling were investigated. Results showed severe fouling of microfiltration membranes at very low polymer concentrations, suggesting that residual polymers carried over from the coagulation/flocculation basin can contribute significantly to membrane fouling. The interactions between polymers and membranes depended strongly on the molecular size and charge of the polymer. High molecular weight, positively charged polymers caused the greatest fouling. Blockage of membrane pore openings was identified as the main fouling mechanism with no detectable internal fouling in spite of the small molecular size of the polymers relative to the membrane pore size. Solution conditions (e.g., pH and calcium concentration) that led to larger polymer molecular or aggregate sizes resulted in greater fouling. PMID:20828779

  4. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  5. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    Science.gov (United States)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide

  6. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.

    Science.gov (United States)

    Zhang, Ying; Yu, Xin; Gong, Song; Ye, Chengsong; Fan, Zihong; Lin, Huirong

    2014-02-01

    Membrane biofouling, resulting from biofilm formation on the membrane, has become the main obstacle hindering wider application of membrane technology. Initial biofouling proves to be crucial which involves early stages of microbial adhesion and biofilm formation. Biological control of microbial attachment seems to be a promising strategy due to its high efficiency and eco-friendliness. The present study investigated the effects of a bacterium Bacillus pumilus SW9 on controlling the initial fouling formed by four target bacterial strains which were pioneer species responsible for biofouling in membrane bioreactors, using microfiltration membranes as the abiotic surfaces. The results suggested that strain SW9 exhibited excellent antibiofilm activity by decreasing the attached biomass of target strains. The production of extracellular polysaccharides and proteins by four target strains was also reduced. A distinct improvement of permeate flux in dead-end filtration systems was achieved when introducing strain SW9 to microfiltration experiments. Scanning electron microscopy and confocal laser scanning microscopy were performed to further ascertain significant changes of the biofouling layers. A link between biofilm inhibition and initial biofouling mitigation was thus provided, suggesting an alternatively potential way to control membrane biofouling through bacterial interactions.

  7. Ceramic membrane separation technique for washing nano-sized ceramic powder precursors

    Institute of Scientific and Technical Information of China (English)

    Qiang Dong; Xingqin Liu; Tianshu Zhang

    2011-01-01

    Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and Al203 powder precursors obtained by wet chemical methods.The key parameters for the washing process,such as operation pressure,cross-flow velocity,and slurry concentration,were examined and optimized.The shape and size of particles influenced the structure of the filter cake,leading to different permeation flux for different systems.The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.

  8. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  9. Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    International Nuclear Information System (INIS)

    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain. (author)

  10. Size enlargement of radioactive and hazardous species and their separation by microfiltration and ultrafiltration membranes

    International Nuclear Information System (INIS)

    Separation and volume reduction of aqueous solutions involving membranes is evolving into an expanding and diversified field. Numerous commercially successful membranes and their applications are now available. Among different driving forces used in membrane separation, pressure-driven separation has gained wide application. Depending on the size of the dissolved species in solution to be separated, the pressure needed to achieve the desired separation varies. The microfiltration and ultrafiltration membrane systems are low-pressure processes that generally operate below 350 kPa. To exploit these membranes in applications involving the removal of dissolved contaminants from solutions, it is essential to create a suitable size for the dissolved contaminants, so that the membranes can effectively retain them while producing a filtrate stream essentially free of contaminants. Size enlargement of the dissolved contaminants can be achieved through solution conditioning with the addition of one or a combination of chemical reagents and powdered materials. Examples of typical additives include: pH chemicals, polyelectrolytes, microorganisms and powdered adsorption/ion-exchange materials. In many situations, adequate control and optimization of the system chemistry and hydraulic conditions provide high selectivity and efficiency for contaminant removal. This paper summarizes removal efficiency data for cadmium, lead, mercury, uranium, arsenic, strontium-90/85, cesium-137 and iron. These data resulted from various initiatives on membrane technology undertaken during the past five years by the Waste Processing Technology group at Chalk River Laboratories. The technology involves size enlargement of contaminants present in waste solution, and their separation using either microfiltration or ultrafiltration. The data support remedial applications involving treatment of contaminated groundwater and soils

  11. Mathematical models of membrane fouling in cross-flow micro-filtration

    Directory of Open Access Journals (Sweden)

    Mónica Jimena Ortíz Jerez

    2010-04-01

    Full Text Available The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane sur-face (also called fouling, thereby affecting system performance. Fouling has been related to permeate flux decay re-sulting from changes in operating variables. Many articles have been published in an attempt to explain this phe-nomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “con-centration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.

  12. Preparation Method of Crack-free PVDF Microfiltration Membrane with Enhanced Antifouling Characteristics.

    Science.gov (United States)

    Woo, Sahng Hyuck; Lee, Ju Sung; Lee, Hyun Ho; Park, Jinwon; Min, Byoung Ryul

    2015-08-01

    This study proposes a method to prepare a crack-free poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane with enhanced antifouling property. In the study, blending 4% poly(vinylidene fluoride)-graft-poly(sulfopropyl methacrylate) (PVDF-g-PSPMA) and 1.5% potassium perchlorate (KClO4) led to crack prevention during membrane preparation via nonsolvent induced phase separation (NIPS) when compared with blending with 4% PVDF-g-PSPMA only (without KClO4). The resulting crack-free membrane (A3) had both smooth surface structure and hydrophilicity in comparison with pristine PVDF membrane (A1). In addition, blending with PVDF-g-PSPMA and KClO4 also allowed the A3 membrane to exhibit uniform pore size distribution (PSD) and smooth surface structure, compared with PVDF membrane commercially available from company "M" in Germany. The aforementioned properties led to antifouling characteristics in the crack-free membrane (A3). According to flux performances, flux recovery and cumulative permeate volume (between 120 and 240 min) of crack-free membrane (A3) were 11.41 and 17.41% superior to those of commercial membrane, respectively. PMID:26172403

  13. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    Science.gov (United States)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  14. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water

    Science.gov (United States)

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Ma, Xiaoyan

    2015-01-01

    This study focused on the effect of powder activated carbon (PAC) adsorption on microfiltration (MF) membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) during 10–200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW). MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling. PMID:26378552

  15. Preparation and Characterization of the Modified Polyvinylidene Fluoride (PVDF) Hollow Fibre Microfiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    LaiZhou SONG; Zunju ZHANG; ShiZhe SONG; Zhiming GAO

    2007-01-01

    A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF)hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.

  16. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-09-01

    Full Text Available This study focused on the effect of powder activated carbon (PAC adsorption on microfiltration (MF membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC and ultraviolet absorbance at 254 nm (UV254 during 10–200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW. MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling.

  17. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    Science.gov (United States)

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested. PMID:23911830

  18. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  19. Properties of microfiltration membranes: the effects of adsorption and shear on the recovery of an enzyme.

    Science.gov (United States)

    Bowen, W R; Gan, Q

    1992-08-01

    An experimental study of the interaction of the enzyme yeast alcohol dehydrogenase (YADH) with microfiltration membranes has been carried out. Most measurements were made with capillary pore inorganic membranes (Anopore) with some comparative measurements being made with polymeric membranes of low protein affinity (Durapore). It has been shown that the prolonged exposure of the enzyme to the inorganic membrane under low-shear conditions (slow recycle) resulted in a loss of enzyme activity. Under filtration conditions, the membrane permeation rate decreased continuously with time. This decrease could be quantified using the standard blocking filtration law, which describes a decrease in pore volume due to deposition of enzyme on the walls of the pore. No significant loss in activity of permeating enzyme occurred under solution conditions where the enzyme was stable. However, a significant loss of such activity occurred under solution conditions where the enzyme was slightly unstable. The experiments indicate that the likely mechanism for activity loss is a membrane/enzyme interaction resulting from a shear induced deformation of the enzyme structure. Two conclusions of practical importance are drawn from the work.

  20. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    Science.gov (United States)

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-01-01

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed. PMID:27509528

  1. Properties of microfiltration membranes: Mechanisms of flux loss in the recovery of an enzyme.

    Science.gov (United States)

    Bowen, W R; Hall, N J

    1995-04-01

    The transmission and rate of filtration of the enzyme yeast alcohol dehydrogenase (YADH) has been studied at capillary pore microfiltration membranes. Photon correlation spectroscopy (PCS) with nanometer resolution showed that the enzyme existed as discreate molecules only for a narrow range of pH and ionic strength. Under such conditions, the transmission of the enzyme was high. However, the rate of filtration still decreased continuously with time. Analyssis of the time dependence of the rate of filtration indicated that this decrease was due to in-pore enzyme deposition at low concentration ("standard blocking model") and suface depositon at high concentration ("cake filtration model"). Use of atomic force microscopy (AFM) gave unequivocal and quantitative confirmation of these inferences. The work shows the great advantage of using advanced physical characterization techniques, both for the identification of the optimum conditions for filtration (PCS) and for the elucidation of mechanisms giving rise to inefficiencies in the filtration process (AFM). (c) 1995 John Wiley & Sons, Inc.

  2. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up.

    Science.gov (United States)

    Wang, Xinhua; Yuan, Bo; Chen, Yao; Li, Xiufen; Ren, Yueping

    2014-09-01

    The high salinity remains as one of major obstacles of the osmotic membrane bioreactor (OMBR). In this study, a new pathway was explored to prevent the salinity build-up by integrating the micro-filtration (MF) membrane to the OMBR (MF-OMBR). The results indicated that the salinity characterized by conductivity in the MF-OMBR was effectively alleviated and controlled at a lower value of about 5 mS/cm, and the stable flux of forward osmosis (FO) membrane correspondingly increased to approximately 5.5L/(m(2)h). Besides, the addition of MF membrane in the OMBR could increase the total organic carbon (TOC) and ammonium nitrogen (NH3-N) removals due to the activated sludge by improving the microbial activity. The membrane fouling especially the reversible fouling in the MF-OMBR was severer compared to that in the conventional OMBR, which resulted in a lower water flux than the expectation due to the increase of filtration resistance and external concentration polarization.

  3. Structure-performance-fouling studies of polysulfone microfiltration hollow fibre membranes

    Indian Academy of Sciences (India)

    P S Singh; K Parashuram; S Maurya; P Ray; A V R Reddy

    2012-10-01

    Hollow fibre microfiltration membranes were prepared by solution spinning process using polymer dope containing different amounts of polysulfone (PS), polyvinylpyrollidone (PVP) and ,-dimethylformamide (DMF). Spinning dope having PS: PVP: DMF (w/w) of 15: 5: 80, 15: 7: 78 and 17: 8: 75 were used for spinning to obtain hollow fibres having different dimensions (outer and inner diameters) and pore characteristics. Relatively high water permeability was observed for hollow fibre membrane spun from 15 wt. % solution than 17 wt. % PS solution having the same PVP/PS ratio of 0.47. Decrease of the PVP/PS ratio to 0.33 in the dope solution of 15 wt.%PS solution produced hollow fibre membrane with lower flux. By changing the spinning parameters, fibre with different dimensions were obtained without a significant change in microstructural morphology. The flux decline due to fouling for the permeation of PEO/BSA solution was maximum for the hollow fibre membrane obtained from 15 wt. % PS solution while a steady flux with slight fouling was observed for the hollow fibre membrane obtained from 17 wt. %PS solution, when the PVP/PS ratio was 0.47.

  4. Synthesis and characterization of ceramic membranes for micro filtration

    International Nuclear Information System (INIS)

    This paper presents the results of a preliminary research work in the development of ceramic membranes by moulding process. The two major objectives were to determine the effect of operating parameters ori- the membrane sheet and membrane characterization. The starting material for the membrane was powdered aluminum oxide and alumina granules. Alumina granules were obtained by spray drying of mixture of alumina with additives and binders under specific conditions. The membrane sheet was produced by mould pressing at various pressures and then sintering at different temperatures. Membrane characterization was done based on microstructure using SEM, pore size distribution, density, and porosity. Strong and porous membranes were produced at pressing force of 120 -140 kN and sintering temperature of 1400 -1500 'C. Pore size and porosity obtained was in the range of 2 -10 μ m, and 13 - 48% respectively. These membranes can be used for, microfiltration at elevated temperature and under extreme environmental condition. They can also be used as porous support for the production qf composite asymmetric UF/hyperfiltration, and gas separation membranes. Further work in the refinement of' pore-size and permeation studies is envisaged

  5. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    Science.gov (United States)

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-03-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.

  6. Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation

    Institute of Scientific and Technical Information of China (English)

    Jin Wang; Siru Pan; Dongping Luo

    2013-01-01

    A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process.The characteristics of humic acid aggregates coagulated by different iron-based coagulants,such as charge,size,fractal dimension and compressibility,have an effect on the cake layer structure.At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation,at the point of charge neutralization for near zero zeta potential,the aggregate particles produced possess the greatest size and highest fractal dimension,which contributes to the cake layer being most loose with high porosity and low compressibility.Thus the membrane filterability is better.At a low or high iron dose of FC and PFS,a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility.Therefore the membrane fouling is accelerated and MF permeability becomes worse.The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are,the lower the porosity and the tighter the cake layer conformation.This also explains the MF membrane flux variation visually and accurately.

  7. Studies of polypropylene membrane fouling during microfiltration of broth with Citrobacter freundii bacteria

    Directory of Open Access Journals (Sweden)

    Gryta Marek

    2015-12-01

    Full Text Available In this work a fouling study of polypropylene membranes used for microfiltration of glycerol solutions fermented by Citrobacter freundii bacteria was presented. The permeate free of C. freundii bacteria and having a turbidity in the range of 0.72–1.46 NTU was obtained. However, the initial permeate flux (100–110 L/m2h at 30 kPa of transmembrane pressure was decreased 3–5 fold during 2–3 h of process duration. The performed scanning electron microscope observations confirmed that the filtered bacteria and suspensions present in the broth formed a cake layer on the membrane surface. A method of periodical module rinsing was used for restriction of the fouling influence on a flux decline. Rinsing with water removed most of the bacteria from the membrane surface, but did not permit to restore the initial permeate flux. It was confirmed that the irreversible fouling was dominated during broth filtration. The formed deposit was removed using a 1 wt% solution of sodium hydroxide as a rinsing solution.

  8. Recovery of Xanthan Gum from Palm Oil-Based Fermentation Broth by Diafiltration with Flat Polysulfone Microfiltration (MF) Membrane

    OpenAIRE

    Sufian So’aib, M.; Krishnan, J.; Veluri, M. V. P. S.

    2014-01-01

    Xanthan gum recovery from palm oil-based broth by diafiltration was carried out using flat microfiltration (MF) membrane. Optimization of process parameters such as transmembrane pressure (TMP), crossflow velocity (CFV), ionic strength (IS) and diafiltration factor (DF) was performed by Taguchi method using signal-to-noise (S/N) ratio of larger-the-better criterion yielding the following optimum conditions: level 1, level 2, level 3, and level 2, respectively, corresponding to Xanthan recover...

  9. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  10. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play.

    Science.gov (United States)

    Xiong, Boya; Zydney, Andrew L; Kumar, Manish

    2016-08-01

    There is growing interest in possible options for treatment or reuse of flowback and produced waters from natural gas processing. Here we investigated the fouling characteristics during microfiltration of different flowback and produced waters from hydraulic fracturing sites in the Marcellus shale. All samples caused severe and highly variable fouling, although there was no direct correlation between the fouling rate and total suspended solids, turbidity, or total organic carbon. Furthermore, the fouling of water after prefiltration through a 0.2 μm membrane was also highly variable. Low fouling seen with prefiltered water was mainly due to removal of submicron particles 0.4-0.8 μm during prefiltration. High fouling seen with prefiltered water was mainly caused by a combination of hydrophobic organics and colloidal particles fracking fluids. The colloid concentration was as high as 10(11) colloids/ml, which is more than 100 times greater than that in typical seawater. Furthermore, these colloids were only partially removed by MF, causing substantial fouling during a subsequent ultrafiltration. These results clearly show the importance of organics and colloidal material in membrane fouling caused by flowback and produced waters, which is of critical importance in the development of more sustainable treatment strategies in natural gas processing. PMID:27155988

  11. Fouling behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions

    Directory of Open Access Journals (Sweden)

    H. Rezaei

    2014-06-01

    Full Text Available Whey pretreatment for protein purification is one of the main applications of cross-flow microfiltration before an ultrafiltration process. In this paper, the effects of the operating pressure and crossflow velocity on the membrane performance and the individual resistances in microfiltration of whey for both unsteady and steady-state conditions were investigated for two 0.45 µm mean pore size polymeric membranes, Polyethersulfone (PES and Polyvinylidene fluoride (PVDF. A laboratory-scale microfiltration setup with a flat rectangular module was used. The Reynolds number and operating pressure showed positive and negative effects on the amount of all resistances, respectively. The dominant effect of the concentration polarization and cake resistances was demonstrated by using a "Resistance-in-Series" model for unsteadystate investigations, which could vary during the filtration time. An empirical model revealed a linear relationship between the Reynolds number and permeate flux and a second-order polynomial relationship between the transmembrane pressure and the permeate flux. This empirical correlation, implemented for the limited range of MF operating parameters tested in this article for whey protein, was validated with experimental data and showed good agreement between calculated and experimental data.

  12. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  13. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  14. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  15. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  16. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henny J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  17. Effects of super-powdered activated carbon pretreatment on coagulation and trans-membrane pressure buildup during microfiltration

    OpenAIRE

    Matsui, Yoshihiko; Hasegawa, Hiroki; Ohno, Koich; Matsushita, Taku; Mima, Satoru; Kawase, Yuji; Aizawa, Takako

    2009-01-01

    As a pretreatment for membrane microfiltration (MF), the use of powdered activated carbon (PAC) with a particle size much smaller than that of conventional PAC (super-powdered PAC, or S-PAC) has been proposed to enhance the removal of dissolved substances. In this paper, another advantage of S-PAC as a pretreatment for MF is described: the use of S-PAC attenuates transmembrane pressure increases during the filtration operation. The floc particles that formed during coagulation preceded by S-P...

  18. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  19. Microfiltration of radioactive contaminants

    International Nuclear Information System (INIS)

    Cross-flow microfiltration processing of radioactive liquids has been in use at Chalk River Laboratories for about four years. The separation process removes suspended particles from radioactive waste solutions. The clean liquid can then be treated with conventional reverse osmosis membranes to achieve volume reduction factors approaching 100. Microfiltration removes particles below the rating of 0.2 microns, in part from particle agglomeration. Operating experience relating to a 15 USGPM unit is presented. Coupling microfiltration technology with chemical treatment enhances the removal of soluble species. Research and development experience with the removal of soluble contaminants found in ground water and waste water will be discussed. The technology has advantages over other membrane technologies, namely lower energy costs, a lesser degree of fouling, and a higher recovery of processed solution. Future applications of the technology are addressed. (author). 10 refs., 3 tabs., 4 figs

  20. Preparation of highly permeable BPPO microfiltration membrane with binary porous structures on a colloidal crystal substrate by the breath figure method.

    Science.gov (United States)

    Yuan, Hua; Yu, Bing; Cong, Hailin; Peng, Qiaohong; Yang, Zhen; Luo, Yongli; Chi, Ming

    2016-01-01

    A highly permeable brominated poly(phenylene oxide) (BPPO) microfiltration membrane with binary porous structures was fabricated by combination of the breath figure and colloidal crystal template methods. The pore size in the bottom layer of the membrane was adjusted by the diameter of SiO2 microspheres in the colloidal crystal template, while the pore size in the top layer of the membrane was adjusted by varying the BPPO concentration in the casting solution. The permeability of the membrane cast on the colloidal crystal substrate was much higher than that of the membrane cast on a bare silicon wafer. The binary porous BPPO membrane with high permeability and antifouling property was used for microfiltration applications. PMID:26402782

  1. Proton conducting ceramic membranes for hydrogen separation

    Science.gov (United States)

    Elangovan, S.; Nair, Balakrishnan G.; Small, Troy; Heck, Brian

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  2. Characteristics of meso-particles formed in coagulation process causing irreversible membrane fouling in the coagulation-microfiltration water treatment.

    Science.gov (United States)

    Ding, Q; Yamamura, H; Murata, N; Aoki, N; Yonekawa, H; Hafuka, A; Watanabe, Y

    2016-09-15

    In coagulation-membrane filtration water treatment processes, it is still difficult to determine the optimal coagulation condition to minimize irreversible membrane fouling. In microfiltration (MF), meso-particles (i.e., 20 nm-0.5 μm) are thought to play an important role in irreversible membrane fouling, especially their characteristics of particle number (PN) and zeta potential (ZP). In this study, a new nanoparticle tracker combined a high-output violet laser with a microscope was developed to identify the physicochemical characteristics of these microscopic and widely dispersed meso-particles. The effects of pH and coagulant dose on ZP and PN of micro-particles (i.e., >0.5 μm) and meso-particles were investigated, and then coagulation-MF tests were conducted. As the result, irreversible membrane fouling was best controlled for both types of membranes, while meso-particle ZP approached zero at around pH 5.5 for both types of natural water. Since PN was greatest under these conditions, ZP is more important in determining the extent of irreversible membrane fouling than PN. However, the acidic condition to neutralize meso-particles is not suitable for actual operation, as considering residual aluminum concentration, pipe corrosion, and chlorination efficiency. It is therefore necessary to investigate coagulants or other methods for the appropriate modification of meso-particle characteristics.

  3. River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process

    Institute of Scientific and Technical Information of China (English)

    张荟钦; 仲兆祥; 李卫星; 邢卫红; 金万勤

    2014-01-01

    Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, microfiltration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtration has significant in-fluence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L·m-2·h-1 was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45%and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.

  4. Flux, rejection and fouling during microfiltration and ultrafiltration of sugar palm sap using a pilot plant scale

    OpenAIRE

    Wanichapichart, P.; Ritthipairote, T.; Youravong, W.

    2006-01-01

    The possibility of using a pilot plant scale microfiltration (MF) and ultrafiltration (UF) to clarify and reduce number of bacteria, yeast and mould of sugar palm sap was studied. The membrane used was multi channel tubular ceramic membrane (ZrO2-TiO2) with membrane pore size 0.2 and 0.1 μm and molecular weight cut off (MWCO) 300 and 50 kDa for microfiltration and ultrafiltration respectively. The experiment was carried out to investigate the rejection of the components in sugar palm sap, per...

  5. Contribution to the study of nuclear waste slurry concentration. Tangential microfiltration on mineral membranes made of ferric hydroxide suspension in highly saline media

    International Nuclear Information System (INIS)

    In this thesis are presented first results on volume reduction of low and medium activity nuclear wastes by concentration of solid matter in suspension with a tangential microfiltration process. Physicochemistry and rheology of a ferric hydroxide suspension in nitrate medium are studied. Permeation laws and ultrafiltration membrane fouling show the formation of a solid deposit on the membrane surface and influence of operation parameters. A model of deposit erosion is presented to explain local phenomena during filtration

  6. Advanced Treatment of Wastewater from UASB Reactor by Microfiltration Membrane Associated With Disinfection by Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André Aguiar Battistelli

    2016-03-01

    Full Text Available The low efficiency of UASB bioreactors, regarding the removal of nutrient, organic matter and pathogens, makes it necessary to carry out a post treatment, in order to improve the quality of the effluent. Accordingly, this research has examined the use of microfiltration associated to the disinfection by the ultraviolet radiation, as an option to this post treatment. For so, were collected samples of UASB reactors’ effluent, in order to carry out some tests on a pilot microfiltration system, using in one of the samples pre-coagulation with vegetable tannin. After, all the microfiltrated samples were inserted in a UV reactor, applying different radiation doses, ranging from 43.8 to 194.9 mWs.cm-2, to simulate the disinfection. The system used showed good results in terms of turbidity removal, apparent color, true color, phosphorus, nitrogen, total solids, total suspended solids and COD, reaching in the best operating condition, the following values: 1.90 uT, 15 uC, 10 uC, 0.94 mg/L, 17.64 mg/L, 123 mg/L, 0 mg/L and 10 mg/L, respectively, which represent the following removal percentages: 91.3%, 93.6%, 82.0%, 55.1%, 26.3%, 35% and 86.1%. The inactivation obtained for E. coli, total coliforms, colifagos and Clostridium perfrigens was satisfactory, achieving a higher inactivation than the detection limit of the method used, when submitted to the highests tested radiation doses. The average permeate flux ranged from 55.2 to 133.6 L.m-2.h-1.

  7. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    Science.gov (United States)

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane. PMID:27095709

  8. Pilot-scale crossflow-microfiltration and pasturization to remove spores of Bacillus anthracis (Sterne) from milk

    Science.gov (United States)

    HTST pasteurization of milk is generally ineffective against spore-forming bacteria such as Bacillus anthracis (BA) but is lethal to its vegetative cells. Crossflow microfiltration (MF), using ceramic membranes with a pore diameter of 1.4 um, has been shown to physically remove somatic cells, vegeta...

  9. Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers.

    Science.gov (United States)

    Kimura, Katsuki; Tanaka, Ken; Watanabe, Yoshimasa

    2014-02-01

    Although low-pressure membranes (microfiltration (MF) or ultrafiltration (UF)) have become viable options for drinking water treatment, problems caused by membrane fouling must still be addressed. The objective of this study was to compare five different surface waters and to identify a relevant index of water quality that can be used for prediction of the fouling potential of the water. Bench-scale filtration tests were carried out with commercially available hollow-fiber MF membranes. Fairly long-term (a few days) filtrations in the constant-flow mode were carried out with automatic backwash. Membrane fouling in this study was shown to be irreversible as a result of the periodic backwash carried out throughout of the operation. Easily accessible indexes of water quality including dissolved organic carbon (DOC), UV absorbance, Ca concentration and turbidity could not explain the degree of fouling encountered in the filtration tests. Fluorescence excitation-emission matrix (EEM) could provide information on the presence of protein-like substances in water, and peaks for protein showed some correlation with the membrane fouling. Biopolymer (characterized by high molecular weights and insensitivity to UV light absorption) concentrations in the five waters determined by liquid chromatography with organic carbon detection (LC-OCD) exhibited an excellent correlation with the fouling rates. Coagulation with polyaluminum chloride could mitigate membrane fouling in all cases. The extent of fouling seen with coagulated waters was also correlated with biopolymer concentrations. The relationship between biopolymer concentrations and the fouling rates established for the raw waters could also be applied to the coagulated waters. These results suggested that the contribution of biopolymers to membrane fouling in the present study was significant, an observation that was supported by the analysis of foulants extracted at the termination of each test. Biopolymer concentrations

  10. Reactor process using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  11. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  12. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  13. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    Science.gov (United States)

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  14. FAS grafted superhydrophobic ceramic membrane

    International Nuclear Information System (INIS)

    The hydrophobic properties of γ-Al2O3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 deg. C) of the fluoroalkylsilane grafted on Al2O3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al2O3 membrane surface as well as the formed surface morphology.

  15. Preparation and Chiral Selectivity of BSA-Modified Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    Cai Lian SU; Rong Ji DAI; Bin TONG; Yu Lin DENG

    2006-01-01

    An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carried out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.

  16. Ceramic ultrafiltration membranes with photocatalytic properties

    Science.gov (United States)

    Bell, Deborah Wildman

    The photocatalytic properties of ceramic ultrafilters have been utilized in the development of a novel in-situ membrane cleaning process for ultrafiltration membranes fabricated from titania. The use of the photoactive membrane layer mitigates the effects of foulants in the system, thereby yielding an increase in the observed overall flux without sacrificing rejection of the solute by the membrane. Photocatalytic membranes of titania supported on porous tubes of alpha-alumina were fabricated using sol-gel techniques. These membranes were developed on the basis of the results of two-level factorial experimental designs. Electron microscopy and x-ray spectrometry were employed to evaluate coverage of the support by the membrane, the thickness of the membrane, and the presence of defects in the membrane. The photocatalytic membrane system was characterized to determine both morphological and performance parameters. Morphological parameters included the pore diameters, Darcy coefficients, and the individual resistances associated with each of the porous layers comprising the composite photocatalytic membrane. Performance parameters included the nominal molecular weight cutoff values of the ceramic membranes, the rate of permeation of pure solvent in the presence and the absence of UV illumination through the porous layers of interest, and the ability of the photocatalytic membrane to resist fouling and maintain permselectivity in the presence of UV illumination. The photocatalytic membranes were used to ultrafilter aqueous solutions of polymeric organic foulants present at an initial concentration of 1 x 10-3 M. Formation of a gel layer of foulant on the surface of the membrane was observed in the presence and in the absence of UV radiation; however, the results of permeability experiments indicated that formation of this foulant layer was significantly retarded (by a factor of two) in the presence of UV radiation. Improvement in the flow rate of permeate through the

  17. Process simulation of fractal growth of microfiltration membrane fouling%微滤膜垢分形生长的过程模拟

    Institute of Scientific and Technical Information of China (English)

    张维; 许丹宇; 郑先强; 孙凯; 侯霙

    2012-01-01

    基于微滤膜系统污垢形成机制和分形理论,建立微滤过程膜表面混合垢生长DLA模型,并通过实验验证了模型模拟的可行性和准确性。选取不同运行周期条件下微滤膜系统中的受污染膜丝,进行膜垢污染生长的实时测试,并与不同运行条件下模型的动态模拟结果进行实际比较分析,结果表明两者分形维数相近,且分形维数与膜污染程度呈正相关,说明该模型能够动态表征膜污染水平,可揭示出微滤过程中膜垢生长的动态变化规律,预测出膜材料的受污染水平。%Based on the formation mechanism of microfiltration membrane fouling and the fractal theory,a diffusion-limited aggregation(DLA) model of microfiltration membrane fouling was established.Its accuracy and feasibility were validated with experiments.Membrane fibers of microfiltration systems contaminated under different operation cycles were taken to test the real-time growth of membrane fouling.These test results were compared with their simulation counterparts from the dynamic model for different operating conditions.The comparisons show that the fractal dimensions of the experiment results and the dynamic model are similar.Furthermore,the fractal dimensions of the dynamic model are positively correlated with the degree of membrane fouling.Therefore,it is shown that this model can simulate the dynamic of membrane fouling degrees,reveal changing dynamics of the growth of microfiltration membrane fouling during filtration processes,as well as predict the degree of fouling of membrane materials.

  18. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana;

    2014-01-01

    (Al2O3) ultrafiltration membranes. These ultrafiltration membranes were obtained by coating, drying and calcination of a colloidal suspension of boehmite particles. After calcination, the membrane material consisted of nano-sized Υ-Al2O3 crystallites and had a narrow pore size distribution...

  19. Removal of Industrial Cutting Oil from Oil Emulsions by Polymeric Ultra- and Microfiltration Membranes

    OpenAIRE

    Peter Janknecht; Ana. D. Lopes; Mendes, Adélio M.

    2004-01-01

    The utilization of micro- and ultrafiltration with polymeric membranes for treatment of industrial cutting oil emulsion was investigated. The performance of 14 different membranes with pore sizes in the range of 1-800 nm, representing 8 different materials and varying hydrophobicity, was determined experimentally. Membrane permeances between 1.6 and 939 L m 2h-1bar-1 have been observed for the different samples as well as oil rejections between 3.42% and 99.99%. Membrane pore size and contact...

  20. Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration

    International Nuclear Information System (INIS)

    This paper presents simple and economical, yet reliable techniques to fabricate a micro-fluidic filter for MEMS lab-on-chip (LoC) applications. The microporous filter is a crucial component in a MEMS LoC system. Microsized components and contaminants in biological fluids are selectively filtered using copper and silicon membranes with precisely controlled microsized pores. Two techniques were explored in microporous membrane fabrication, namely copper electroplating and electrochemical etching (ECE) of silicon. In the first technique, a copper membrane with evenly distributed micropores was fabricated by electroplating the copper layer on the silicon nitride membrane, which was later removed to leave the freestanding microporous membrane structure. The second approach involves the thinning of bulk silicon down to a few micrometers thick using KOH and etching the resulting silicon membrane in 5% HF by ECE to create micropores. Upon testing with nanoparticles of various sizes, it was observed that electroplated copper membrane passes nanoparticles up to 200 nm wide, while porous silicon membrane passes nanoparticles up to 380 nm in size. Due to process compatibility, simplicity, and low-cost fabrication, electroplated copper and porous silicon membranes enable synchronized microfilter fabrication and integration into the MEMS LoC system. (paper)

  1. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    Science.gov (United States)

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  2. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  3. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  4. Experimental studies on pore size change of porous ceramic membranes after modification

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1993-01-01

    Experimental results on pore size change of a microfiltration (MF) -alumina membrane and an ultrafiltration (UF) γ-alumina membrane after modification by chemical vapor deposition (CVD) of solid oxides in the membrane pores are presented and explained using the results of a theoretical analysis. Wit

  5. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma

    2013-05-30

    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  6. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  7. The synthesis and applications of nano sized ceramic membranes

    International Nuclear Information System (INIS)

    Inorganic membranes composed of particles having sizes below 50 A were produced with oxides of TiO2, ZrO2, and SiO2. This presentation stresses the necessary physical chemical phenomena associated with the particle synthesis and the aggregation behavior of these particles as they are incorporated into the final membrane body. Uses of ceramic membranes in separations, ceramic membrane reactors, and the photocatalytic degradation of organic waste materials are briefly reviewed

  8. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue;

    2004-01-01

    will be spherical due to the fast coalescence at the high temperatures in the flame. The primary product from the flame pyrolysis is an aerosol of metal oxide nanoparticles. The aerosol gas from the flame can be utilized for several different purposes, depending on the precursors fed to the flame. With the present...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...... tube, where a part of the gas is sucked through the wall of the substrate, thereby creating a thin filter cake on the inner surface of the substrate tube. The top-layer can be deposited directly on a coarse pore structure. Since the Brownian motion of the aerosol particles is fast compared to the fluid...

  9. Easy Fabrication of Dense Ceramic Membrane for Oxygen Separation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation.The new method takes the advantage of lower calcination temperature for phase formation, lower membrane sintering temperature and higher relative density over the standard ceramic method.

  10. Experimental study on ceramic membrane technology for onboard oxygen generation

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentra-tion of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT). Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  11. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  12. Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention.

    Science.gov (United States)

    Poorasgari, Eskandar; Farsi, Ali; Christensen, Morten Lykkegaard

    2016-01-01

    Membrane retention of the humic-like substances present in a soluble microbial products (SMP) suspension was studied by using a dead-end filtration system. The SMP suspension was extracted from the sludge of an enhanced biological phosphorus removal-membrane bioreactor. Our results showed that both adsorption and steric retention of the humic-like substances governed their transport through the membrane during the filtration. The adsorption, which followed pseudo-first order kinetics, did not cause substantial decline of permeate flux. The steric retention, on the other hand, formed a gel layer, which in turn led to a major decrease in the flux. The reduction of permeate flux was well predicted by cake filtration theory. Based on the adsorption and the steric retention, a new model was developed for predicting the overall membrane retention of the humic-like substances. The general trend of the modelled overall retention was in partial agreement with the experimental results. PMID:27332850

  13. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. PMID:26741542

  14. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology.

  15. Comparison of reverse osmosis membrane fouling characteristics in full-scale leachate treatment systems with chemical coagulation and microfiltration pre-treatments.

    Science.gov (United States)

    Rukapan, Weerapong; Khananthai, Benyapa; Srisukphun, Thirdpong; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2015-01-01

    Fouling characteristics of reverse osmosis (RO) membrane with chemical coagulation and microfiltration (MF) pre-treatment were investigated at full-scale leachate treatment systems. In chemical coagulation pre-treatment, solid separation from stabilized leachate was performed by ferric chloride coagulation followed by sand filtration. Meanwhile, MF pre-treatment and the RO system utilized direct filtration using a 0.03 µm membrane without chemical addition. MF pre-treatment yielded better pollutant removals in terms of organics and nitrogen. The study on effect of pre-treatment on RO membrane fouling revealed that accumulated foulant on the RO membrane in MF pre-treatment was significantly lower than that of chemical coagulation. Nevertheless, NaOH cleaning of the fouled RO membrane after chemical coagulation pre-treatment could better recover its permeate flux, thus suggesting that the formation of a loose-structure cake layer by chemical coagulation pre-treatment could allow effective penetration of chemical cleaning and detachment of foulant layer from the membrane surface.

  16. Ceramic membranes for gas separation at high temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.J.

    1994-03-01

    Superior heat, wear, erosion, and corrosion resistance of ceramic materials have motivated the studies of processing-structure-performance interrelationships of ceramic membranes for high temperature gas separations. A literature review on pore transport mechanisms, physical structure of membranes, and module configuration of industrial membrane processes has been made to obtain a better understanding of membrane performance in gas separations. The research experience in decomposing polymer resins for ablative composites has stimulated a research interest in developing a dynamic model for membrane processes, incorporating a temperature effects on material and fluid properties. Brief summaries of the reviewed literature, permeability experiments, and process modeling are presented in this report.

  17. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  18. Understanding flow-induced particle migration for improved microfiltration

    NARCIS (Netherlands)

    Dinther, van A.M.C.

    2012-01-01

    Membrane microfiltration processes are used in for example the food, biotechnology, chemical and pharmaceutical industry, and more generally in e.g. wastewater treatment. Microfiltration is mostly used to separate components that are greatly different in size, e.g. micro-organisms from water, but ra

  19. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction.

    Science.gov (United States)

    Astaire, J C; Ward, R; German, J B; Jiménez-Flores, R

    2003-07-01

    Buttermilk contains the milk fat globule membrane (MFGM), a material that possesses many complex lipids that function as nutritionally valuable molecules. Milk-derived sphingolipids and phospholipids affect numerous cell functions, including regulating growth and development, molecular transport systems, stress responses, cross membrane trafficking, and absorption processes. We developed a two-step method to produce buttermilk derivative ingredients containing increased concentrations of the polar MFGM lipids by microfiltration and supercritical fluid extraction (SFE). These processes offer environmentally benign alternatives to conventional lipid fractionation methods that rely on toxic solvents. Firstly, using a ceramic tubular membrane with 0.8-micron pore size, we evaluated the cross flow microfiltration system that maximally concentrated the polar MFGM lipids using a 2n factorial design; the experimental factors were buttermilk source (fresh, or reconstituted from powder) and temperature (50 degrees C, and 4 degrees C). Secondly, a SFE process using supercritical carbon dioxide removed exclusively nonpolar lipid material from the microfiltered buttermilk product. Lipid analysis showed that after SFE, the product contained a significantly reduced concentration of nonpolar lipids, and a significantly increased concentration of polar lipids derived from the MFGM. Particle size analysis revealed an impact of SFE on the product structure. The efficiency of the SFE system using the microfiltration-processed powder was compared much more favorably to using buttermilk powder.

  20. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    OpenAIRE

    Popović Svetlana S.; Milanović Spasenija D.; Iličić Mirela D.; Lukić Nataša Lj.; Šijački Ivana M.

    2008-01-01

    Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleane...

  1. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications.

    Science.gov (United States)

    Dong, Xueliang; Jin, Wanqin; Xu, Nanping; Li, Kang

    2011-10-21

    Catalytic membrane reactors which carry out separation and reaction in a single unit are expected to be a promising approach to achieve green and sustainable chemistry with less energy consumption and lower pollution. This article presents a review of the recent progress of dense ceramic catalytic membranes and membrane reactors, and their potential applications in energy and environmental areas. A basic knowledge of catalytic membranes and membrane reactors is first introduced briefly, followed by a short discussion on the membrane materials including their structures, composition and strategies for material development. The configuration of catalytic membranes, the design of membrane reaction processes and the high temperature sealing are also discussed. The performance of catalytic membrane reactors for energy and environmental applications are summarized and typical catalytic membrane reaction processes are presented and discussed. Finally, current challenges and difficulties related to the industrialization of dense ceramic membrane reactors are addressed and possible future research is also outlined.

  2. Effect of coagulation on the treatment efficiency of cathodic electrocoating wastewater with microfiltration membranes%混凝对微滤膜处理阴极电泳漆废水的影响

    Institute of Scientific and Technical Information of China (English)

    张进; 孟广耀

    2011-01-01

    采用直接微滤和混凝-微滤两种工艺对阴极电泳漆废水进行处理.结果表明:混凝预处理减轻了膜污染,提高了膜的渗透通量;当膜面流速为4m/s,跨膜压差为0.10MPa,温度为30℃时,稳定通量从直接微滤的47.8L/(m2·h)提高到264.2L/(m2·h),远高于超滤膜的通量.与原水直接微滤相比,混凝-微滤组合工艺改善了出水水质,COD(cr)去除率从67%提高到85%,磷酸盐去除率从37%提高到98%.有效清洗后,膜通量可恢复到初始值的84%.%The cathodic electrocoating wastewater from automobile painting-industry has been treated by direct microfiltration and coagulation-microfiltration processes. The results show that coagulation pretreatment could reduce membrane fouling,and increase the permeate flux from 47.8 to 264.2 L/(m2·h). The flux is much higher than that of ultrafiltration. In comparison with direct microfiltration,the combined coagulation-microfiltration process does improve the effluent water quality. The removal rate of CODCr and phosphate has increased from 67% to 85% ,and from 37% to 98% ,respectively. With the effective cleaning method, the membrane flux recovers to 84% from the initial value.

  3. Multilayer Membranes Based on Ceramic Materials—Sol-gel Synthesis, Characterization and Membrane Performance

    Institute of Scientific and Technical Information of China (English)

    Sun Qianyao; Xu Chunming

    2007-01-01

    In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane systems can offer benefits in both reducing the energy consumption of the separation stages and lowering the capital expenditure (CAPEX). Microporous ceramic membranes have the potential to overcome the limitation in polymer membranes operation, which has been the subject of a large amount of research worldwide in the last two decades. And most of the research has aimed at the production of the asymmetric multilayered membrane based on amorphous oxides by sol-gel techniques. The paper is to give an overview of publications on ceramic membranes, including less common materials of titania, zirconia, which can be used for pervaporation in corrosive media. Commercially available microporous membranes based on these membrane materials and the membrane economics are also summarized.

  4. Proton conducting ceramics in membrane separations

    Science.gov (United States)

    Brinkman, Kyle S; Korinko, Paul S; Fox, Elise B; Chen, Frank

    2015-04-14

    Perovskite materials of the general formula SrCeO.sub.3 and BaCeO.sub.3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.

  5. 聚偏氟乙烯微滤膜性能及结构%STRUCTURE AND PROPERTIES OF PVDF MICROFILTRATION MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    宋水均; 韩玉; 黄啸; 陆茵

    2012-01-01

    研究了亲水性聚偏氟乙烯( PVDF)微滤膜的结构、过滤性能、亲水性和清水反冲洗效果.膜结构由SEM照片和泡点-流速法测定的膜孔径分布表征,通过过滤双蒸水和BSA缓冲液来表征膜的通量、过滤衰减和清洗恢复性能,并对BSA液过滤前后膜结构进行了对比分析,膜亲水性由水接触角表征.试验结果表明,膜孔径分布范围在0.22~0.27 μm之间;初始静态水接触角为61.5°,水滴在80 s内渗入膜中;膜初始水通量为1 651.0 L·m2·h-1,过滤浓度1 g·L-1 pH=7.0的BSA液时膜通量随着过滤时间的延长而不断减小,最后达到一稳定的平衡通量229.3 L·m-2·h-1;平均过滤阻力构成分别为:Rp占70.0%,Rm占19.5%,Ri占7.3%,Re占3.1%;污染膜可通过清水反冲洗来恢复,4次循环后膜通量可恢复至1 008.9 L·m-2·h-1,膜通量恢复率达到61.1%.%The PVDF microfiltration membrane structure, filtering properties, hydrophilicity and antifouling property were studied The membrane structure was characterized by SEM and the pore size distribution measured by Bubble point - mean flow method. The distilled water and BSA buffer flux of the membrane, its flux deterioration and membrane backflush effect were measured. Membrane structure before and after BSA filtration were compared. Hydrophilicity of the membrane was characterized by water contact angle. The results show that the pore size distribution of the membrane is between 0.22-0.27 μm. The initial water contact angle is 61.5° and water drop penetrated into membrane in 80 sec. Membrane initial water flux is 1 651.0 L·m2 ·h-1. The membrane flux of 1 g·L-1 BSA solution decreased during the filtration process and finally reached pseudo-stable 229.3 L·m-2 ·h-1. Rp accounts for 70% of the filtering resistance, and Rm 19.5%, Ri 7.3%,Rc 3.1%. The polluted membrane can be recovered only by water backflush and after four cycles the water flux can be recovered to 1 008.9 L·m-2 ·b-1

  6. Present state of the application of the ultrafiltration membrane and microfiltration membrane to wastewater treatment and its development trend%超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    王静; 张雨山

    2001-01-01

    超滤膜和微滤膜的应用范围和规模正在逐年扩大,作者引用了29篇文献,概述了超滤膜和微滤膜在污(废)水处理领域的应用研究现状及其发展趋势。%The application scope and scale of the ultrafiltration membrane and microfiltration membrane have been expanding year after year. In this paper,the present state of the application of the ultrafiltration membrane and microfiltration membrane to wastewater treatment and its development trend are described briefly,recommanding 29 pieces of referenece literature.

  7. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  8. SURFACE MODIFICATION OF SILICA- AND CELLULOSE-BASED MICROFILTRATION MEMBRANES WITH FUNCTIONAL POLYAMINO ACIDS FOR HEAVY METAL SORPTION

    Science.gov (United States)

    Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...

  9. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    Science.gov (United States)

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. PMID:26346603

  10. Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination

    KAUST Repository

    Almashharawi, Samir

    2013-01-01

    Conventional processes are widely used as pretreatment for reverse osmosis (RO) desalination technology since its development. However, these processes require a large footprint and have some limitation issues such as difficulty to maintain a consistent silt density index, coagulation control at low total suspended solids, and management of higher waste sludge. Recently, there has been a rapid growth in the use of low-pressure membranes as pretreatment for RO systems replacing the conventional processes. However, despite the numerous advantages of using this integrated membrane system mainly providing good and stable water quality to RO membranes, many issues have to be addressed. The primary limitation is membrane fouling which reduces the permeate flux; therefore, higher pumping intensity is required to maintain a consistent volume of product. This paper aims to optimize the permeation flux and cleaning frequency by providing high permeate quality. Different low-pressure polyethersulfone membranes with different pore sizes ranging from 0.1 lm to 50 kDa were tested. Eight different filtration configurations have been applied including the variation of coagulant doses aiming to control membrane fouling. Results showed that all the configurations with/without coagulation, provided permeate with excellent water quality which improves the stability of RO performance. However, more stable fluxes with less-energy consumption were achieved by using the 0.1 lm and 100 kDa membranes with 1 mg/L FeCl3 coagulation. The use of UF membranes, having tight pores, without coagulation also proved to be an excellent option for Red Sea water RO pretreatment. © 2013 Desalination Publications.

  11. 微滤膜聚并破乳的机理研究%Mechanism of Coalescence Demulsification with Microfiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    邹财松; 骆广生; 孙永; 戴猷元

    2003-01-01

    A study on the membrane coalescence demulsification was carried out with four working systems ofwater/n-butyl alcohol, water/n-octanol, water/30%TBP(in kerosene) and water/kerosene. The membranes madeof polytetrafluoroethylene (PTFE) with 1.0μm pore size were used. The results indicated that the excellent demul-sification efficiency for emulsions with various oil contents was obtained. A conductivity probe was used to studythe demulsification mechanism. An electrode probe was designed and used to determine the oil content near themembrane surface. The obtained data showed that the oil content in the permeated stream was much higher thanthat in the feed emulsion. A physical mechanism to explain the membrane demulsification was put forward.

  12. Synthesis of nanosized powders for preparing ceramic membranes

    International Nuclear Information System (INIS)

    Magnesium-stabilized zirconia have been synthesized by a chemical route. The aim of this work is to obtain powders with suitable chemical and physical properties to be used as ceramic membranes for nanofiltration. The coprecipitation technique with an azeotropic distillation step has been employed for this purpose. Several powder characterization techniques have been utilized. The main results show that nanosized powders with high a degree of purity, high chemical homogeneity and elevated reactivity have been obtained. (orig.)

  13. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  14. Microfiltration and ultrafiltration as a post-treatment of biogas plant digestates for producing concentrated fertilizers

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud; Norddahl, Birgir; Wei, Jiang;

    2015-01-01

    in the recovery of particulate phosphorus, compared to an ultrafiltration membrane (polyethersulphone (PES)). Results show that membrane material, operational conditions, and pore diameter influenced the permeate flux pattern during microfiltration. The PS membranes initially had a higher tendency to foul than...... rejection (80% w/w), suggesting that there was a correlation between the membrane material and both the fouling trend and phosphorus rejection. A two-step basic-acidic cleaning was unable to recover the initial water flux for the fouled microfiltration membranes. In conclusion, the PS microfiltration...

  15. Ceramic Ultra Filtration Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.

  16. CERAMIC MEMBRANES FOR HYDROGEN PRODUCTION FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    George R. Gavalas

    2001-11-27

    The present project is devoted to developing hydrogen permselective silica membranes supported on composite supports to achieve high flux and selectivity. The supports consist of a thin zeolite silicalite layer coated on {alpha}-Al{sub 2}O{sub 3} tubes of mean pore size 1 {micro}m. The zeolite layer is grown by reaction in a suitable silicate solution at 95 C. After two or three reaction periods a layer of silicalite crystals about 20 {micro}m thick grows inside the pores of alumina. In addition to the zeolitic pores, this layer contains voids of a few nanometer diameter that remain between the crystals or between the crystals and the pore walls. The quality of the silicalite/alumina composites was evaluated by gas permeation measurements and by nitrogen adsorption and it was found that the residual voids were below 5 nm in diameter. Three techniques were investigated for chemical vapor deposition (CVD) of the silica layer on the silicalite/alumina composite support. The first was TEOS pyrolysis at approximately one millibar partial pressure and 650 C. After 8 h reaction the fluxes of hydrogen and nitrogen at ambient temperature had declined by a factor of approximately 100 indicating sealing of defects and zeolitic pores alike. The second CVD technique investigated was SiCl{sub 4} hydrolysis at 90 C. Deposition in this case was conducted in a series of cycles, each cycle comprising two half reactions, i.e. exposure to SiCl{sub 4} followed by exposure to water vapor. The deposition was interrupted every five cycles to measure the permeation properties of the nascent membrane at 120 C. After a few cycles the membrane pores were sealed, but the silica layer was not thermally stable when the temperature was raised to 400 C. In the third technique investigated, silica deposition was carried out by SiCl{sub 4} hydrolysis at 400 C, again in a sequence of half reaction cycles. After 15 cycles the membrane pores were well sealed by a layer stable to at least 400 C.

  17. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  18. Treatment of phosphate-containing oily wastewater by coagulation and microfiltration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin; SUN Yu-xin; HUANG Zhi-feng; LIU Xing-qin; MENG Guang-yao

    2006-01-01

    The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents,and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 μm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.

  19. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue;

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... and ignited by a supporting flame (methane and oxygen). The thickness of the deposited layer can be closely controlled by changing the a) particle concentration and b) the filtration time. Using a new method termed surface annealing [5]; we can consolidate the films on the surface by switching off.......E., Sahm, T., Gurlo, A., Barsan, N., Weimar, U., Sensors and Actuators B, 114, 283-295, 2006 [2] Cini, P., Blaha, S.R., Harold, M.P., Venkataraman, K., J. Membrane Sci., 55, 199-225, 1991 [3] Stoermer, A.O., Rupp, J.L.M., Gauckler, L.J., Solid State Ionics, In press, 2006 [4] Andersen, S.K., Johannessen, T...

  20. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    Science.gov (United States)

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  1. Use of cold microfiltration retentates produced with polymeric membranes for standardization of milks for manufacture of pizza cheese.

    Science.gov (United States)

    Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Wang, T; Lucey, J A

    2007-10-01

    Pizza cheese was manufactured with milk (12.1% total solids, 3.1% casein, 3.1% fat) standardized with microfiltered (MF) and diafiltered retentates. Polymeric, spiral-wound MF membranes were used to process cold (Cheese milks were obtained by blending the MF retentate (16.4% total solids, 11.0% casein, 0.4% fat) with whole milk (12.1% total solids, 2.4% casein, 3.4% fat). Control cheese was made with part-skim milk (10.9% total solids, 2.4% casein, 2.4% fat). Initial trials with MF standardized milk resulted in cheese with approximately 2 to 3% lower moisture (45%) than control cheese ( approximately 47 to 48%). Cheese-making procedures (cutting conditions) were then altered to obtain a similar moisture content in all cheeses by using a lower setting temperature, increasing the curd size, and lowering the wash water temperature during manufacture of the MF cheeses. Two types of MF standardized cheeses were produced, one with preacidification of milk to pH 6.4 (pH6.4MF) and another made from milk preacidified to pH 6.3 (pH6.3MF). Cheese functionality was assessed by dynamic low-amplitude oscillatory rheology, University of Wisconsin MeltProfiler, and performance on pizza. Nitrogen recoveries were significantly higher in MF standardized cheeses. Fat recoveries were higher in the pH6.3MF cheese than the control or pH6.4MF cheese. Moisture-adjusted cheese yield was significantly higher in the 2 MF-fortified cheeses compared with the control cheese. Maximum loss tangent (LT(max)) values were not significantly different among the 3 cheeses, suggesting that these cheeses had similar meltability. The LT(max) values increased during ripening. The temperature at which the LT(max) was observed was highest in control cheese and was lower in the pH6.3MF cheese than in the pH6.4MF cheese. The temperature of the LT(max) decreased with age for all 3 cheeses. Values of 12% trichloroacetic acid soluble nitrogen levels were similar in all cheeses. Performance on pizza was similar for

  2. Hydrogen production from methane using oxygen-permeable ceramic membranes

    Science.gov (United States)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  3. Serum protein removal from skim milk with a 3-stage, 3× ceramic Isoflux membrane process at 50°C.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2013-04-01

    Small pore microfiltration (MF) can be used to remove serum proteins (SP) from skim milk. The process's SP removal efficiency directly influences the technology's economic feasibility. Our objective was to quantify the capacity of 0.14μm ceramic Isoflux MF membranes (TAMI, Nyons, France) to remove SP from skim milk. A 3-stage, 3×, feed-and-bleed MF study with diafiltration in the latter 2 stages was conducted at 50°C using Isoflux membranes to determine cumulative SP removal percentages and SP removal rates at each processing stage. The experiment was replicated 3 times starting with 3 separate lots of raw milk. In contrast to 3× MF theoretical cumulative SP removal percentages of 68, 90, and 97% after 1, 2, and 3 stages, respectively, the 3× Isoflux MF process removed only 39.5, 58.4, and 70.2% of SP after 1, 2, and 3 stages, respectively. Previous research has been published that provides the skim milk SP removal capacities of 3-stage, 3× 0.1μm ceramic Membralox (Pall Corp., Cortland, NY) uniform transmembrane pressure (UTP), 0.1μm ceramic Membralox graded permeability (GP), and 0.3μm polymeric polyvinylidene fluoride spiral-wound (PVDF-SW) MF systems (Parker-Hannifin, Process Advanced Filtration Division, Tell City, IN) at 50°C. No difference in cumulative SP removal percentage after 3 stages was detected between the Isoflux and previously published PVDF-SW values (70.3%), but SP removal was lower than published GP (96.5%) and UTP (98.3%) values. To remove 95% of SP from 1,000kg of skim milk in 12h it would take 7, 3, 3, and 7 stages with 6.86, 1.91, 2.82, and 17.98m(2) of membrane surface area for the Isoflux, GP, UTP, and PVDF-SW systems, respectively. The MF systems requiring more stages would produce additional permeate at lower protein concentrations. The ceramic MF systems requiring more surface area would incur higher capital costs. The authors hypothesize that SP removal with the Isoflux membranes was lower than theoretical for the following

  4. Xanthan GumRecovery from Palm Oil-Based Fermentation Broth by Hollow Fibre Microfiltration (MF) Membrane with ProcessOptimisation Using Taguchi Method

    OpenAIRE

    Sufian Soaib, M.; Sabet, M; Krishnan, J.; VPS Veluri, M.

    2013-01-01

    First stage Xanthan recovery (cell and oil separation) from palm oil-based fermentation broth was carried out by hollow fibre microfiltration (MF) using Taguchi method as design of experiment (DOE) to study the effect of four main parameters on Xanthan recovery; transmembrane pressure (TMP), crossflow velocity (CFV), ionic strength (IS) and temperature (T). From S/N ratio larger-the-better analysis, optimum conditions for Xanthan recovery were at level 2 of TMP, IS and T respectively and leve...

  5. Ceramic Membrane Enabling Technology for Improved IGCC Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John Sirman; Bart vanHassel

    2005-06-01

    This final report summarizes work accomplished in the program from October 1, 1999 through December 31,2004. While many of the key technical objectives for this program were achieved, after a thorough economic and OTM (Oxygen Transport Membrane) reliability analysis were completed, a decision was made to terminate the project prior to construction of a second pilot reactor. In the program, oxygen with purity greater than 99% was produced in both single tube tests and multi-tube pilot plant tests for over 1000 hours. This demonstrated the technical viability of using ceramic OTM devices for producing oxygen from a high pressure air stream. The oxygen fluxes that were achieved in single tube tests exceeded the original target flux for commercial operation. However, extended testing showed that the mean time to failure of the ceramics was insufficient to enable a commercially viable system. In addition, manufacturing and material strength constraints led to size limitations of the OTM tubes that could be tested. This has a severe impact on the cost of both the ceramic devices, but also the cost of assembling the OTM tubes in a large reactor. As such and combined with significant progress in cost reduction of large cryogenic oxygen separation devices, an economic gain that justifies continued development could not be derived.

  6. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  7. Non-dimensional mathematical model of magnetized sugarcane juice by micro-filtration membrane separation%磁化甘蔗汁微滤膜分离过程的膜通量预测模型

    Institute of Scientific and Technical Information of China (English)

    马森; 高俊永

    2015-01-01

    The physical properties of liquid and the filtration performance of membrane was easily modified by the magnetization process. It meant that the process of membrane separation was difficult to be analyzed because of applying the magnetic field technology. It was also hard to make clear the relationships of all the influence factors just by a simple mathematical derivation, so a suitable non-dimensional mathematical model of membrane flux was used, in order to simulate the separation process of micro-filtration membrane for the magnetized mixed sugarcane juice. The parameters of micro-filtration membrane, operating conditions and flow characteristics of feed liquid were chosen as the main factors in this process, and mathematical statistics were done aiming at the involved parameters and dimensions. A non-dimensional mathematical model was established according to the π theorem, the dimensional consistency principle and the hydromechanics affinity theory. The results showed that the non-dimensional mathematical model mainly consisted of three important dimensionless parameters. The first one was Reynolds number, which represents the characteristics of fluid during the operating process. The second one was Euler number, which represents the characteristics of micro-filtration membrane. The last one was a new Sy number, which shows the group of dimensionless factors associated with physical property parameters of liquid and intensity of magnetic field. In order to verify the accuracy and the practicability of the model, the mixed sugarcane juice was used as a raw material for solving the non-dimensional mathematical model. The magnetic field intensities of 0.1, 0.2, 0.3 and 0.4 T were applied to deal with the mixed sugarcane juice, and the total reflux experiments were used in the process. The membrane flux was determined under the changed conditions of pressure difference between inlet and outlet of membrane, and flow rate, brix and viscosity of feed liquid. All of

  8. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    Science.gov (United States)

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

  9. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  10. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Liu, P.K.T. (Aluminum Co. of America, Pittsburgh, PA (United States)); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))

    1992-01-01

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  11. Porous ceramic membranes: suspension processing, mechanical and transport properties, and application in the osmotic tensiometer

    OpenAIRE

    Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined with micro-electronic devices. Ceramic membranes have a large potential over their polymer counterparts for applications at high temperature, pressure and in aggressive environments. Ceramic membra...

  12. Development of membrane bioreactor system. 1. ; Selective permeation of protein solutions by electric microfiltrations. Mokei bioreactor system no kaihatsu. 1. ; Denki seimitsu roka ni yoru tanpakushitsu no sentaku toka

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Y.; Totsuka, Y.; Kuwahara, H. (Shizuoka Industrial Research Institute, Shizuoka (Japan))

    1992-07-01

    Investigation was carried out to apply electric microfiltration to the separation of fungus under fermentation from protein. A charged-type ultrafine filtration membrane was experimentally prepared to be combined with an electric field for the purpose of examining the permeation behaviour of membrane. First, a mixed suspension of bakers' yeast and bovine serum albumin was used as model ferment liquid so as to examine filtering conditions. In consequence, it was found that pH adjustment can control permeability; albumin content is increased as the electric field is strengthened; the current of less than 0.3A is practical in consideration of denaturation of protein and so forth. A ferment liquid yielding bacteriolytic enzyme was used as actual ferment liquid so as to confirm the above information. This method was judged to be effective for concentration and penetration of enzyme in bioreactors from the data on the relation between the blocking rate of enzyme and the change-over of polarity. It is considered possible from the investigation in which sulfonated polysulfon ultrafine filtering membrane as charge type membrane is combined with electric field to separate nucleic acids of similar molecular weight by their electric charge. 20 refs., 7 figs.

  13. Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process

    Institute of Scientific and Technical Information of China (English)

    刘公平; 卫旺; 金万勤; 徐南平

    2012-01-01

    Pervaporation (PV), as an environmental friendly and energy-saving separation technology, has been received increasing attention in recent years. This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes. The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane (PDMS) and hydrophilic poly(vinyl alcohol) (PVA), chitosan (CS) and polyelectrolytes. The effects of ceramic support treatment, polymer solution properties, interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed. Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussio.n. The.applications of these composite_membranesi_n_ pervaporation process are summarized as well, which contain the bio-fuels recovery, gasoline desulfuration and PV coupled process using PDMS/ceramic composite membrane, and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane. Finally, a brief conclusion remark on polymer/ceramic composite mem- branes is given and possible future research is outlined.

  14. Newly Developed Ceramic Membranes for Dehydration and Separation of Organic Mixtures by Pervaporation

    NARCIS (Netherlands)

    Gemert, van R.W.; Cuperus, F.P.

    1995-01-01

    Polymeric pervaporation membranes sometimes show great variety in performance when they are alternately used for different solvent mixtures. In addition, membrane stability in time is a problem in case of some solvents. Therefore, newly developed ceramic silica membranes with a 'dense' top layer wer

  15. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level.

    Science.gov (United States)

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-01

    This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. PMID:27498011

  16. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  17. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  18. Fouling Mechanisms of Humic Acid Membrane Fouling during Microfiltration Using xDLVO Approach%xDLVO 理论解析腐殖酸微滤膜污染机理

    Institute of Scientific and Technical Information of China (English)

    刘晓倩; 高欣玉; 梁爽; 张建

    2015-01-01

    运用 extended Derjaguin-Landau-Verwey-Overbeek (xDLVO)理论定量解析不同 pH值下腐殖酸微滤膜污染机理。理论计算表明,随着 pH 升高,膜污染趋势会降低,这主要是通过改变极性相互作用而实现的,并且过滤初期的膜污染比后期更严重。过滤实验验证了xDLVO 理论预测膜污染趋势的准确性。不同阶段下界面相互作用能和膜污染趋势的线性拟合表明,在粘附阶段膜污染趋势对界面作用能更敏感。%The mechanisms governing humic acid fouling of microfiltration membranes under diff-erent solution pHs were quantitatively analyzed using the extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) approach. According to theoretical calculations, membrane fouling would bec-ome less severe at higher pH, which is mainly attributed to the change of acid-base interfacial in-teraction. Besides, membrane fouling would become more serious in the initial stage than that in the final stage. The validity of xDLVO approach for predicting the severity of membrane fouling was proved by the membrane fouling experimental results. Quantitative analysis of the relationship between fouling potential and interaction energy in different stages suggested that membrane fouling is more sensitive to the change of interfacial interaction in the adhesion stage than that in the cohesion stage.

  19. Micellar casein concentrate production with a 3X, 3-stage, uniform transmembrane pressure ceramic membrane process at 50°C.

    Science.gov (United States)

    Hurt, E; Zulewska, J; Newbold, M; Barbano, D M

    2010-12-01

    The production of serum protein (SP) and micellar casein from skim milk can be accomplished using microfiltration (MF). Potential commercial applications exist for both SP and micellar casein. Our research objective was to determine the total SP removal and SP removal for each stage, and the composition of retentates and permeates, for a 3×, continuous bleed-and-feed, 3-stage, uniform transmembrane pressure (UTP) system with 0.1-μm ceramic membranes, when processing pasteurized skim milk at 50°C with 2 stages of water diafiltration. For each of 4 replicates, about 1,100 kg of skim milk was pasteurized (72°C, 16s) and processed at 3× through the UTP MF system. Retentate from stage 1 was cooled to Kjeldahl methods; sodium dodecyl sulfate-PAGE analysis was also performed on the retentates from each stage. Theoretically, a 3-stage, 3× MF process could remove 97% of the SP from skim milk, with a cumulative SP removal of 68 and 90% after the first and second stages, respectively. The cumulative SP removal using a 3-stage, 3× MF process with a UTP system with 0.01-μm ceramic membranes in this experiment was 64.8 ± 0.8, 87.8 ± 1.6, and 98.3 ± 2.3% for the first, second, and third stages, respectively, when calculated using the mass of SP removed in the permeate of each stage. Various methods of calculation of SP removal were evaluated. Given the analytical limitations in the various methods for measuring SP removal, calculation of SP removal based on the mass of SP in the skim milk (determined by Kjeldahl) and the mass SP present in all of the permeate produced by the process (determined by Kjeldahl) provided the best estimate of SP removal for an MF process.

  20. Preparation of pH-responsive ceramic composite membranes by grafting acrylic acid onto a-alumina membranes

    Institute of Scientific and Technical Information of China (English)

    YANG LianLi; ZHAO YiJiang; ZHOU ShouYong; LI MeiSheng; CHEN Yan; XING WeiHong

    2009-01-01

    A pH-responsive ceramic composite membrane was prepared by chemical graft polymerization of acrylic acid (AA) onto the KH-570 modified a-alumina membrane. The influence of monomer concentration on the gating characteristics of the pH-responsive membrane was investigated. The FT-IR spectrum, contact angle and water filtration rate of the membrane were measured. The monomer concentration was found to have a remarkable effect on the pH-response coefficient and the water filtration rate. In addition, the grafted membrane exhibited fast and reversible response to the pH change in the external solution.

  1. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  2. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. PMID:27266317

  3. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  4. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes.

  5. Rejection and Critical Flux of Calcium Sulphate in a Ceramic Titanium Dioxide Nanofiltration Membrane

    OpenAIRE

    Ahmed, Amer Naji

    2013-01-01

    ABSTRACTThis thesis describes the rejection efficiency and the fouling behaviour of calcium sulphate solutes in a 1 nm tubular ceramic titanium dioxide nanofiltration membrane.Calcium sulphate is considered as one of the greatest scaling potential inorganic salts that responsible for membrane fouling which represents a main challenge in the expansion of membrane processes for desalination of brackish and saline water. The surface charge type and magnitude for the composite amphoteric TiO_2 me...

  6. New generation ceramic membranes have the potential of removing endotoxins from dialysis water and dialysate.

    Science.gov (United States)

    Czermak, P; Ebrahimi, M; Catapano, G

    2005-07-01

    Poor water properties, use of concentrated bicarbonate, and biofilm growth in pipes and storage tanks often cause dialysis water and dialysate contamination with bacteria and endotoxins. High-flux dialysis with bicarbonate may favor endotoxin transfer from the dialysate into the blood exposing patients to serious short-and long-term side effects. Ultrafiltration across hydrophobic synthetic membranes effectively removes endotoxins from dialysis water by combined filtration and adsorption. However, repeated sterilization worsens the membrane separation properties,and limits their use. Ceramic membranes are generally more resistant to harsh operating conditions than polymeric membranes, and may represent an alternative for endotoxin removal. Previously, we proved that the ceramic membranes commercially available at that time were not retentive enough to ensure production of endotoxin-free dialysis water. In this paper, we investigated the endotoxin removal capacity of new generation commercial ceramic membranes with nominal molecular weight cut-off down to 1,000. In dead-end filtration, all investigated membranes produced water meeting, the European standards, or close to,when challenged with low endotoxin concentrations, but only one membrane type succeeded at high endotoxin concentrations. In cross-flow filtration, none produced water meeting the European standard. Moreover, sterilization and rinsing procedures altered the separation properties of two out of three membrane types. PMID:16049903

  7. Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation

    Institute of Scientific and Technical Information of China (English)

    LIU Sainan; LIU Gongping; WEI Wang; XIANGLI Fenjuan; JIN Wanqin

    2013-01-01

    Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation.In this work,ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared.The microstructure and physicochemical properties of the composite membranes were characterized.Preparation conditions were systematically optimized.The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO2,N2 and H2.Experiments showed that PDMS,as silicone rubber,exhibited larger permeance and lower separation factors.Conversely,PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2.Compared to the performance of those membranes using polymeric supports or freestanding membranes,the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity.Therefore,the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.

  8. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  9. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  10. Comparison between microfiltration and addition of coagulating agents in the clarification of sugar cane juice - doi: 10.4025/actascitechnol.v34i4.8890

    Directory of Open Access Journals (Sweden)

    Rosa Maria Cripa Moreno

    2012-10-01

    Full Text Available This study accomplished a comparison between microfiltration and addition of coagulating agents to clarify sugar cane juice. Microfiltration tests were carried out using ceramic tubular membranes made with TiO2/a-Al2O3, with pore diameter of 0.2; 0.4 and 0.6 mm. The transmembrane pressures applied were 1.0, 2.0 and 3.0 bar, and temperature was kept constant at 20ºC. Clarification test with addition of coagulating agents were performed with PAC and Ca (OH2 at 65ºC. The highest permeate flow was 76 kg h-1 m-2 at 1.0 bar with 0.6 μm-membrane. The clarification process with membranes achieved a reduction of turbidity and color superior to 92 and 16%, respectively. In the clarification by adding coagulating agents we verified a reduction superior to 78 and 46% to turbidity and color, respectively.

  11. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    International Nuclear Information System (INIS)

    A new CO2 semi-permeable dense inorganic membrane consisting of a porous metal phase and molten carbonate was proposed. A simple direct infiltration method was used to synthesize the metal-carbonate dual-phase membrane. Hermetic (gas-tight) dual phase membrane was successfully obtained. Permeation data showed that nitrogen or helium is not permeable through the membrane (only CO2, with O2 can permeate through the membrane based on transport mechanism)

  12. Novel Ceramic-Polymer Composite Membranes for the Separation of Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Yoram

    2000-06-01

    There is a growing need in the areas of hazardous waste treatment, remediation and pollution prevention for new processes capable of selectively separating and removing target organic species from aqueous steams. Membrane separation processes are especially suited for solute removal from dilute solutions. They have the additional advantage of requiring less energy relative to conventional separation technologies (e.g., distillation, extraction and even adsorption processes). The major difficulty with current membranes is the poor longevity of polymeric membranes under harsh conditions (high temperature, harsh solvents and pH conditions) and the lack of selectivity of ceramic membranes. In our previous work (1996 EMSP project), a first generation of novel polymer-ceramic (PolyCer) composite membranes were developed with the goal of overcoming the above difficulties. The proposed PolyCer membranes are fabricated by a surface-graft polymerization process resulting in a molecular layer of polymer chains which are terminally and covalently anchored to the porous membrane support. The polymer imparts the desired membrane selectivity while the ceramic support provides structural integrity. The PolyCer membrane retain its structural integrity and performance even when the polymer phase is exposed to harsh solvent conditions since the polymer chains are covalently bonded to the ceramic support surface. To date, prototype PolyCer membranes were developed for two different membrane separation processes: (a) pervaporation removal of organics from aqueous systems; and (b) ultrafiltration of oil-in-water emulsions. Pervaporation PolyCer membranes were demonstrated for removal of selected organics (TCE, chloroform and MTBE) from water with permeate enrichment factors as high as 300. While the above results have been extremely encouraging, higher enrichment factors (>1000) should be sought for field applications. The above improvement is feasible by increasing the length and

  13. Preparação e caracterização de membranas cerâmicas de cordierita Preparation and characterization of cordierite ceramic membranes

    Directory of Open Access Journals (Sweden)

    F. A. Silva

    2006-12-01

    sinterizadas a 1280 ºC obtiveram maior permeabilidade, seguindo-se das de 1250 ºC, 1200 ºC e as de 1150 ºC. Os valores médios dos fluxos encontrados nas membranas sinterizadas nas temperaturas de 1150, 1200, 1250 e 1280 ºC foram de aproximadamente 68, 143, 378 e 587 kg/h.m², respectivamente.Membrane separation processes find large applications. Ceramic membranes are applied in several processes, mainly in application above 250 ºC, as well as in separation of solutions with pH extremely acid and even in systems with organic solvents. On the other hand, ceramic membranes show high cost of fabrication, mainly in relation to the raw synthetic materials (zirconia, alumina, titania and silica. Therefore, the main concern in the development of these membranes is to optimize the cost using natural non-expensive raw materials and more efficient ceramic processing, such as extrusion. The fabrication of ceramic membranes by extrusion gives the possibility to use cross flow system, which is very useful in microfiltration and ultrafiltration separation processes. The aim of this work is to prepare tubular cordierite membranes from raw materials such as clays and talc and by extrusion processing. Four sintering temperatures (1150, 1200, 1250 and 1280 ºC were used to show the effect on the morphological characteristics of the membranes. The membranes were characterized by X-ray diffraction, scanning electron microscopy and mercury intrusion porosimetry. The results showed the formation of cordierite phase at all sintering temperatures. The membranes presented pore size of 1.4, 2.2, 3.3 and 4.1 µm and porosity content of 28.7, 29.1, 27.7 and 24.3% for sintering temperaturesf 1150, 1200, 1250 and 1280 ºC, respectively. These values show that these membranes are suitable to be applied in microfiltration separation processes. The results of water flux, at steady state, show that the membrane sintered at 1280 ºC presented the highest value, 587.3 kg/m².h, followed by 377.7 kg

  14. Evaluating the Efficiency of Different Microfiltration and Ultrafiltration Membranes Used as Pre-treatment for Reverse Osmosis Desalination of Red Sea Water

    KAUST Repository

    AlMashharawi, Samer

    2011-07-01

    With the increase in population density throughout the world and the growing water demand, innovative methods of providing safe drinking water are of a very high priority. In 2002, the United Nations stated in their millennium declaration that one of their priority goals was “To reduce by half, by the year 2015, the proportion of people who are unable to reach or to afford safe drinking water” [1]. This goal was set with high standards and requires a great deal of water treatment related research in the coming years. Since 1990’s, drinking water treatment via membrane filtration has been widely accepted as a feasible alternative to conventional drinking water treatment. Nowadays, membrane processes are used for separation applications in many industrial applications. Over the past two decades, there has been a rapid growth in the use of low-pressure membrane for drinking water production. These membrane systems are increasingly being accepted as feasible and sustainable technologies for drinking water treatment. Like any innovative process, it has limitations; the primary limitation is membrane fouling, a phenomenon of particles accumulation on the membrane surface and inside its pores. It has the ability to reduce the permeate flux so that higher pumping intensity is required to maintain a consistent volume of product and increasing the cleaning frequency. This project has investigated the rate of reduction in the flux and the increase of pumping intensity using different membranes. Low pressure membranes with three different pore sizes (0.1μm MF, 100kDa UF, and 50kDa UF) have been tested. Eight different filtration configurations have been applied to the membranes including the variation of coagulant (FeCl3) addition aiming mitigation fouling impact in order to maintain consistent permeate flux, while monitoring several water quality parameters before and after treatment such as turbidity, SDI15, total organic carbon (TOC) and particle size distribution

  15. Preparation of Zeolite X Membranes on Porous Ceramic Substrates with Zeolite Seeds

    Institute of Scientific and Technical Information of China (English)

    Zhongqiang Xu; Qingling Chen; Guanzhong Lu

    2002-01-01

    Zeolite X membranes were investigated by in-situ hydrothermal synthesis on porous ceramic tubes precoated with zeolite X seeds or precursor amorphous aluminosilicate, and porous α-Al2O3 ceramic tubes with a pore size of 50 200 nm were employed as supports. Zeolite X crystals were synthesized by the classic method and mixed into deionized water as a slurry with a concentration of 0.2 0.5wt%, having a range of crystal sizes from 0.2 to 2μm. Crystal seeds were pressed into the pores near the inner surface of the ceramic tubes, and crystallization took place at 95℃ for 24-96 h. It was also investigated that Boehmite sol added with zeolite X seeds was precoated on ceramic supports to form a layer of γ-Al2O3 by heating, and hydrothermal crystallization could then take place to prepare the zeolite membranes on the composite ceramic tubes. The crystal species were characterized by XRD, and the morphology of the supports subjected to crystallization was characterized by SEM. The composite zeolite membranes have zeolitic top-layers with a thickness of 10-25 μm, and zeolite crystals can be intruded into pores of the supports as deeply as 100μm. The experimental results indicate that the precoating of zeolitic seeds on supports is beneficial to crystallization by shortening the synthesis time and improving the membrane strength. The resulting zeolite X membrane shows permselectivity to tri-n-butylamine((C4H9)3N) over perfluro-tributyl-amine ((C4Fg)3N), and a permeance ratio of 57 for ((C4Hg)3N to (C4F9)3N could be reached at 350℃. Permeances of BZ, EB and TIPB through the zeolite membrane were also measured and were found to slightly increase with temperature.

  16. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    OpenAIRE

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2014-01-01

    Nowadays the need for sustainable water treatment is essential because water shortages are increasing. Depending on the wastewater treatment plant (WWTP) effluent constituents, the effluent cannot be simply discharged to environment because it contains toxic ions and organic micropollutants which are harmful for aquatic organism. A possible strategy to avoid this is to polish the effluent by membrane processes. Different ceramic membranes were studied to test their ability to remove inorganic...

  17. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements

    International Nuclear Information System (INIS)

    Wettability has been recognized as one of the most important properties of porous materials for both fundamental and practical applications. In this study, the oleophilicity of Al2O3 membranes modified by four alkoxysilanes with different length of alkyl group was investigated through oil wetting dynamic test. Fourier transform infrared spectroscopy (FTIR), thermogravimertric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were measured to confirm that ceramic membrane surfaces have been grafted with alkoxysilanes without changing the membrane morphology. A high speed video camera was used to record the spreading and imbibition process of oil on the modified membrane surface. The value of oil contact angle and its change during the wetting process were used to characterize the membrane oleophilicity. Characterization results showed that the oleophilicity of the modified membranes increased along with the increasing of the silane alkyl group. The influence of oleophilicity on the filtration performance of water-in-oil (W/O) emulsions was experimentally studied. A higher oil flux was obtained for membranes grafted with a longer alkyl group, indicating that increase oleophilicity can increase the membrane antifouling property. This work presents a valuable route to the surface oleophilicity control and testing of ceramic membranes in the filtration of non-polar organic solvents.

  18. Removal of heavy metals by hybrid electrocoagulation and microfiltration processes.

    Science.gov (United States)

    Keerthi; Vinduja, V; Balasubramanian, N

    2013-01-01

    This study is based on the investigation of the performance of electrocoagulation (EC), followed by the microfiltration process for heavy metal removal in synthetic model waste water containing Zn2+, Ni2+ and Cd2+ ions. Effects of initial concentration, current density and pH on metal removal were analysed to optimize the EC process. The optimized EC process was then integrated with dead-end microfiltration (MF) and was found that the hybrid process was capable of 99% removal of heavy metals. The cake layer formed over the membrane by the hybrid process was analysed through scanning electron microscope-energy-dispersive X-ray spectroscopy. The particle size analysis of the sludge formed during EC was done to investigate the fouling caused during the process.

  19. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. PMID:22944203

  20. Microfiltration of deformable microgels.

    Science.gov (United States)

    Nir, Oded; Trieu, Tony; Bannwarth, Sebastian; Wessling, Matthias

    2016-08-21

    Understanding the separation, concentration and purification processes of soft nanoparticles is essential for numerous applications in water filtration, bioprocessing and blood separation. Here we report unique translocation and rejection features of sub-micron sized microgels during frontal filtration using membranes having micron-sized porosity. Simultaneously measuring the increase in hydraulic resistance and electrical impedance change allows us to clearly distinguish two deposition phases: (a) microgel accumulation within the depth of the membrane porosity and (b) subsequent formation of a thin gel layer on the membrane surface. Such distinction is impossible using only classical hydraulic resistance analysis. The methodology only requires the ratio of microgel to solution conductivity as an input parameter. PMID:27443387

  1. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis

    2016-01-01

    Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m(-3), respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m(-3), respectively. The results indicate the dependence of bio-film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X-ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m(-2), respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.

  2. Treatment of Organic Phosphorus Pesticide Wastewater by Photocatalysis and Microfiltration%光催化和微滤处理有机磷农药废水

    Institute of Scientific and Technical Information of China (English)

    张进

    2011-01-01

    [目的]针对光催化处理有机磷农药废水工艺中,有机磷降解生成无机磷,无机磷会导致水体富营养化以及催化剂分离难问题,将陶瓷膜微滤与光催化相结合采处理有机磷农药废水.[方法]将膜微滤过程引进光催化降解有机磷废水处理工艺中,通过膜的截留特性回收催化剂、降低PO含量,同时对微滤过程的操作参数进行了优化.[结果]微滤促进了除磷效果,消除了二次污染,改善了出水水质,有利于催化剂的分离回收.光催化和微滤处理有机磷废水,PO去除率达99.1%.COD,去除率达91.8%,远高于单独光催化或单独微滤的结果.当操作压差为0.10MPa,流速为5 m/s,膜通量达230L/(m·h).[结论]采用光催化-微滤组合工艺处理有机磷农药废水是一个行之有效的方法.%[ Objective ] The method of ceramic membrane microfiltration combined with photo-catalytsis was experimented in the treatment of the wastewater containing organic phosphorus pesticide because the inorganic phosphorus, which was produced from the treatment of the wastewater containing organic phosphorus pesticide with photo-catalytic degradation method, resulted in the eutrophication of water-body and the difficulty decomposition of catalyst. [ Method] The procedure of micro-filtration was introduced into the degradation of the wastewater with organic phosphorus pesticide, which was treated with photo-catalytic method and the catalyst could be recovered by micro-filter and the content of PO4 3- was reduced, and meanwhile, the operation parameters were optimized in the procedure of the micro-filtration. [ Result ] The method of micro-filtration promoted the removal efficiency of phosphorus, improved the water quality without the secondary contamination and was benefieial to the isolation and recovery of catalyst. The treating result of wastewater by means of the combination of photoeatalysis and micro-filtration showed that the removal rate of PO43- and COD

  3. Stabilization of açaí (Euterpe oleracea Mart. juice by the microfiltration process

    Directory of Open Access Journals (Sweden)

    Flávio Caldeira Silva

    2016-01-01

    Full Text Available Açaí berry, a Brazilian palm fruit widely distributed in northern South America, is acknowledged for its functional properties such as high antioxidant capacity and anti-inflammatory activities. Although the açaí juice is highly appreciated in Brazil and even worldwide, its commercialization is still limited. Microfiltration process is largely applied in juice processing, eliminating many of the traditional processing steps and reducing time, energy and addition of clarifying agents. Furthermore, microfiltration process may eliminate microorganisms and compounds responsible for turbidity in the juice. Current assay applies a microfiltration process to obtain a stabilized açaí permeate pulp. Microfiltrations of açaí pulp were carried out in a dead end configuration with a flat membrane of 0.22 μm pore size. Permeate pulp was characterized according to its turbidity, lipid concentration and microbiological analysis. Initial permeate flux was 103 kg m-2 h-1. After an initial flux decline during 30 min., due to membrane compaction and fouling occurrences, flux was stabilized at 20 kg m-2 h-1. The microfiltration process reduced the initial açaí pulp turbidity by 99.98% and lipids were not identified in the permeate. Microbiological analysis showed that the contamination by microorganism decreased in the permeate pulp when compared to that in raw açaí pulp.

  4. Membranes ceramic by PDMS/SLC containing groups phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.O.; Guimaraes, D.H.; Santa Rosa, L.O.; Silva da, L.T.F.; Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This study investigated the use of a hybrid material developed for proton exchange membrane fuel cell (PEMFC) applications. The materials were comprised of polydimethylsiloxane reticulated with tetrathylorthosilicate and reinforced with silicon carbide (SiC) and phosphotungstic acid. PDMS and TEOS were reacted in a 70-30 mass proportion. Al203 and PWA were then incorporated in mass proportions of 5, 10, 15, 20, and 25 per cent. The membranes were then analyzed using X-ray diffraction (XRD), thermogravimetric (TG), direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) techniques. The study showed that the addition of SiC and PWA altered both the organization of the material as well as its crystallinity. Load incorporation increased the thermal stability of the material in relation to the pure matrix. The membranes did not exhibit any phase separation. It was concluded that the materials are suitable for PEMFC applications.

  5. Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes

    NARCIS (Netherlands)

    He, Wei; Huang, Hua; Gao, Jianfeng; Winnubst, A.J.A.; Chen, Chusheng

    2014-01-01

    A variant of tape casting, involving phase inversion, was explored for the preparation of supported ceramic oxygen separation membranes in one step. A slurry of Zr0.84Y0.16O1.92 (YSZ) andLa0.8Sr0.2MnO3 δ (LSM) powders in a N-methyl-2-pyrrolidone solution of polyethersulfone was tape cast, and immers

  6. Application of Ceramic Membrane Technology in Enhanced Filtration Process%陶瓷膜强化过滤技术的应用

    Institute of Scientific and Technical Information of China (English)

    路钊; 吴克宏; 丁志斌; 马奕炜; 邓非凡; 吕丹; 许祥辉

    2012-01-01

    In the process of ceramic membrane filtration, concentration polarization and membrane fouling causes flux declined and impacts ceramic membrane filtration. Radial ceramic membrane contamination of stratified analysis, engineering practice and relevant experimental sludies of ceramic membrane filtration to relevant existing ceramic membrane enhanced technology were summarized, which provided a reference for ceramic membrane filtration industry.%陶瓷膜在过滤过程中,因浓差极化和膜污染会导致膜通量下降而影响陶瓷膜的过滤效果.通过对陶瓷膜污染进行径向分层分析,结合工程实践和相关试验研究,总结了现有相关的陶瓷膜强化技术,为陶瓷膜过滤强化技术的工业应用提供参考.

  7. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  8. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  9. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson;

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...... sweep voltammetry were used to characterise the electrocatalysts. The most performing composition was found to lie between 50 and 90 wt.% IrO2 on TaC...

  10. Characterization of Ceramic Composite-Membranes Prepared by ORMOSIL Coating Sol

    Institute of Scientific and Technical Information of China (English)

    Goo-Dae Kim; Tae-Bong Kim

    2004-01-01

    Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under different molecular weight of polymer species [polyethylene glycol (PEG) ] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol (PEG)]. The properties of as-prepared ormosil sol such as,viscosity, gelation time were characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its micro-structure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross-flow apparatus. The ormosil sol coated Membrane is easily formed by steric effect of polymer and it improves flux efficiency because infiltration into porous support decreased. Its flux efficiency is elevated about 200(1/m2·h) compared with colloidal sol coated membrane at point of five minutes from starting test.

  11. Development of a mixed-conductive ceramic membrane for syngas production

    International Nuclear Information System (INIS)

    Natural gas conversion into syngas (H2+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  12. Silicalite-1 zeolite membranes on unmodified and modified surfaces of ceramic supports: A comparative study

    Indian Academy of Sciences (India)

    M K Naskar; D Kundu; M Chatterjee

    2009-10-01

    Silicalite-1 zeolite membranes were prepared hydrothermally on the porous ceramic supports, both unmodified and modified with 3-aminopropyl triethoxysilane (APTES) as a coupling agent following ex situ (secondary) crystal growth process. The microstructure of the membranes was examined by scanning electron microscopy (SEM). The permeation study with a single gas, nitrogen (N2) was performed through the membranes. For the surface modified support, a more surface coverage of the seed crystals on the porous support was observed resulting in a relatively higher dense packing of the crystals during secondary crystal growth process compared to that obtained from the unmodified support. The membrane developed on surface modified support rendered lower permeance value i.e. 9 × 10-7 mol m-2 s-1 Pa-1 of N2 compared to that formed on the unmodified support which gave permeance value of 20 × 10-7 mol m-2 s-1 Pa-1 of N2.

  13. Fabrication and characterization of high performance ceramic membrane having nano metre pores

    International Nuclear Information System (INIS)

    In this study, carbon nano tubes (CNTs) were grown directly in the pores of micro porous pyrex membranes and consequently ceramic membranes with very fine pores and high porosity were achieved. Our experiment was done in two stages. Initially cobalt powder with different percent was homogeneously mixed with pyrex powder. In order to produce row membranes, each of these mixtures were compacted in the form of tablet by using of a uniaxial cold press and in a stainless steel mould, and then the tablets were sintered at different temperature in an electric furnace. In second stage chemical vapor deposition method was used to grow CNTs within the pores of the membranes. Argon and ammonia were used as carrier and reactive gas respectively and acetylene was used as the carbon feedstock. Morphology of the membranes before and after CVD process was studied by scanning electron microscopy. After CVD process CNTs were grown in the pores of membranes and the pores size was decreased but total porosity of the membrane was not changed considerably. In this way membranes with high porosity and fine pores were fabricated.

  14. Development of ceramic-supported polymeric membranes for filtration of oil emulsions

    Science.gov (United States)

    Castro, Robert P.

    Hybrid ceramic-polymeric membranes have been constructed by growing of covalently-bondedpolyvinylpyrrolidone(PVP) chains from the surface of porous inorganic supports via a graft polymerization process. The ability to manipulate the distribution of grafted polymer on the surface has been achieved through the control of the surface density of chain anchoring sites (vinyl silane molecules). The application of the modification procedure to both silica and alpha-alumina surfaces has been investigated. Resultant Ceramic-Supported Polymeric (CSP) membranes can now be produced with variable surface density and length of the terminally anchored polymer chains. Hydraulic permeability measurements were conducted to demonstrate the effect of this variation in grafted chain density and length on the water permeability of the CSP membranes. Similar measurements with a range of polar and non-polar organic solvents and both unmodified and modified membranes suggested that the permeability of the modified membrane is determined by the chemistry and configuration of the terminally anchored polymer chains. This has been attributed to the fact that the swelling (degree of extension) of the polymer brush layer increases as the solvent power increases, resulting in a decrease in the pore radius and the permeability. The separation performance of these CSP membranes have been evaluated for the cross-flow filtration of oil emulsions. For tubular silica-PVP membranes, a reduction in the TOC concentration of the permeate stream was observed with operation in the fully developed turbulent flow regime. It is hypothesized that this behavior is attributed to the ability of the grafted chains to inhibit penetration of cake layer into the pore structure from the normal component of the velocity vector.

  15. Accelerating sample preparation through enzyme-assisted microfiltration of Salmonella in chicken extract.

    Science.gov (United States)

    Vibbert, Hunter B; Ku, Seockmo; Li, Xuan; Liu, Xingya; Ximenes, Eduardo; Kreke, Thomas; Ladisch, Michael R; Deering, Amanda J; Gehring, Andrew G

    2015-01-01

    Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration by adding endopeptidase from Bacillus amyloliquefaciens to chicken extracts or chicken rinse, prior to microfiltration with fluid flow on both retentate and permeate sides of 0.2 μm cutoff polysulfone and polyethersulfone hollow fiber membranes. After treatment with this protease, the distribution of micron, submicron, and nanometer particles in chicken extracts changes so that the size of the remaining particles corresponds to 0.4-1 μm. Together with alteration of dissolved proteins, this change helps to explain how membrane fouling might be minimized because the potential foulants are significantly smaller or larger than the membrane pore size. At the same time, we found that the presence of protein protects Salmonella from protease action, thus maintaining cell viability. Concentration and recovery of 1-10 CFU Salmonella/mL from 400 mL chicken rinse is possible in less than 4 h, with the microfiltration step requiring less than 25 min at fluxes of 0.028-0.32 mL/cm(2) min. The entire procedure-from sample processing to detection by polymerase chain reaction-is completed in 8 h.

  16. EFFICIENCY OF ULTRAFILTRATION CERAMIC MEMBRANES FOR TOXIC ELEMENTS REMOVAL FROM WASTEWATERS

    Directory of Open Access Journals (Sweden)

    S. Alami Younssi

    2010-07-01

    Full Text Available The preparation and characterization of porous ceramics multilayer ultrafiltration membrane is described. The first step consisted to prepare high-quality macroporous support in Moroccan clay. The choice of this material is based on its natural abundance and thermal stability.The microporous interlayer was then prepared by slip casting from zirconia commercial powders and finally the active UF toplayers was obtained by sol-gel route using ZnAl2O4 and TiO2 mixed sols. The performance of ultrafiltration membrane (TiO2 (50�20– ZnAl2O4 (50� was evaluated by pores diameter, water flux, thickness and molecular weight cut off (MWCO. The water permeability measured for this composite membrane is 9.42 L/(m2•h•bar, the thickness is less than 700 nm, the pore diameter is centered near 5 nm and the MWCO was about 4500 Da.

  17. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    OpenAIRE

    Stylianou, Stylianos K.; Katarzyna Szymanska; Katsoyiannis, Ioannis A.; Anastasios I. Zouboulis

    2015-01-01

    The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical backgro...

  18. On the stability of capacitance-diaphragm gauges with ceramic membranes

    International Nuclear Information System (INIS)

    Capacitance-diaphragm gauges with ceramic membranes or diaphragms have been on the market for about 15 years. The long-term stability of these devices with full scales from 13 Pa to 133 kPa has been tested in the past decade by the calibration of gauges used by the manufacturer as reference gauges on the production line. These reference gauges were calibrated annually on a primary standard. It was found that the reproducibility of these devices depends on their full scale. For 13 Pa, the annual reproducibility near full scale varied between 0.02% and 0.04%, and for full scales of 133 Pa and higher, it varied between 0.005% and 0.03% of full scale. The reproducibility of the ceramic capacitance-diaphragm gauges for full scales of 133 Pa and 1.3 kPa was significantly lower than the uncertainty of a primary standard applying the static-expansion method.

  19. The Study on Pretreatmenting Destarch Wastwater by Ceramic Microfiltration Membrane Technology%陶瓷微滤膜对退浆废水的预处理研究

    Institute of Scientific and Technical Information of China (English)

    于奕峰; 王广玉; 顾春雷; 常志勇; 黄杰

    2006-01-01

    就陶瓷膜对退浆废水的预处理效果进行了研究,选出了适宜孔径的膜,找到了预处理退浆废水的适宜条件:利用0.2 μ m孔径膜在操作压力为0.2 MPa,温度为80℃的条件下对退浆废水浓缩倍数可达10.77倍,即水的回收利用率可达到90%左右,COD、PVA和色度的去除率可达60%以上.

  20. 磁化甘蔗混合汁微滤过程中膜面吸附对传质模型的影响%Effect of surface adsorption of microfiltration for magnetized sugarcane mixed juice on model of mass transfer

    Institute of Scientific and Technical Information of China (English)

    马森; 高俊永

    2015-01-01

    the theory of osmotic pressure and gel layer. However, the sugar cane mixed juice suffered different adsorption effects on the membrane surface and concentration polarization layer. The forming trend of the adsorbed layer on the membrane surface had close relationship with its surface properties. Therefore, adsorption effect was considered in the process of deducing model. The mass transfer modeling of microfiltration process for magnetic cane mixed juice was deduced at two important cases under the optimum magnetic conditions. Without considering the adsorption of membrane surface layer, the mass transfer coefficient of 0.45 µm ceramic microfiltration membrane for separation was -81.406, the regression equation was significant, and the value of R2 was 0.921. While the mass transfer coefficient of 0.20 µm ceramic microfiltration membrane for separation was-83.130, the regression equation was significant, and the value of R2 was 0.920. When considering the adsorption of membrane surface layer, the mass transfer coefficient of 0.45 µm ceramic microfiltration membrane for separation was -323 254.006 and the adsorption coefficient was 0.995. Its regression equation was significant, and the value of R2 was 0.939. The mass transfer coefficient of 0.20 µm ceramic microfiltration membrane for separation was 573281.937 and the adsorption coefficient was 0.994. Its regression equation was significant, and the value of R2 was 0.999. Both membranes were affected by the concentrations of the main flow and penetrating fluid, and the membrane surface adsorption. Retest results of model showed that the calculation results and error rates of two mass transfer models in which the adsorption process was considered were better than that without considering the adsorption process. The solid particles accumulated on the membrane surface to form the filter cake, and the filtrate moved between the filter cake and the channel of membrane tube through the pressure difference across the

  1. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  2. Liquid radwaste treatment by microfiltration, ultrafiltration and reverse osmosis

    International Nuclear Information System (INIS)

    Radioactive liquid waste processing is an integral part of any facility involved in nuclear power generation, radioisotope production, research and development, decontamination or other aspects of nuclear energy. The aqueous liquid radwastes from the decontamination center are currently treated by the membrane plant. Generally, the liquid waste streams are effectively volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis membrane technologies. Backwash chemical cleaning wastes from the membrane plant are further volume-reduced by evaporation. The concentrate from the membrane plant is ultimately immobilized with bitumen. We performed experiments using two simulated waste solution; secondary waste from the decontamination process with POD (Permanganate Oxidation Decontamination) solution and secondary waste from decontamination with CAN-DECON solution. The experimental tests have been done with cellulose acetate (CA) membrane and polysulfonate (PSF) membrane manufactured at Research Center for Macromolecular Materials and Membranes Bucharest and with Millipore membrane type VS 0.025 μm. A schematic of the laboratory-scale test facility is presented

  3. The application of ceramic membranes for treating effluent water from closed-circuit fish farming

    Directory of Open Access Journals (Sweden)

    Bonisławska Małgorzata

    2016-06-01

    Full Text Available The aim of the study was to analyze and assess the possibility of using a two-stage filtration system with ceramic membranes: a 3-tube module with 1.0 kDa cut-off (1st stage and a one-tube module with 0.45 kDa cut-off (2nd stage for treating effluent water from a juvenile African catfish aquaculture. The study revealed that during the 1st filtration stage of the effluent water, the highest degrees of retention were obtained with respect to: suspended solids SS (rejection coefficient RI=100%, turbidity (RI=99.40%, total iron (RI=89.20%, BOD5 (RI=76.0%, nitrite nitrogen (RI=62.30%, and CODCr (RI=41.74%. The 2nd filtration stage resulted in a lower reduction degree of the tested indicators in comparison to the 1st filtration stage. At the 2nd stage, the highest values of the rejection coefficient were noted in for the total iron content (RIV=100%, CODCr (RIV=59.52%; RV=64.28%, RVI=63.49% and turbidity (RIV and RV = 45.0%, RVI=50.0%. The obtained results indicate that ceramic membranes (with 1.0 and 0.45 kDa cut-offs may be used in recirculation aquaculture systems as one of the stages of effluent water treatment.

  4. Ceramic membrane as a pretreatment for reverse osmosis: Interaction between marine organic matter and metal oxides

    KAUST Repository

    Dramas, Laure

    2013-02-01

    Scaling and (bio)fouling phenomena can severely alter the performance of the reverse osmosis process during desalination of seawater. Pretreatments must be applied to efficiently remove particles, colloids, and also precursors of the organic fouling and biofouling. Ceramic membranes offer a lot of advantages for micro and ultrafiltration pretreatments because their initial properties can be recovered using more severe cleaning procedure. The study focuses on the interaction between metal oxides and marine organic matter. Experiments were performed at laboratory scale. The first series of experiments focus on the filtration of different fractions of natural organic matter and model compounds solutions on flat disk ceramic membranes (47 mm of diameter) characterized with different pore size and composition. Direct filtration experiments were conducted at 0.7 bar or 2 bars and at room temperature (20 ± 0.5 °C). The efficiency of backflush and alkaline cleaning were eval, and titanium oxides. Each metal oxide corresponds to a specific pore size for the disk ceramic membranes: 80, 60, and 30 nm. Different sizes of metal oxide particles are used to measure the impact of the surface area on the adsorption of the organic matter. Seawaters from the Arabian Gulf and from the Red Sea were collected during algal blooms. Cultures of algae were also performed in the laboratory and in cooperation with woods hole oceanographic institute. Solutions of algal exudates were obtained after a couple of weeks of cultivation followed by sonication. Solutions were successively filtered through GFF (0.7 lm) and 0.45 lm membrane filters before use. The dissolved organic carbon (DOC) concentration of final solution was between 1 and 4 mg/L and showed strong hydrophilic character. These various solutions were prepared with the objective to mimic the dissolved organic matter composition of seawater subjected to algal bloom. Characterization of the solutions of filtration experiments (feed

  5. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  6. Process to remove turbidity-causing components from a fluid by micro-filtration - passes the fluid across an asymmetric membrane with inlet pores larger than those of nominal size, and cleans the membrane by backwashing

    DEFF Research Database (Denmark)

    1995-01-01

    turbidity-causing components from beer, wine, fruit juice, milk and blood, and from bacterial and enzyme suspensions. ADVANTAGE-The process greatly reduces the lost production time associated with earlier filtration methods, and beneficial components can pass through the membrane, thereby improving...

  7. Rigid bonded glass ceramic seals for high temperature membrane reactors and solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Ove

    2009-05-15

    Solid Oxide Fuel cells (SOFC) and dense gas separation membranes based on mixed ionic and electronic conductors have gained increased interest the resent years due the search for new technologies for clean energy generation. These technologies can be utilized to produce electricity from fossil fuel with low CO{sub 2} emission compared to conventional gas or coal based energy plants. One crucial challenge with high temperature membrane reactors and SOFCs is the sealing of the active membranes/electrolytes to prevent leakage of air to fuel side or vice versa. Due to the high operating temperatures of typical 800-1000 degrees Celsius the selection of reliable sealing materials is limited. The seals have to remain gas tight during the life time of the reactor/SOFC, they need to be chemical compatible with the sealed materials and stable in reducing and oxidizing atmospheres containing water vapour and CO{sub 2}, and finally they should be cheap, readily available and easy to process. The main purpose of the present work was to evaluate rigid bonded glass ceramic seals for dense oxygen ion and proton conducting membranes and electrolytes for SOFCs and high temperature (HT) membrane reactors. First, a review of sealing technologies has been carried out with emphasis on SOFC and ceramic membranes technologies applicable for zero emission power plants. Regarding sealing, the best and cheapest materials at the present time are based on silicate glass and glass ceramics. In the present work aluminate glass without silica is introduced as a new class of seals expanding the material selection for HT membrane sealing technologies. The main reason for studying silica free systems is that silica is known to be unstable in humid atmospheres and/or reducing conditions at elevated temperatures. Two glass systems have been evaluated. The first was based on aluminate glasses in the system RO-CaO-Al{sub 2}O{sub 3} (R=Mg, Ba, Sr) with special focus on the CaO-MgO-Al{sub 2}O{sub 3

  8. Adsorptive removal of geosmin by ceramic membrane filtration with super-powdered activated carbon

    OpenAIRE

    Matsui, Yoshihiko; Aizawa, Takako; Kanda, Fumiaki; Nigorikawa, Naoko; Mima, Satoru; Kawase, Yuji

    2007-01-01

    Tap water free from unpleasant taste and odour is important for consumer satisfaction. We applied a super-powdered activated carbon (S-PAC) and microfiltration (MF) system to the removal of geosmin, a taste- and odour-causing compound. We used a specially pulverised PAC with a submicron particle size, much smaller than the normal PAC (N-PAC) particle size, as an adsorption pretreatment agent. MF and adsorption pretreatment with S-PAC removed geosmin with considerably greater efficiency and at...

  9. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Laurent Oligny

    2016-07-01

    Full Text Available This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP due to the export of powdered activated carbon (PAC fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW, chemically enhanced backwashing (CEB and Clean-in-Place (CIP. The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  10. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R.; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788

  11. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment.

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788

  12. Functionalization of Ceramic Metal Oxide Powders and Ceramic Membranes by Perfluoroalkylsilanes and Alkylsilanes Possessing Different Reactive Groups: Physicochemical and Tribological Properties.

    Science.gov (United States)

    Kujawa, Joanna; Kujawski, Wojciech

    2016-03-23

    The functionalization of ceramic materials, metal oxide powders (TiO2 and ZrO2), and ceramic membranes (5 kD TiO2 and 300 kD TiO2) was performed and thoroughly discussed. The objective of the functionalization was to change the natively hydrophilic character to the hydrophobic. The hydrophilic character of the ceramics generates limitations in wider application of such materials. Material functionalization was performed using perfluoroalkylsilanes and trifunctional(octyl)silanes possessing three different reactive functional groups: -Cl, -OMe, and -OEt. The characterization of functionalized metal oxide powders and ceramic membranes was assessed by a combination of various analytical methods and techniques: NMR, TGA, HR-TEM, FT-IR, SEM-EDX, AFM, and contact goniometry. The impact of molecular structure of grafting agents (type of reactive group), time of functionalization process (5-15 min), and type of membrane morphology on the material, physicochemical, and tribological properties was studied. Effectiveness of hydrophobization was confirmed by HR-TEM technique. The thickness of the attached hydrophobic nanolayer on the surface of ceramics was around 2.2 nm. It was found that the stable hydrophobic surfaces were obtained by functionalization with both fluorinated and nonfluorinated modifiers. The materials modified with perfluoroalkylsilanes (FC6OEt3) and trichloro(octyl)silanes (C6Cl3) during 15 min hydrophobization possess comparable properties: contact angle (CA) equal to 130° and 133°; roughness RMS of 10.2 and 12 nm; adhesive force of 4.1 and 5.7 nN; and Young modulus of 135 and 130 GPa, respectively. The relation between hydrophobicity level and ceramic membrane roughness was discussed applying the Kao diagram concept. (29)Si NMR results show that type of modifier has an important influence on grafting efficiency and on the mode of the grafting molecules attachment. In case of grafting with n-octyltrichlorosilane (C6OCl3) and n-octyltrimethoxysilane (C6

  13. Functionalization of Ceramic Metal Oxide Powders and Ceramic Membranes by Perfluoroalkylsilanes and Alkylsilanes Possessing Different Reactive Groups: Physicochemical and Tribological Properties.

    Science.gov (United States)

    Kujawa, Joanna; Kujawski, Wojciech

    2016-03-23

    The functionalization of ceramic materials, metal oxide powders (TiO2 and ZrO2), and ceramic membranes (5 kD TiO2 and 300 kD TiO2) was performed and thoroughly discussed. The objective of the functionalization was to change the natively hydrophilic character to the hydrophobic. The hydrophilic character of the ceramics generates limitations in wider application of such materials. Material functionalization was performed using perfluoroalkylsilanes and trifunctional(octyl)silanes possessing three different reactive functional groups: -Cl, -OMe, and -OEt. The characterization of functionalized metal oxide powders and ceramic membranes was assessed by a combination of various analytical methods and techniques: NMR, TGA, HR-TEM, FT-IR, SEM-EDX, AFM, and contact goniometry. The impact of molecular structure of grafting agents (type of reactive group), time of functionalization process (5-15 min), and type of membrane morphology on the material, physicochemical, and tribological properties was studied. Effectiveness of hydrophobization was confirmed by HR-TEM technique. The thickness of the attached hydrophobic nanolayer on the surface of ceramics was around 2.2 nm. It was found that the stable hydrophobic surfaces were obtained by functionalization with both fluorinated and nonfluorinated modifiers. The materials modified with perfluoroalkylsilanes (FC6OEt3) and trichloro(octyl)silanes (C6Cl3) during 15 min hydrophobization possess comparable properties: contact angle (CA) equal to 130° and 133°; roughness RMS of 10.2 and 12 nm; adhesive force of 4.1 and 5.7 nN; and Young modulus of 135 and 130 GPa, respectively. The relation between hydrophobicity level and ceramic membrane roughness was discussed applying the Kao diagram concept. (29)Si NMR results show that type of modifier has an important influence on grafting efficiency and on the mode of the grafting molecules attachment. In case of grafting with n-octyltrichlorosilane (C6OCl3) and n-octyltrimethoxysilane (C6

  14. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance

    NARCIS (Netherlands)

    Zhu, Li; Dong, Yingchao; Hampshire, Stuart; Cerneaux, Sophie; Winnubst, A.J.A.

    2015-01-01

    Different from traditional particle packing structure, a porous structure of ceramic membrane support was fabricated, featuring elongated mullitewhiskers with enhanced porosity, permeance and sufficient mechanical strength. The effect of additives (MoO3and AlF3) and sintering procedureon open porosi

  15. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  16. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol-1. Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author)

  17. Efficient reduction of pathogenic and spoilage microorganisms from apple cider by combining microfiltration with UV treatment.

    Science.gov (United States)

    Zhao, Dongjun; Barrientos, Jessie Usaga; Wang, Qing; Markland, Sarah M; Churey, John J; Padilla-Zakour, Olga I; Worobo, Randy W; Kniel, Kalmia E; Moraru, Carmen I

    2015-04-01

    Thermal pasteurization can achieve the U. S. Food and Drug Administration-required 5-log reduction of pathogenic Escherichia coli O157:H7 and Cryptosporidium parvum in apple juice and cider, but it can also negatively affect the nutritional and organoleptic properties of the treated products. In addition, thermal pasteurization is only marginally effective against the acidophilic, thermophilic, and spore-forming bacteria Alicyclobacillus spp., which is known to cause off-flavors in juice products. In this study, the efficiency of a combined microfiltration (MF) and UV process as a nonthermal treatment for the reduction of pathogenic and nonpathogenic E. coli, C. parvum, and Alicyclobacillus acidoterrestris from apple cider was investigated. MF was used to physically remove suspended solids and microorganisms from apple cider, thus enhancing the effectiveness of UV and allowing a lower UV dose to be used. MF, with ceramic membranes (pore sizes, 0.8 and 1.4 μm), was performed at a temperature of 10 °C and a transmembrane pressure of 155 kPa. The subsequent UV treatment was conducted using at a low UV dose of 1.75 mJ/cm(2). The combined MF and UV achieved more than a 5-log reduction of E. coli, C. parvum, and A. acidoterrestris. MF with the 0.8-μm pore size performed better than the 1.4-μm pore size on removal of E. coli and A. acidoterrestris. The developed nonthermal hurdle treatment has the potential to significantly reduce pathogens, as well as spores, yeasts, molds, and protozoa in apple cider, and thus help juice processors improve the safety and quality of their products. PMID:25836396

  18. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  19. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa. PMID:27031807

  20. Cross-flow microfiltration of blood through an extracorporeal device: a study in parameterization.

    Science.gov (United States)

    Gautam, S K; Pandya, R V

    1997-06-01

    This paper develops a new approach for the general description of membrane plasma separator performance by using dimensional analysis. Experiments involved cross-flow microfiltration of goats' blood across flatsheet polyvinylidene fluoride durapore membranes of pore size 0.65, 0.45 and 0.22 microns in a thin-channel device. Certain non-dimensional numbers are evolved which represent the grouping of relevant filtration parameters and which contribute to the global characterization of membrane-based plasmapheresis devices. PMID:10174682

  1. Erosion critical stress of a matter surface deposit on a micro filtration membrane; Contrainte critique d`erosion d`un depot superficiel de matiere sur membrane de microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, M.C.

    1995-05-11

    During the tangential micro filtration and ultrafiltration processes a membranes fouling in surface and inside the pores often appears. This fouling has the effect of a permeation flow decrease in terms of the filtration time. In order to keep this flow constant (to improve the rentability) the transfer pressure gradient is frequently increased and leads to solid matter surface deposit on the porous wall. The fouling can then be irreversible and requires the stopping of the facilities. The fouling and more particularly the fouling by solid deposit seems to be an abatement to the micro filtration technology development. It is then necessary to search the carrying away conditions of these solid deposits and thus to control the fouling process. An ultrafiltration or micro filtration appliance has been realized and allows to calculate experimentally the erosion critical stress on a porous wall : this is the minimum stress to apply in order to lead in the principal flow a solid particles deposit and the parietal stress to be imposed to lead by an erosion process a solid particles deposit. (O.L.). 122 refs., 73 figs., 25 tabs.

  2. Microfiltration of gluten processing streams from corn wet milling.

    Science.gov (United States)

    Thompson, C I; Rausch, K D; Belyea, R L; Tumbleson, M E

    2006-01-01

    In corn wet milling, dry matter can be separated from liquids in process streams with centrifuges or vacuum belt filtration (VBF). Because separations usually are not complete, dry matter can be lost in the liquid streams (overflow from the gluten thickener centrifuge and filtrate from VBF). This represents a loss of nutrients, especially protein, to low valued coproducts and reduces quality of water for recycling within the process. The objective was to compare microfiltration of light and heavy gluten process streams to conventional separation methods. Batches of light and heavy gluten were obtained from a wet mill plant and processed by microfiltration. Samples of permeate and concentrate from microfiltration were analyzed and compared to corresponding streams from wet milling. Microfiltration of light gluten resulted in concentrate and permeate streams similar in composition to conventionally processed light gluten using a centrifuge, suggesting that microfiltration is as effective as centrifugation in partitioning solids and water in light gluten. Dewatering of heavy gluten found that conventional VBF caused dry matter concentrations in gluten cake to be higher than concentrate from microfiltration. Permeate from microfiltration of heavy gluten had higher concentrations of ash and lower soluble nitrogen than filtrate from VBF. Microfiltration was able to remove more ash from concentrate, which may improve the value of wet milling coproducts. These data demonstrated microfiltration has potential for separation of light and heavy gluten streams, but more data are needed on effectiveness and practicality. PMID:16171692

  3. Removal of pesticides from white and red wines by microfiltration.

    Science.gov (United States)

    Doulia, Danae S; Anagnos, Efstathios K; Liapis, Konstantinos S; Klimentzos, Demetrios A

    2016-11-01

    The aim of this work is the investigation of microfiltration in removing pesticides from a white and a red Greek wine. Six membranes with pore size 0.45μm were investigated. Two mixtures of 23 and 9 pesticides, and single pesticide solutions were added in the wine. The pesticides tested belong to 11 chemical groups. Solid phase extraction (SPE) followed by gas chromatography (GC) with electron capture detector (ECD) were performed to analyze pesticide residues of the filtered fortified wine. Distinct behavior was exhibited by each membrane. Cellulose acetate and cellulose nitrate showed higher mean pesticide removal for both wines, followed by polyethersulfone, regenerated cellulose, and polyamides. The filtration effectiveness was correlated to the membrane type and to the pesticide chemical structure and properties (octanol-water partition coefficient, water solubility) and compared for the wines tested. In most cases, the more hydrophobic pesticides (pyrethroids and aldrin) showed higher removal from red wine than white wine. Adsorption on membranes was increased by increasing hydrophobicity and decreasing hydrophilicity of organic pesticide molecule. The removal of each pesticide from its single solution was generally higher than that from its mixtures, allowing the estimation of the antagonistic and synergistic effects of pesticides in the mixtures. PMID:27262281

  4. Crossflow microfiltration of sugarcane juice: effects of processing conditions and juice quality

    Directory of Open Access Journals (Sweden)

    Katia Rezzadori

    2014-03-01

    Full Text Available Sugarcane juice with passion fruit pulp was clarified using microfiltration under different T (temperature, P (pressure, and V (tangential velocity. The effects of these processing parameters were evaluated applying a rotational central composite experimental design (RCCD and response surface methodology (RSM. The tests were performed at a filtration pilot plant using a polyamide hollow-fiber membrane with an average pore diameter of 0.4 µm and filtration area of 0.723 m². In addition, the resistances to the permeate flux during the microfiltration were investigated according to the series resistance. The final permeate flux ranged from 7.05 to 17.84 L·h- 1·m- 2. There was a rapid decline in flux (50% in the initial stages of microfiltration. T and V were the major variables responsible for the flux increase. The concentration polarization showed the greatest influence on the flux decline, and highest values for the flux decline rate (λ were found when low pressures were used. In the clarified juice there was a reduction in the contents of total solids, proteins, vitamin C, and acidity, while the soluble solids, pH, and ash contents did not change. Finally, membrane process could produce high quality filtered sugarcane juice with substantial flux and increased luminosity improving organoleptical properties.

  5. Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

    KAUST Repository

    Hamad, Juma Z.

    2013-08-29

    Ceramic membranes (CM) are robust membranes attributed with high production, long life span and stability against critical conditions. While capital costs are high, these are partially offset by lower operation and maintenance costs compared to polymeric membranes. Like any other low-pressure membrane (LPM), CM faces problems of fouling, low removal of organic matter and poor removal of trace organic compounds (TOrCs). Current pretreatment approaches that are mainly based on coagulation and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOrCs to higher level is required. Submicron powdered activated carbon (SPAC), obtained after crushing commercial activated carbon into very fine particle, and novel activated carbon (KCU 6) which is characterized with larger pores and high surface area were employed. A pre-coating approach, which provides intimated contact between PAC and contaminants, was adopted for wastewater and (high DOC) surface water treatment. For seawater, in-line coagulation with iron III chloride was adopted. Both SPAC and KCU 6 showed good removal of biopolymers at a dose of 30 mg/L with > 85 % and 90 %, respectively. A dose of 40 mg/L of SPAC and 30 mg/L KCU 6 pre-coats were successful used in controlling membrane fouling. SPAC is suggested to remove biopolymers by physical means and adsorption while KCU 6 removed biopolymers through adsorption. Both KCU 6 and SPAC attained high removal of TOrCs whereas KCU 6 showed outstanding performance. Out of 29 TOrCs investigated, KCU 6 showed > 87 % TOrCs rejection for 28 compounds. In seawater pretreatment, transparent exopolymer particles (TEP) were found to be an important foulant. TEP promoted both reversible and irreversible fouling. TEP are highly electronegative while alumina CM is positively charged which

  6. Development of a mixed-conductive ceramic membrane for syngas production; Developpement d'une membrane ceramique conductrice mixte pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, G

    2005-10-15

    Natural gas conversion into syngas (H{sub 2}+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  7. Mesoporous Silica MCM-48 Membrane Synthesized on a Coarse-pore α-Al2O3 Ceramic Tube

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-yan; WANG Jin-qu

    2005-01-01

    A mesoporous MCM-48 membrane was synthesized on a coarse-pore a-alumina ceramic tube by hydrothermal treatment by using a cationic surfactant as the structure-directing agent under basic conditions.The products were characterized by small-angle X-ray diffraction, SEM measurements and N2 adsorption experiments. The X-ray diffraction(XRD) results show that the membrane possesses a periodic mesostructure,which is typical for an MCM-48 material. The results of the SEM measurements indicate that MCM-48 grew in the pores of the support and formed a continuous membrane. The N2 adsorption and desorption isotherms also show that the membrane is a typical mesoporous material with pore channel size of about 2.74 nm.

  8. 无机陶瓷膜在水处理中的研究进展%Research on inorganic ceramic membranes applied to water treatment

    Institute of Scientific and Technical Information of China (English)

    崔佳; 王鹤立; 龙佳

    2011-01-01

    Membrane filtration technology has been considered to be a new type of water treatment technology in the 21st century,among which inorganic ceramic membrane filtration technology has earned wide attention. Aiming at the shortage of the traditional organic membranes,inorganic ceramic membranes are acid/alkaline-resisting,high separation efficiency, high temperature resistance, good chemical stability, long service life and so on. The research status and progress of ceramic membranes are reviewed. The application of ceramic membranes to water treatment at home and abroad is expounded, and the development of ceramic membrane applied to water treatment is summarized.%膜过滤技术被认为是21世纪新型的水处理技术,其中无机陶瓷膜过滤技术受到了广泛的关注,针对传统有机膜的不足,无机陶瓷膜具有耐酸碱、分离效率高、耐高温、化学稳定性好、使用寿命长等优点.针对陶瓷膜的研究现状和进展,论述了陶瓷膜在水处理领域中的应用,同时对陶瓷膜在水处理方面的发展进行了总结.

  9. Filtering absorption and visual detection of methylene blue by nitrated cellulose acetate membrane

    Energy Technology Data Exchange (ETDEWEB)

    He, Shengbin; Fang, He; Xu, Xiaoping [College of Chemistry, Fuzhou University, Fuzhou (China)

    2016-04-15

    Wastewater-containing industrial dyes are quite harmful since most dyes are stable and toxic to humans. Detection and removing of those dyes from wastewater is necessary to ensure water supply safety. In present work, a nitrated cellulose acetate (NCA) microfiltration membrane was developed for specific absorption and visible detection of methylene blue (MB). The NCA microfiltration membrane overcomes the defect of high driven pressure in nanofiltration or ultrafiltration process. By absorption effect, the NCA membrane also overcomes the defect of low retention rate of traditional microfiltration membrane to dyes. The residual MB can be removed quickly and thoroughly by microfiltration absorption. The microfiltration membrane can also be used for visual detection of MB by concentrating the MB on membrane. The limit of detection is as low as 0.001 mg/L. The detection method is simple and free of large-scale instrument, and can be used as a portable device for spot detection of dye-contaminated water.

  10. Preparation of Al2O3-SiO2-TiO2-ZrO2 Composite Ceramic Membranes by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    WU Jianfeng; BAI Zhanliang; XU Xiaohong; ZHANG Ying

    2005-01-01

    Al2O3-SiO2-TiO2-ZrO2 supported membranes were prepared by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al2O3, TiO2(anatase), Al2SiO5, and ZrO2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investigated by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the surface nanoscale topography and microstructure of composite ceramic membranes were also analyzed.

  11. Liquid radwaste processing with crossflow microfiltration and spiral wound reverse osmosis

    International Nuclear Information System (INIS)

    The useful lifetime of thin-film composite (TFC) polyamide membranes used for the processing of variable aqueous waste at Chalk River Labs (CRL) by spiral wound reverse osmosis (SWRO) is about 3000 hours. This service lifetime is achievable through regular cleaning cycles which range between 70 to 200 m3 of waste treated. After 3000 hours of service the SWRO membranes deteriorate rapidly, and more frequent shutdowns are required for chemical cleaning cycles. The overall rejection efficiency of the SWRO membranes at an operating pH of about 6, and a volumetric recovery of 85%, decreased from about 99.5% with 3000 hours of service, to 95% after 4000 hours. Rapid increases in pressure drop due to increased deposition of foulants in deteriorated membrane areas were noted after 3000 hours of field service. Presently the crossflow microfiltration system is operated at pH 7 and removes 45% of the gross β/γ contaminants and 70% of the α radioactivity. Iron concentrations are reduced to below 1 mg/L from 50 mg/L, which minimizes fouling due to ferric hydroxide precipitates on the TFC membranes. About 60% of β/γ in the permeate stream is present as 137Cs radioactivity. The combined removal efficiencies for critical contaminants employing both microfiltration and reverse osmosis operations are as follows: α : 99.9%; β/γ : 99.6%; PO43- : 99.1%. (author). 8 refs., 1 tab., 4 figs

  12. Flux Decline in Protein Microfiltration: Influence of Operative Parameters

    Science.gov (United States)

    Herrero; Pradanos; Calvo; Tejerina; Hernandez

    1997-03-15

    The flux decline, is studied in typical experiments with dead-end microfiltration of BSA solutions (1, 3, 5 and 10 g/L) through Cyclopore track-etched polycarbonate membranes (nominal pore size 0.1 μm) at several pH values and two ionic strengths. Results have been analyzed in terms of the common blocking laws and correlated with the operation parameters. Variations of pressure, concentration, pH, and ionic strength have shown great influence on the kinetics of protein deposition. In any case, the process of membrane fouling can be divided in two steps, clearly separated in all the experiments: a rapid initial internal blocking, strongly dependent on operation parameters, and a final stage of external blocking with lower sensitivity of the flux behavior on operation conditions. Finally, the amount of adsorbed protein and its influence on pore size distribution have been analyzed by desorption with a SDS-solution and by an extended bubble point method. These results show that the initial internal pore blocking can be attributed to protein adsorption while the long-time fouling should be caused mainly by solute-solute interactions.

  13. Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection.

    Science.gov (United States)

    Shang, Ran; Verliefde, Arne R D; Hu, Jingyi; Zeng, Zheyi; Lu, Jie; Kemperman, Antoine J B; Deng, Huiping; Nijmeijer, Kitty; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems.

  14. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  15. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    International Nuclear Information System (INIS)

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

  16. Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes

    International Nuclear Information System (INIS)

    Highlights: • Process simulations of IGCC with pre-combustion capture via membranes were done. • Most promising technology is the water–gas-shift-membrane-reactor (WGSMR). • Energetic evaluations showed minimum efficiency loss of 5.8%-points for WGSMR. • Economic evaluations identified boundary limits of membrane technology. • Cost of electricity for optimum WGSMR-case is 57 €/MW h under made assumptions. - Abstract: Pre-combustion-carbon-capture is one of the three main routes for the mitigation of CO2-emissions by fossil fueled power plants. Based on the data of a detailed technical evaluation of CO2-capture by porous ceramic membranes (CM) and ceramic membrane reactors (WGSMR) in an Integrated-Gasification-Combined-Cycle (IGCC) power plant this paper focuses on the economic effects of CO2-abatement. First the results of the process simulations are presented briefly. The analysis is based on a comparison with a reference IGCC without CO2-capture (dry syngas cooling, bituminous coal, efficiency of 47.4%). In addition, as a second reference, an IGCC process with CO2 removal based on standard Selexol-scrubbing is taken into account. The most promising technology for CO2-capture by membranes in IGCC applications is the combination of a water gas shift reactor and a H2-selective membrane into one water gas shift membrane reactor. For the WGSRM-case efficiency losses can be limited to about 6%-points (including losses for CO2 compression) for a CO2 separation degree of 90%. This is a severe reduction of the efficiency loss compared to Selexol (10.3% points) or IGCC–CM (8.6% points). The economic evaluation is based on a detailed analysis of investment and operational costs. Parameters like membrane costs and lifetime, costs of CO2-certificates and annual operating hours are taken into account. The purpose of these evaluations is to identify the minimum cost of electricity for the different capture cases for the variation of the boundary conditions

  17. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions.

  18. Soil flushing, iron coprecipitation, and ceramic membrane filtration: Innovative technologies for remediating arsenic-contaminated soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Redwine, J.C. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-12-31

    This paper provides a brief description and case study of soil flushing to treat contaminated groundwater. Selected reagents may be added to the flushing water to enhance contaminant removal. In the iron coprecipitation process, and iron salt is added to the contaminated water and the pH is adjusted to induce precipitation of iron oxyhydroxides. During floc formation, trace elements adsorb onto the iron floc. Cross-flow ceramic membrane filtration can be used to remove any remaining contaminant in the feed stream. In field tests, an arsenic plume flushed with citric acid was reduced by 73 percent after 6 months of treatment.

  19. Advanced treatment of methylene blue dye wastewater by TiO_2 photocatalysis and microfiltration membrane separation%TiO_2光催化-微滤膜分离深度净化亚甲基蓝印染废水

    Institute of Scientific and Technical Information of China (English)

    高永; 孔峰; 程洁红; 陈娴

    2012-01-01

    The effluent from the secondary settling tank of a textile industrial park wastewater treatment plant was subjected to photocatalytic degradation with the titania and UV light in a slurry photocatalytic membrane reactor(PMR),where titania particles were separated by hollow fiber microfiltration membranes.The influences of the dosage of photocatalyst,reaction time,dissolved oxygen(DO),mixture methods on photocatalysis efficiency and membrane separation processes were investigated in detail.The results showed that TiO2 dosage,DO and mixture methods significantly influenced the performance of PMR.The best dosage of photocatalyst was 1 g/L and the blast mixture was more fitted for PMR than the mechanical mixture.After treated by PMR,the effluent from the secondary settling tank of a textile wastewater treatment plant could match Discharge Standards of Pollutants for Dyeing and Finishing of Textile Industry(GB 4287-92)(Class I)and Miscellaneous Domestic Water Quality Standard(CJ/T 48-1999).%采用悬浮式TiO2光催化膜反应器深度净化纺织工业园区含亚甲基蓝印染废水经生物处理二级出水,利用中空纤维微滤膜进行催化剂截留分离,研究催化剂投加量、运行时间、溶解氧、搅拌方式对出水水质及膜通量的影响。结果表明:光催化会消耗体系溶解氧,鼓风曝气搅拌可同时为系统供氧,优于机械搅拌;该耦合体系的催化剂最佳投加量为1 g/L,经光催化氧化-膜组合工艺处理后水质优于GB 4287-1992《纺织染整工业污染物排放标准》的I级标准,符合建设部颁布的《生活杂用水水质标准》(CJ/T 48-1999)。

  20. Microscale approaches to the rapid evaluation and specification of microfiltration processes

    OpenAIRE

    Jackson, N. B.

    2011-01-01

    A high throughput method for the study of normal flow microfiltration operations has been established using a custom designed 8-24 well filter plate (0.8 cm2) and a commercial 96-well Multiscreen filter plate (0.3 cm2). Integration of this new approach with a typical robotic platform has enabled automation of the experimental procedure. Membrane resistance data can be quantified using either filter plate. The accuracy of these measurements has helped to determine that plate position does n...

  1. Novel ceramic-polymer composite membranes for the separation of liquid waste. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    'The project on ceramic-supported polymer membranes focuses on the development of a novel class of membranes for the separation of organics from both organic-aqueous and organic-organic mixtures, Theses membranes are fabricated by a graft polymerization process where polymer chains are grown onto the surface of a ceramic support membrane. The surface graft polymerization process, developed at UCLA, results in the formation of a thin polymer layer covalently bonded to the membrane pore surface as a layer of terminally anchored polymeric chains. Through the selection of the polymer most appropriate for the desired separation task, the graft polymerized surface layer can be synthesized to impart specific separation properties to the membrane. It is expected that this project will lead to the demonstration of a new technology for the tailor design of a new class of selective and robust ceramic-supported polymer membranes. This new approach will allow the rapid deployment of task-specific membranes for the separation of waste constituents for subsequent recovery, treatment or disposal. Progress to date includes the preparation of successful silica-polyvinylpyrrolidone (PVP) membrane for the treatment of oil-in-water emulsions and a silica-polyvinylacetate (PVAc) pervaporation membrane for the separation of organics from water. Current work is ongoing to study the performance of the pervaporation membrane for the removal of chlorinated organics from water and to develop a pervaporation membrane for organic-organic separation. In another aspect of the study, the authors are studying the hydrophilic PVP CSP membrane for oil-in-water emulsion treatment with the goal of determining the optimal membrane polymer surface structure as a function of various operating conditions (e.g., tube-side Reynolds number and transmembrane pressure), Work is also in progress to characterize the polymer layer by AFM and internal reflection FTIR, and to model the conformation of the polymer

  2. Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization.

    Science.gov (United States)

    Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen

    2015-04-28

    In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. PMID:25655422

  3. CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2005-07-15

    A high temperature membrane reactor (MR) has been developed to enhance the water-gas-shift (WGS) reaction efficiency with concomitant CO{sub 2} removal for sequestration. This improved WGS-MR with CO{sub 2} recovery capability is ideally suitable for integration into the Integrated Gasification Combined-Cycle (IGCC) power generation system. Two different CO{sub 2}-affinity materials were selected in this study. The Mg-Al-CO{sub 3}-layered double hydroxide (LDH) was investigated as an adsorbent or a membrane for CO{sub 2} separation. The adsorption isotherm and intraparticle diffusivity for the LDH-based adsorbent were experimentally determined, and suitable for low temperature shift (LTS) of WGS. The LDH-based membranes were synthesized using our commercial ceramic membranes as substrate. These experimental membranes were characterized comprehensively in terms of their morphology, and CO{sub 2} permeance and selectivity to demonstrate the technical feasibility. In parallel, an alternative material-base membrane, carbonaceous membrane developed by us, was characterized, which also demonstrated enhanced CO{sub 2} selectivity at the LTS-WGS condition. With optimization on membrane defect reduction, these two types of membrane could be used commercially as CO{sub 2}-affinity membranes for the proposed application. Based upon the unique CO{sub 2} affinity of the LDHs at the LTS/WGS environment, we developed an innovative membrane reactor, Hybrid Adsorption and Membrane Reactor (HAMR), to achieve {approx}100% CO conversion, produce a high purity hydrogen product and deliver a concentrated CO{sub 2} stream for disposal. A mathematical model was developed to simulate this unique one -step process. Finally a benchtop reactor was employed to generate experimental data, which were consistent with the prediction from the HAMR mathematical model. In summary, the project objective, enhancing WGS efficiency for hydrogen production with concomitant CO{sub 2} removal for

  4. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively.

  5. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study.

    Science.gov (United States)

    Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui

    2013-01-01

    This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.

  6. Comparação entre centrifugação e microfiltração na clarificação do suco tropical de maracujá = Comparison between centrifugation and microfiltration on the clarification of passion fruit juice

    Directory of Open Access Journals (Sweden)

    Ricardo Cardoso de Oliveira

    2010-07-01

    Full Text Available No sentido de desenvolver uma alternativa ao processo convencional decentrifugacao realizou-se neste trabalho um estudo da microfiltracao para clarificar o suco tropical de maracuja. A influencia da pressao transmembrana e do pre-tratamento enzimatico do suco, foram estudadas no processo de clarificacao por microfiltracao. Os ensaios de clarificacao por microfiltracao do suco tropical de maracuja foram realizados numa unidade de microfiltracao construida em aco inox. As membranas ceramicas usadas apresentam diametro medio de corte de 0,3 e 0,8 ƒÊm. Os niveis de pressao transmembrana foram de 1,0 e 3,0 bar num processo isotermico a 35oC. Os niveis de concentracao de enzima Cytrozym Ultra L utilizados no pre-tratamento do suco foram de 100 e 200 ppm. A condicao de microfiltracao que resultou num suco de boa qualidade foi com a membrana de 0,3 ƒÊm operada a 1,0 bar com suco pre-tratado com 100 ppm de enzima. Nesta condicao, obteve-se fluxo de permeado igual 56 kg h-1 m-2 e obtendo-se 100% na reducao de solidosem suspensao e 97% na reducao da turbidez. Comparativamente o processo de centrifugacao com o mesmo suco apresentou resultados praticamente equivalentes, mas com uma reducao de solidos suspensos inferior a de 100% observada para a microfiltracao, sendo a obtencao de um suco isento de particulas suspensas, um dos principais objetivosdeste trabalho.Aiming at n alternative to the conventional centrifuge process of clarification, this work presents a study of the microfiltration processes to clarify the tropical juice of passion fruit. The influence of transmembrane pressure and the enzyme pre-treatment of the juice were studied in the process of clarification by microfiltration. Tests of microfiltration for clarification of tropical juice of passion fruit were performed in a microfiltration unit built in stainless steel. The ceramic membranes used have diameter cut-off 0.3 and 0.8 ƒÊm. The levels of transmembrane pressureinvestigated were 1

  7. Effect of gas sparging on flux enhancement and phytochemical properties of clarified pineapple juice by microfiltration

    KAUST Repository

    Laorko, Aporn

    2011-08-01

    Membrane fouling is a major obstacle in the application of microfiltration. Several techniques have been proposed to enhance the permeate flux during microfiltration. Gas sparging is a hydrodynamic method for improving the performance of the membrane process. In this study, a 0.2 μm hollow fiber microfiltration membrane was used to study the effect of cross flow velocity (CFV) and gas injection factor () on the critical and limiting flux during microfiltration of pineapple juice. In addition, the phytochemical properties of clarified juice were investigated. In the absence of gas sparging, the critical and limiting flux increased as the CFV or shear stress number increased. The use of gas sparging led to a remarkable improvement in both the critical and limiting flux but it was more effective at the lower CFV (1.5 m s-1), compared to those at higher CFV (2.0 and 2.5 m s-1). When the gas injection factor was applied at 0.15, 0.25 and 0.35 with a CFV of 1.5 m s -1, the enhancement of 55.6%, 75.5% and 128.2% was achieved for critical flux, while 65.8%, 69.7% and 95.2% was achieved for limiting flux, respectively. The results also indicated that the use of gas sparging was an effective method to reduce reversible fouling and external irreversible fouling rather than internal irreversible fouling. In addition, the CFV and gas sparging did not affect pH, total soluble solids, colour, total phenolic content and the antioxidant property of the clarified juice. The l-ascorbic acid and total vitamin C were significantly decreased when the higher CFV and high gas injection factor were applied. The results also indicated that the use of gas sparging with low CFV was beneficial for flux enhancement while most of the phytochemical properties of the clarified juice was preserved. © 2011 Elsevier B.V. All rights reserved.

  8. Análise do uso da membrana cerâmica de 0,2 μm na clarificação de cerveja = Analysis of the use of a 0.2 mm ceramic membrane for beer clarification

    Directory of Open Access Journals (Sweden)

    Tatiana Valesca Rodríguez Alicieo

    2008-07-01

    Full Text Available Neste trabalho são comparados o fluxo permeado e a qualidade do produto obtido na clarificação de cerveja por microfiltração tangencial, para uma membrana cerâmica tubular com tamanho nominal de poro de 0,2 mm na temperatura de 6 ± 1°C e pressões de 1, 2, 3 e 4 bar. Amostras do alimentado e permeado foram submetidas a análisesfísico-químicas. Além disso, foi realizado o estudo do mecanismo de fouling: bloqueio completo, bloqueio parcial e bloqueio interno de poros e formação de torta. Os resultados mostram redução de cor de 28,75% e de turbidez de 95,65% para a pressão de 4 bar. O estudo de fouling demonstrou que o mecanismo para a pressão de 1 e 3 bar foi o de bloqueio completo de poros e para a pressão de 2 e 4 bar o de formação de torta.This work compares the permeated flow and the quality of the obtainedproduct in the process of beer clarification by crossflow microfiltration. The membrane used in the present study was a tubular ceramic membrane with a 0.2 mm nominal pore diameter, at 6 ± 1°C and 1, 2, 3 and 4 bar of pressure. Samples of the feed and permeatewere analyzed. Additionally, the fouling mechanism was studied: complete, partial, internal blockade of pores and cake filtration. The results show a 28.75% reduction in color and 95.65% in turbidity at 4 bar. The study of fouling showed that the mechanism used for thepressures of 1 and 3 bar was the complete blockade of pores, whereas for the pressures of 2 and 4 bar, the cake formation was the mechanism used.

  9. Development and Characterization of Polymer-grafted Ceramic Membranes for Solvent Nanofiltration

    OpenAIRE

    Pinheiro de Melo, Ana Filipa

    2013-01-01

    The research described in this thesis focuses on the functionalization and pore size tuning of γ- and α-alumina membranes to be used for liquid separation. The research covers alumina grafted membranes with different silanes (alkyltrichlorosilanes and aminotrialkoxysilanes) and polymers like PDMS and polyimides. In addition, the application of these materials as membranes in solvent nanofiltration is described.

  10. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The effe

  11. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore;

    2015-01-01

    Marinated herring processing brines, which are usually discarded, are rich in salt, protein, non-protein nitrogen, iron, fatty acids, antioxidant and even possess enzymatic activity. This study investigated the performance of ceramic ultrafiltration of two herring spice brines with a major focus...

  12. Research of ceramic membrane filtration characteristics in continuous reaction system%连续反应系统中陶瓷膜过滤特性研究

    Institute of Scientific and Technical Information of China (English)

    张凤莉; 孙亚峰; 杨阿三

    2014-01-01

    Ceramic membrane module has high separation efficiency and good stability. In this thesis, we make multiphase reactor and ceramic membrane filtration components a continuous device, in order to realize the solid-liquid separation and continuous operation, we used three phases system including air, water and activated carbon as our study medium, studying its filtration characteristics, investigating the stability of the ceramic mem-brane filter components and membrane filtrating pressure and the effect of circulation pump frequency conversion on the components of ceramic membrane filtration flux. The results showed that the ceramic membrane components can ensure the stability to filter in the longer term;Filtration flux are greatly affected by the filtration pressure pro-portionally, the greater the filtrating pressure, the larger the filtration flux will be; In addition to this, the filtration flux increases with the growth of circulation flow rate.%陶瓷膜组件具有较高的分离效率且稳定性好,本文是将多相反应器与陶瓷膜过滤组件组成连续装置,以期实现液固分离和操作的连续化,以空气-水-活性炭三相为研究介质,对其过滤特性进行研究,结果表明:陶瓷膜组件能够确保在较长时间内过滤的稳定性;过滤通量受过滤压力的影响较大,过滤压力越大过滤通量越大;过滤通量随着循环流量的增大而增大。

  13. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  14. Development and application of ceramic membrane to water treatment%陶瓷膜在水处理中的发展与应用

    Institute of Scientific and Technical Information of China (English)

    秦伟伟; 宋永会; 书虎; 程建光; 曾萍

    2011-01-01

    介绍了无机陶瓷膜的结构、原理及特性;综述了陶瓷分离膜技术的发展过程及其国内外发展现状;分类介绍了其在给水处理、海水淡化、废水处理等方面的应用研究及进展;最后讨论了陶瓷膜在水处理应用中存在的问题及发展趋势,指出其在水处理中具有良好的应用前景.%The structures,principles and characteristics of the inorganic ceramic membrane are introduced. The development process of ceramic separation membrane technique and its present situation in China and abroad are summarized. Its development and application to feed water treatment,seawater desalination wastewater treatment, etc. Are introduced separately. At the end,the problems existed in water treatment application and developments trend of ceramic membrane are discussed. It is pointed out that the application prospect of inorganic ceramic membrane to water treatment is very good.

  15. 多孔金属陶瓷膜研究进展%Research progress of ceramic membrane based on porous metal

    Institute of Scientific and Technical Information of China (English)

    王连超; 谢佳; 席赟

    2016-01-01

    Ceramic membrane based on porous metal has high mechanical strength,high filtration accuracy,and excellent resistance to high temperature and corrosion,which has been widely used in filtration and separation in-dustries. The current development situation of ceramic membrane based on porous metal at home and abroad was compared. The structure characteristics,preparation methods,requirements for the porous metal substrate,re-search status and development trend of ceramic membrane based on porous metal were summarized. The research and preparation of TiO2 and Al2O3 ceramic membranes based on porous metal substrate were mainly introduced.%以多孔金属为基体的陶瓷膜具有力学强度高、过滤精度高和耐高温耐腐蚀等优点,已广泛应用于过滤、分离等领域。通过对比国内外多孔金属陶瓷膜的发展现状,综述了多孔金属陶瓷膜的结构特点、制备方法、对多孔金属基体的要求、研究现状和发展趋势,重点介绍了以多孔金属为基体的TiO2和Al2O3膜的制备和研究。

  16. High temperature ceramic membrane reactors for coal liquid upgrading. Final report, September 21, 1989--November 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Liu, P.K.T. [Aluminum Co. of America, Pittsburgh, PA (United States); Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1992-12-31

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  17. Fabrication of cost effective iron ore slime ceramic membrane for the recovery of organic solvent used in coke production

    Institute of Scientific and Technical Information of China (English)

    V.Singh; N.K.Meena; A.K.Golder; C.Das

    2016-01-01

    Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents,namely,n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA).Various solvent blends were employed for the coal extraction under the total reflux condition.A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D,Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture.Membrane separations were carried out in a batch cell,and around 75 % recovered NMP was reused.The fractionated coal properties were determined using proximate and ultimate analyses.In the case of bituminous coal,the ash and sulfur contents were decreased by 99.3 % and 79.2 %,respectively,whereas,the carbon content was increased by 23.9 % in the separated coal fraction.Three different cleaning agents,namely deionized water,sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.

  18. Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Qikai [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo (China); School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Dong, Xinfa [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Zhu, Zhiwen [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo (China); Dong, Yingchao, E-mail: ycdong@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo (China)

    2014-05-01

    Highlights: • Coal gangue was recycled to fabricate low-cost porous mullite membrane supports. • A unique volume-expansion occurred due to a mullitization-crystal-growth process. • A porous structure consists of glassy particles and embedded mullite crystals. - Abstract: Porous mullite ceramic supports for filtration membrane were successfully fabricated via recycling of coal gangue and bauxite at sintering temperatures from 1100 to 1500 °C with corn starch as pore-forming agent. The dynamic sintering behaviors, phase evolution, shrinkage, porosity and pore size, gas permeation flux, microstructure and mechanical property were systematically studied. A unique volume-expansion stage was observed at increased temperatures from 1276 to 1481 °C caused by a mullitization-crystal-growth process. During this stage, open porosity increases and pore size distributions broaden, which result in a maximum of nitrogen gas flux at 1400 °C. The X-ray diffraction results reveal that secondary mullitization took place from 1100 °C and the major phase is mullite with a content of ∼84.7 wt.% at 1400 °C. SEM images show that the as-fabricated mullite supports have a porous microstructure composed of sintered glassy particles embedded with inter-locked mullite crystals, which grew gradually with increasing temperature from rod-like into blocky-like morphologies. To obtain mullite membrane supports with sufficient porosity and acceptable mechanical strength, the relationship between porosity and mechanical strength was investigated, which was fitted using a parabolic equation.

  19. 错流微滤制备动态膜过程中细微颗粒沉积机理%Mechanism of micro-sized particle deposition in preparation of dynamic membrane with cross-flow microfiltration

    Institute of Scientific and Technical Information of China (English)

    柏斌; 潘艳秋

    2012-01-01

    以煤基炭膜为基膜,以ZrO2为涂膜颗粒,在实验研究的基础上对错流微滤过程中沉积颗粒进行受力分析,分别建立径向颗粒的可能沉积临界粒径模型、轴向上颗粒的可能移动临界粒径模型和圆周方向的颗粒可能滚动临界粒径模型.并以温度、错流速率、渗透通量为主要影响参数,分别对3种临界粒径模型进行模拟研究,探讨颗粒沉积机理.结果表明,压力增大(渗透通量提高)、温度降低以及错流速度降低,都可增大动态膜层厚度;由于净重力的影响,在水平膜管内圆周方向动态膜膜层厚度分布不均匀通过增加错流速率可明显减小此种差异;模拟结果与实验结果的一致性证实了所建模型的可靠性.%The critical particle size model was developed through analyzing the forces acting on a single particle with axial, radial and circumferential directions considered. The effects of feed temperature, cross-flow velocity and permeate flux on the critical particle size were investigated theoretically and experimentally, and the mechanism of particle deposition was discussed. Both simulation and measured results show that the membrane thickness becomes larger with the decrease of feed temperature and increase of trans-membrane pressure difference, and smaller with the increase of cross-flow velocity. Because of the net gravity, there exists a dynamic layer of non-uniform thickness along the circumference direction in the horizontal tube. This non-uniformity can be reduced evidently as the cross-velocity increases. The model calculation is in good agreement with the experimental results.

  20. CVD of solid oxides in porous substrates for ceramic membrane modification

    OpenAIRE

    Lin, Y. S.; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The effects of substrate pore dimension and structure, bulk-phase reactant concentration, reactant diffusivity in substrate pores and deposition temperature are experimentally studied and explained qualita...

  1. Porous ceramic membranes: suspension processing, mechanical and transport properties, and application in the osmotic tensiometer

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  2. One-step Continuous Phenol Synthesis Technology via Selective Hydroxylation of Benzene over Ultrafine TS-1 in a Submerged Ceramic Membrane Reactor☆

    Institute of Scientific and Technical Information of China (English)

    Hong Jiang; Fei She; Yan Du; Rizhi Chen; Weihong Xing

    2014-01-01

    A new route towards phenol production by one-step selective hydroxylation of benzene with hydrogen peroxide over ultrafine titanium silicalites-1 (TS-1) in a submerged ceramic membrane reactor was developed, which can maintain the in situ removal of ultrafine catalyst particles from the reaction slurry and keep the process continuous. The effects of key operating parameters on the benzene conversion and phenol selectivity, as wel as the membrane filtration resistance were examined by single factor experiments. A continuous reaction process was carried out under the obtained optimum operation conditions. Results showed that the system can be continuously and stably operated over 20 h, and the benzene conversion and phenol selectivity kept at about 4%and 91%, respectively. The ceramic membrane exhibits excel ent thermal and chemical stability in the continuous reaction process.

  3. Influence of twisted tape turbulence promoter on fouling reduction in microfiltration of milk proteins

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2011-01-01

    Full Text Available Membrane filtration has become one of the major technologies in the food industry. It is widely applied in the dairy industry, and it is mostly used for the concentration and fractionation of milk proteins and for the whey processing. Of all pressure driven membrane processes, ultrafiltration is the most widely used. The major disadvantage of pressure driven membrane processes is severe fouling of membrane during filtration particularly when the fluids containing proteins are processed. Fouling with proteins is complex phenomenon because it occurs at the membrane surface as well as in the pores of membrane, and depends on the operating conditions and on the interactions of proteins and membrane material. In order to reduce fouling of the membrane different techniques have been developed, and one of them relies on the changing of the hydrodynamic conditions in the membrane or module. In this study, influence of twisted tape turbulence promoters on the fouling reduction in cross-flow microfiltration of skim milk was investigated. Twisted tapes with tree characteristic ratios of helix element length to the tape diameter (aspect ratio were studied. It was shown that twisted tapes with different aspect ratios reduce fouling of membrane by a factor of three or more. The presence of twisted tape induces changes in the flow patterns from straight to helicoidally thus producing turbulence flow at the lower cross-flow rates. Turbulence intensification prevents accumulation of proteins at membrane surface enabling reduction in reversible fouling what results in the reduction of overall membrane fouling. The best performance was achieved using a twisted tape with the lowest aspect ratio of 1.0. This promoter reduces fouling seven times at low transmembrane pressure and low cross-flow velocity. The twisted tape with aspect ratio 1.0 induces the most intensive turbulence, the longest helicoidal flow path, and appearance of vortices near the membrane surfaces

  4. Stress analysis and fail-safe design of bilayered tubular supported ceramic membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin;

    2014-01-01

    . Stress distributions in two membrane systems have been analyzed and routes to minimize stress are proposed. For a Ba0.5Sr0.5Co0.8Fe0.2O3−δBa0.5Sr0.5Co0.8Fe0.2O3−δ membrane supported on a porous substrate of the same material under pressure-vacuum operation, the optimal configuration in terms...... for both membrane systems at operating conditions in the range of practical interest....

  5. NOVEL CERAMIC MEMBRANE BIOREACTOR FOR LOW-FLOW SYSTEMS - PHASE I

    Science.gov (United States)

    Improved low-flow (50,000 gallons per day) sanitary wastewater treatment systems are needed. CeraMem Corporation's proposed approach includes a membrane bioreactor (MBR) using fully proven biological processes for biological oxygen demand oxidation and (optionally) fo...

  6. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure

    DEFF Research Database (Denmark)

    Zarebska, Agata; Amor, Angel Cid; Ciurkot, Klaudia;

    2015-01-01

    . This study investigates preliminary fouling of polypropylene (PP) and polytetrafluoroethylene (PTFE) membranes. A model manure solution was used as feed. In addition cleaning efficiencies with deionized water, NaOH/citric acid, and Novadan agents were studied. Further microfiltration and ultrafiltration were...... additionally contained carboxylates, free fatty acids and lignin. Among the tested cleaning strategies, Novadan agents were the most successful in removing proteins and carbohydrates from the PTFE membrane while it only removed proteins from the PP membrane. Using microfiltration or ultrafiltration...

  7. Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    P.Hacarlioglu; Y.Gu; S.T.Oyama

    2006-01-01

    The effects of temperature and pressure on the steam reforming of methane (CH4+H2O(→)3H2+CO) were investigated in a membrane reactor (MR)with a hydrogen permeable membrane. The studies used a novel silica-based membrane prepared by using the chemical vapor deposition (CVD) techreactor (PBR) were compared to those of the membrane reactor at various temperatures (773-923 K)and pressures (1-20 atm, 101.3-2026.5 kPa) using a commercial Ni/MgAl2O4 catalyst. The conversion of methane was improved significantly in the MR by the countercurrent removal of hydrogen at all temperatures and allowed product yields higher than the equilibrium to be obtained. Pressure had a positive effect on the hydrogen yield because of the increase in driving force for the permeance of hydrogen. The yield. The results obtained with the silica-based membrane were similar to those obtained with various other membranes as reported in the literature.

  8. Avaliação do fouling na microfiltração de cerveja – estudo das resistências = Evaluation of fouling in beer microfiltration: a study of resistances

    Directory of Open Access Journals (Sweden)

    Tatiana Valesca Rodriguez Alicieo

    2007-07-01

    Full Text Available A microfiltração em fluxo cruzado é uma alternativa na clarificação e esterilização de cerveja, em relação ao processo tradicional, já que elimina a formação dos resíduos gerados no método convencional, reduz as perdas de cerveja e melhora a qualidade do produto. O desempenho do processo é limitado pelo fouling causado na membrana. O objetivo deste trabalho foi realizar um estudo de fouling na microfiltração de cerveja por meio da avaliação das resistências. Os experimentos foram feitos em batelada com cerveja bruta, em uma unidade piloto de ultrafiltração tangencial. As membranas utilizadas foram do tipo tubulares cerâmicas, com tamanhos nominais de poros de 0,2; 0,3; 0,4; 0,6 e 0,8 mm e as pressões de trabalho foram de 1,0 a 4,0 bar, na temperatura de 6±1ºC. Utilizando o modelo de resistências em série foram determinados os valores da resistência intrínseca da membrana, das resistências devidas à polarização de concentração e à colmatagem.Cross-flow microfiltration is an attractive alternative method for fluid clarification and sterilization in the brewing industries. The advantages are: elimination of filter aids, reduced beer losses and better product quality. The performance is still limited in flux terms due to membrane fouling. This work aimed to study the mechanism of fouling in beer microfiltration by means of calculating resistances. The experiments were conducted in batch with raw beer, in a cross flow ultrafiltration pilot unit. The membranes were tubular ceramics, with mean pore diameter of 0.2; 0.3; 0.4; 0.6 and 0.8 mm and the pressures work were from 1.0 to 4.0 bar, at a temperature of 6±1ºC. From the model of resistances in series, the values obtained were of membrane intrinsic resistance, resistances due to polarization of concentration and colmatage.

  9. Hydrogen Permeation Properties of Perovskite-type BaCe0.9Mn0.1O3-δDense Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electrical conduction properties of dense BaCe0.9Mn0.1O3-δ (BCM10) membrane were investigated in the temperature range of 600-900℃. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a hightemperature permeation cell. Little hydrogen could be detected at the sweep side. However,appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black,which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes.

  10. Preparation of alumina ceramic membranes by electrophoresis%电泳沉积法制备氧化铝陶瓷膜的研究

    Institute of Scientific and Technical Information of China (English)

    陈晓晓; 魏刚; 张元晶; 付国柱; 乔宁

    2011-01-01

    以工业级陶瓷片为支撑体,氧化铝溶胶为电泳液,采用电泳沉积的方法制备了氧化铝陶瓷膜.当在30 V的电压条件下电泳3 min,经沉积-干燥-烧结工艺,反复进行3次后,即可得到氧化铝纳滤膜.采用SEM和液-液排除法等手段对纳滤膜进行表征,结果表明,膜厚在50 μm左右,孔隙率为31.51%,平均孔径为3.1nm,孔径分布为2.88 - 5.76 nm.性能测试表明,氧化铝纳滤膜对无机污染物和有机污染物均有强的截留作用,且性能较稳定.%Alumina ceramic membranes have been prepared by electrophoresis using an industrial ceramic as the electrophoretic matrix and alumina sol as the electrophoretic liquid. A nanofiltration membrane was prepared using the electrophoretic process and a coating-drying-sintering process repeated three times. The optimum electrophoresis time was found to be 3 min with a voltage of 30 V. The Al2O3 ceramic membrane obtained under these experimental conditions was characterized by SEM and liquid-liquid displacement methods. A ceramic membrane with a thickness of 50 μm had a porosity ratio of 31. 51% , a pore size of 3. 1 nm and a pore size distribution of 2. 88 nm to 5. 76 nm. Performance tests showed that the membrane had strong interception effects on both inorganic pollutants and organic pollutants.

  11. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.;

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...... as promising membrane and substrate materials: Ba0.5Sr0.5Co0.8Fe0.2O3−δ, La0.6−xSr0.4Co0.2Fe0.8O3−δ (x=0, 0.02) and Ce0.9Gd0.1O1.95−δ. Although membranes operate at elevated temperatures, the ends of tubes in certain three-end concepts remain almost at room temperature. The current work concentrates...... on the failure potential of these membrane parts, where in a complex device also the highest residual stresses should arise due to differences in thermal expansion. In particular, sensitivity of the materials to subcritical crack growth was assessed since the long-term reliability of the component does not only...

  12. Permporometry study on the size distribution of active pores in porous ceramic membranes

    NARCIS (Netherlands)

    Cao, G.Z.; Meijerink, J.; Brinkman, H.W.; Burggraaf, A.J.

    1993-01-01

    Permporometry as well as nitrogen adsorption-desorption techniques have been applied to study the pore size distribution in γ-alumina membranes with a pore radius ranging from about 2 nm to 10 nm. The permporometry technique measures the active pores only, while nitrogen adsorption-desorption measur

  13. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.;

    2015-01-01

    an effective medium approach incorporating a term for the heterojunctions between the two phases. Hydrogen fluxes of 0.004-0.008 μmol cm-2 s-1 are obtained for a 50 volume% STN95 membrane sample (1 mm thickness) at 600-800 °C using dry argon as a sweep gas. Upon adding palladium layers as catalysts...

  14. Study on the fouling resistance of Ceramic microfiltration membrane filtered by raw soy sauce%陶瓷微滤膜过滤生酱油的污染阻力研究

    Institute of Scientific and Technical Information of China (English)

    谭佩毅; 黄秀锦

    2008-01-01

    在系列阻力模型的基础上,系统考察了用陶瓷微滤膜过滤生酱油的过程中操作条件、环境和膜结构等对各部分污染阻力的影响.结果表明:Rt和Rcp随孔径增加而增大,而Rc和Rif,却有稍稍减小的趋势;ZrO2的Rt远远大于a-Al2O2的;ZrO2膜的污染阻力中Rcp是主导部分,而a-Al2O3膜的Rc和Rcp共同主导微滤过程的污染阻力;由于Rcp的作用,0.2μm a-Al2O3膜的渗透通量迅速下降,Rcp是主导的污染阻力;最后给出了不同的污染阻力与操作条件的纯经验函数关系.

  15. EPOC WATER INC. MICROFILTRATION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    This document is an evaluation of the performance of the EPOC Water, Inc. Microfiltration Technology and its applicability as a treatment technique for water contaminated with metals. oth the technical aspects arid the economics of this technology were examined. Operational data ...

  16. Electrochemically switchable polypyrrole coated membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, Claudia, E-mail: weidlich@dechema.d [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Mangold, Klaus-Michael [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2011-04-01

    A method for coating membranes with polypyrrole (PPy) has been developed. Different membranes, such as microfiltration as well as ion exchanger membranes have been coated with PPy to yield electrical conductivity of the membranes. The coated membranes have been investigated by cyclic voltammetry and scanning electron microscopy and their permeability and permselectivity have been tested. The results show that PPy can be tailored as cation or anion exchanger and its porosity can be controlled to avoid any impairment of the membrane by the polymer layer. These PPy coated membranes can be applied as electrochemically switchable, functionalised membranes with controllabel and variable separation properties.

  17. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  18. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2008-07-15

    A sodium (Na) Super Ion Conductor (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane disk containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a 19M NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes. In actual waste tests, average sodium transport rates of 10.3 kg/day/m2 were achieved at average sodium transport efficiencies of 99%. The membrane was found to be highly selective to sodium ions resulting in no detectable cation transport except Na and a small quantity (0.04% to 0.06%) of 137Cs. An average decontamination factor of 2000 was observed with respect to 137Cs. As expected, Gibbsite precipitation was observed as OH- ions were depleted from the tank waste.

  19. Separation and purification of sodium thiocyanate by ceramic membrane filtration%陶瓷膜分离净化硫氰酸钠工艺研究

    Institute of Scientific and Technical Information of China (English)

    顾文兰

    2012-01-01

    Sodium thiocyanate as a solvent for wet-spun acrylic fiber was separated and purified by ceramic membrane technique. The attenuation trend of membrane flux with operation time and the relationship between concentration multiple and membrane flux attenuation were analyzed. The membrane flux recovery method was decided. The separation effect and characteristics of different membrane tubes were compared. The results showed that ceramic membrane was able to effectively clean the impurities in sodium thiocyanate and the removal rate of water insoluble substance was above 75% ; the membrane flux was decreased with the increase of operation time, and the membrane flux can be recovered by washing with pure hot water when the average membrane flux was lower than the designed value; the membrane tubes should be replaced or treated by some chemical techniques when the membrane flux can not be recovered by pure hoi water washing; the membrane thickness did not have great effect on membrane flux, but the thicker membrane provided better impurity cleaning effect.%采用陶瓷膜分离净化湿法腈纶溶剂硫氰酸钠物料,分析了膜通量随运行时间的衰减变化趋势及浓缩倍数与膜通量衰减的关系,确定了恢复膜通量的方法,比较了不同膜管的分离效果和分离特性.结果表明:陶瓷膜能有效截留硫氰酸钠物料中的杂质,水不溶物去除率大于75%;膜通量都随运行时间的延长而衰减,当平均膜通量低于设计膜通量时,可采用热纯水进行洗脱,使膜通量恢复;当热纯水无法使膜通量恢复,可采用化学方法或更换膜管;不同膜层厚度的膜管对膜通量影响不大,但厚层膜管的分离除杂效果好.

  20. Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment for Seawater Desalination

    Institute of Scientific and Technical Information of China (English)

    CUI Zhaoliang; PENG Wenbo; FAN Yiqun; XING Weihong; XU Nanping

    2013-01-01

    Pre-treatment,which supplies a stable,high-quality feed for reverse osmosis (RO) membranes,is a critical step for successful operation in a seawater reverse osmosis plant.In this study,ceramic membrane systems were employed as pre-treatment for seawater desalination.A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux.Then a pilot test was performed to investigate the long-term performance.The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only,but the effect is distinct when the cross-flow velocity varies in the transition region.The membrane fouling is slight at the permeate flux of 150 L·m-2·h-1 and the system is stable,producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0,respectively) for RO to ran for 2922.4 h without chemical cleaning.Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.

  1. Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography.

    Science.gov (United States)

    Batas, B; Schiraldi, C; Chaudhuri, J B

    1999-02-19

    The presence of inclusion body impurities can affect the refolding yield of recombinant proteins, thus there is a need to purify inclusion bodies prior to refolding. We have compared centrifugation and membrane filtration for the washing and recovery of inclusion bodies of recombinant hen egg white lysozyme (rHEWL). It was found that the most significant purification occurred during the removal of cell debris. Moderate improvements in purity were subsequently obtained by washing using EDTA, moderate urea solutions and Triton X-100. Centrifugation between each wash step gave a purer product with a higher rHEWL yield. With microfiltration, use of a 0.45 micron membrane gave higher solvent fluxes, purer inclusion bodies and greater protein yield as compared with a 0.1 micron membrane. Significant flux decline was observed for both membranes. Second, we studied the refolding of rHEWL. Refolding from an initial concentration of 1.5 mg ml-1, by 100-fold batch dilution gave a 43% recovery of specific activity. Purified inclusion bodies gave rise to higher refolding yields, and negligible activity was observed after refolding partially purified material. Refolding rHEWL with a size exclusion chromatography based process gave rise to a refolding yield of 35% that corresponded to a 20-fold dilution.

  2. Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device

    KAUST Repository

    Ma, W.

    2013-04-01

    Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.

  3. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications.

    Science.gov (United States)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. PMID:27127039

  4. 基于膜射流乳化技术的TiO2大孔陶瓷制备方法研究%Preparation of Macroporous TiO2 Ceramic Based on Membrane Jet-flow Emulsification

    Institute of Scientific and Technical Information of China (English)

    景文珩; 吴守红; 薛业建; 金万勤; 邢卫红; 徐南平

    2007-01-01

    A novel method to prepare macroporous TiO2 ceramic, based on membrane emulsification was reported.To solve the paradox between the instability of nonaqueous emulsion and long emulsification time required by the membrane emulsification, a two-stage ceramic membrane jet-flow emulsification was proposed. Discussion was conducted on the evolution of droplet size with time, which followed the Ostwald ripening theory. And a monodispersed nonaqueous emulsion with an average droplet size of 1.6μm could be prepared. Using the emulsion as a template, TiO2 ceramics with an average pore size of 1.1μm were obtained. The material could be prospectively used for preparation of catalysts, adsorbents, and membranes.

  5. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  6. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery

    NARCIS (Netherlands)

    Jin, Zhengyu; Gong, Hui; Temmink, Hardy; Nie, Haifeng; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-01-01

    This study proposed an efficient way of direct sewage pre-concentration by a combined coagulation microfiltration (CCM) system and an optimal operational strategy of aeration. Compared to two typical technologies for sewage pre-concentration, i.e. direct sewage microfiltration (DSM) and continuou

  7. Membrane technologies for processing of liquid radioactive waste

    International Nuclear Information System (INIS)

    Reverse osmosis is used were complete rejection of all dissolved compounds is required; it needs pre-treatment of the waste by microfiltration, ultrafiltration or other conventional technique to avoid the membrane blockage by colloids and suspensions. Recently the nanofiltration membranes are often used to separate monovalent ions from multivalent. Ultrafiltration apart of pre-treatment stage is used to separate colloids, which usually are formed by compounds of 54Mn, 55Fe. 60Co and 125Sb. Microfiltration found application for solid wastes dewatering before final disposal. A novel technology is membrane distillation proposed by researches from INCT for concentration of liquid radioactive waste. (author)

  8. Filtration Performance of Porous Ceramic Membrane with Fan-shaped Flow Channel%扇形过流通道多孔陶瓷膜的过滤性能研究

    Institute of Scientific and Technical Information of China (English)

    方振东; 梁恒国; 师杰; 方涛; 吕玉正

    2012-01-01

    提出了一种新的多孔陶瓷膜水流组织方式,将常规多孔陶瓷膜过滤时水流从过流通道向外侧单向渗透的方式改变为双向渗透 ;分析了多孔陶瓷膜有效过滤面积计算方法的不足,并提出了一种新的计算方法 ;进行了扇形过流通道多孔陶瓷膜对纯水和池塘水的过滤试验,结果表明,扇形过流通道多孔陶瓷膜的有效过滤面积为同规格圆形过流通道多孔陶瓷膜的1.3倍,过滤通量是圆形过流通道多孔陶瓷膜的1.45倍,但两者对池塘水的净化效果基本相当.%A new water flow pattern in porous ceramic membrane was proposed. The infiltration direction of water flow from the flow channel to the outside of the conventional porous ceramic membrane was changed from unidirectional to bidirectional. The deficiency of the existing computation method for calculating effective filtering area of porous ceramic membrane was analyzed, and a new computation method was proposed. Tests were carried out on the filtration of pure water and pond water using porous ceramic membrane with fan-shaped flow channel. The results showed that the effective filtering area of the porous ceramic membrane with fan-shaped flow channel was 1. 3 times that of the porous ceramic membrane with circular flow channel. The filtration flux of flow channel porous ceramic membrane was 1.45 times that of the porous ceramic membrane with circular flow channel. However, the purification effect of pond water was the same in both kinds of membranes.

  9. "微滤+反渗透"工艺在处理垃圾渗滤液中的应用研究%Research and Application of Landfill Leachate Treatment Based on Technology of Microfiltration and Reverse Osmosis

    Institute of Scientific and Technical Information of China (English)

    郭健; 邓超冰; 冼萍; 王孝英; 彭木; 韦阳凤

    2011-01-01

    Landfill leachate was treated by the process of porous ceramic microfiltration membrane and two steps reverse osmosis, and the relationship between removal rate of COD, NH3-N, electrical conductivity and operating time in porous ceramic microfiltrafion membrane, one-stage RO and two-stage RO were investigated, the study also focused on the recovery rate of one-stage reverse osmosis system control and cleaning cycles and methods. Results indicated that after ceramic microfiltrafion pretreatment, the effluent removal rate of COD, NH3-N and desalination rate remained above 50.3%,30.2% and 30.1% respectively. Through one-stage reverse osmosis treatment, the effluent removal rate of COD, NH3-N and desalination rate remained above 94.8% ,91.3% and 81.6% respectively. Through two-stage reverse osmosis treatment, the effluent removal rate of COD, NH3-N and desalination rate remained above 80.1%,81.3% and 85.1% respectively. After the process of porous ceramic microfiltrafion and two steps reverse osmosis, COD, NH3-N and conductivity of the effluent water of landfill leachate was below 30 mg/L,25 mg/L and 180 μm/cm respectively, with effluent quality satisfactory to MSW Landfill Pollution Control Standard of GB16889-2008. One-stage reverse osmosis system cleaning cycle is 400min, recovery rate should be controlled at65%~70%, the union of alkali washing and acid pickling is more conductive to reverse osmosis membrane flux recovery. The flux of membrane can be restored to 95% of the flux of the new membrane.%采用"多孔陶瓷微滤+两级反渗透"工艺处理垃圾渗滤液.分别考察多孔陶瓷微滤膜、一级反渗透和二级反渗透对渗滤液COD、NH3-N、电导率及相应去除率与运行时间的关系,还重点考察了一级反渗透系统回收率控制及清洗周期和方法.研究结果表明:经过陶瓷微滤预处理后,出水的COD、NH3-N去除率、脱盐率分别维持在50.3%、30.2%、30.1%以上;经过一级反

  10. Impact of the physico-chemistry of the wine on membrane filtration performance

    OpenAIRE

    Albasi, Claire; Bacchin, Patrice; Devatine, Audrey; El Rayess, Youssef; Mietton-Peuchot, Martine; Raynal, José; Taillandier, Patricia

    2009-01-01

    During the process of wine making, operation of cross-flow microfiltration allows a one-step clarification and sterilization of wine, with lower waste compared to the conventional processes of clarification and sterilization. Indeed, these processes are sources of voluminous waste (earth, Kieselguhr, additives), when discharges are becoming more and more restricted by environmental and health rules. Nevertheless, cross-flow microfiltration of wine presents a major drawback: membrane fouling c...

  11. Nanoporous membranes for enzyme-based organophosphate biosensors: Characterizating bio-ceramic conjugation, porosity, and activity in stable soil-gel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Schoeniger, J.S.; Singh, A.K.; Volponi, J. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-12-31

    Biosensors for organophosphates in solution may be constructed by monitoring the activities of acetylcholine esterase (AchE) or organophosphate hydrolases (OPHs) immoblized on pH-sensitive field-effect transistors (FETs). In order to construct stable sensors with control over the surface catalytic activity and transport properties, SiO2 or Si3N4 surfaces were coated with highly porous, heat-stabilized sol-gel coatings. Surface porosity was characterized using SEM and AFM. AchE or OPH were covalently attached to the porous ceramics using several different conjugation chemistries and enzyme stabilization techniques. Properties such as covalent vs. non-covalent attachment, specific activity, and robustness of enzyme activity were characterized. Data on the effect of surface modifications on sensor performance will also be presented.

  12. Two-dimensional stochastic modeling of membrane fouling

    NARCIS (Netherlands)

    Wessling, M.

    2001-01-01

    The phenomenon of fouling of microfiltration membranes by much smaller particles such as proteins is described by a new developed simulation algorithm based on diffusion limited aggregation simulation techniques. The model specifies the membrane morphology explicitly and allows to (a) characterize t

  13. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  14. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Science.gov (United States)

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  15. Microfiltration of red berry juice with thread filters: Effects of temperature, flow and filter pore size

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Casani, Sandra Dobon; Meyer, Anne Boye Strunge

    2002-01-01

    ) on the transmembrane pressure, juice turbidity, protein, sugar, and total phenols levels was evaluated in a lab scale microfiltration unit employing statistically designed factorial experiments. Thread microfiltration reduced significantly the turbidity of both juices. For blackcurrant juice, in all experiments......, the turbidity was immediately reduced to the level required for finished juice without compromising either the protein, the sugar or the phenols content. High flow rates increased the turbidity in blackcurrant juice, but did not affect cherry juice quality. Filtomat(R) thread microfiltration therefore appears...

  16. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  17. CFD simulation for atomic layer deposition on large scale ceramic membranes%大尺寸陶瓷膜原子层沉积过程的CFD模拟

    Institute of Scientific and Technical Information of China (English)

    朱明; 汪勇

    2016-01-01

    Ceramic membranes are widely used in liquid filtration for their superior chemical resistance, temperature stability and mechanical robustness. Their performance can be further improved by surface modifications, such as liquid phase reactions, which are typically too complicated to control. Atomic layer deposition (ALD), a deposition technique of self-limiting gas/solid phase chemical reactions for growing atomic scale thin films, has been extremely useful for precisely regulating nanoscale pore structures, especially modification and functionalization of porous separation membranes. Most existing ALD equipment are designed for silicon wafer substrate in semiconductor industry, thus design optimization on ALD processes of both precursor flow and surface reactions are needed for application in large-scale ceramic membranes. Computerized fluid dynamics (CFD) modeling was used to investigate ALD process on 1-meter-long single-channeled ceramic membrane by considering both boundary conditions and surface chemical reactions of two precursors pulsed alternatively into the channel. The simulations fitted well with the experimental data at average difference of 1.69% and thus an ALD model for two-way alternatively pulsed rotation was proposed, which would be very helpful in equipment design and process optimization of ALD for large scale ceramic membranes.%陶瓷膜具有耐高温、耐酸碱、强度高等优点,在液体分离领域得到了广泛应用。对陶瓷膜进行表面改性,可进一步提升其性能,但基于表面化学反应的改性方法工艺过程复杂,难于控制。原子层沉积(atomic layer deposition,ALD)是基于表面自限制化学反应过程的气固相薄膜沉积技术,可以在纳米尺度精确调控孔道结构,特别适用于多孔分离膜的改性和功能化。目前尚无适用于大尺寸陶瓷膜的ALD设备,需要对ALD过程进行专门的优化设计。通过CFD模型对1 m长的单通道陶瓷膜的ALD

  18. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  19. 陶瓷膜制备及在水处理中的应用%Synthesis and Application of Ceramic Membrane for Water Treatment

    Institute of Scientific and Technical Information of China (English)

    万昱堃; 夏圣骥

    2016-01-01

    Membrane filtration process is one of the most advanced water treatment technology in 21 century with robust capabilities of water and wastewater treatment. And membrane materials and manufacturing processes affect membrane applicable condition and performance. In the aspect of membrane filtration process,porous ceramic membrane is talent showing itself with abilities of chemical stability,mechanical strength,resistance to acid and alkali,thermal stability and so on. The characteristics,recent developments and application were reviewed. The solutions for the problems and the preferential projects for future study were proposed.%膜滤技术属于21世纪新型水处理技术,具有处理包含河流水、地下水及生活、工业污废水的强大能力。原材料及制造流程影响着膜在水处理中使用条件及表现性能,在多种材质滤膜中,无机多孔陶瓷膜所具有的化学稳定性好、机械强度大、耐酸碱、耐高温等优点吸引了广泛的关注。该文综述了多孔陶瓷膜特点、制备和在水处理行业中的应用,并对未来陶瓷膜领域的发展趋势及瓶颈问题进行讨论。

  20. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  1. Preparation of Monodispersed O/W Emulsion by Ceramic External Membrane Emulsification System--Preliminary Study on Integrated Ceramic Membrane Emulsification Reactor%陶瓷膜乳化系统制备单分散乳状液的研究--集成式膜乳化反应器的前期研究

    Institute of Scientific and Technical Information of China (English)

    景文珩; 吴俊; 邢卫红; 徐南平

    2004-01-01

    A new reactor with integrated conventional slurry stirred reactor and ceramic external membrane emulsification system, was introduced in this paper. Toluene and toluene containing surfactant was separately used as dispersed phase for preparation of emulsions. Two kinds of emulsions were prepared and compared. The volume average sizes of prepared emulsions were 3.53μm and 3.6μm respectively. The results showed that the droplet sizes of two kinds of emulsions were similar, but the monodispersed emulsion was only obtained with addition of surfactant into the dispersed phase.

  2. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  3. Solvent-resistant microporous polymide membranes

    Science.gov (United States)

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  4. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z.; Lu, L.; Kemperman, A.J.B.; Deng, H.; Nijmeijer, K.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can poten

  5. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang

    2012-12-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  6. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  7. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  8. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water.

    Science.gov (United States)

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Deng, Yang

    2015-06-12

    Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM) as a pretreatment prior to polyvinylidene fluoride (PVDF) microfiltration (MF) membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW) distributions of NOM in the tested surface raw water were concentrated at 3-5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3-5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2-30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM) image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  9. Time-dependent growth of ceramic supported NaA membranes : a morphological and permeation based study / Jaco Zah

    OpenAIRE

    Zah, Jaco

    2006-01-01

    Based on its ideal aperture size (4.1 A) and hydrophilic framework, the NaA membrane possesses significant potential in the separation of many industrially important gaseous and liquid mixtures. In the local South African context, the foreseeable production of affordable, high-purity ethanol in the alternative fuel market exemplifies one such a possibility. However, there are still certain aspects to the composite NaA membrane that are not clearly understood. These include the tim...

  10. Novel proton-exchange membrane based on single-step preparation of functionalized ceramic powder containing surface-anchored sulfonic acid

    Science.gov (United States)

    Reichman, S.; Burstein, L.; Peled, E.

    2008-05-01

    A novel approach to the synthesis of a low-cost proton-exchange membrane (PEM) based on the single-step preparation of a functionalized ceramic powder containing surface-anchored sulfonic acid (SASA) and a polymer binder, is presented for the first time. The added value of this technique, compared with earlier work published by our group, is the adoption of a direct, single-step synthesis, as opposed to a multiple-step synthesis. The latter requires an oxidation step, in order to convert the thiol group into a sulfonic group. SASA powders of different compositions have been prepared and characterized by means of Brunaur-Emmet-Teller (BET), thermogravimetric analysis-differential thermal analysis (TGA-DTG), differential scanning calorimeter (DSC), Fourier transformation infrared (FT-IR), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrochemical techniques. The lowest equivalent weight measured for SASA powders is 1281 g equiv.-1. The ionic conductivity of a 100-μm-thick membrane is measured ex situ at room temperature (25 ± 3 °C) and the highest proton conductivity is 48 mS cm-1. The typical pore size, for the SASA powders is less than 10 nm and ranges from 2 to 50 nm for the SASA-based membranes. The membranes are thermally stable up to 250 °C. Direct methanol fuel cells (DMFCs) are assembled with some of the membranes. Preliminary tests showed that the cell resistance for a ∼100-μm-thick membrane ranges between 0.29 and 0.19 Ω cm2 from 80 to 130 °C, respectively, and that the maximum cell power density with a 1 M methanol solution is 127, 208 and 290 mW cm-2 at 80, 110 and 130 °C, respectively, while the corresponding methanol crossover current density is 0.093, 0.238 and 0.281 A cm-2.

  11. Ceramic membrane technology:30 years retrospect and prospect%陶瓷膜分离技术发展30年回顾与展望

    Institute of Scientific and Technical Information of China (English)

    孟广耀; 陈初升; 刘卫; 刘杏芹; 彭定坤

    2011-01-01

    值庆贺《膜科学与技术》杂志创刊三秩之年,陶瓷分离膜技术从核燃料浓缩分离转而民生应用至今也走过了大约30个春秋.现借机简要回顾其三个十年的历史性发展,阅历现状、展望未来,以期对促进无机膜在新工业革命中发挥关键创新作用有所助益.%On the 30th anniversary of the Journal "Membrane Science and Technology", it has also been a-bout 30 years since ceramic membrane separation technology was employed for the civil purpose though it had served for long time in the concentration and separation of nuclear bomb fuels. This article would briefly recall its historical development; introduce the present status and prospect for the future in order to promote its key and innovative functions in the new industrial revolution.

  12. Hydrodynamic approaches to reducing membrane fouling

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-01

    Membranes are gaining increasing use in a wide variety of liquid and gas separations. A pervasive problem is membrane fouling due to material depositing on the membrane surface and within the membrane pore structure. Professor Georges Belfort has made significant contributions to reducing membrane fouling by hydrodynamic approaches for ultrafiltration and microfiltration. I will review some of his work, as well as related work by myself and others, in this area. Topics which will be discussed include particle migration during crossflow filtration, curved channels which promote centrifugal instabilities, and rapid backpulsing.

  13. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  14. 碳化硅陶瓷膜处理采油污水的中试试验%Pilot tests on the treatment of oil extraction wastewater with silicon carbide ceramic membranes

    Institute of Scientific and Technical Information of China (English)

    吴玉祥; 陈勇; 徐燕

    2012-01-01

    用0.02 μm的多通道非对称性碳化硅陶瓷膜对采油污水进行了现场中试.在各种运行条件下,陶瓷膜出水SS< 1.0 mg/L,油<10 mg/L,粒径中值<1.0μm.还考察了不同运行条件下陶瓷膜膜通量和跨膜压差的变化,以及强化混凝过滤对膜通量的影响.根据试验结果对陶瓷膜在采油污水处理中的进一步研究提出了建议,并对其工程应用前景进行了展望.%The multipath and asymmetrical silicon carbide membranes whose pore side is 0.02 μm have been used for carrying on the pilot tests of oil extraction wastewater. Under various operating conditions, the suspended solids of ceramic membrane effluent are less than 1.0 mg/L,oil content of effluent is <10 mg/L,and particle diameter median< 1.0 μm. Under different operating conditions, the changes of the membrane pressure difference of the membrane flux of ceramic membranes,the transmembrane pressure difference,and the effect of reinforced coagulation-filtration on membrane flux are investigated. According to the test results, suggestions on further research of applying ceramic membranes to the treatment of oil extraction wastewater are brought forward.

  15. Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization

    Directory of Open Access Journals (Sweden)

    Anupam Chugh

    2014-04-01

    Full Text Available Non-thermal processing methods, such as pulsed electric field (PEF and tangential-flow microfiltration (TFMF, are emerging processing technologies that can minimize the deleterious effects of high temperature short time (HTST pasteurization on quality attributes of skim milk. The present study investigates the impact of PEF and TFMF, alone or in combination, on color and volatile compounds in skim milk. PEF was applied at 28 or 40 kV/cm for 1122 to 2805 µs, while microfiltration (MF was conducted using membranes with three pore sizes (lab-scale 0.65 and 1.2 µm TFMF, and pilot-scale 1.4 µm MF. HTST control treatments were applied at 75 or 95 °C for 20 and 45 s, respectively. Noticeable color changes were observed with the 0.65 µm TFMF treatment. No significant color changes were observed in PEF-treated, 1.2 µm TFMF-treated, HTST-treated, and 1.4 µm MF-treated skim milk (p ≥ 0.05 but the total color difference indicated better color retention with non-thermal preservation. The latter did not affect raw skim milk volatiles significantly after single or combined processing (p ≥ 0.05, but HTST caused considerable changes in their composition, including ketones, free fatty acids, hydrocarbons, and sulfur compounds (p < 0.05. The findings indicate that for the particular thermal and non-thermal treatments selected for this study, better retention of skim milk color and flavor components were obtained for the non-thermal treatments.

  16. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  17. APPLICATION OF A SURFACE-RENEWAL MODEL TO PERMEATE-FLUX DATA FOR CONSTANTPRESSURE CROSS-FLOW MICROFILTRATION WITH DEAN VORTICES

    Directory of Open Access Journals (Sweden)

    G. Idan

    2015-06-01

    Full Text Available AbstractThe introduction of flow instabilities into a microfiltration process can dramatically change several elements such as the surface-renewal rate, permeate flux, specific cake resistance, and cake buildup on the membrane in a positive way. A recently developed surface-renewal model for constant-pressure, cross-flow microfiltration (Hasan et al., 2013 is applied to the permeate-flux data reported by Mallubhotla and Belfort (1997, one set of which included flow instabilities (Dean vortices while the other set did not. The surface-renewal model has two forms - the complete model and an approximate model. For the complete model, the introduction of vortices leads to a 53% increase in the surface-renewal rate, which increases the limiting (i.e., steady-state permeate flux by 30%, decreases the specific cake resistance by 14.5% and decreases the limiting cake mass by 15.5% compared to operation without vortices. For the approximate model, a 50% increase in the value of surface renewal rate is shown due to vortices, which increases the limiting permeate flux by 30%, decreases the specific cake resistance by 10.5% and decreases the limiting cake mass by 13.7%. The cake-filtration version of the critical-flux model of microfiltration (Field et al., 1995 is also compared against the experimental permeate-flux data of Mallubhotla and Belfort (1997. Although this model can represent the data, the quality of its fit is inferior compared to that of the surface-renewal model.

  18. Tangential microfiltration of orange juice in bench pilot Microfiltração tangencial de suco de laranja em piloto de bancada

    Directory of Open Access Journals (Sweden)

    W. G. Venturini Filho

    2003-12-01

    Full Text Available The aim of this study was to introduce the tangential microfiltration (TMF technique on the production of orange juice (TMFJ, and compare it with pasteurised juice (control as regards chemical composition and sensorial characteristics. We used a TMF pilot equipped with four monotubular ceramic membranes (0.1, 0.2, 0.8 and 1.4mm arranged in series with a filtering area of 0.005 m² each. Commercial flash-pasteurised orange juice was used as the initial product. Experiments were divided into three parts: a the characterisation of the TMF pilot; b optimisation of operational conditions; c production of the TMFJ. In the second part, membrane with 0.8-mm pores presented best flux followed by those with 1.4-, 0.1-, and 0.2-mm pores. However, to guarantee permeate sterility, we chose the membrane with 0.1-mm pores for TMFJ production. Initially, the orange juice was sieved in order to separate part of the pulp, being subsequently submitted to TMF. A mixture of retentate and pulp was made, and was subsequently pasteurised. We obtained the TMFJ by adding the permeate to the mixture. TMFJ presented soluble solids content (°Brix, pulp, pH, and titrable acidity similar to the initial pasteurised juice (control. Nevertheless, 28% of vitamin C was lost during the TMFJ production. According to the juice taster panel, the control juice presented best sensorial characteristics (greater aroma intensity and fruity flavour when compared with the TMJF.O objetivo deste trabalho foi introduzir a técnica de microfiltração tangencial (MFT na produção de suco de laranja. O suco microfiltrado (SMFT foi comparado química e sensorialmente com um suco pasteurizado (testemunha. Utilizou-se um piloto de MFT munido de quatro membranas (0,1, 0,2, 0,8 e 1,4mm cerâmicas monotubulares dispostas em série, cada uma delas com superfície de 0,005m². Suco de laranja comercial flash pasteurizado foi usado como produto inicial. O trabalho experimental foi dividido em tr

  19. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly stringen

  20. Experimental study on revolving cross-flow microfiltration of highly viscous liquids%高黏度液体错流旋转微滤实验研究

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvi-nylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.

  1. Exopolysaccharides production in Lactobacillus bulgaricus and Lactobacillus casei exploiting microfiltration.

    Science.gov (United States)

    Schiraldi, C; Valli, V; Molinaro, A; Cartenì, M; De Rosa, M

    2006-05-01

    The physiology of Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus casei, extensively used in the dairy industry, was studied in order to evaluate key parameters in the synthesis of exopolysaccharides and to improve their production through novel fermentation processes. Selected strains were studied in shake flasks and in fermentor experiments using glucose and lactose as main carbon sources and bacto casitone as the only complex component, in a temperature range between 35 and 42 degrees C. The production of exopolysaccharides was monitored and correlated to the growth conditions using both a colorimetric assay and chromatographic methods. Fermentor experiments in batch mode yielded 100 mg l(-1) of EPS from L. bulgaricus and 350 mg l(-1) from L. casei. Moreover, the use of a microfiltration (MF) bioreactor resulted in exopolysaccharides (EPS) concentrations threefold and sixfold those of batch experiments, respectively. The monosaccharidic composition of the two analyzed polymers differed from those previously reported. The optimization of the production of EPSs using the MF fermentation strategy could permit the use of these molecules produced by generally recognised as safe (GRAS) microorganisms in the place of other polysaccharides in the food industry.

  2. A technique of optimization of microfiltration using a tunable platform

    International Nuclear Information System (INIS)

    The optimum efficiency of size-based filtration in microfluidic devices is highly dependent on characteristics of design, deformability of microparticles/cells, and fluid flow. The effects of filter pores and flow rate, which are the two major determining and related factors of characterization in the separation of particles and cells are investigated in this work. An elastomeric microfluidic device consisting of parallel arrays of pillars with mechanically tunable spacings is employed as an adjustable microfiltration platform. The tunable filtration system is used for finding the best conditions of separation of solid microbeads or deformable blood cells in a crossflow pillar-based method. It is demonstrated that increasing flow rate in the range of 1.0–80.0 µl min−1 has an adverse effect on the device performance in terms of decreased separation efficiency of deformable blood cells. However, by tuning the gap size in the range of 2.5–7.5 µm, the selectivity of the separation is controlled from about 5.0 to 95.0% for white blood cells (WBCs) and 40.0 to 95.0% for red blood cells (RBCs). Finally, the best range of trapping and passing efficiencies of ∼70–80.0% simultaneously for WBCs and RBCs in whole blood sample is achieved at optimum gap size of ∼3.5–4.0 µm. (paper)

  3. Suco de maracujá orgânico processado por microfiltração Organic passion fruit juice processed by microfiltration

    Directory of Open Access Journals (Sweden)

    Thadia Turon Silva

    2005-04-01

    Full Text Available O objetivo deste trabalho foi avaliar a utilização da microfiltração para obtenção de suco de maracujá orgânico clarificado e sua aceitabilidade sensorial. O maracujá foi cultivado sob sistema orgânico, em pomares localizados no Estado do Rio de Janeiro. O suco foi submetido a um tratamento enzimático antes da microfiltração, realizada em membranas tubulares com tamanho de poro médio de 0,3 mm e área de filtração de 0,05 m², com o fim de diminuir a viscosidade do suco e, conseqüentemente, melhorar a eficiência do processo. O processo promoveu a completa remoção dos sólidos em suspensão no suco permeado, o que resultou em um suco límpido e clarificado. O refresco de maracujá, obtido a partir do suco de maracujá orgânico microfiltrado, obteve boa aceitabilidade sensorial, tendo sido aprovado por 75% dos consumidores. Foi possível conservar o suco armazenado em embalagens de plástico durante 28 dias, sob refrigeração a 7ºC. Este estudo confirma a eficiência da microfiltração como método alternativo de conservação de suco de maracujá e evidencia a importância dessa técnica no processamento de sucos orgânicos.The objective of this work was to evaluate the use of microfiltration to obtain clarified organic passion fruit juice and analyse its sensory acceptability. Passion fruit was cultivated under organic system in Rio de Janeiro State. The juice was submitted to an enzymatic treatment before microfiltration, in order to decrease its viscosity and pulp content, and to improve permeate flux. Microfiltration had been accomplished with a tubular 0.3 µm pore size membrane with 0.05 m² of filtration area. The process promoted complete removal of the suspended pulp in permeated juice, which resulted in a limpid and clarified juice. Concerning the sensorial analysis, passion fruit refreshment obtained from clarified juice was approved by 75% of the consumers. The microfiltered passion fruit juice was conserved in

  4. 陶瓷膜处理啤酒洗瓶废碱液的膜污染和清洗再生%MEMBRANE POLLUTION AND CLEANING REGENERATION OF TREATING THE BOTTLE WASHING WASTE ALKALI LIQUID OF BEER INDUSTRY BY CERAMIC MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    傅金祥; 路京鹏; 唐玉兰; 张荣新; 周东旭

    2012-01-01

    研究了陶瓷膜过滤啤酒洗瓶废碱液膜污染机理,提出了相应的清洗再生方案。对比研究了硝酸、盐酸、次氯酸钠、三聚磷酸钠4种清洗剂单独使用和复合使用的清洗再生效果。试验表明:0.20%硝酸+0.55%次氯酸钠+0.15%三聚磷酸钠复合清洗再生陶瓷膜,膜通量恢复率在85%以上。陶瓷膜连续运行两个月,清洗再生效果稳定,具有工程实用价值。%Membrane pollution mechanism had been researched in filtering the bottle washing waste alkali liquid by ceramic membrane and the corresponding cleaning regeneration schemes had also been put forward.The cleaning effect of nitric acid,hydrochloric acid,sodium hypochlorite and sodium tripoly phosphate on the ceramic membrane had been researched.Experiments show that the membrane flux recovery rate is more than 85% by the ceramic membrane of 0.20% nitric acid+0.55% sodium hypochlorite+0.15% sodium tripoly phosphate.Ceramic membrane is operated continuously in two months,the cleaning effect is stable and has practical value.

  5. Membrane Technologies in Wine Industry: An Overview.

    Science.gov (United States)

    El Rayess, Youssef; Mietton-Peuchot, Martine

    2016-09-01

    Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry. PMID:25751507

  6. Research Progress on the Preparation of Ceramic Hollow Fiber Membranes by Nonsolvent Induced Phase Separation%浸渍相转化法制备陶瓷中空纤维膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘朋超; 马敬红; 杨曙光; 龚静华; 徐坚

    2012-01-01

    浸渍相转化法可以制备非对称结构的陶瓷中空纤维膜.本文讨论了陶瓷中空纤维膜的发展情况,并着重探讨了各因素对膜孔结构的影响.大量陶瓷粉体存在情况下的相转化机理,孔结构与力学强度的平衡问题,是目前需要重点关注的两个问题.有效调节孔结构,保证其力学性能可以实现陶瓷中空纤维膜在分离和纯化、固体氧化物燃料电池、膜催化器和膜反应器等方面的广泛应用.%Ceramic hollow fiber membranes (CHFM) with an asymmetric structure can be fabricated by the method nonsolvent induced phase separation (NIPS). The paper reviews the progress and tendency of the ceramic hollow fiber membranes using NIPS technic, especially on the influence of factors on the structure of hollow membranes. The discussion on the mechanism of phase inversion in the systems containing much ceramic powders, with the balance between porous structure and mechanical strength, are two important issues of requiring concern. Through structure's controlled effectively and mechanical strength preserved, hollow fiber membranes can be widely applied in the fields of separation and purification, solid oxide fuel cell (SOFC), membrane contactors and reactors.

  7. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    OpenAIRE

    Douglas M. Davenport; Minghui Gui; Lindell R. Ormsbee; Dibakar Bhattacharyya

    2016-01-01

    Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF) type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabr...

  8. Pervaporation of Aqueous Solution of Acetaldehyde Through ZSM-5 Filled PDMS Composite Membrane

    Institute of Scientific and Technical Information of China (English)

    伍艳辉; 谭惠芬; 李佟茗; 金源

    2012-01-01

    Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,

  9. 超声在陶瓷膜处理乳化含油废水中的作用研究%Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes

    Institute of Scientific and Technical Information of China (English)

    舒莉; 邢卫红; 徐南平

    2007-01-01

    Ultrasonic field was applied in the treatment of oil emulsification wastewater by ZrO2 ceramic membrane. The permeate flux,rejection ratio in the filtration process and recovery ratio of flux in the membrane cleaning process were measured. Great improvement in the permeate flux and rejection ratio have been observed for the membrane process enhanced by the ultrasonic field. The permeate flux of water through the membrane was about were 8W of ultrasonic power,7cm of ultrasonic probe length introduced into the membrane channel and the same ultrasonic radiation direction as the wastewater flow. The resistance of the membrane process was compared between the cases with and without ultrasound,and the total resistance was reduced 68% by the use of ultrasound.Four methods including water cleaning,water cleaning under sonication,chemical cleaning and chemical cleaning under sonication were used to recover membrane flux. It was found that the flux recovery ratio increased with the increase of ultrasonic cleaning power. In addition,the use of chemical agents combining with ultrasonic irradiation showed a synergistic effect,which resulted in the highest cleaning efficiency and the shorter cleaning time.

  10. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  11. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    Science.gov (United States)

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. PMID:26714296

  12. Pretreatment options for municipal wastewater reuse using membrane technology

    OpenAIRE

    Hatt, Juliette W.

    2012-01-01

    Increasing freshwater scarcity across the world means that wastewater reclamation is being considered as a key method in which to meet the growing demand. Evolution of water reuse schemes where high quality product is required such as for indirect potable reuse has led to the adoption in recent years of the integrated membrane scheme using a combination of microfiltration or ultrafiltration with reverse osmosis membrane. However, despite technological advancements, these mem...

  13. Chemical cleaning of potable water membranes: A review

    OpenAIRE

    Porcelli, Nicandro; Judd, Simon J.

    2010-01-01

    The literature on chemical cleaning of polymeric hollow fibre ultrafiltration and microfiltration membranes used in the filtration of water for municipal water supply is reviewed. The review considers the chemical cleaning mechanism, and the perceived link between this and membrane fouling by natural organic matter (NOM)—the principal foulant in municipal potable water applications. Existing chemical cleaning agents used for this duty are considered individually and their cl...

  14. Scaling and particulate fouling in membrane filtration systems

    OpenAIRE

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly stringent environmental legislation e.g. Giardia and Cryptosporidum removal guidelines of the Surface Water Treatment Rule (USA). Innovations in membrane manufacturing and process conditions have led to a ...

  15. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  16. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    materials must be co-firable and, hence, match in thermal, chemical and mechanical behaviour. A number of studies on different mixed oxygen ion/electron conducting materials is described in this thesis. Emphasis is put on the demands of the targeted sensor application, in which these materials are used as mixed conducting dense ceramic membranes. In Chapter 2, a series of perovskite materials is studied. The general composition is ABO3-δ (A = Gd, Pr, Y; B = Mn, Cr, Fe), being partially doped with Ca2+ and Sr2+ on the A-site to create mobile oxygen vacancies. The main focus of the work presented is on the measurement of catalytic activities towards NOx and the ionic conductivities of the selected materials. In Chapter 3, the preparation and characterisation of a material with the overall composition of Gd0.7Ca0.3CoOx is described. Dual phase composite membranes are the subject of investigations presented in Chapters 4-7. The main advantage of these type of materials is that their properties can be tailored to meet the demands imposed by the sensor design. Emphasis is on the preparation of the materials, characterisation by SEM-EDX, XRD, catalytic activity and measurement of ionic/electronic conductivities. In Chapter 4, dual phase composites of composition Gd0.7Ca0.3CoOx/Ce0.8Gd0.2O2- are studied. Composites ZrO2/In2O3 and ZrO2/ITO are subject to the investigations reported in Chapters 5 and 6, respectively. Finally, in Chapter 7, composite Au/YSZ and Au/Ce0.8Gd0.2O2- membranes are studied. Finally, in Chapter 8 a summary of the results is given together with recommendations for future research

  17. Noncasein nitrogen analysis of ultrafiltration and microfiltration retentate.

    Science.gov (United States)

    Zhang, H; Metzger, L E

    2011-04-01

    Previous research has suggested that the standard noncasein nitrogen (NCN) measurement method for milk overestimates the NCN content of microfiltration (MF) retentate. The objective of this study was to develop a modified method to more accurately measure the NCN content of ultrafiltration and MF retentate products. The standard method is based on precipitation of casein micelles at their isoelectric point (4.6) with acetic acid. In the standard method, a 10-mL milk sample and 75 mL of 38°C water are placed in a 100-mL volumetric flask. One milliliter of 10% acetic acid solution is added and the flask is incubated at 38°C for 10 min. Subsequently, 1 mL of 1N sodium acetate solution is added and mixed. After cooling the contents to 20°C, the flask is made up to 100mL with water, mixed, and then filtered (Whatman No. 1 filter paper). The N content of the filtrate is then determined by Kjeldahl analysis and referred to as NCN. A method was developed that used a 50-mL centrifugal tube instead of a volumetric flask. This modification facilitated measurement of the pH after addition of acetic acid. Subsequently, the sample was centrifuged (800×g at 25°C) for 10 min to facilitate filtration with a smaller pore size filter paper (Whatman no. 6). In this study, we evaluated the effect of pH after addition of 1% acetic acid and pH of the final filtrate on NCN analysis. Four pH levels after acetic acid addition (4.0, 4.2, 4.4, and 4.6) and 2 pH levels after sodium acetate addition (4.6 and 4.8) were evaluated. As the pH after acetic acid addition was increased from 4.0 to 4.6, the NCN content significantly decreased. Sodium dodecyl sulfate PAGE results also indicated that the casein fractions present in the filtrate were significantly decreased when the pH was increased from 4.0 to 4.6. The NCN content slightly decreased but the difference was not significant when the final pH of the filtrate was increased from 4.6 to 4.8. Subsequently, the NCN contents of several

  18. Effect of surface roughness of ceramic membrane on the performance of filtrating oily wastewater%陶瓷膜表面粗糙度对含油废水过滤性能的影响

    Institute of Scientific and Technical Information of China (English)

    张兵兵; 仲兆祥; 邢卫红

    2011-01-01

    采用表面粗糙度仪、扫描电子显微镜(SEM)和三维非接触表面形貌仪(WLI)表征膜表面形貌,并考察了陶瓷膜表面粗糙度对过滤含油废水性能的影响.结果显示,具有不同表面粗糙度的相同孔径陶瓷膜,其纯水通量基本相同;粗糙度越大的膜,过滤含油废水的膜通量衰减越快,稳定通量也越低;陶瓷膜表面粗糙度对油截留率基本没有影响;废水中油滴粒径的变化对粗糙度大的膜的稳定通量影响显著,表明光滑膜更适合于处理含油废水.%The information of surface morphology was provided by surface roughness tester, scanning electron microscopy (SEM) and white light interferometer (WLI), and the effect of surface roughness of ceramic membrane on the performance of filtrating oily wastewater was investigated The ceramic membranes with the same pore size and different surface roughness had the same pure water flux. The results of filtrating oily wastewater indicated that the rougher membranes had larger flux decline and lower steady flux than that of smoother ones. With the change of droplet size in the wastewater, the rougher membrane had the larger change of the steady flux. Surface roughness had little effect on oil rejection. This study indicated that smoother membrane was suitable for treating oily wastewater.

  19. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control.

    Science.gov (United States)

    Chellam, Shankararaman; Sari, Mutiara Ayu

    2016-03-01

    Electrocoagulation (EC) is the intentional corrosion of sacrificial anodes (typically aluminum or iron) by passing electricity to release metal-ion coagulant species and destabilize a wide range of suspended, dissolved, and macromolecular contaminants. It can be integrated ahead of microfiltration (MF) to effectively control turbidity, microorganisms, and disinfection by-products (DBPs) and simultaneously maintain a high MF specific flux. This manuscript summarizes the current knowledge on MF pretreatment by aluminum EC particularly focusing on mechanisms of (i) electrocoagulant dosing, (ii) (bio)colloid destabilization, (iii) fouling reductions, and (iv) enhanced removal of viruses, natural organic matter (NOM), and DBP precursors. Electrolysis efficiently removes hydrophobic NOM, viruses, and siliceous foulants. Aluminum effectively electrocoagulates viruses by physically encapsulating them in flocs, neutralizing their surface charge and reducing electrostatic repulsion, and increasing hydrophobic interactions between any sorbed NOM and free viruses. New results included herein demonstrate that EC achieves DBP control by removing NOM, reducing chlorine-reactivity of remaining NOM, and inducing a slight shift toward more brominated trihalomethanes and haloacetic acids. EC reduces MF fouling by forming large flocs that tend to deposit on the membrane surface, i.e. decrease pore penetration and forming more permeable cakes and by reducing foulant mass in case of significant floc-flotation. PMID:26619048

  20. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control.

    Science.gov (United States)

    Chellam, Shankararaman; Sari, Mutiara Ayu

    2016-03-01

    Electrocoagulation (EC) is the intentional corrosion of sacrificial anodes (typically aluminum or iron) by passing electricity to release metal-ion coagulant species and destabilize a wide range of suspended, dissolved, and macromolecular contaminants. It can be integrated ahead of microfiltration (MF) to effectively control turbidity, microorganisms, and disinfection by-products (DBPs) and simultaneously maintain a high MF specific flux. This manuscript summarizes the current knowledge on MF pretreatment by aluminum EC particularly focusing on mechanisms of (i) electrocoagulant dosing, (ii) (bio)colloid destabilization, (iii) fouling reductions, and (iv) enhanced removal of viruses, natural organic matter (NOM), and DBP precursors. Electrolysis efficiently removes hydrophobic NOM, viruses, and siliceous foulants. Aluminum effectively electrocoagulates viruses by physically encapsulating them in flocs, neutralizing their surface charge and reducing electrostatic repulsion, and increasing hydrophobic interactions between any sorbed NOM and free viruses. New results included herein demonstrate that EC achieves DBP control by removing NOM, reducing chlorine-reactivity of remaining NOM, and inducing a slight shift toward more brominated trihalomethanes and haloacetic acids. EC reduces MF fouling by forming large flocs that tend to deposit on the membrane surface, i.e. decrease pore penetration and forming more permeable cakes and by reducing foulant mass in case of significant floc-flotation.

  1. Preparation and Characterization of Diatomite Flat Ceramic Micro-filtration%硅藻土基平板式陶瓷分离膜的制备及性能表征

    Institute of Scientific and Technical Information of China (English)

    朱跃东; 殷齐超; 廖得祥; 耿安朝

    2015-01-01

    采用固态粒子烧结法和浸拉提渍工艺相结合研制硅藻土平板式陶瓷分离膜,探讨胚料中造孔剂和固含量对膜孔径及纯水通量的影响,并研究涂层工艺及烧成制度对膜形成的作用。同时对微滤膜的孔径大小及分布,膜孔隙率、纯水通量及抗弯强度等性能进行表征。实验结果表明,制备出平均孔径为0.8μm的平板陶瓷膜,其具有表面性质连续完整、孔径分布窄以及机械强度大的特点。%Diatomite flat ceramic micro-filtration membrane was prepared by solid state sintering and dip-coating method. The influence of solid content in the coating liquid of membrane to pore size and pure water flux was explored, the effect of the coating process and sintering system on the membrane formation was analyzed. Characterizations of the micro-membrane, such as the pore size and pore size distribution, membrane porosity, pure water flux and flexural behavior, were studied. The results indicated that membrane with porosity beyond 35%, average pore size 0. 8 μm, continuous complete surface properties, narrow pore distribution and high mechanical strength were prepared.

  2. Study on membrane concentration process and flavor compounds analysis in fish Engraulis japonicus soup%鳀鱼蒸煮液膜浓缩工艺研究及风味物质分析

    Institute of Scientific and Technical Information of China (English)

    张建友; 林龙; 王斌; 丁玉庭

    2013-01-01

    采用微滤(MF)、超滤(UF)、纳滤(NF)组合膜浓缩技术进行鳀鱼蒸煮液营养风味物质的高效冷浓缩.结果表明:无机陶瓷微滤膜通量较高、浓缩时间较短,MF-NF工艺的蛋白质和氨基酸回收率分别为70.74%和39.83%~46.64%.MF截留液的蛋白质浓度提高3.30倍,腥味增强.NF截留液的氨基酸浓度提高2.71倍,其中谷氨酸和天冬氨酸含量分别增加了3.36倍和6.72倍,鱼腥味基本消失,蒸煮液的风味有效改善.MF-NF工艺比MF-UF-NF工艺经济简便可行,适合于鳀鱼蒸煮液船上浓缩.%A membrane process involving microfiltration (MF),ultrafiltration (UF) and nanofiltration (NF) was used to concentrate nutrition and flavor compounds in Engraulis japonicus cooking soup.Results showed that inorganic ceramic microfiltration membrane had higher flux volume and shorter concentration time.Protein and amino acid recoveries were 70.74% and 39.83% ~46.64% for MF-NF process.The content of protein increased 3.30 times in the retentate by microfiltration process,but the fishy odor was increased.Meantime,the content of amino acid increased 2.71 times in the retentate by nanofiltration process,especially glutamate and aspartate were increased 336%and 672 %.Moreover,the fishy odor was disappeared,the flavor of the cooking soup has been effectively improved.MF-NF process was more simple and available than MF-UF-NF process and suitable for concentrating the cooking soup on the fishing boat.

  3. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications

    NARCIS (Netherlands)

    Diban Ibrahim Gomez, N.; Stamatialis, D.

    2014-01-01

    Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of

  4. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Chen, Ying-Chun; Yang, Hao-Xuan; Yen, Chia-Heng

    2016-07-01

    In this study, commonly detected emerging contaminants (ECs) in water, including di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF), were selected as the target contaminants. A lab-prepared graphene-containing ceramic composite tubular membrane (TGCCM) coupled with the simultaneous electrocoagulation and electrofiltration process (EC/EF) in crossflow filtration mode was used to remove target contaminants in model solution. Meanwhile, a comparison of the removal efficiency was made among various tubular composite membranes reported, including carbon fibers/carbon/alumina composite tubular membrane (TCCACM), titania/alumina composite tubular membrane (TTACM) and alumina tubular membrane (TAM). The results of this study showed that the removal efficiencies for DnBP and DEHP were 99%, whereas 32-97% for cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF). In this work the mechanisms involved in removing target ECs were proposed and their roles in removing various ECs were also discussed. Further, two actual municipal wastewaters were treated to evaluate the applicability of the aforementioned treatment technology (i.e., TGCCM coupled with EC/EF) to various aqueous solutions in the real world.

  5. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Chen, Ying-Chun; Yang, Hao-Xuan; Yen, Chia-Heng

    2016-07-01

    In this study, commonly detected emerging contaminants (ECs) in water, including di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF), were selected as the target contaminants. A lab-prepared graphene-containing ceramic composite tubular membrane (TGCCM) coupled with the simultaneous electrocoagulation and electrofiltration process (EC/EF) in crossflow filtration mode was used to remove target contaminants in model solution. Meanwhile, a comparison of the removal efficiency was made among various tubular composite membranes reported, including carbon fibers/carbon/alumina composite tubular membrane (TCCACM), titania/alumina composite tubular membrane (TTACM) and alumina tubular membrane (TAM). The results of this study showed that the removal efficiencies for DnBP and DEHP were 99%, whereas 32-97% for cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF). In this work the mechanisms involved in removing target ECs were proposed and their roles in removing various ECs were also discussed. Further, two actual municipal wastewaters were treated to evaluate the applicability of the aforementioned treatment technology (i.e., TGCCM coupled with EC/EF) to various aqueous solutions in the real world. PMID:27131034

  6. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  7. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  8. Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Kwok, Kawai;

    2016-01-01

    The possibility of joining dense ceramic BCSF tubular membranes to metal alloys using a silver braze was investigated. Four different alloys (Crofer 22 APU (R), Kanthal APM (R), Haynes 214 (R) and EN 1.4841) were considered and the influence of their oxide scale stability/reactivity and their the......The possibility of joining dense ceramic BCSF tubular membranes to metal alloys using a silver braze was investigated. Four different alloys (Crofer 22 APU (R), Kanthal APM (R), Haynes 214 (R) and EN 1.4841) were considered and the influence of their oxide scale stability...

  9. Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changping, E-mail: melindazhang@yahoo.com.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Zhao Jun; Zhang Dong; Deng Yue [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-08-15

    The removal of cesium from an aqueous solution by an adsorption-microfiltration (AMF) process was investigated in jar tests and lab-scale tests. The adsorbent was K{sub 2}Zn{sub 3}[Fe(CN){sub 6}]{sub 2}. The obtained cesium data in the jar test fit a Freundlich-type isotherm well. In the lab-scale test, the mean cesium concentration of the raw water and the effluent were 106.87 {mu}g/L and 0.59 {mu}g/L, respectively, the mean removal of cesium was 99.44%, and the mean decontamination factors (DF) and concentration factors (CF) were 208 and 539, respectively. The removal of cesium in the lab-scale test was better than that in the jar test because the old adsorbents remaining in the reactor still had adsorption capacity with the premise of no significant desorption being observed, and the continuous renewal of the adsorbent surface improved the adsorption capacity of the adsorbent. Some of the suspended solids were deposited on the bottom of the reactor, which would affect the mixing of adsorbents with the raw water and the renewing of the adsorbent surface. Membrane fouling was the main physical fouling mechanism, and the cake layer was the main filtration resistance. Specific flux (SF) decreased step by step during the whole period of operation due to membrane fouling and concentration polarization. The quality of the effluent was good and the turbidity remained lower than 0.1 NTU, and the toxic anion, CN{sup -}, could not be detected because of its low concentration, this indicated that the effluent was safe. The AMF process was feasible for practical application in the treatment of liquid waste containing cesium.

  10. 用于TS-1催化剂回收的陶瓷膜污染机理%The Fouling Mechanism of Ceramic Membranes Used for Recovering TS-1 Catalysts

    Institute of Scientific and Technical Information of China (English)

    仲兆祥; 李冬燕; 刘馨; 邢卫红; 徐南平

    2009-01-01

    Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane fouling in the alkaline environment of this system. In the ammoximation system, there are three main silica sources, which are residual silica on the catalyst particles surface during preparation, silica dissolved from TS-1 catalyst par-ticles by ammonia solvent, and silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst. The silica dissolved by ammonia has been proved to influence membrane fouling most among the three silica sources. This was because the amount of silica dissolved by ammonia was the largest, and the polymerization of silica monomers at high concentration caused colloid particles formation, which led to a dense cake layer depos-iting on the membrane surface. Meanwhile, the size reduction of catalyst particles caused by alkaline dissolution also increased specific resistances of cake layers.

  11. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    Directory of Open Access Journals (Sweden)

    Gabriela Azofeifa

    2011-10-01

    Full Text Available Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to be stored for longer periods. One important issue required for these techniques is to preserve the health-promoting capacities of blackberries. This study compared the antioxidant activity and the lipid peroxidation protector effect between a fresh blackberry juice (FJ and a microfiltrated blackberry juice (MJ. Chemical analysis of both juices show less polyphenols concentration in the MJ. Despite this difference, values for biological activities, such as protection of lipid peroxidation, was not significantly different between FJ and MJ. These results suggest that the compounds responsible for the antioxidant activity are maintained even after microfiltration and the free radical scavenging capacity of these compounds could protect the initiation of lipid peroxidation. Microfiltration could be used as an industrial technique to produce blackberry juice that maintains biological activities of polyphenols.

  12. A facile TiO2/PVDF composite membrane synthesis and their application in water purification

    International Nuclear Information System (INIS)

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO2/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO2 nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO2 composite membranes were studied systematically. The TiO2/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties

  13. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    OpenAIRE

    D. Belavic; Hrovat, M.; G. Dolanc; Santo Zarnik, M.; Holc, J.; Makarovic, K.

    2012-01-01

    The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM) fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s), mixer(s), reformer and combustor. Low-temperature co-fired ceramic (LTCC) technology was used to fabricate the ceramic structures with buried cavities and...

  14. Tracks of high-energy ions in polyimide. Part 2. Etching of tracks. Production of polyimide track membranes

    International Nuclear Information System (INIS)

    The processes of high-energy ions etching in polyimide (PI) were studied. Comparison between characteristics of etchant with various compositions was made. A new etchant (concentrated hydrogen peroxide) with high selectivity and high etching rate was suggested. The etchant is accessible and ecologically clean. PI track membranes for ultra- and micro-filtration were created. (author). 12 refs, 1 fig., 2 tabs

  15. Experiment on Application of Treatment for Raw Water From Dongjiang River with Immersion-Type Flat Ceramic Membrane%采用浸没式平板陶瓷膜处理东江原水的应用试验

    Institute of Scientific and Technical Information of China (English)

    范小江; 盛德洋; 张建国; 加藤秀生; 李泰日; 张锡辉

    2012-01-01

    采用过滤面积0.5712 m2,孔径为60~70 nm的平板陶瓷膜,对东江原水进行过滤试验,研究在不同渗透通量、原水浊度、原水有机物浓度下陶瓷膜对浊度和有机物的去除效果,以及陶瓷膜跨膜压差的变化.结果表明,渗透通量、原水浊度和有机物浓度的升高都会引起跨膜压差的升高,其中有机物浓度的影响大于浊度的影响;膜出水水质分析表明陶瓷膜出水浊度稳定在0.1 NTU以下,各项指标除氨氮外都满足新的国家饮用水水质标准;陶瓷膜过滤能将病原微生物有效去除,从而提高水体的微生物安全保障水平;陶瓷膜能显著去除水中分子量大于2 000 Da的有机物,但对小分子有机物和无机离子基本没有去除效果.膜清洗试验表明,使用单种化学清洗剂时NaOH的效果最好.%A comprehensive filtration experiment for Dongjiang raw water was conducted by adopting flat ceramic membrane with filtration area of 0.571 2 nr and aperture of 60-70 nm to analysis the water quality and transmembrane pressure (TMP) under various filtration flux, turbidity as well as organic matter concentration of raw water. Research results indicate that the TMP is increased with the increasing of filtration flux, turbidity and organic matter concentration of raw water. The influence of organic matter concentration of raw water is greater than that of turbidity. The analysis results of effluent water indicate that the turbidity is less than 0.1 NTU stably, every index except ammonia nitrogen meets the latest national drinking water quality standards. The results also show that the pathogenic microorganisms are removed effectively by ceramic membrane so that the biological safety of effluent is improved. The organic matter whose molecular weight is more than 2 000 Da can be marked removed by the ceramic membrane as well. However, organic matter with smaller molecular weight and inorganic ions can be hardly removed by the ceramic

  16. Membrane-based treatment for tanning wastewaters 

    OpenAIRE

    Catarino, Justina; Mendonça, E.; Picado, Ana; Lança, Ana; Silva, Luís Manuel; Pinho, Maria

    2013-01-01

    Tanning wastewater was subjected to different unit operations to select the best treatment sequences. Textile membrane filtration (TMF), microfiltration (MF), and ultrafiltration (UF) were complemented by screening, flocculation or flotation operations. The general chemical characterization determined that the wastewater had a high organic load. The ecotoxicological study classified the wastewater as highly ecotoxic. The sequence of screening–TMF – UF was found to be the optimal treatment...

  17. STUDY ON THE CONTROLLED MASS TRANSPORT THROUGH POROUS MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    l introductionMembrane Processes have been applied widely inchemical and biological separation and mass transferoperatioll. Tile mass tfansport tlimugh the membralleis driven either by pressure (sucll as ultrallltration,microfiltration and nanofiltration), or concelltration(diffusion) like dialysis, or by electric field(electrodialysis). While pressure drived Processes areiii-idel}' used for separation pmpose, diffusionprocesses is conllllon in colltrolled release and soluteexchange. Haemodialysis has been ...

  18. Membrane purification in radioactive waste management: a short review

    International Nuclear Information System (INIS)

    Radiation hazards of radionuclides arising from nuclear plant facilities are well known. Separation technologies are used to concentrate the radionuclides and prevent the spread of this hazard to the environment. The present review describes the recent advances made in radioactive waste treatment using membrane separation technology. The first part discusses the membrane methods for collective separation of radionuclides and the second part discusses the membrane methods for selective separation of individual radionuclides. For the collection separation of radionulides, methods include reverse osmosis, precipitation followed by ultrafiltration or microfiltration and membrane distillation. Individual elements have been separated using liquid supported membranes, polymer inclusion membranes, solid polymer based electrolysis, nanofiltration, electrochemical salt-splitting process and other advanced separation methods. - Highlights: ► Collective ions and colloids and Selective ions separation using membranes has been reviewed. ► Ultrafiltration and membrane distillation aide in collective waste remediation. ► Supported membranes aide in purification of radioisotopes.

  19. Strategies for Efficient Microfiltration of Oil-in-Water Emulsions

    Science.gov (United States)

    Darvishzadeh, Tohid; Priezjev, Nikolai

    2011-11-01

    This study addresses the issue of the separation of oil droplets from water for oil spill mitigation and produced water treatment. The effective separation of oil-in-water dispersions involves high flux of water through a membrane and, at the same time, high rejection rate of oil droplets, while avoiding membrane fouling. In this study, the effects of transmembrane pressure and crossflow velocity on rejection of oil droplets by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure, which is required for the oil droplet entry into a circular pore of given surface hydrophobicity, agrees well with analytical predictions based on the Young-Laplace equation. With increasing crossflow velocity, the shape of the oil droplet residing at the pore entrance is elongated along the flow and the critical pressure increases. In the case of pores with an elliptical cross-section, the water flux through the membrane is enhanced, in agreement with simple analytical considerations. The results of the numerical simulations are used to outline strategies for the experimental design of porous filters for oil spill remediation and produced water treatment applications.

  20. Fouling kinetics in microfiltration of protein solutions using different membrane configurations

    DEFF Research Database (Denmark)

    Jakobsen, Sune; Jonsson, Gunnar Eigil

    1997-01-01

    the flux compared to beer filtration in a normal mode. Similar results for protein filtration were observed by Bowen et al. [2]. One possible way to avoid fouling is the novel backshock technique (see Jonsson et al. [1]). The effect of backshock on protein filtration was investigated using a hollow...

  1. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    Science.gov (United States)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  2. Sweep flocculation and adsorption of viruses on aluminum flocs during electrochemical treatment prior to surface water microfiltration.

    Science.gov (United States)

    Tanneru, Charan Tej; Rimer, Jeffrey D; Chellam, Shankararaman

    2013-05-01

    Bench-scale experiments were performed to evaluate virus control by an integrated electrochemical-microfiltration (MF) process from turbid (15 NTU) surface water containing moderate amounts of dissolved organic carbon (DOC, 5 mg C/L) and calcium hardness (50 mg/L as CaCO3). Higher reductions in MS2 bacteriophage concentrations were obtained by aluminum electrocoagulation and electroflotation compared with conventional aluminum sulfate coagulation. This was attributed to electrophoretic migration of viruses, which increased their concentrations in the microenvironment of the sacrificial anode where coagulant precursors are dissolved leading to better destabilization during electrolysis. In all cases, viruses were not inactivated implying measured reductions were solely due to their removal. Sweep flocculation was the primary virus destabilization mechanism. Direct evidence for virus enmeshment in flocs was provided by two independent methods: quantitative elution using beef extract at elevated pH and quantitating fluorescence from labeled viruses. Atomic force microscopy studies revealed a monotonically increasing adhesion force between viruses immobilized on AFM tips and floc surfaces with electrocoagulant dosage, which suggests secondary contributions to virus uptake on flocs from adsorption. Virus sorption mechanisms include charge neutralization and hydrophobic interactions with natural organic matter removed during coagulation. This also provided the basis for interpreting additional removal of viruses by the thick cake formed on the surface of the microfilter following electrocoagulation. Enhancements in virus removal as progressively more aluminum was electrolyzed therefore embodies contributions from (i) better encapsulation onto greater amounts of fresh Al(OH)3 precipitates, (ii) increased adsorption capacity associated with higher available coagulant surface area, (iii) greater virus-floc binding affinity due to effective charge neutralization and

  3. PHOTOCATALYSIS–MEMBRANE SEPARATION COUPLING REACTOR: REMOVAL OF ORGANIC POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    Noureddine Elbaraka

    2012-03-01

    Full Text Available This work reports the photodegradation process of methylene blue in a membrane photoreactor by using TiO2 as the photocatalyst and phosphate microfiltration membrane as separation barrier recovery and recycle the photocalysts particles. The rejection rate of the TiO2 photocatalyst particles reaches 99.9% and the degradation rate of methylene blue is 75% in 1 hour of filtration.

  4. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  5. Tailored ceramics

    International Nuclear Information System (INIS)

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  6. DEVELOPMENT AND TESTING OF A CERIA-ZIRCONIA TOUGHENED ALUMINA PROTOTYPE FILTER ELEMENT MADE OF RETICULATED CERAMIC FOAM COATED WITH A CERAMIC MEMBRANE ACTING AS BARRIER FILTER FOR FLY ASH

    Energy Technology Data Exchange (ETDEWEB)

    Guilio A. Rossi; Kenneth R. Butcher; Stacia M. Wagner

    1999-02-19

    The objective of this work was to fabricate subscale candle filters using a Ce-ZTA reticulated foam material. Specifically Selee fabricated 60mm diameter cylinders with one closed end and one flanged end. Selee Corporation developed a small pore size (5-10 {micro}m) filtration membrane which was applied to the reticulated foam surface to provide a barrier filter surface. The specific tasks to be performed were as follows: (Task 1) Filter Element Development--To fabricate subscale filter elements from zirconia toughened alumina using the reticulated foam manufacturing process. The filter elements were required to meet dimensional tolerances specified by an appropriate filter system supplier. The subscale filter elements were fabricated with integral flanges and end caps, that is, with no glued joints. (Task 2) Membrane Development--To develop a small pore filtration membrane that is to be applied to the reticulated foam material. This membrane was to provide filtration characteristics that meet gas turbine requirements and pressure drop or permeability requirements specified by the filter system supplier. (Task 3) Subscale Filter Element Fabrication--To fabricate six subscale filter elements with integral flanges and closed ends, as well as fine pore size filtration membranes. Three filters were to have a central clean gas channel, while three would have no central channel. The filters were to be provided to FETC for testing in laboratory systems or pilot scale exposure systems as appropriate. The candles were to meet dimensional tolerances as provided by filter system suppliers.

  7. 陶瓷膜组合工艺对水中甲硫醚去除效果研究%Performance of Combined Ceramic Membrane Process for Removing Dimethyl Sulfide from Water

    Institute of Scientific and Technical Information of China (English)

    谢宇铭; 张锡辉

    2011-01-01

    采用顶空-固相微萃取和色谱质谱联用仪器方法调查严重污染的河流、相关水源中甲硫醚嗅味物质的分布.结果表明,河流中甲硫醚浓度高达2 907 ng/L,受污染的相关水源中甲硫醚浓度达到53 ng/L.单独陶瓷无机膜工艺对DMS去除的效果为20%左右,而臭氧氧化则具有较好的效果,臭氧-陶瓷膜组合工艺对DMS去除率达到50%~90%左右,还能够缩短处理工艺.该项研究对于掌握甲硫醚嗅味物质来源和新型技术的作用具有指导意义.%Investigation of heavily polluted rivers was conducted with emphasis on dimethyl sulfide (DMS) contamination using headspace solid-phase micro-extraction (HS-SPME) together with GC-MS. The source water in association with the polluted rivers was also contaminated with source water concentration up to the range from 50 to 90 ng/L. Removing DMS, the notorious odor compound, was important in tap water production especially when the source water was contaminated. Thus ceramic membrane filtration modules were used to purify the water but only 20% DMS was removed. Ceramic membrane filtration combined with ozone-oxidation, however, could significantly upgrade DMS removal from the source water.

  8. Recent developments in testing new membrane systems at AERE Harwell for nuclear applications

    International Nuclear Information System (INIS)

    The development of a crossflow filtration process for the treatment of radioactive liquid waste has been carried out at the Harwell Laboratory. A number of different membranes in the ultrafiltration and microfiltration range have been tested on simulated and real radioactive effluents under both normal crossflow and electrically cleaned conditions. The membrane fluxes and alpha rejection at different operating conditions have been determined for the Harwell site low level waste. The periodic direct electrical cleaning of conductive membranes permits the use of lower crossflow velocities and pressures while maintaining or even enhancing membrane flux. Electrical cleaning has been found not to compromise membrane life. (author)

  9. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  10. 陶瓷膜超滤技术浓缩乳清的工艺参数研究%Research of processing parameters of whey protein concentrate by inorganic ceramic membrane ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    高红艳; 刘振民; 莫蓓红

    2012-01-01

    The whey protein concentrate was ultrafiltrated by the inorganic ceramic membrane tubes whose aperture was 20nm to concentrate the by-product cheese whey. The optimal condition of pressure of membrane, temperature of material, and pH were studied.The results showed that the pressure of membrane at 0.25MPa, temperature of material at 51℃, and pH at 6.1, the flux of membrane was 169.37L/m2 · h under the optimal conditions.In addition,the whey protein could be concentrated to 5.4% in whey concentrate liquid, and the whey protein concentrate could reach 38.2% by spray drying.%采用孔径为20nm的无机陶瓷膜超滤干酪副产物乳清,浓缩乳清蛋白。通过对膜过滤压力、温度以及乳清pH三个因素进行单因素分析以及正交实验优化,得到最佳工艺条件:操作压力0.25MPa,温度51℃,pH6.1,此条件下超滤膜渗透通量达到169.37I/m2·h,乳清蛋白可浓缩至5.4%,经喷雾干燥制得WPC蛋白质含量为38.2%。

  11. Study on skim milk ultrafiltration with a reciprocating rotating tubular ceramic membrane module%往复旋转管式陶瓷膜超滤脱脂奶水溶液的研究

    Institute of Scientific and Technical Information of China (English)

    张晓娜; 梁志辉; 曾燕艳; 范洪波; 吕斯濠

    2013-01-01

    The reciprocating rotary tubular ceramic membrane filtration system could create high shear rate at the membrane surface repeatedly by rotating membrane module in a reciprocating motion to reduce membrane fouling. Compared with the unidirectional rotating filtration and dead-end filtration under the same conditions,the reciprocating rotary filtration system showed superiority in reducing membrane fouling. This research designed ultrafiltration skim milk solution tests to investigate the influence of operating parameters. The results revealed that feed concentration increase could lead to the decrease of membrane permeate flux,and membrane flux could be reduced once the TMP was too high. The increase of rotating speed could induce the increase of shear enhancement and the membrane permeate flux. As the reciprocating rotating cycle increased,the quasi steady membrane permeate flux firstly increases before it decreased. When the feed fluid velocity was at the membrane module velocity,the membrane module being rotated in opposite direction instantaneously generated the largest shear rate on the membrane surface and gained the largest permeate flux. The specific energy consumption per m3 permeate of the reciprocating rotary filtration system was lower than the unidirectional rotating filtration.%往复旋转管式陶瓷膜过滤系统通过膜组件往复旋转在膜表面反复产生高剪切率,达到减缓膜污染的效果。在相同操作条件下,与单向旋转过滤和死端过滤相比较,往复旋转过滤具有更好的减缓膜污染的作用。本实验利用往复旋转膜过滤装置超滤脱脂奶水溶液,考察了各种参数对该膜系统过滤特性的影响。实验结果表明,料液浓度增大,膜通量减小;过高的操作压差将会抑制膜通量增加;旋转速度增大,膜表面剪切强化作用增强,膜通量相应增大;膜稳态通量随往复旋转周期增大呈现先增大后减小的趋势。当料液速

  12. Structural stability and oxygen permeability of BaCo1−xNbxO3−δ ceramic membranes for air separation

    International Nuclear Information System (INIS)

    Highlights: • BCNx membranes with high oxygen permeation flux were prepared. • Oxygen permeability of BCNx membranes is stable at 900 °C. • Phase transition is governed by oxygen partial pressure and temperature. • Degradation mechanism of BCNx membrane is suggested. - Abstract: BaCo1−xNbxO3−δ (BCNx, x = 0.1–0.2) membranes were synthesized through conventional solid-phase reactions. The introduction of niobium facilitates the formation of the cubic perovskite structure and decreases oxygen nonstoichiometry. BCNx membranes possess higher oxygen permeation flux compared with BaCo0.7Fe0.2Nb0.1O3−δ membrane at the same condition. A stable permeation flux as high as 2.61 ml cm−2 min−1 is obtained through BaCo0.9Nb0.1O3−δ membrane at 900 °C under the Air/He gradient. Long-time permeation study shows that the oxygen fluxes of BCNx membranes are stable at 900 °C but degrade slowly with time at 850 °C. XRD and TG–DSC results indicate that the degradation behavior occured at 850 °C is due to the phase transition from the cubic perovskite to monoclinic or orthorhombic structure, which is governed by the oxygen partial pressure and temperature. The oxidation of cobalt ion is considered to be the nature for the phase transition, which makes the tolerance factor increasing and results in structural destabilization

  13. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic-Kuzmanovic, Jelena

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials tha

  14. [Photocatalytic functional ceramic and its speciality of photodecomposition].

    Science.gov (United States)

    Liu, Ping; Dai, Wen-xin; Shao, Yu; Lin, Hua-xiang; Zheng, Hua-rong; Fu, Xian-zhi

    2004-07-01

    Photocatalytic ceramic was prepared by coating photocatalytic membrane on ceramic matrix. The photocatalytic behavior of the TiO2 coated ceramic for degradation of oleic acid, ethylene, SO2, NOx and sterilization was studied by using XRD, chromatogram, in-situ IR and spectrophotometer. The results showed that the photocatalytic ceramic prepared by special conditions have the function of environmental conservation such as the photodegradating organic contaminants, removing inorganic baleful gas and killing bacteria. Degradation ratio of ethylene, oleic acid, SO2 and NOx reached 95%-100% respectively for the photocatalytic functional ceramic. PMID:15515948

  15. Compendium Of Completed Testing In Support Of Rotary Microfiltration At Savannah River Site And Hanford

    International Nuclear Information System (INIS)

    This report presents a chronological summary of previous technology development efforts concerning the rotary microfiltration (RMF) unit from SpinTek(trademark). Rotary microfiltration has been developed for high radiation application over the last decades as one of the optional filtration techniques for supplemental treatment. Supplemental treatment includes a near- or in-tank solids separation and subsequent cesium removal unit, followed by an immobilization technique; this includes options such as steam reforming, bulk vitrification or cast stone (grout). The main difference between RMF and standard cross flow filtration (CFF) is the disconnection of filtrate flux from feed velocity; i.e., filtrate flux is only dependent on transmembrane pressure, filter fouling and temperature. These efforts have been supported by the U.S. Department of Energy (DOE), Office of Cleanup Technologies since the 1990s by their Environmental Management Program (currently EM-31). In order to appropriately address future testing needs, a compilation of the relevant previous testing reports was essential. This compendium does not intend to cover all of the presentations/reports that were produced over the last decades but focuses on those of relevance for developing an RMF unit fit for deployment at the Hanford site. The report is split into three parts: (1) an introductory overview, (2) Figure 1 graphically covering the main development steps and its key players and (3) a more detailed table of the citations and brief descriptions of results and recommendations.

  16. Development of nickel membranes deposited on ceramic materials by electroless plating: studies of the hydrogen perm-selectivity properties at elevated temperatures

    International Nuclear Information System (INIS)

    The main objective of this work was to synthesize nickel based membranes by electroless plating on materials such as alumina-α, alumina-γ and zirconia with various textures and to determine their hydrogen perm-selectivity at high temperatures. The synthesis of metal films of high purity (≥ 99% mass Ni) resulting from the choice of hydrazine with its dual role of reducing and complexing agent has revealed that the diameter of pores on the surface support has an impact on the quality of metal adherence. The various contributions of hydrogen transport through these composite membranes at low temperatures (Knudsen and surface diffusion) and at high temperatures (Knudsen and activated diffusion) was established. At its implementation in a membrane reactor (reaction of propane dehydrogenation), the layer of nickel showed a very good resistance to coking. (author)

  17. Modelling of Tape Casting for Ceramic Applications

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    of functional ceramics research. Advances in ceramic forming have enabled low cost shaping techniques such as tape casting and extrusion to be used in some of the most challenging technologies. These advances allow the design of complex components adapted to desired specific properties and applications. However......Functional ceramics find use in many different applications of great interest, e.g. thermal barrier coatings, piezoactuators, capacitors, solid oxide fuel cells and electrolysis cells, membranes, and filters. It is often the case that the performance of a ceramic component can be increased markedly......, there is still only very limited insight into the processes determining the final properties of such components. Hence, the aim of the present PhD project is to obtain the required knowledge basis for the optimized processing of multi-material functional ceramics components. Recent efforts in the domain...

  18. 陶瓷复合膜分离工艺生产新生牛血清的研究%Production of ceramic composite membrane separation process of newborn calf serum

    Institute of Scientific and Technical Information of China (English)

    庞观龙; 周贞兵

    2011-01-01

    [目的]探索一次性过滤截留新生牛血清中细菌、霉菌、支原体等微生物及免疫球蛋白的工艺技术,为新生牛血清规模生产提供技术支撑.[方法]采用陶瓷复合膜分离生产新生牛血清,经细菌、支原体、牛病毒性腹泻病毒( BVDV)抗体、细菌内毒素等微生物及免疫球蛋白检测,并进行新生牛血清产品细胞培养试验.[结果]陶瓷复合膜能一次性成功截留新生牛血清中的细菌、支原体、细菌内毒素、BVDV抗体,过滤后细菌内毒素含量低于0.1 EU/mL,免疫球蛋白去除率在97.00%以上;以其培养SP2/0细胞的细胞倍增时间、单克隆效率等指标接近于进口Hyclone胎血牛清水平.[结论]采用陶瓷复合膜分离工艺生产新生牛血清,实现了一次性有效过滤截留牛血清中细菌、霉菌、支原体等微生物及免疫球蛋白的目标,且能够满足细胞生长的营养需求,为大批量生产优质新生牛血清产品奠定了基础.%The present study was conducted to develop the techniques for disposable filtration and retention of bacteria, fungi, mycoplasma, etc., in newborn calf serum and the immunoglobulin to provide the support on production of newborn calf serum on large scale. [ Methods ]The ceramic composite membrane was used to produce the newborn calf serum, and the bacteria, mycoplasma, bovine viral diarrhea virus (BVDV) antibodies, bacterial endotoxin and other microbial and immunoglobulin in serum were detected. The newborn calf serum products were used for the cell culture experiment. [Results]The ceramic composite membrane successfully retained the bacteria, mycoplasma, bacterial endotoxin and BVDV antibodies in serum. After filtration, the bacterial endotoxin content in fetal calf serum was less than 0.1 Eu/mL, and the removal rate of immunoglobulin was over 97.00%. The doubling time of cell, monoclonal efficiency of SP2/0 cells in filter serum medium had no difference to that of import Hyclone

  19. Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant

    Directory of Open Access Journals (Sweden)

    Vincenzo Spallina

    2015-03-01

    Full Text Available The integration of mixed ionic electronic conducting (MIEC membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650–850 Nm3/h via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%. Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%–70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%–78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  20. 聚合物辅助陶瓷膜处理模拟含油低放废水%Treatment of the simulated oily and low-content radioactive wastewater by polymer-assisted ceramic membranes

    Institute of Scientific and Technical Information of China (English)

    杜志辉; 贾铭椿; 王晓伟; 张标

    2011-01-01

    Poly (acrylic acid) sodium with relative molecular mass 300 000,1 000 000, or 5 000 000 has been used as complex agent for adequately treating the simulated oily and low-content radioactive wastewater. The effects of complex ratio,pH and volume enrichment factor,on ultra-filtration is studied. The results show that under various conditions,the interception rate of oil and Fe3+ by ceramic membranes could approximately reach as high as 100%, and under appropriate conditions,the highest interception rates of Mn2+,Ni2+,and Co2+are around 100%,98.11% and 100% respectively. It is feasible for polymer-assisted ceramic membrane to treat simulated oily and low-content radioactive wastewater. It can intercept Fe3+,Mn2+,Ni2+,Co2+and oil in wastewater,and gain higher permeate flux.%利用陶瓷膜,以相对分子质量为300 000、1000000、5 000 000的聚丙烯酸钠为络合剂处理模拟含油低放废水.研究了络合比、pH、体积浓缩因子等因素对超滤过程的影响.结果表明:在各种条件下,陶瓷膜对油及Fe3+的截留率均接近100%;在适当条件下,对Mn2+、Ni2+、Co2+的最大截留率分别接近100%、98.11%、100%.聚丙烯酸钠辅助陶瓷膜处理含油低放废水是可行的,其可有效截留废水中的Fe3+、Mn2+、Ni2+、Co2+及油,且可得到较高的渗透通量.

  1. Optimal separation of jojoba protein using membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  2. Coagulação associada à microfiltração para o tratamento avançado de esgoto sanitário / Coagulation associated with microfiltration for the advanced treatment of sewage

    Directory of Open Access Journals (Sweden)

    Carlos Magno de Sousa Vidal

    2009-04-01

    Full Text Available ResumoAs tecnologias de membranas filtrantes, dentre elas, a microfiltração, têm sido utilizadas com sucesso no tratamento avançado de águas residuárias, gerando efluentes que atendem a padrões de emissão restritivos e que ainda apresentam amplas potencialidades para reúso. Todavia, a principal limitação deste processo é a colmatação das membranas, fenômeno esse que pode ser minimizado por diversas alternativas, como por exemplo, a prévia coagulação dos afluentes destes sistemas. Neste contexto, a proposta desta pesquisa foi avaliar a coagulação associada à microfiltração tangencial para o tratamento avançado de efluentes gerados na ETE “Jardim das Flores”. Foram coletadas amostras de efluente do UASB, do tanque de aeração e do decantador secundário da referida ETE, as quais foram encaminhadas para o tratamento em unidade de microfiltração tangencial com capacidade de receber vazão de até 1m3/h. A membrana de microfiltração utilizada foi do tipo tubular, de polipropileno, com área efetiva de filtração de 0,036 m2e tamanho médio dos poros de 0,2 μm. Nos ensaios em que os efluentes da ETE foram coagulados, os valores de fluxo de permeado na microfiltração foram maiores quando comparados aos experimentos em que esses efluentes não foram submetidos à coagulação. Além disso, a coagulação contribuiu para melhor remoção de fósforo. Considerando todos os ensaios realizados nesta pesquisa, a microfiltração gerou efluente de excelente qualidade no que se refere à SST (ausente, DQO (< 20mg/L, turbidez (< 1,69 uT e Fósforo (< 2,2 mgP/L. A coagulação seguida de microfiltração apresentou grande potencialidade no tratamento de efluentes gerados no UASB, tanque de aeração e decantador secundário da ETE “Jardim das Flores”.AbstractMicrofiltration is among the filtering membrane technologies that have been used successfully in advanced wastewater treatment, generating effluents that meet

  3. Hydrogen Permeation Performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ Metal-Ceramic Hollow Fiber Membrane

    Institute of Scientific and Technical Information of China (English)

    Chun-li Yang; Qi-ming Xu; Zhi-wen Zhu; Wei Liu

    2012-01-01

    A dense Ni-BaZr0.1Ce0.7Y0.2O3-δ (BZCY) cermet hollow fiber is fabricated by sintering NiOBZCY hollow fiber precursors prepared by phase inversion method in 5%H2/95%Ar and its hydrogen permeation performance is investigated. The Ni-BZCY hollow fiber membrane possesses a "sandwich" structure.Finger-like structures are observed near both the inner and outer surfaces,while a dense layer is present in the center part.With 200 mL/min wet 20%H2/80%N2 on the shell side and 150 mL/min high purity Ar on the core side,the hydrogen permeation flux through the Ni-BZCY hollow fiber membrane at 900 ℃ is 0.53 μmol/cm2s.Owing to a high packing density,the hydrogen permeation flux per unit volume is greatly improved and membrane components composed of an assembly of hollow fibers may be applied in industrial hydrogen separation.

  4. CO{sub 2} SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paul K. T. Liu

    2005-01-31

    Our CO{sub 2}-affinity material synthesis activities thus far have offered two base materials suitable for hydrogen production via low temperature water gas shift reaction (LTS-WGS) with concomitant removal of CO{sub 2} for sequestration. They include (i) a nanoporous CO{sub 2}-affinity membrane and (ii) a hydrotalcite based CO-affinity adsorbent. These two materials offer a commercially viable opportunity for implementing an innovative process concept termed the hybrid adsorbent-membrane reactor (HAMR) for LTS-WGS, proposed by us in a previous quarterly report. A complete mathematical model has been developed in this quarter to describe the HAMR system, which offers process flexibility to incorporate both catalysts and adsorbents in the reactor as well as permeate sides. In comparison with the preliminary mathematical model we reported previously, this improved model incorporates ''time'' as an independent variable to realistically simulate the unsteady state nature of the adsorptive portion of the process. In the next quarterly report, we will complete the simulation to demonstrate the potential benefit of the proposed process based upon the performance parameters experimentally obtained from the CO{sub 2}-affinity adsorbent and membrane developed from this project.

  5. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    Science.gov (United States)

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  6. Synthesis of ceramics membranes using ZrO{sub 2} obtained by Pechini method aiming it application in oil/water separation; Sintese de membranas ceramicas utilizando ZrO{sub 2} obtido pelo metodo Pechini visando sua aplicacao na separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Maia, D.F.; Lira, H.L.; Vilar, M.A.; Costa, A.C.F.M.; Oliveira, J.B.L.; Kiminami, R.H.G.A.; Gama, L.

    2004-07-01

    The water produced in the oil production presents emulsified oil drops of difficult separation causing problems in the reinjection and the discarding. The conventional methods used in the separation oil/water don't clean all the water with efficiency and low cost. Thus, the ceramic membranes appear as a new option for being material very resistant chemistry and thermal, of high perm selective and high efficiency in use in processes of micro filtration and ultrafiltration separation. The zirconia is considered an adequate material to obtain of such membranes and the Pechini method is one promising technique in the attainment of after ultrafine with controlled characteristics. Thus the objective of this work was to prepare ceramic membranes from after synthesized by the Pechini method. The results had shown that the Pechini method was efficient in the attainment of ZrO{sub 2} powder, nanometric, with size of crystal of 7,2 nm and with average diameter of agglomerated 4,94{mu}, indicating that this material can be used in the attainment of membranes of micro filtration and ultrafiltration, adjusted to the separation oil/water The micrographs of the obtained membranes show a homogeneous surface where if it can visualize pores uniformly distributed. (author)

  7. NOM removal in drinking water treatment using dead-end ceramic microfiltration: Assessment of coagulation/flocculation pretreatment

    OpenAIRE

    Meyn, Thomas

    2011-01-01

    In Nordic countries, surface water is a common source for potable water production. Such waters are often characterised by high Natural Organic Matter (NOM) content, resulting in high colour, very low turbidity, low alkalinity and low hardness due to natural conditions. Treatment of such waters basically comprises the removal of NOM and colour, corrosion control and disinfection. Although the largest part of NOM is not harmful, some fractions can cause colour, taste and odour problems or can ...

  8. Development of advanced membrane process for treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    The followings were studied through the project entitled 'Development of advanced membrane process for treatment of radioactive liquid wastes'. 1. Surface modification technique of microfiltration membrane. Microporous hydrophobic polypropylene(PP) membrane were modified by radiation-induced grafting using hydrophilic monomers such as arylic acid(AAc), 2-hydroxyethyl methacrylate(HEMA) and styrenesulfonic acid(SSS). The effect of grafting conditions was investigated. Also, copolymeric condition of AAc and EGDMA for nylon membrane was studied. The structure of grafted PP membrane was examined by using FTIR-ATR spectroscopy, SEM and contact angle. The grafted membrane was characterized by measureing the water flux, the ion exchange capacity or the binding capacity of the metal ions. A study on the permeation behavior of simulated waste water containing oil emulsion and characterization of membrane fouling was carried out in the crossflow membrane filtration process using capillary type PP microfiltration membrane modified by radiation induced grafting of HEMA. The effects of various operating parameters were investigated. 2. Electrofiltration Technology. In this section, the process conditions for fouling prevention of membrane by evaluating the effects of operational parameters such as external electric field strength, crossflow velocity, transmembrane pressure, etc. on the permeate flux in electrofiltration were established and the process applicability for oil emulsion wastes containing surfactant using parallel plate type electrofiltration module was evaluated

  9. [Effects and mechanism on removing organics and reduction of membrane fouling using granular macro-porous anion exchange resin in drinking water treatment].

    Science.gov (United States)

    He, Huan; Dong, Bing-Zhi; Xu, Guang-Hong; Yan, Zhao-Hui

    2014-05-01

    A granular macro-porous anion exchange resin combined with coagulation was used as pretreatment of microfiltration membrane, and their effects and mechanism on removing organics and reduction of membrane fouling were evaluated. The results showed that resin could be effective in removing organics with medium and small molecular weight ( Mr) but ineffective in removing organics with large Mr, while couagulation could significantly remove organics with large Mr, with a limited removal for organics with medium and small Mr. Using resin alone as pretreatment could be effective in removal of organics but limited in reduction of membrane fouling. With combination of coagulation and resin as pretreatment of microfiltration, not only organics could be removed effectively, but also membrane fouling could be reduced.

  10. Bubble-free ozone addition through ceramic membranes for wet-oxidative waste water treatment; Blasenfreier Ozoneintrag durch keramische Membranen zur nassoxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Janknecht, P.; Wilderer, P.A. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl und Pruefamt fuer Wasserguete- und Abfallwirtschaft

    1999-07-01

    A prerequisite for successful wet oxidation is very accurately tuned and carefully monitored process control. In the alternative, a decline in water quality is actually possible. In particular, earlier studies in the ozonification of landfill leachate encountered problems in reducing levels of AOX in the presence of halogenated hydrocarbons. Serious problems in process control may arise when ozone is conventionally added and forms bubbles in the presence of surface-active substances; this foam accumulates and is so persistent as to evade mechanical control. Since the formation of foam is directly due to gas bubbles carried in, bubble-free addition of ozone through a membrane may be a viable approach. (orig.) [German] Voraussetzung fuer den Erfolg einer Nassoxidation ist eine sehr genau eingestellte und sorgfaeltig ueberwachte Prozessfuehrung, da anderenfalls auch eine Verschlechterung der Wasserqualitaet eintreten kann; insbesondere haben sich hier bei frueheren Untersuchungen zur Ozonung von Deponiesickerwaessern Schwierigkeiten bei der Reduzierung des AOX-Wertes in Anwesenheit von halogenierten Kohlenwasserstoffen ergeben. Gravierende Schwierigkeiten in der Prozessfuehrung kann Schaum bereiten, der sich bei konventionellem Blaseneintrag des Ozons in Anwesenheit von oberflaechenaktiven Substanzen bildet, sich in der Anlage ansammelt und dabei so bestaendig ist, dass er auf mechanische Weise nicht zu kontrollieren ist. Da die Schaumbildung direkt auf die eingetragenen Gasblasen zurueckzufuehren ist, stellt der blasenfreie Eintrag von Ozon durch eine Membran einen moeglichen Loesungsansatz dar. (orig.)

  11. Stabilization of açaí (Euterpe oleracea Mart.) juice by the microfiltration process

    OpenAIRE

    Flávio Caldeira Silva; Daise Aparecida Rossi; Vicelma Luiz Cardoso; Miria Hespanhol Miranda Reis

    2016-01-01

    Açaí berry, a Brazilian palm fruit widely distributed in northern South America, is acknowledged for its functional properties such as high antioxidant capacity and anti-inflammatory activities. Although the açaí juice is highly appreciated in Brazil and even worldwide, its commercialization is still limited. Microfiltration process is largely applied in juice processing, eliminating many of the traditional processing steps and reducing time, energy and addition of clarifying agents. Furtherm...

  12. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  13. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  14. Synthesis and characterization of ceramic-supported and metal-supported membrane layers for the separation of CO{sub 2} in fossil-fuel power plants; Herstellung und Charakterisierung von keramik- und metallgestuetzten Membranschichten fuer die CO{sub 2}-Abtrennung in fossilen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Hauler, Felix

    2010-07-01

    The separation of CO{sub 2} in fossil fuel power plants has become a very important issue due to the contribution of this greenhouse gas to global warming. Thin microporous membranes are promising candidates for separating CO{sub 2} from gas flow before being exhausted into the atmosphere. The membrane demands are good permeation and separation properties and high stability under operation conditions. Novel sol-gel derived materials composed of TiO{sub 2}/ZrO{sub 2} and stabilized SiO{sub 2} seem to be promising due to their good chemical stability and microporous character, especially for the separation of H{sub 2} and CO{sub 2}. Metallic substrates should be preferred as membrane support because they exhibit practical advantages combining good mechanical stability and the benefit of facilitated joining. The present thesis deals with the development of sol-gel derived microporous membrane layers on ceramic and metallic supports for the separation of CO{sub 2}. In this context, the optimized preparation of high-quality membranes with TiO{sub 2}/ZrO{sub 2} and Ni, Co, Zr, Ti doped SiO{sub 2} top layers is presented. These multilayered membranes consist of a graded pore structure to provide a smooth transition of the pore size from the support to the functional layer. Due to the good surface properties, the ceramic substrates only need one interlayer, whereas the rough metallic substrates exhibiting larger pores require a total of three interlayers to obtain an enhanced surface quality. On both types of supports, crack-free functional layers with a thickness below 100 nm were deposited by dip-coating. The unsupported and supported sol-gel materials used for the top layers were investigated in terms of structural properties by thermal analysis, sorption measurements, X-ray diffraction and electron microscopy. Gas permeation tests with He, H{sub 2}, CO{sub 2} und N{sub 2} were carried out to determine the membrane performance with regard to permeation rates and

  15. Dental ceramics: An update

    OpenAIRE

    Shenoy Arvind; Shenoy Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examp...

  16. Purification of contaminated groundwater by membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Soo; Chung, Chin Ki; Kim, Byoung Gon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The objective of this study is to apply the membrane separation technology to the purification of contaminated ground water in Korea. Under this scope, the purification was aimed to the drinking water level. The scale of the membrane system was chosen to a small filtration plant for local clean water supplies and/or heavy purifiers for buildings and public uses. The actual conditions of ground water contamination in Korea was surveyed to determine the major components to remove under the drinking water requirements. To set up a hybrid process with membrane methods, conventional purification methods were also investigated for the comparison purpose. The research results are summarized as follows : 1) Contamination of the groundwater in Korea has been found to be widespread across the country. The major contaminant were nitrate, bacteria, and organic chlorides. Some solvents and heavy metals are also supposed to exist in the ground water of industrial complexes, cities, and abandoned mines. 2) The purification methods currently used in public filtration plants appear not to be enough for new contaminants from recent industrial expanding. The advanced purification technologies generally adopted for this problem have been found to be unsuitable due to their very complicated design and operation, and lack of confidence in the purification performance. 3) The reverse osmosis tested with FilmTec FT30 membrane was found to remove nitrate ions in water with over 90 % efficiency. 4) The suitable membrane process for the contaminated groundwater in Korea has been found to be the treatments composed of activated carbon, microfiltration, reverse osmosis or ultrafiltration, and disinfection. The activated carbon treatment could be omitted for the water of low organic contaminants. The microfiltration and the reverse osmosis treatments stand for the conventional methods of filtration plants and the advanced methods for hardly removable components, respectively. It is recommended

  17. Studies on pretreatment of sea water using multichannel ceramic elements

    International Nuclear Information System (INIS)

    Full text: Sea water reverse osmosis (SWRO) has been accepted as a promising technology for future solution of water needs on global scale. RO feed water requires a SDI of 2 using a single element modules consisting of single channel (39% porosity) and two types of 19-channel (23.5% and 30% porosity) ceramic elements. Three different types of feed viz. DI water (0.3 NTU), saline (25,900 TDS) and turbid river water (94.8 NTU) and iron contaminated ground water (115 NTU) were used to study the permeability in cross flow microfiltration mode. Bench scale experiments using single element modules showed that a turbidity removal of 68 to 99.9% can be achieved using feed of turbidity 95- 115 NTU with a flux of 300 to 625 LMH. A permeate turbidity of around 1 NTU can be obtained using two types of ceramic elements, The cake resistance was calculated for different types of ceramic elements and the effect of porosity as well as feed water turbidity was studied. Experiments were also carried out at RO pilot plant of Desalination Div., BARC using a pilot module (1.7 m2 area) containing 7 nos. 19-channel ceramic tubes of 1 metre length with two types of feed water viz. service water (7.5 NTU) and partially treated sea water (27 NTU). A short run of the pilot module showed of around 325 LPH at 1.25 kg/cm2TMp with a higher permeate turbidity (around 5 NTU) using pretreated sea water

  18. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

    KAUST Repository

    Calo, Victor M.

    2015-07-17

    The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

  19. Application of membrane separation in fruit and vegetable juice processing: a review.

    Science.gov (United States)

    Ilame, Susmit A; Satyavir, V Singh

    2015-01-01

    Fruit and vegetable juices are used due to convenience. The juices are rich in various minerals, vitamins, and other nutrients. To process the juices and their clarification and/or concentration is required. The membranes are being used for these purposes. These processes are preferred over others because of high efficiency and low temperature. Membranes and their characteristics have been discussed in brief for knowing suitability of membranes for fruit and vegetable juices. Membrane separation is low temperature process in which the organoleptic quality of the juice is almost retained. In this review, different membrane separation methods including Microfiltration, Ultrafiltration, and Reverse osmosis for fruit juices reported in the literature are discussed. The major fruit and vegetable juices using membrane processes are including the Reverse osmosis studies for concentration of Orange juice, Carrot juice, and Grape juice are discusses. The Microfiltration and Ultrafiltration are used for clarification of juices of mosambi juice, apple juice, pineapple juice, and kiwifruit juice. The various optimized parameters in membranes studies are pH, TAA, TSS, and AIS. In this review, in addition to above the OD is also discussed, where the membranes are used. PMID:24915352

  20. Comparison Studies of Applied Pressure and Concentration Gradient Driving Forces in Ceramic Nano-Filtration Membrane for the Production of Intravenous Salt Solution

    Science.gov (United States)

    Sarbatly, Rosalam; Krishnaiah, Duduku; England, Richard; Abang, Sariah; Jeffery, Jeanette

    In this study, the boundary-resistance layer model and solution-diffusion model were used to investigate the applied driving pressure force technique and the concentration driving force technique, respectively, for the production of intravenous drip solution. A 5 kD monolithic membrane coated with Al2O3 and TiO and NaCl aqueous solution as the feed solution was used. The results show that the boundary-resistance layer model diffusivity coefficient, D = 1.8x10-9 m2 sec-1 and the mass transfer coefficient, k = 1.19-10-4 m sec-1 which were both slightly higher than the solution-diffusion model. Applying Fick`s law for the solution diffusion model, the calculated operating pressure inside the lumen was 15 kPa. Clearly, the findings suggested that the boundary-resistance layer model should be chosen for the production of pure and sterile intravenous salt solution as it provided higher diffusivity and mass transfer coefficient than the solution-diffusion model.

  1. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice

    KAUST Repository

    Laorko, Aporn

    2010-10-01

    The effects of membrane property on the permeate flux, membrane fouling and quality of clarified pineapple juice were studied. Both microfiltration (membrane pore size of 0.1 and 0.2 μm) and ultrafiltration (membrane molecular weight cut-off (MWCO) of 30 and 100 kDa) membranes were employed. Membrane filtration did not have significant effects on the pH, reducing sugar and acidity of clarified juice whereas the suspended solids and microorganism were completely removed. The 0.2 μm membrane gave the highest permeate flux, total vitamin C content, total phenolic content and antioxidant capacity as well as the highest value of irreversible fouling. Based on these results, the membrane with pore size of 0.2 μm was considered to be the most suitable membrane for the clarification of pineapple juice. The optimum operating conditions for the clarification pineapple juice by membrane filtration was a cross-flow velocity of 3.4 ms-1 and transmembrane pressure (TMP) of 0.7 bar. An average flux of about 37 lm-2 h-1 was obtained during the microfiltration of pineapple juice under the optimum conditions using batch concentration mode. © 2010 Elsevier Ltd. All rights reserved.

  2. The Role of Mass Transfer in Membrane Systems

    Directory of Open Access Journals (Sweden)

    Levent Gürel

    2015-12-01

    Full Text Available Membranes are situated in the foreground among the considerably popular treatment systems in the last years. The use of membranes was become widespread in many fields such as drinking water treatment, wastewater treatment and obtaining drinking water from sea water. The predominance of membranes against the classical systems regarding the wastewater treatment, and the decreasing cost of membrane materials each day provided these systems to enter among the preferable options. There are considerably different types of membranes. Microfiltration (MF, ultrafiltration (UF, nanofiltration (NF and reverse osmosis (RO are the processes drawing most attention. One of the most important considerations in membrane processes is the amount of constituents passing from the membrane and rejecting by the membrane. Mass transfer concept arises in this place. Mass transfer is a critically important case used in the design of treatment systems and the estimation of efficiency. In addition to the points mentioned above, investigation of mass transfer occurring in membranes is important in comparing of different membrane types. In this review article, general information about the membranes, membrane types, uses of membranes and module designs are given, concept of mass transfer is viewed and the mass transfer processes realizing in these treatment systems are assessed.

  3. Rapid method for the differentiation of gram-positive and gram-negative bacteria on membrane filters.

    OpenAIRE

    Romero, S.; Schell, R F; Pennell, D R

    1988-01-01

    Microfiltration has become a popular procedure for the concentration and enumeration of bacteria. We developed a rapid and sensitive method for the differentiation of gram-positive and gram-negative bacteria, utilizing a polycarbonate membrane filter, crystal violet, iodine, 95% ethanol, and 6% carbol fuchsin, that can be completed in 60 to 90 s. Gram reactions of 49 species belonging to 30 genera of bacteria were correctly determined by the filter-Gram stain. The sensitivities of the filter-...

  4. In-line Kevlar filters for microfiltration of transuranic-containing liquid streams.

    Science.gov (United States)

    Gonzales, G J; Beddingfield, D H; Lieberman, J L; Curtis, J M; Ficklin, A C

    1992-06-01

    The Department of Energy Rocky Flats Plant has numerous ongoing efforts to minimize the generation of residue and waste and to improve safety and health. Spent polypropylene liquid filters held for plutonium recovery, known as "residue," or as transuranic mixed waste contribute to storage capacity problems and create radiation safety and health considerations. An in-line process-liquid filter made of Kevlar polymer fiber has been evaluated for its potential to: (1) minimize filter residue, (2) recover economically viable quantities of plutonium, (3) minimize liquid storage tank and process-stream radioactivity, and (4) reduce potential personnel radiation exposure associated with these sources. Kevlar filters were rated to less than or equal to 1 mu nominal filtration and are capable of reducing undissolved plutonium particles to more than 10 times below the economic discard limit, however produced high back-pressures and are not yet acid resistant. Kevlar filters performed independent of loaded particles serving as a sieve. Polypropylene filters removed molybdenum particles at efficiencies equal to Kevlar filters only after loading molybdenum during recirculation events. Kevlars' high-efficiency microfiltration of process-liquid streams for the removal of actinides has the potential to reduce personnel radiation exposure by a factor of 6 or greater, while simultaneously achieving a reduction in the generation of filter residue and waste by a factor of 7. Insoluble plutonium may be recoverable from Kevlar filters by incineration.

  5. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  6. Fatigue of dental ceramics

    OpenAIRE

    Zhang, Yu; Sailer, Irena; lawn, brian

    2013-01-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics

  7. Ceramic art in sculpture

    OpenAIRE

    Rokavec, Eva

    2014-01-01

    Diploma seminar speaks of ceramics as a field of artistic expression and not just as pottery craft. I presented short overview of developing ceramic sculpture and its changing role. Clay inspires design and touch more than other sculpture media. It starts as early as in prehistory. Although it sometimes seems that was sculptural ceramics neglected in art history overview, it was not so in actual praxis. There is a rich tradition of ceramics in the East and also in Europe during the renaissanc...

  8. Ceramic Laser Materials

    OpenAIRE

    Guillermo Villalobos; Jasbinder Sanghera; Ishwar Aggarwal; Bryan Sadowski; Jesse Frantz; Colin Baker; Brandon Shaw; Woohong Kim

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers,...

  9. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8m were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments

  10. Concentration by membrane separation processes of a medicinal product obtained from pineapple pulp

    OpenAIRE

    Francisco Luiz Gumes Lopes; João Baptista Severo Júnior; Roberto Rodrigues de Souza; Daniela Diniz Ehrhardt; José Carlos Curvelo Santana; Elias Basile Tambourgi

    2009-01-01

    The concentration of pineapple juice is needed to retain the bromelain activity and to standardize the composition and proteolytic activity. Thus, this work aimed to obtain a pure bromelain extract from the Ananas comosus L. Merril juice by membrane separation process. A 2² experimental planning was used to study the influence of pH and transmembrane pressure on the activity recovery by micro-filtration using a plain membrane. In second step, this enzyme was purified by the ultra-filtration u...

  11. Dependence of Shear and Concentration on Fouling in a Membrane Bioreactor with Rotating Membrane Discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Pedersen, Malene Thostrup; Christensen, Morten Lykkegaard;

    2014-01-01

    Rotating ceramic membrane discs were fouled with lab-scale membrane bioreactors (MBR) sludge. Sludge filtrations were performed at varying rotation speeds and in different concentric rings of the membranes on different sludge concentrations. Data showed that the back transport expressed by limiting...

  12. Occurrence of non-fermenting gram negative bacteria in drinking water dispensed from point-of-use microfiltration devices

    OpenAIRE

    Franza Zanetti; Giovanna De Luca; Erica Leoni; Rossella Sacchetti

    2014-01-01

    Introduction and objective. Many devices have been marketed in order to improve the organoleptic characteristics of tap water resulting from disinfection with chlorine derivates. The aim of the presented study was to assess the degree of contamination by non-fermenting Gram-negative bacteria (NF-GNB) of drinking water dispensed from microfiltration devices at point-of-use. Methods. Water samples were collected from 94 point-of-use water devices fitted with a filter (0.5μm pore size) contai...

  13. Characterization and preparation of porous membranes with a natural Mexican zeolite

    International Nuclear Information System (INIS)

    The potential of a natural Mexican zeolite from the northern state of Sonora as microfiltration membranes was evaluated. The zeolite was characterized by x-ray diffraction, scanning electron microscopy (SEM), N2 physisorption and thermal analysis. Clinoptilolite and heulandite were the main components of the zeolite. The crystallinity of this material was confirmed. Two steps made up the manufacturing process of porous membranes: pressing and sintering. It was necessary to use lubricants and agglomerants with different particle size of the zeolite. The best properties of the porous membranes were obtained using zinc stearate (4 wt%) as lubricant, boehmite (15 wt%) as agglomerant and the best particle size ranged from 63 to 300 μm. Moreover it was observed that the zeolite granule distribution improved the press of the materials by approximately 10% in the distribution proposed. The thermal treatment of the porous membranes was carried out at several temperatures (500-1000 deg. C). The porous membranes obtained were characterized by x-ray diffraction, scanning electron microscopy and N2 physisorption to study the global porosity, phase transformations and pore size distribution. A loss of crystallinity, decreased porosity and a lower specific surface area were found when the sintering temperature was increased. The results of pore distribution suggest that these materials are porous membranes for microfiltration

  14. Characteristics of membrane pollution in process of TiO2 dynamic membrane coupled with photocatalysis for removal of humic acid in wastewater%光催化协同TiO2动态膜去除水中腐植酸及膜污染特性

    Institute of Scientific and Technical Information of China (English)

    杨涛; 李国朝; 乔波

    2015-01-01

    In order to solve the problem of peeling of the coated layer using physical disturbance models to control the dynamic membrane pollution,this paper presented photocatalysis coupled with dynamic membrane for mitigation of membrane fouling,and compared membrane permeate fluxes, pollutants removal and membrane fouling resistance distributions in ceramic microfiltration membrane,dynamic membrane and dynamic membrane/photocatalysis hybrid system in treatment of wastewater containing humic acid or humic acid/TiO2. The results showed that the photocatalysis dynamic membrane effectively improved the steady permeate flux and removal rates of pollutants,and reduced the irreversible and reversible membrane fouling resistances. The reversible membrane fouling resistances and the main reason leading to the reduction of membrane permeate fluxes were obviously greater than the other parts of membrane resistances. With longer pretreatment by photocatalysis,the membrane permeate fluxes and removal rates of TOC and UV254 were improved more significantly, thus the membrane fouling was more efficiently controlled. After 2 and 8 hours of photocatalysis pretreatment following by dynamic membrane filtration,the TOC removal rates were greater than 80% and 90%,respectively,and the UV254 removal rates reached more than 95%.%针对物理扰动模式控制动态膜污染使涂膜层脱落方面的局限性,提出光催化氧化技术协同动态膜降低膜污染,对比了陶瓷微滤膜、动态膜、光催化协同动态膜处理含腐植酸废水及含腐植酸/TiO2混合废水过程中的膜通量、污染物去除率及膜污染阻力分布的变化趋势.结果表明:光催化协同作用可有效提高动态膜过滤腐植酸溶液过程中的膜通量、总有机碳(TOC)及UV254的去除率,并同时降低可逆污染阻力及不可逆污染阻力,其中可逆污染阻力明显大于其他部分阻力,可逆污染是造成膜通量衰减的主要原因.光催化预处理时间

  15. Celite immobilized cells-ceramic membrane aeration-stirred tank reactor for biodesulfurization process%硅藻土固定细胞-陶瓷膜微泡曝气-搅拌釜式反应器生物脱硫的研究

    Institute of Scientific and Technical Information of China (English)

    朱飞燕; 魏雪团; 胡中波; 罗明芳; 刘会洲

    2013-01-01

      Pseudomonas delafieldii R-8 is a high effiency desulfurized bacteria, and it is a aerobic bacteria. Ceramic membrane-aeration system could produce bubbles of 100μm, and the oxygen utilization percentage could reach 100%in theory. The membrane could have a function of filter the bacteria, so it can save energy consumption of sterilization. The stirred tank reactor could offer a sufficient mixing and a large area between the liquid phase and the gas phase, and the mass transfer is satisfied. A new 700 mL stirred tank reactor was firstly introduced for the biodesulfurization process combined with the celite immobilized cells and the ceramic membrane aeration. The optimized conditions were that the agitation speed was 400 rpm and the oxygen pressure was 0.04 MPa at 30℃. The initial rate and desulfurization ratio in 24 h in the ceramic membrane-aerated system were 0.12 mmol/h and 91%, and that of traditional bubble-aerated system were 0.07 mmol/h and 23%. The initial rate and desulfurization ratio in 24 h in the ceramic membrane-aerated system were higher than that in traditional bubble-aerated system obviously, thus the ceramic membrane-aerated system showed obvious advantages over the traditional bubble-aerated system.%  Pseudomonas delafieldii R-8是一株高效的脱硫菌,是好氧菌。陶瓷膜微泡曝气能产生100μm左右的气泡,理论的利用率能达到100%,并且膜管在曝气的过程中有滤菌作用,可以节约能耗。搅拌釜式反应器在气液之间的混合效果好、相接触面积大以及传质效果好。本文首次使用陶瓷膜微泡曝气技术,研究了硅藻土固定化的R-8细胞在搅拌釜式反应器中的脱硫反应,得到最优的脱硫条件为:温度为30℃,搅拌转速为400 rpm以及通气量为0.04 MPa。等量的细菌量进行生物脱硫,陶瓷膜微泡曝气的初始脱硫速率以及24 h的总脱硫率分别为0.12 mmol/h和91%,而传统的鼓泡曝气

  16. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  17. Antioxidant activities of herbs, fruit and medicinal mushroom Ganoderma lucidum extracts produced by microfiltration process

    Directory of Open Access Journals (Sweden)

    Vukosavljević Predrag

    2009-01-01

    Full Text Available This paper presents kinds of extraction and cross-flow filtration of composition of 46 healthful and aromatic herbs, 8 fruits and fungi Ganoderma lucidum. Those extracts are part of Bitter 55, which have significant antioxidant capacity. Antioxidative activities of plant extracts have been determined by DPPH test using method of Blois. Bitter 55 which was kept at the green bottle in the dark has EC50 = 141.07 μl/ml and it was stable during 150 days. Synthetic anti-oxidants BHT (ditertbutilhydroxytoluen, EC50 = 6.2 μgml-1, trolox (vitamin E analog soluble in water, EC50 = 6.8 μgml-1 were used for comparison. EC50 values were calculated as concentration of the extract necessary to decrease DPPH radical concentration for 50 %. Bitter 55 contents 35% vol of alcohol (wheat origin, 88.22 g/l total extract and slice of medicinal mushroom Ganoderma lucidum (1 % w/v which was extracted 30 days before analyses. The main problem in practical applications of MF is the reduction of permeate flux with time, caused by the accumulation of feed components in the pores. During microfiltration bitter herbal liquor, the function of filtrate flux is decreased with VCR. Dependence of decreasing flux with VCR can be separated in three periods. For the first, starting period, rapid decrease of filtrate flux is characteristic. Second period is defined with much smaller decrease of the flux than in the first phase. Third period has as characteristic minor decrease of flux and can be defined as steady state. Steady state emerges after τs = 80 min.

  18. ECUT: Energy Conversion and Utilization Technologies program biocatalysis research activity. Potential membrane applications to biocatalyzed processes: Assessment of concentration polarization and membrane fouling

    Science.gov (United States)

    Ingham, J. D.

    1983-01-01

    Separation and purification of the products of biocatalyzed fermentation processes, such as ethanol or butanol, consumes most of the process energy required. Since membrane systems require substantially less energy for separation than most alternatives (e.g., distillation) they have been suggested for separation or concentration of fermentation products. This report is a review of the effects of concentration polarization and membrane fouling for the principal membrane processes: microfiltration, ultrafiltration, reverse osmosis, and electrodialysis including a discussion of potential problems relevant to separation of fermentation products. It was concluded that advanced membrane systems may result in significantly decreased energy consumption. However, because of the need to separate large amounts of water from much smaller amounts of product that may be more volatile than wate, it is not clear that membrane separations will necessarily be more efficient than alternative processes.

  19. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Directory of Open Access Journals (Sweden)

    D. Belavic

    2012-04-01

    Full Text Available The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s, mixer(s, reformer and combustor. Low-temperature co-fired ceramic (LTCC technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g.

  20. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  1. Performance of anaerobic membrane bioreactor during digestion and thickening of aerobic membrane bioreactor excess sludge.

    Science.gov (United States)

    Hafuka, Akira; Mimura, Kazuhisa; Ding, Qing; Yamamura, Hiroshi; Satoh, Hisashi; Watanabe, Yoshimasa

    2016-10-01

    In this study, we evaluated the performance of an anaerobic membrane bioreactor in terms of digestion and thickening of excess sludge from an aerobic membrane bioreactor. A digestion reactor equipped with an external polytetrafluoroethylene tubular microfiltration membrane module was operated in semi-batch mode. Solids were concentrated by repeated membrane filtration and sludge feeding, and their concentration reached 25,400mg/L after 92d. A high chemical oxygen demand (COD) removal efficiency, i.e., 98%, was achieved during operation. A hydraulic retention time of 34d and a pulse organic loading rate of 2200mg-COD/(L-reactor) gave a biogas production rate and biogas yield of 1.33L/(reactor d) and 0.08L/g-CODinput, respectively. The external membrane unit worked well without membrane cleaning for 90d. The transmembrane pressure reached 25kPa and the filtration flux decreased by 80% because of membrane fouling after operation for 90d. PMID:27394993

  2. Effect of Preozonation on Microfiltration for Huangpu River%预臭氧化对MF膜处理黄浦江水的影响研究

    Institute of Scientific and Technical Information of China (English)

    宋亚丽; 董秉直; 高乃云; 马晓雁

    2009-01-01

    This study investigated the effect of preozonation on organic matter and microfiltration membrane filtration,Huangpu River surface water ozonated was filtrated by MF membrane. The results show that highest rejection efficiency of DOC and UV254 by ozone are 10% and 71% respectively during 0.5_3.0 mg/L ozone dosage. With increasing of ozone concentration,organic substances of 2×103_7×103 reduce gradually,while organic matter of which less than 0.5×103 change slightly. Ozone oxidizes more hydrophobic fraction to hydrophilic one and only few to inorganic matter. Changes of organic matter composition affect membrane filtration resistance,thereby improve membrane flux. There is the optimal dosage with ozone of 1.5 mg/L made membrane flux maximum in the range of 0.5_3.0 mg/L ozone dosage. The reason is change of organic matter composition which made membrane filtration resistance minimum in the ozone dosage of 1.5 mg/L.%采用预臭氧化处理黄浦江原水后进行微滤(MF)膜过滤试验,考察预臭氧化对有机物的作用,进而考察其对MF膜过滤特性的影响.结果表明,臭氧投量在0.5~3.0 mg/L范围内时,臭氧对DOC的去除率最高仅为10%,而对UV254的去除率最高可达71%.随着臭氧投量的增加,相对分子质量在2×103~7×103的有机物逐渐减少,而相对分子质量<0.5×103的有机物则几乎没有改变.臭氧可把部分疏水性有机物氧化成亲水性有机物,只有很少部分转变成无机物,这种有机物组成结构的改变影响了膜过滤阻力,进而改善了膜透水通量的效果.臭氧投量在0.5~3.0 mg/L范围内,存在一个最佳的臭氧投量1.5 mg/L,使膜通量达到最大值.这主要是由于在该臭氧投量下,臭氧化对有机物的组成结构的改变使膜过滤阻力达到最小.

  3. ISOFLUX(R)膜——微滤膜极品%ISOFLUX(R) Membrane-The microfiltration mastering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    介绍一种新型的恒通量的微滤膜--ISOFLUX(R)膜,该种膜的膜通量衰减比通常的微滤膜要小得多,对ISOFLUX膜的原理和数学模型进行了推导,并给出了对牛奶进行冷杀菌过滤的结果.

  4. A new integrated membrane filtration and chromatographic device.

    Science.gov (United States)

    Xu, Yanke; Sirkar, Kamalesh K; Dai, Xiao-Ping; Luo, Robert G

    2005-01-01

    To improve protein separation, a novel integrated device combining membrane filtration and chromatography has been developed. The device basically consists of a hollow fiber filtration module whose shell side is filled with chromatographic resin beads. However, there is an essentially impermeable coated zone near the hollow fiber module outlet. The integrated device enjoys the advantages of both membrane filtration and chromatography; it also allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane; the rest of the hollow fiber membrane remained unaffected. Myoglobin (Mb) and alpha-lactalbumin (alpha-LA) were primarily used as model proteins in a binary mixture; binary mixtures of Mb and bovine serum albumin (BSA) were also investigated. Separation behaviors of binary protein mixtures were studied in devices having either an ultrafiltration (UF) or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after introducing the impermeable coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, four loading-washing-elution-reequilibration-based cyclic runs for separation of Mb and alpha-LA were performed in the device using a MF membrane with a coated zone without cleaning in between. The Mb and alpha-LA elution profiles for the four consecutive runs were almost superimposable. Due to lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem, unlike in conventional microfiltration. PMID:15801803

  5. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  6. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  7. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  8. Ceramic tamper-revealing seals

    Science.gov (United States)

    Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw

    1992-01-01

    A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.

  9. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  10. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  11. Oxygen ion-conducting dense ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Plainfield, IL); Kobylinski, Thaddeus P. (Prospect, PA); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  12. EVALUATION OF SUPPLEMENTAL PRE-TREATMENT DEVELOPMENT REQUIREMENTS TO MEET TRL 6 ROTARY MICROFILTRATION

    Energy Technology Data Exchange (ETDEWEB)

    HUBER HJ

    2011-10-03

    In spring 2011, the Technology Maturation Plan (TMP) for the Supplemental Treatment Project (RPP-PLAN-49827, Rev. 0), Technology Maturation Plan for the Treatment Project (T4S01) was developed. This plan contains all identified actions required to reach technical maturity for a field-deployable waste feed pretreatment system. The supplemental pretreatment system has a filtration and a Cs-removal component. Subsequent to issuance of the TMP, rotary microfiltration (RMF) has been identified as the prime filtration technology for this application. The prime Cs-removal technology is small column ion exchange (ScIX) using spherical resorcinol formaldehyde (sRF) as the exchange resin. During fiscal year 2011 (FY2011) some of the tasks identified in the TMP have been completed. As of September 2011, the conceptual design package has been submitted to DOE as part of the critical decision (CD-1) process. This document describes the remaining tasks identified in the TMP to reach technical maturity and evaluates the validity of the proposed tests to fill the gaps as previously identified in the TMP. The potential vulnerabilities are presented and the completed list of criteria for the DOE guide DOE G 413.3-4 different technology readiness levels are added in an attachment. This evaluation has been conducted from a technology development perspective - all programmatic and manufacturing aspects were excluded from this exercise. Compliance with the DOE G 413.3-4 programmatic and manufacturing requirements will be addressed directly by the Treatment Project during the course of engineering design. The results of this evaluation show that completion of the proposed development tasks in the TMP are sufficient to reach TRL 6 from a technological point of view. The tasks involve actual waste tests using the current baseline configuration (2nd generation disks, 40 psi differential pressure, 30 C feed temperature) and three different simulants - the PEP, an AP-Farm and an S

  13. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  14. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents

    International Nuclear Information System (INIS)

    The membrane separation technologies of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are suitable for treating many dilute streams and effluents generated in mining and mineral processing. Membrane technologies are capable of treating these dilute streams in order to produce clean permeate water for recycle and a concentrate that can potentially be used for valuable metals recovery. Membrane technologies can be utilized alone, or in combination with other techniques as a polishing step, in these separation processes. A review of potential applications of membranes for the treatment of different process streams and effluents for water recycling and pollution control is given here. Although membranes may not be optimum in all applications, these technologies are recognized in the mining sector for the many potential advantages they can provide. 59 refs

  15. Measuring Fracture Times Of Ceramics

    Science.gov (United States)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  16. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  17. Cleaning of process and excess water from organic waste fermentation with a combination of biological treatment stage and microfiltration; Reinigung von Prozess- und Ueberschusswaessern aus der Bioabfallvergaerung durch Kombination aus biologischer Stufe und Mikrofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Buer, T.; Schumacher, J. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Siedlungswasserwirtschaft

    1999-07-01

    Within the framework of an R and D project sponsored by the Deutsche Bundesstiftung Umwelt, cleaning of process and excess water from organic waste fermentation plants was studied at the Institute for Siedlungswasserwirtschaft of Aachen Technical University RWTH. The focus in studying these waste waters was on the adaptation and optimization of the ZenoGem {sup trademark} process - a biological cleaning technique with an integrated microfiltration membrane. The use of this technology had the following objectives: to safeguard compliance with the limiting values for direct or indirect discharge of excess water and to reduce the heavy metal freight of circulating process water reentering the fermentation process for mashing raw organic waste. Thus the pollutant content of the fermentation residue was to be cut down. (orig.) [German] Im Rahmen eines von der Deutschen Bundesstiftung Umwelt gefoerderten Forschungs- und Entwicklungsvorhabens wurde am Institut fuer Siedlungswasserwirtschaft der RWTH Aachen die Prozess- und Ueberschusswasserreinigung von Bioabfallvergaerungsanlagen untersucht. Dabei stellte die Adaption und Optimierung des ZenoGem {sup trademark} -Verfahrens - ein biologisches Reinigungsverfahren mit integrierter Mikrofiltrationsmembran - fuer diese Abwaesser den Untersuchungsschwerpunkt dar. Ziel war es, mit dieser Technologie zum einen die Grenzwerte fuer eine direkte oder indirekte Einleitung des Ueberschusswassers zu gewaehrleisten und zum anderen die zirkulierenden Prozesswaesser, die in den Vergaerungsprozess zum Anmaischen der Roh-Bioabfaelle zurueckgefuehrt werden, an Schwermetallen zu entfrachten. Hierdurch sollte eine Schadstoffreduktion im Gaerreststoff erzielt werden. (orig.)

  18. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  19. Occurrence of non-fermenting gram negative bacteria in drinking water dispensed from point-of-use microfiltration devices

    Directory of Open Access Journals (Sweden)

    Franza Zanetti

    2014-03-01

    Full Text Available Introduction and objective. Many devices have been marketed in order to improve the organoleptic characteristics of tap water resulting from disinfection with chlorine derivates. The aim of the presented study was to assess the degree of contamination by non-fermenting Gram-negative bacteria (NF-GNB of drinking water dispensed from microfiltration devices at point-of-use. Methods. Water samples were collected from 94 point-of-use water devices fitted with a filter (0.5μm pore size containing powdered activated carbon. The microbiological contamination of water entering and leaving the microfiltered water dispensers was compared. The NF-GNB loads were correlated to Total Heterotrophic Counts (HPCs at 37 and 22 °C, residua chlorine, and some structural and functional features of the devices. Results. NF-GNB were detected from 23% of supply water samples, 33% of still unchilled water, 33% of still chilled water and 18% of carbonated chilled water. The most frequent isolates were Pseudomonadaceae: Steno.maltophilia 30.2% of isolates, Pseudomonas 20.5%, Delftia acidovorans 13.4%, while the species more largely distributed was Ps. aeruginosa recovered from 13% of samples. The distribution of the various NF-GNB was different in the water entering and in that leaving the devices. Ps.aeruginosa and Steno.maltophilia were the predominant species in water leaving the microfiltration dispensers, probably due to their capacity to colonize the circuits and to prevail over the others. Recovery of NF-GNB was favoured by the reduction in residual chlorine of the supply water, occasional use, the absence of a bacteriostatic element in the filter and inadequate disinfection of the water lines. Conclusions. The presence of high concentrations of potentially pathogenic species of NF-GNB (Ps.aeruginosa, Steno. maltophilia, Burkhol.cepacia in the water dispensed from microfiltration devices represents a risk of waterborne infections for vulnerable individuals. When

  20. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  1. A facile TiO{sub 2}/PVDF composite membrane synthesis and their application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wei.zhang@unisa.edu.au; Zhang, Yiming; Fan, Rong; Lewis, Rosmala [University of South Australia, Centre for Water Management and Reuse (Australia)

    2016-01-15

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO{sub 2}/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO{sub 2} nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO{sub 2} composite membranes were studied systematically. The TiO{sub 2}/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties.

  2. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instr

  3. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  4. Proton conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  5. Biological nitrogen removal using a submerged membrane bioreactor system

    International Nuclear Information System (INIS)

    A pilot-scale study was conducted using ZenoGem hollow-fiber microfiltration membrane bioreactor system to investigate the performance of membrane bioreactor process to remove nitrogen from primary effluent at a municipal wastewater treatment plant. Different operating conditions were examined by varying hydraulic retention time (HRT) and sludge retention time (SRT) between 5-8 h and 20-50 days, respectively. In addition, a series of laboratory batch tests were performed to measure the biodegradation kinetic and stoichiometric parameters under the conditions consistent with the pilot testing. The results showed that the process achieved removal efficiencies of 80-98% for COD, 93%-99% for BOD5, and 70-93% for nitrogen. The efficiency and kinetics of COD and nitrogen removal would change greatly from one operating condition to another. However, the measured kinetic parameters still fell within the typical range of those reported in the literature using Activated Sludge Models (ASM)

  6. Utilization of microfiltration or lactoperoxidase system or both for manufacture of Cheddar cheese from raw milk.

    Science.gov (United States)

    Amornkul, Y; Henning, D R

    2007-11-01

    The objective of the present study was to determine if application of microfiltration (MF) or raw milk lactoperoxidase system (LP) could reduce the risk of foodborne illness from Escherichia coli in raw milk cheeses, without adversely affecting the overall sensory acceptability of the cheeses. Escherichia coli K12 was added to raw milk to study its survival as a non-pathogenic surrogate organism for pathogenic E. coli. Five replications of 6 treatments of Cheddar cheese were manufactured. The 6 treatments included cheeses made from pasteurized milk (PM), raw milk (RM), raw milk inoculated with E. coli K12 (RME), raw milk inoculated with E. coli K12 + LP activation (RMELP), raw milk inoculated with E. coli K12 + MF (MFE), and raw milk inoculated with E. coli K12 + MF + LP activation (MFELP). The population of E. coli K12 was enumerated in the cheese milks, in whey/curds during cheese manufacture, and in final Cheddar cheeses during ripening. Application of LP, MF, and a combination of MF and LP led to an average percentage reduction of E. coli K12 counts in cheese milk by 72, 88, and 96%, respectively. However, E. coli K12 populations significantly increased during the manufacture of Cheddar cheese for the reasons not related to contamination. The number of E. coli K12, however, decreased by 1.5 to 2 log cycles during 120 d of ripening, irrespective of the treatments. The results suggest that MF with or without LP significantly lowers E. coli count in raw milk. Hence, if reactivation of E. coli during cheese making could be prevented, MF with or without LP would be an effective technique for reducing the counts of E. coli in raw milk cheeses. The cheeses were also analyzed for proteolysis, starter and nonstarter lactic acid bacteria (NSLAB), and sensory characteristics during ripening. The concentration of pH 4.6 soluble nitrogen at 120 d was greater in PM cheese compared with the other treatments. The level of 12% trichloroacetic acid-soluble nitrogen at 120 d was

  7. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A.; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  8. Exposure of composite tannery effluent on snail, Pila globosa: A comparative assessment of toxic impacts of the untreated and membrane treated effluents.

    Science.gov (United States)

    Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-04-01

    Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the

  9. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  10. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview.

    Science.gov (United States)

    Castro-Muñoz, Roberto; Yáñez-Fernández, Jorge; Fíla, Vlastimil

    2016-12-15

    Typically, the various agro-food by-products of the food industry are treated by standard membrane processes, such as microfiltration, ultrafiltration and nanofiltration, in order to prepare them for final disposal. Recently, however, new membrane technologies have been developed. The recovery, separation and fractionation of high-added-value compounds, such as phenolic compounds from food processing waste, are major current research challenges. The goal of this paper is to provide a critical review of the main agro-food by-products treated by membrane technologies for the recovery of nutraceuticals. State-of-the-art of developments in the field are described. Particular attention is paid to experimental results reported for the recovery of polyphenols and their derivatives of different molecular weight. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other interesting phenomena that occur during their recovery. PMID:27451244

  11. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  12. New Conductive Copolymer Membranes via Track-Etched PC Templates for Biological Media Ultra-Filtration

    International Nuclear Information System (INIS)

    Polypyrrole (PPy) membranes proved to be an important device in the fields of ultrafiltration and synthetic membranes. Recently, in our laboratory, we have synthesized new pyrrole and pyrrole-3-carboxylic acid copolymer membranes via track-etched membranes. Commercial polycarbonate (PC) microfiltration membranes are used as template for the membrane synthesis. Moreover, parent membranes present the same structure with parallel and perpendicular micropores. To introduce new properties for pyrrole copolymer membranes, we have chosen to create track-etched polycarbonate films with particular pore orientations. These novel structures were obtained by irradiating at various angles (+30 degree, -30 degree and 0 degree) through both X and Y planes. Resulting new copolymer membranes can be an important device in the fields of complex biological media ultra-filtration. The presence of easily reactive functions can enable the membrane functionalization by immobilising different biological molecules of interest as sugar moieties, peptides, and enzymes for example. Moreover, introduction of pyrrole-3-carboxylic acid on the copolymer allows having access to amide bond which is very stable in biological media. In this way, these membranes were functionalized with different small biological compounds and grafting access was visualized. Moreover, physical properties of these novel grafting membranes were studied in order to show if electronic conductivity and mechanical properties were affected by functionalization

  13. Prospects and problems of dense oxygen permeable membranes

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Larsen, P.H.; Mogensen, Mogens Bjerg;

    2000-01-01

    The prospects of using mixed ionic/electronic conducting ceramics for syngas production in a catalytic membrane reactor are analysed. Problems relating to limited thermodynamic stability and poor dimensional stability of candidate materials are addressed, The consequences for these problems...

  14. The APS ceramic chambers

    Energy Technology Data Exchange (ETDEWEB)

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  15. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  16. Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater.

    Science.gov (United States)

    Ishizaki, So; Fukushima, Toshikazu; Ishii, Satoshi; Okabe, Satoshi

    2016-09-01

    Membrane fouling remains a major challenge for wider application of membrane bioreactors (MBRs) to wastewater treatment. Membrane fouling is mainly caused by microorganisms and their excreted microbial products. For development of more effective control strategies, it is important to identify and characterize the microorganisms that are responsible for membrane fouling. In this study, 41 bacterial strains were isolated from fouled microfiltration membranes in a pilot-scale MBR treating real municipal wastewater, and their membrane fouling potentials were directly measured using bench-scale cross-flow membrane filtration systems (CFMFSs) and related to their cellular properties. It was found that the fouling potential was highly strain dependent, suggesting that bacterial identification at the strain level is essential to identify key fouling-causing bacteria (FCB). The FCB showed some common cellular properties. The most prominent feature of FCB was that they formed convex colonies having swollen podgy shape and smooth lustrous surfaces with high water, hydrophilic organic matter and carbohydrate content. However, general and rigid biofilm formation potential as determined by microtiter plates and cell surface properties (i.e., hydrophobicity and surface charge) did not correlate with the fouling potential in this study. These results suggest that the fouling potential should be directly evaluated under filtration conditions, and the colony water content could be a useful indicator to identify the FCB. PMID:27232989

  17. Ceramic Ultra- and Nanofiltration for Municipal Wastewater Reuse

    NARCIS (Netherlands)

    Shang, R.

    2014-01-01

    During the last decade, water reuse has been widely recognized in many regions of the world. Fouling of ceramic membranes, especially hydraulically irreversible fouling, is a critical aspect affecting the operational cost and energy consumption in water treatment plants. In addition, the reverse osm

  18. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    Science.gov (United States)

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  19. Inhibition of water activated by far infrared functional ceramics on proliferation of hepatoma cells.

    Science.gov (United States)

    Zhang, Dongmei; Liang, Jinsheng; Ding, Yan; Meng, Junping; Zhang, Guangchuan

    2014-05-01

    Rare earth (RE)/tourmaline composite materials prepared by the precipitation method are added to the ceramic raw materials at a certain percentage and sintered into RE functional ceramics with high far infrared emission features. Then the far infrared functional ceramics are used to interact with water. The influence of the ceramics on the physical parameters of water is investigated, and the effect of the activated water on the growth of Bel-7402 hepatoma cells cultured in vitro is further studied. The results indicate that, compared with the raw water, the water activated by the ceramics can inhibit the proliferation of hepatoma cells, with statistical probability P ceramics has a higher concentration of H+, which decreases the potential difference across the cell membrane to release the apoptosis inducing factor (AIF). After entering the cells, the activated water stimulates the mitochondria to produce immune substances that lead tumor cells to apoptosis.

  20. Ceramic Solar Receiver

    Science.gov (United States)

    Robertson, C., Jr.

    1984-01-01

    Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.

  1. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  2. Advanced Ceramics Property Measurements

    Science.gov (United States)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  3. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  4. Structural stability and oxygen permeability of BaCo{sub 1−x}Nb{sub x}O{sub 3−δ} ceramic membranes for air separation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chengzhang, E-mail: wucz@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Gai, Yongqian; Zhou, Jianfang; Tang, Xia; Zhang, Yunwen; Ding, Weizhong [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Sun, Chenghua [School of Chemistry, Monash University, Clayton, VIC 3800 (Australia)

    2015-07-25

    Highlights: • BCNx membranes with high oxygen permeation flux were prepared. • Oxygen permeability of BCNx membranes is stable at 900 °C. • Phase transition is governed by oxygen partial pressure and temperature. • Degradation mechanism of BCNx membrane is suggested. - Abstract: BaCo{sub 1−x}Nb{sub x}O{sub 3−δ} (BCNx, x = 0.1–0.2) membranes were synthesized through conventional solid-phase reactions. The introduction of niobium facilitates the formation of the cubic perovskite structure and decreases oxygen nonstoichiometry. BCNx membranes possess higher oxygen permeation flux compared with BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3−δ} membrane at the same condition. A stable permeation flux as high as 2.61 ml cm{sup −2} min{sup −1} is obtained through BaCo{sub 0.9}Nb{sub 0.1}O{sub 3−δ} membrane at 900 °C under the Air/He gradient. Long-time permeation study shows that the oxygen fluxes of BCNx membranes are stable at 900 °C but degrade slowly with time at 850 °C. XRD and TG–DSC results indicate that the degradation behavior occured at 850 °C is due to the phase transition from the cubic perovskite to monoclinic or orthorhombic structure, which is governed by the oxygen partial pressure and temperature. The oxidation of cobalt ion is considered to be the nature for the phase transition, which makes the tolerance factor increasing and results in structural destabilization.

  5. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  6. A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: Preparation and application to the steam reforming of methane

    OpenAIRE

    Tsuru, Toshinori; Shintani, Hiroaki; Yoshioka, Tomohisa; Asaeda, Masashi

    2006-01-01

    The steam reforming of methane for hydrogen production was experimentally investigated using catalytic membrane reactors, consisting of a microporous silica top layer, for the selective permeation of hydrogen, and an α-alumina support layer, for catalytic reaction of the steam reforming of methane. An α-alumina support layer with a bimodal structure, which was proposed for the enhanced dispersion of Ni catalysts, was prepared by impregnating γ-Al2O3 inside α-Al2O3 microfiltration membranes (1...

  7. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Douglas M. Davenport

    2016-01-01

    Full Text Available Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading of adsorptive and catalytic materials. By applying surface modification techniques, synthetic membranes with different functionality (carboxyl, amine, and nanoparticle-based were obtained. These functionalities provide an opportunity to fine-tune the membrane surface properties such as charge and reactivity. The incorporation of stimuli-responsive acrylic polymers (polyacrylic acid or sodium polyacrylate in membrane pores also results in tunable pore size and ion-exchange capacity. This provides the added benefits of adjustable membrane permeability and metal capture efficiency. The equilibrium and dynamic binding capacity of these functionalized spongy membranes were studied via calcium ion-exchange. Iron/palladium catalytic nanoparticles were immobilized in the polymer matrix in order to perform the challenging degradation of the environmental pollutant trichloroethylene (TCE.

  8. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    Science.gov (United States)

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  9. Development and characterization of microfiltration hollow-fiber modules for sterilization of fermentation media

    Directory of Open Access Journals (Sweden)

    Faria L.F.F.

    2002-01-01

    Full Text Available Sterilization of fermentation medium involving heat may result in undesirable chemical reactions that alter nutrient concentration and yield products, which interfere in the fermentation performance. Sterilization of heat-sensitive compounds usually involves separate sterilizations of carbon source and nutrient solution. Membrane separation processes are an alternative to thermal processes, as they have many advantages such as the possibility of continuous and modular operation and the use of moderate temperatures. In this context, the objective of this work was the preparation of hollow-fiber membranes and the design of modules suitable for continuous sterilization of fermentation medium. The membrane with the best performance had a maximum pore diameter of 0.2 mu m and a permeability of 42.9 L/m².bar.h for a glucose/peptone/yeast extract medium. A module with 0.26 m² of permeation area was built with these membranes. This module was able to provide a permeate flow rate of 2.2 L/h using a pressure difference of 0.2 bar. The collected permeate was completely sterile, thus confirming the efficiency of this process.

  10. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  11. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  12. 膜分离在中药制药中的应用进展%Application progress on the production of traditional Chinese medicine using membrane separation

    Institute of Scientific and Technical Information of China (English)

    樊君; 代宏哲; 高续春

    2011-01-01

    This article reviews recent developments of membrane technology such as microfiltration, ultra-filtration, nanofiltration, reverse osmosis, molecularly imprinted membrane, membrane distillation and hyphenated techniques in the membrane separation. Then, the field and the status quo of membrane separation in the production of traditional Chinese medicine are given and the applications of membrane separation in future are prospected.%对膜分离技术在中药生产过程中的应用领域以及常用的微滤、超滤、纳滤、反渗透、分子印迹膜、膜蒸馏和膜集成联用技术等的应用现状进行了综述,并对膜分离技术的应用前景进行了展望.

  13. In-line quantification and characterization of membrane fouling

    KAUST Repository

    Bucs, Szilard

    2016-06-16

    Methods of detecting, quantifying and/or characterizing the fouling of a device from a combination of pressure and spectroscopic data are provided. The device can be any device containing components susceptible to fouling. Components can include membranes, pipes, or reactors. Suitable devices include membrane devices, heat exchangers, and chemical or bio-reactors. Membrane devices can include, for example, microfiltration devices, ultrafiltration devices, nanofiltration devices, reverse osmosis, forward osmosis, osmosis, reverse electrodialysis, electro- deionisation or membrane distillation devices. The methods can be applied to any type of membrane, including tubular, spiral, hollow fiber, flat sheet, and capillary membranes. The spectroscopic characterization can include measuring one or more of the absorption, fluorescence, or raman spectroscopic data of one or more foulants. The methods can allow for the early detection and/or characterization of fouling. The characterization can include determining the specific foulant(s) or type of foulant(s) present. The characterization of fouling can allow for the selection of an appropriate de-fouling method and timing.

  14. Investigation of a Submerged Membrane Reactor for Continuous Biomass Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi [Univ. of Arkansas, Fayetteville, AR (United States); Stickel, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wickramasinghe, S. Ranil [Univ. of Arkansas, Fayetteville, AR (United States)

    2015-07-10

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  15. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8m were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments

  16. A STUDY ON MEMBRANE PROCESS WITH γ-ALUMINA MEMBRANE REACTOR FOR ETHYLBENZENE DEHYDROGENATION TO STYRENE

    Institute of Scientific and Technical Information of China (English)

    Chen Qingling; Xu Zhongqiang

    2001-01-01

    The membrane reaction of ethylbenzene(EB) dehydrogenation to styrene(ST) has been studied by using K2O/Fe2O3 industrial catalyst and γ-alumina ceramic membrane developed by our institute. In comparison with the packed bed reactor (that is, plug flow reactor, abbr. PFR) in industrial practice, the yield of styrene was increased by 5%~10% in the membrane reactor. Furthermore, mathematical modeling of membrane reaction has been studied to display the principle of optimal match between the catalytic activity and the membrane permeability.

  17. Manufacturing and characterization of a ceramic single-use microvalve

    Science.gov (United States)

    Khaji, Z.; Klintberg, L.; Thornell, G.

    2016-09-01

    We present the manufacturing and characterization of a ceramic single-use microvalve with the potential to be integrated in lab-on-a-chip devices, and forsee its utilization in space and other demanding applications. A 3 mm diameter membrane was used as the flow barrier, and the opening mechanism was based on cracking the membrane by inducing thermal stresses on it with fast and localized resistive heating. Four manufacturing schemes based on high-temperature co-fired ceramic technology were studied. Three designs for the integrated heaters and two thicknesses of 40 and 120 μm for the membranes were considered, and the heat distribution over their membranes, the required heating energies, their opening mode, and the flows admitted through were compared. Furthermore, the effect of applying  +1 and  -1 bar pressure difference on the membrane during cracking was investigated. Thick membranes demonstrated unpromising results for low-pressure applications since the heating either resulted in microcracks or cracking of the whole chip. Because of the higher pressure tolerance of the thick membranes, the design with microcracks can be considered for high-pressure applications where flow is facilitated anyway. Thin membranes, on the other hand, showed different opening sizes depending on heater design and, consequently, heat distribution over the membranes, from microcracks to holes with sizes of 3-100% of the membrane area. For all the designs, applying  +1 bar over pressure contributed to bigger openings, whereas  -1 bar pressure difference only did so for one of the designs, resulting in smaller openings for the other two. The energy required for breaking these membranes was a few hundred mJ with no significant dependence on design and applied pressure. The maximum sustainable pressure of the valve for the current design and thin membranes was 7 bar.

  18. Microfiltration, Nano-filtration and Reverse Osmosis for the Removal of Toxins (LPS Endotoxins) from Wastewater

    OpenAIRE

    Mokhtar, Guizani; Naoyuki, Funamizu

    2012-01-01

    Lipopolysaccharide (LPS) endotoxin, a bacterial byproduct abundantly present in wastewater, is more and more representing a major concern in wastewater treatment sector for the potential health risk it represents. It is, therefore, more urgent than before to protect consumers from contaminating their fresh potable water reserves with LPS endotoxin through aquifer replenishment using reclaimed wastewater or by supplying reclaimed wastewater as potable water. Membrane treatment is an alternativ...

  19. Piezoelectric Ceramics and Their Applications

    Science.gov (United States)

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  20. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  1. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  2. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  3. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  4. 臭氧/陶瓷膜对生物活性炭工艺性能和微生物群落结构影响%Influence of ozone/ceramic membrane on performance and microbial community in biological activated carbon filtration

    Institute of Scientific and Technical Information of China (English)

    郭建宁; 陈磊; 张锡辉; 王凌云; 陶益; 盛德洋

    2014-01-01

    Micro-polluted raw water was treated using a pilot plant with a scale of 120m3/d. The performance of ozone/ceramic membrane-biological activated carbon (BAC) process was studied. The diversity and detailed structure of microbial community of the microorganisms in BAC were also investigated. The hybrid process removed organic matter and ammonia effectively. The aeration with ozone-containing gas increased the dissolved oxygen in water flow and improved the removal of ammonia. The total removal efficiencies of ammonia and CODMn were 90% and 84%, respectively. The BAC played an important role in the final removals of pollutants. The microorganisms in the BAC bed were divided into 36phyla. Compared with the conventional BAC process, ozone/ceramic membrane in the hybrid process decreased the diversity and evenness of the microorganisms in the BAC. There were abundant Nitrosomonas and Nitrospira in the BAC in the hybrid process, which probably strengthen the ammonia removal. Moreover, the pathogenic bacteria and opportunistic pathogen were significantly inhibited by ozone/ceramic membrane, resulting in the decrease of their relative abundances in the following BAC. Therefore the biological safety of drinking water was enhanced significantly.%利用处理量为120m3/d的臭氧/陶瓷膜-生物活性炭(BAC)组合工艺处理微污染原水,对工艺性能和BAC中的微生物多样性和种群结构进行了研究。结果显示,组合工艺可有效去除微污染原水中的有机物和氨氮。臭氧曝气提高了溶解氧浓度,改善了后续 BAC 工艺对氨氮的去除效果。组合工艺对氨氮和CODMn的总去除率分别约为90%和84%,其中BAC在污染物的去除中发挥了重要作用。组合工艺和传统工艺中BAC床层共检测到36个门类的细菌。与传统BAC工艺相比,臭氧/陶瓷膜降低了后续BAC中微生物群落结构的多样性和均匀度。组合工艺BAC中存在丰度较高的亚硝化单胞菌属和硝化螺旋

  5. Biodiesel wash-water reuse using microfiltration: toward zero-discharge strategy for cleaner and economized biodiesel production

    Directory of Open Access Journals (Sweden)

    R. Jaber

    2015-03-01

    Full Text Available A simple but economically feasible refining method to treat and re-use biodiesel wash-water was developed. In detail, microfiltration (MF through depth-filtration configuration was used in different hybrid modules. Then, the treated wash-water was mixed with clean water at different ratios, re-used for biodiesel purification and water-washing efficiency was evaluated based on methyl ester purity analysis. The findings of the present study revealed that depth-filtration-based MF combined with sand filtration/activated carbon separation and 70% dilution rate with fresh water not only achieved standard-quality biodiesel product but also led to up to 15% less water consumption after two rounds of production operations. This would be translated into a considerable reduction in the total volume of fresh water used during the operation process and would also strengthen the environmental-friendly aspects of the biodiesel production process for wastewater generation was obviously cut by the same rate as well.

  6. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...

  7. Ceramic vane drive joint

    Science.gov (United States)

    Smale, Charles H. (Inventor)

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  8. Membranes in Lithium Ion Batteries

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  9. Monolith filter apparatus and membrane apparatus, and method using same

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Robert L. (Wayland, MA)

    2012-04-03

    A filtration apparatus that separates a liquid feedstock mixed with a gas into filtrate and retentate, the apparatus including at least one filtration device comprised of at least one monolith segment of porous material that defines a plurality of passageways extending longitudinally from a feed face of the structure to a retentate end face. The filtration device contains at least one filtrate conduit within it for carrying filtrate toward a filtrate collection zone, the filtrate conduit providing a path of lower flow resistance than that of alternative flow paths through the porous material of the device. The filtration device can also be utilized as a membrane support for a device for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, or pervaporation. Also disclosed is a method for using such a filtration apparatus.

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  11. Development and testing of a transparent membrane biofouling monitor

    KAUST Repository

    Dreszer, C.

    2014-01-02

    A modified version of the membrane fouling simulator (MFS) was developed for assessment of (i) hydraulic biofilm resistance, (ii) performance parameters feed-channel pressure drop and transmembrane pressure drop, and (iii) in situ spatial visual and optical observations of the biofilm in the transparent monitor, e.g. using optical coherence tomography. The flow channel height equals the feed spacer thickness enabling operation with and without feed spacer. The effective membrane surface area was enlarged from 80 to 200 cm2 by increasing the monitor width compared to the standard MFS, resulting in larger biomass amounts for analysis. By use of a microfiltration membrane (pore size 0.05 μm) in the monitor salt concentration polarization is avoided, allowing operation at low pressures enabling accurate measurement of the intrinsic hydraulic biofilm resistance. Validation tests on e.g. hydrodynamic behavior, flow field distribution, and reproducibility showed that the small-sized monitor was a representative tool for membranes used in practice under the same operating conditions, such as spiral-wound nanofiltration and reverse osmosis membranes. Monitor studies with and without feed spacer use at a flux of 20 L m-2 h-1 and a cross-flow velocity of 0.1 m s-1 clearly showed the suitability of the monitor to determine hydraulic biofilm resistance and for controlled biofouling studies. © 2013 Balaban Desalination Publications. All rights reserved.

  12. Impacts of Coagulation Pretreatment on MF Filtration and a Comparative Study of Different Membrane Module Types

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-feng; Kim Seung-hyun; Yun Jong-sup; Moon Seong-yong

    2006-01-01

    Changes in the regulatory requirements and the forthcoming Disinfectant/Disinfection By-Products (D/DBP)Rule will require that drinking water treatment facilities be operated to achieve maximum removals of particles and disinfectant tolerant microorganisms as well as natural organic matter (NOM). For drinking water production, the use of membrane filtration processes such as microfiltration and ultrafiltration (MF/UF) alone to satisfy the turbidity, particle and microorganism removal a requirement of the surface water treatment regulation (SWTR) is not enough. MF/UF treatment processes can achieve only nominal (10 percent) removal of disinfection by-products (DBP) precursors (James, et al., 1995). On the other hand, too fast fouling can make the filtration processes more difficult to carry on. To solve these problems, many authors have been interested in installing coagulation pretreatment before membrane filtration to improve membrane performance. However, previous studies reported conflicting results. Some supported the effectiveness of coagulation pretreatment, while others contended that coagulation aggravated membrane performance. This research aims to identify the effects of coagulation pretreatment on membrane filtration through a pilot study using PVDF membrane in combination with analyzing the rationale of coagulation. Another objective of this research was to evaluate the different impacts on membrane performance of using different membrane modules (the submerged module and pressured module). The results showed that coagulation pretreatment greatly improved the membrane performance, extending the filtration time as well as reducing the permeated organic level, and that the submerged module is much more efficient than the pressured module.

  13. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces.

    Science.gov (United States)

    Ponnusamy, K; Kappachery, S; Thekeettle, M; Song, J H; Kweon, J H

    2013-09-01

    Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.

  14. MgAl2O4 Ultrafiltration Ceramic Membrane Derived from Mg-Al Double Alkoxide%铝镁双醇盐制备MgAl2O4尖晶石陶瓷超滤膜

    Institute of Scientific and Technical Information of China (English)

    张国昌; 陈运法; 吴振江; 谢裕生

    2000-01-01

    Spinel (MgAl2O4) ultrafiltration membranes were prepared on porous α-Al2O3 plates via the sol-gel route. Mg-Al double alkoxide [MgAl2(iprO)s] was first synthesized as the precursor, then hydrolyzed and peptized in aqueous solution. The gel layer was coated from the colloidal sol on the intermediate layer (α-Al2O3), which was formerly prepared to modify the porous substrate, and then thermally treated at 900℃. The processing parameters such as pH, temperature and sol composition during the sol preparation were optimized for controlling particle size. The pore size of the 2μm thick top layer is about 13 nm as estimated by both the BSA (Bovine Serum Albumin)retention test and an empirical equation.The water permeability of the obtained spinel membrane is 55~143 kg/(min.cm2.Pa).

  15. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.

    Science.gov (United States)

    Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S

    2015-01-01

    Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.

  16. A high performance ceramic-polymer separator for lithium batteries

    Science.gov (United States)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  17. Inorganic porous hollow fiber membranes : with tunable small radial dimensions

    NARCIS (Netherlands)

    Luiten-Olieman, M.W.J.

    2012-01-01

    The objectives of this thesis are twofold. The first aim is to develop of robust coating procedures for thin supported films onto porous ceramic supports. The second aim is the development of a preparation methodology for high quality porous inorganic membranes, with large membrane surface area. A r

  18. Sol-gel template synthesis of luminescent glass-ceramic rods

    Energy Technology Data Exchange (ETDEWEB)

    Secu, M., E-mail: msecu@infim.ro; Secu, C. E.; Sima, M. [National Institute of Materials Physics, Optical Processes in Nanostructured Materials Department (Romania)

    2012-03-15

    We report an original way to prepare luminescent glass-ceramic microrods containing Eu{sup 3+} doped BaF{sub 2} nanocrystals by sol-gel chemistry within the pores of a polycarbonate template membrane. Structural characterization by scanning electron microscopy and X-ray diffraction has shown the formation of glass-ceramic microrods with 0.8-m diameter of and 10 {mu}m length in which BaF{sub 2} nanocrystals of about 30 nm size are embedded. Photoluminescence measurements have indicated the incorporation of Eu{sup 3+} ions inside the BaF{sub 2} nanocrystals in a broad range of sites with low coordination symmetry. The comparison made with the bulk glass-ceramic indicated an influence of the dimensional constraints imposed by the membrane pores during xerogel formation and subsequent glass ceramization.

  19. Statistic><Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2008-01-01

    Co-organizer for and participant at the exhibition: Statistic><Ceramics The Röhsska Museum of Design and Decorative Arts; Gothenborg 5/2-16/3 2008 Museum fur Kunst und Gewerbe, Hamburg 3/4-27/4 2008...

  20. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer