WorldWideScience

Sample records for ceramic melters

  1. Melter viewing system for liquid-fed ceramic melters

    Westsik, J.H. Jr.; Brenden, B.B.

    1988-01-01

    Melter viewing systems are an integral component of the monitoring and control systems for liquid-fed ceramic melters. The Pacific Northwest Laboratory (PNL) has designed cameras for use with glass melters at PNL, the Hanford Waste Vitrification Plant (HWVP), and West Valley Demonstration Project (WVDP). This report is a compilation of these designs. Operating experiences with one camera designed for the PNL melter are discussed. A camera has been fabricated and tested on the High-Bay Ceramic Melter (HBCM) and the Pilot-Scale Ceramic Melter (PSCM) at PNL. The camera proved to be an effective tool for monitoring the cold cap formed as the feed pool developed on the molten glass surface and for observing the physical condition of the melter. Originally, the camera was built to operate using the visible light spectrum in the melter. It was later modified to operate using the infrared (ir) spectrum. In either configuration, the picture quality decreases as the size of the cold cap increases. Large cold caps cover the molten glass, reducing the amount of visible light and reducing the plenum temperatures below 600 0 C. This temperature corresponds to the lowest level of blackbody radiation to which the video tube is sensitive. The camera has been tested in melter environments for about 1900 h. The camera has withstood mechanical shocks and vibrations. The cooling system in the camera has proved effective in maintaining the optical and electronic components within acceptable temperature ranges. 10 refs., 15 figs

  2. Steady state simulation of Joule heated ceramic melter for vitrification of high level liquid waste

    Sugilal, G; Wattal, P K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India); Iyer, K N [Department of Mechanical Engineering, Indian Inst. of Tech., Mumbai (India)

    1994-06-01

    The Joule heated ceramic melter is emerging as an attractive alternative to metallic melters for high level waste vitrification. The inherent limitations with metallic melters viz., low capacity and short melter life, are overcome in a ceramic melter which can be adopted for continuous mode of operation. The ceramic melter has the added advantage of better operational flexibility. This paper describes the three dimensional model used for simulating the complex design conditions of the ceramic melter. (author).

  3. Steady state simulation of Joule heated ceramic melter for vitrification of high level liquid waste

    Sugilal, G.; Wattal, P.K.; Theyyunni, T.K.; Iyer, K.N.

    1994-01-01

    The Joule heated ceramic melter is emerging as an attractive alternative to metallic melters for high level waste vitrification. The inherent limitations with metallic melters viz., low capacity and short melter life, are overcome in a ceramic melter which can be adopted for continuous mode of operation. The ceramic melter has the added advantage of better operational flexibility. This paper describes the three dimensional model used for simulating the complex design conditions of the ceramic melter. (author)

  4. Liquid-fed ceramic melter: a general description report

    Buelt, J.L.; Chapman, C.C.

    1978-10-01

    The Pacific Northwest Laboratory is conducting several research and development programs for the solidification of high-level wastes. The liquid-fed ceramic melter (LFCM) is a major component in the solidification process. This melter can solidify liquid high-level waste, as well as melt calcined waste with glass additives and then solidify the mixture. This report describes the LFCM system and shows the main features of the refractories, electrodes and power systems, melter box and lid, draining system, feeding system, and off-gas system

  5. Review of continuous ceramic-lined melter and associated experience at PNL

    Buelt, J.L.; Chapman, C.C.; Barnes, S.M.; Dierks, R.D.

    1979-01-01

    Development of continuous, ceramic-lined melters applicable to immobilization of radioactive wastes began at PNL in 1973. A comprehensive program is curretly in progress. The melters constructed at PNL have incorporated remote and reliable design features necessary for radioactive use. The extensive experience with vitrification of simulated wastes has proven the continuous melter's applicability to radioactive waste immobilization

  6. Temperature control system for liquid-fed ceramic melters

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  7. Evaluation of liquid-fed ceramic melter scale-up correlations

    Koegler, S.S.; Mitchell, S.J.

    1988-08-01

    This study was conducted to determine the parameters governing factors of scale for liquid-fed ceramic melters (LFCMs) in order to design full-scale melters using smaller-scale melter data. Results of melter experiments conducted at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are presented for two feed compositions and five different liquid-fed ceramic melters. The melter performance data including nominal feed rate and glass melt rate are correlated as a function of melter surface area. Comparisons are made between the actual melt rate data and melt rates predicted by a cold cap heat transfer model. The heat transfer model could be used in scale-up calculations, but insufficient data are available on the cold cap characteristics. Experiments specifically designed to determine heat transfer parameters are needed to further develop the model. 17 refs

  8. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology

  9. Steam Explosions in Slurry-fed Ceramic Melters

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  10. Computer modeling of ceramic melters to assess impacts of process and design variables on performance

    Eyler, L.L.; Elliott, M.L.; Lowery, P.S.; Lessor, D.L.

    1991-01-01

    Numerical and physical simulation of existing and advanced melter designs conducted to assess impacts of process and design variables on performance of ceramic melters are presented. Coupled equations of flow, thermal, and electric fields were numerically solved in time-dependent three dimensional finite volume form. Recent simulation results of a three electrode melter design with sloped walls indicate the presence of bi-modal stable flow patterns dominated by boundary conditions

  11. Comparison of the rotary calciner-metallic melter and the slurry-fed ceramic melter technologies for vitrifying West Valley high-level wastes

    Chapman, C.C.

    1983-01-01

    Two processes which are believed applicable and available for vitrification of West Valley's high-level (HLW) wastes were technically evaluated and compared. The rotary calciner-metallic melter (AVH) and the slurry-fed ceramic melter (SFCM) were evaluated under the following general categories: process flow sheet, remote operability, safety and environmental considerations, and estimated cost and schedules

  12. LFCM [liquid-fed ceramic melter] vitrification technology: Quarterly progress report, January--March 1987

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs

  13. Safety assessment of the liquid-fed ceramic melter process

    Buelt, J.L.; Partain, W.L.

    1980-08-01

    As part of its development program for the solidification of high-level nuclear waste, Pacific Northwest Laboratory assessed the safety issues for a complete liquid-fed ceramic melter (LFCM) process. The LFCM process, an adaption of commercial glass-making technology, is being developed to convert high-level liquid waste from the nuclear fuel cycle into glass. This safety assessment uncovered no unresolved or significant safety problems with the LFCM process. Although in this assessment the LFCM process was not directly compared with other solidification processes, the safety hazards of the LFCM process are comparable to those of other processes. The high processing temperatures of the glass in the LFCM pose no additional significant safety concerns, and the dispersible inventory of dried waste (calcine) is small. This safety assessment was based on the nuclear power waste flowsheet, since power waste is more radioactive than defense waste at the time of solidification, and all accident conditions for the power waste would have greater radiological consequences than those for defense waste. An exhaustive list of possible off-standard conditions and equipment failures was compiled. These accidents were then classified according to severity of consequence and type of accident. Radionuclide releases to the stack were calculated for each group of accidents using conservative assumptions regarding the retention and decontamination features of the process and facility. Two recommendations that should be considered by process designers are given in the safety assessment

  14. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  15. Technology of off-gas treatment for liquid-fed ceramic melters

    Scott, P.A.; Goles, R.W.; Peters, R.D.

    1985-05-01

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs.

  16. Investigation of corrosion experienced in a spray calciner/ceramic melter vitrification system

    Dierks, R.D.; Mellinger, G.B.; Miller, F.A.; Nelson, T.A.; Bjorklund, W.J.

    1980-08-01

    After periodic testing of a large-scale spray calciner/ceramic melter vitrification system over a 2-yr period, sufficient corrosion was noted on various parts of the vitrification system to warrant its disassembly and inspection. A majority of the 316 SS sintered metal filters on the spray calciner were damaged by chemical corrosion and/or high temperature oxidation. Inconel-601 portions of the melter lid were attacked by chlorides and sulfates which volatilized from the molten glass. The refractory blocks, making up the walls of the melter, were attacked by the waste glass. This attack was occurring when operating temperatures were >1200 0 C. The melter floor was protected by a sludge layer and showed no corrosion. Corrosion to the Inconel-690 electrodes was minimal, and no corrosion was noted in the offgas treatment system downstream of the sintered metal filters. It is believed that most of the melter corrosion occurred during one specific operating period when the melter was operated at high temperatures in an attempt to overcome glass foaming behavior. These high temperatures resulted in a significant release of volatile elements from the molten glass, and also created a situation where the glass was very fluid and convective, which increased the corrosion rate of the refractories. Specific corrosion to the calciner components cannot be proven to have occurred during a specific time period, but the mechanisms of attack were all accelerated under the high-temperature conditions that were experienced with the melter. A review of the materials of construction has been made, and it is concluded that with controlled operating conditions and better protection of some materials of construction corrosion of these systems will not cause problems. Other melter systems operating under similar strenuous conditions have shown a service life of 3 yr

  17. Development of equipments for remote dismantling of joule heated ceramic melter

    Badgujar, Kiran T.; Usarkar, Sachin G.; Kumar, Binu; Nair, K.N.S.

    2011-01-01

    Joule Heated Ceramic Melter (JHCM) technology has been adopted for industrial scale vitrification of high level liquid waste (HLLW) at Tarapur and Kalpakkam. The melter installed at Advanced Vitrification System (AVS), Tarapur has immobilized 175 m 3 of HLLW in 113 canisters containing 11533Kg of Vitrified Waste Product (VWP). The melter has been in operation for 3 years before shutdown. It is intended to demonstrate the complete procedure of dismantling of Joule Melter in 1:1 scale prior to going in for actual dismantling in the hot cell. The Melter consists of an assembly of Inconel/SS pipes and plates, fuse cast refractories, thermal insulations of various types inside a SS casing and possibly some glass which is left over in the melter. Dismantling of melter involves remote cutting of the outer casing, pipe connections, electrical connections and removal, sizing and packing of internals in a sequential manner to minimise generation of secondary waste. The challenge involves development of remotely operated multi-degrees of freedom fixtures, modification and performance testing of standard industrial cutting and breaking tools and adapting them for remote operations. The work also involves development of equipments for collection of waste generated during the dismantling operation and packaging thus in special packages. Remotely actuated fixtures have been developed for remote top plate and side electrodes cutting. Remotely operated grab has been developed for handling of loose material and grippers have been developed for handling of refractory blocks. Industrial vacuum suction device has been modified into split units to enable for reducing the spread of powder material, while dismantling in progress. The performance test of developed fixtures, equipments, cutting and breaking tools have been carried on 1:1 scale melter model. Various parameters like cutting speed, cutting tool performance, generation of waste volume has been measured and analysed for

  18. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    Goles, R.W.; Sevigny, G.J.

    1983-09-01

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  19. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  20. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    Rutledge, V.J.; Maio, V.

    2013-01-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases

  1. The dismantling of the one-third-scale Joule ceramic melter and preliminary investigation of electrode corrosion

    Morris, J.B.; Walmsley, D.; Hollinrake, A.; Horsley, G.

    1986-01-01

    The Harwell one-third scale Joule ceramic melter was dismantled to discover the cause of a fall in electric resistance. The two inconel-690 electrodes were corroded over the lower 40mm sections and were examined by optical and electron microscopy. Sedimentation of Ru species on the floor of the melter may have led to corrosion of the electrodes. Glass withdrawn from the canisters was analyzed for evidence of a segregation mechanism. (UK)

  2. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  3. Pilot-scale ceramic melter 1985-1986 rebuild: Nuclear Waste Treatment Program

    Koegler, S.S.

    1987-07-01

    The pilot-scale ceramic melter (PSCM) was subsequently dismantled, and the damaged and corroded components were repaired or replaced. The PSCM rebuild ensures that the melter will be available for an additional three to five years of planned testing. An analysis of the corrosion products and the failed electrodes indicated that the electrode bus connection welds may have failed due to a combination of chemical and mechanical effects. The electrodes were replaced with a design similar to the original electrodes, but with improved electrical bus connections. The implications of the PSCM electrode corrosion evaluation are that, although Inconel 690 has excellent corrosion resistance to molten glass, corrosion at the melt line in stagnant regions is a significant concern. Functional changes made during the rebuild included increases in wall and floor insulation to better simulate well-insulated melters, a decrease in the lid height for more prototypical plenum and off-gas conditions, and installation of an Inconel 690 trough and dam to improve glass pouring and prevent glass seepage. 9 refs., 33 figs., 5 tabs

  4. Equipment experience in a radioactive LFCM [liquid-fed ceramic melter] vitrification facility

    Holton, L.K. Jr.; Dierks, R.D.; Sevigny, G.J.; Goles, R.W.; Surma, J.E.; Thomas, N.M.

    1986-11-01

    Since October 1984, the Pacific Northwest Laboratory (PNL) has operated a pilot-scale radioactive liquid-fed ceramic melter (RLFCM) vitrification process in shielded manipulator hot cells. This vitrification facility is being operated for the Department of Energy (DOE) to remotely test vitrification equipment components in a radioactive environment and to develop design and operation data that can be applied to production-scale projects. This paper summarizes equipment and process experience obtained from the operations of equipment systems for waste feeding, waste vitrification, canister filling, canister handling, and vitrification off-gas treatment

  5. Vitrification of SRP waste by a slurry-fed ceramic melter

    Wicks, G.G.

    1980-01-01

    Savannah River Plant (SRP) high-level waste (HLW) can be vitrified by feeding a slurry, instead of a calcine, to a joule-heated ceramic melter. Potential advantages of slurry feeding include (1) use of simpler equipment, (2) elimination of handling easily dispersed radioactive powder, (3) simpler process control, (4) effective mixing, (5) reduced off-gas volume, and (6) cost savings. Assessment of advantages and disadvantages of slurry feeding along with experimental studies indicate that slurry feeding is a promising way of vitrifying waste

  6. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  7. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    Reimus, P.W.

    1987-07-01

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs

  8. Vitrification of Hanford wastes in a joule-heated ceramic melter and evaluation of resultant canisterized product

    Chapman, C.C.; Buelt, J.L.; Slate, S.C.; Katayama, Y.B.; Bunnell, L.R.

    1979-08-01

    Experience gained in the week-long vitrification test and characterization of the glass produced in the run support the following conclusions: The Hanford waste simulated in this test can be readily vitrified in a joule-heated ceramic melter. Physical properties of the molten glass were entirely compatible with melter operation. The average feed rate of 106 kg/h is high enough to make the ceramic melter a feasible piece of equipment for vitrifying Hanford wastes. The glass produced in this trial had good chemical durability, 6(10) -5 g/cm 2 -d. When one of the canisters was purposely dropped onto a steel pad, the damage was limited to deformation of the steel can in the impact area, cracking of a weld, and fracturing of glass in the immediate vicinity of the impact area. No glass was released from the canister as a result of the drop test. The results of this vitrification test support the technical feasibility of vitrifying Hanford wastes by means of a joule-heated ceramic melter. Surface area for large glass castings is equivalent to the mass median particle diameters between 4.27 cm (1.75 in.) and 8.91 cm (3.51 in.) even when allowed to cool rapidly by standing in ambient air. Large canisters (up to 0.91 m in dia) can be cast without large voids while standing in air if the fill rate is over 100 kg/h. 34 figures, 10 tables

  9. Numerical modeling of liquid feeding in the liquid-fed ceramic melter

    Hjelm, R.L.; Donovan, T.E.

    1979-10-01

    A modeling scheme developed by the Pacific Northwest Laboratory numerically simulates the behavior of the Liquid-Fed Ceramic Melter (LFCM) during liquid feeding. The computer code VECTRA (Vorticity Energy Code for TRansport Analysis) was used to simulate the LFCM in the idling and liquid feeding modes. Results for each simulation include molten glass temperature profiles and isotherm contour plots, stream function contour plots, heat generation rate contour plots, refractory isotherms, and heat balances. The results indicated that the model showed no major deviations from real LFCM behavior and that high throughput should be attainable. They also indicated that reboil was a possibility as a steady liquid feeding state was approached, very steep temperature gradients exist in the Monofrax K-3, and that phase separation could occur in the bottom corners during liquid feeding and over the entire floor while idling

  10. Statistical process control applied to the liquid-fed ceramic melter process

    Pulsipher, B.A.; Kuhn, W.L.

    1987-09-01

    In this report, an application of control charts to the apparent feed composition of a Liquid-Fed Ceramic Melter (LFCM) is demonstrated by using results from a simulation of the LFCM system. Usual applications of control charts require the assumption of uncorrelated observations over time. This assumption is violated in the LFCM system because of the heels left in tanks from previous batches. Methods for dealing with this problem have been developed to create control charts for individual batches sent to the feed preparation tank (FPT). These control charts are capable of detecting changes in the process average as well as changes in the process variation. All numbers reported in this document were derived from a simulated demonstration of a plausible LFCM system. In practice, site-specific data must be used as input to a simulation tailored to that site. These data directly affect all variance estimates used to develop control charts. 64 refs., 3 figs., 2 tabs

  11. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study

  12. Material interactions between system components and glass product melts in a ceramic melter

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  13. Preliminary experiments to simulate glass/electrode interactions within a Joule Ceramic Melter

    Dalton, J.T.; Paige, E.L.; Sutcliffe, P.W.

    1986-01-01

    Preliminary isothermal corrosion tests have been made on Inconel 690 coupon samples immersed in Harvest II M9 glass with and without excess additions of Li 2 O (1.5%) and RuO 2 (20%) together with TeO 2 (2%) at 1200 0 C for periods up to 100 hours. Inconel 690 corrosion and the products and ruthenium redox conditions within the glass approximate to those observed in the 1/3rd scale Joule Ceramic Melter operations. Corrosion takes place by an oxidation mechanism to form a chromium-rich surface oxide, and dissolution of this surface oxide by the surrounding glass. Additions of excess Li 2 O increase the corrosion rate of Inconel 690, whereas RuO 2 + TeO 2 are neutral. The latter however have a marked effect in lowering the room temperature resistivity by at least 5 orders of magnitude even though relatively small fraction of the RuO 2 precipitates were reduced to ruthenium metal. (author)

  14. Design features of the radioactive Liquid-Fed Ceramic Melter system

    Holton, L.K. Jr.

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs

  15. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  16. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit

  17. Conceptual design of a joule-heated ceramic melter for the DOE Fernald silos 1, 2, and 3 wastes

    Robinson, R.A.; Janke, D.S.; Peters, R.; Fekete, L.

    1992-06-01

    Vitrification of nuclear wastes has been under investigation since the mid-1950s. Most of the international communities experience has been with vitrification of high level nuclear wastes. In the US, this technology was developed by Battelle scientists at the DOEs Pacific Northwest Laboratories located at their Hanford site. Based on Laboratory and pilot-scale testing conducted at Hanford in the early 1970s, the DOE has constructed high level nuclear waste vitrification facilities at both Savannah River, South Carolina, and West Valley, New York, and is finalizing the design of a similar treatment facility at Hanford. Although these systems were designed to be fully remote due to the extreme radioactive hazards associated with this type of nuclear waste, technology transfer was successfully applied to the design of a vitrification process for the K-65 and uranium metal oxide wastes in a semi-remote operation at Fernald. This paper describes a conceptual design of a joule-heated, slurry-fed ceramic melter that was developed for vitrification of the DOE K-65 and metal oxide low level wastes at Fernald, Ohio

  18. Demonstration of an approach to waste form qualification through simulation of liquid-fed ceramic melter process operations

    Reimus, P.W.; Kuhn, W.L.; Peters, R.D.; Pulsipher, B.A.

    1986-07-01

    During fiscal year 1982, the US Department of Energy (DOE) assigned responsibility for managing civilian nuclear waste treatment programs in the United States to the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL). One of the principal objectives of this program is to establish relationships between vitrification process control and glass quality. Users of the liquid-fed ceramic melter (LFCM) process will need such relationships in order to establish acceptance of vitrified high-level nuclear waste at a licensed federal repository without resorting to destructive examination of the canisters. The objective is to be able to supply a regulatory agency with an estimate of the composition, durability, and integrity of the glass in each waste glass canister produced from an LFCM process simply by examining the process data collected during the operation of the LFCM. The work described here will continue through FY-1987 and culminate in a final report on the ability to control and monitor an LFCM process through sampling and process control charting of the LFCM feed system

  19. Joule-Heated Ceramic-Lined Melter to Vitrify Liquid Radioactive Wastes Containing Am241 Generated From MOX Fuel Fabrication in Russia

    Smith, E C; Bowan II, B W; Pegg, I; Jardine, L J

    2004-01-01

    contains. Silver is widely used as an additive in glass making. However, its solubility is known to be limited in borosilicate glasses. Further, silver, which is present as a nitrate salt in the waste, can be easily reduced to molten silver in the melting process. Molten silver, if formed, would be difficult to reintroduce into the glass matrix and could pose operating difficulties for the glass melter. This will place a limitation on the waste loading of the melter feed material to prevent the separation of silver from the waste within the melter. If the silver were recovered in the MOx fabrication process, which is currently under consideration, the composition of the glass would likely be limited only by the thermal heat load from the incorporated 241 Am. The resulting mass of glass used to encapsulate the waste could then be reduced by a factor of approximately three. The vitrification process used to treat the waste stream is proposed to center on a joule-heated ceramic lined slurry fed melter. Glass furnaces of this type are used in the United States to treat high-level waste (HLW) at the: Defense Waste Processing Facility, West Valley Demonstration Project, and to process the Hanford tank waste. The waste will initially be blended with glass-forming chemicals, which are primarily sand and boric acid. The resulting slurry is pumped to the melter for conversion to glass. The melter is a ceramic lined metal box that contains a molten glass pool heated by passing electric current through the glass. Molten glass from the melter is poured into canisters to cool and solidify. They are then sealed and decontaminated to form the final waste disposal package. Emissions generated in the melter from the vitrification process are treated by an off-gas system to remove radioactive contamination and destroy nitrogen oxides (NOx)

  20. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE: STATUS AND DIRECTION

    Ramsey, W.G.; Gray, M.F.; Calmus, R.B.; Edge, J.A.; Garrett, B.G.

    2011-01-01

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  1. Materials and design experience in a slurry-fed electric glass melter

    Barnes, S.M.; Larson, D.E.

    1981-08-01

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant

  2. Melter Technologies Assessment

    Perez, J.M. Jr. [Pacific Northwest National Lab., Richland, WA (United States); Schumacher, R.F. [Savannah River Technology Center, Aiken, SC (United States); Forsberg, C.W. [Oak Ridge National Lab., TN (United States)

    1996-05-01

    The problem of controlling and disposing of surplus fissile material, in particular plutonium, is being addressed by the US Department of Energy (DOE). Immobilization of plutonium by vitrification has been identified as a promising solution. The Melter Evaluation Activity of DOE`s Plutonium Immobilization Task is responsible for evaluating and selecting the preferred melter technologies for vitrification for each of three immobilization options: Greenfield Facility, Adjunct Melter Facility, and Can-In-Canister. A significant number of melter technologies are available for evaluation as a result of vitrification research and development throughout the international communities for over 20 years. This paper describes an evaluation process which will establish the specific requirements of performance against which candidate melter technologies can be carefully evaluated. Melter technologies that have been identified are also described.

  3. Vitrification melter study

    Jones, J.A.

    1995-04-01

    This report presents the results of a study performed to identify the most promising vitrification melter technologies that the Department of Energy (EM-50) might pursue with available funding. The primary focus was on plasma arc systems and graphite arc melters. The study was also intended to assist EM-50 in evaluating competing technologies, formulating effective technology strategy, developing focused technology development projects, and directing the work of contractors involved in vitrification melter development

  4. Physical and numerical modeling of Joule-heated melters

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  5. Physical and numerical modeling of Joule-heated melters

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  6. Modified IRC bench-scale arc melter for waste processing

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  7. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  8. Preliminary melter performance assessment report

    Elliott, M.L.; Eyler, L.L.; Mahoney, L.A.; Cooper, M.F.; Whitney, L.D.; Shafer, P.J.

    1994-08-01

    The Melter Performance Assessment activity, a component of the Pacific Northwest Laboratory's (PNL) Vitrification Technology Development (PVTD) effort, was designed to determine the impact of noble metals on the operational life of the reference Hanford Waste Vitrification Plant (HWVP) melter. The melter performance assessment consisted of several activities, including a literature review of all work done with noble metals in glass, gradient furnace testing to study the behavior of noble metals during the melting process, research-scale and engineering-scale melter testing to evaluate effects of noble metals on melter operation, and computer modeling that used the experimental data to predict effects of noble metals on the full-scale melter. Feed used in these tests simulated neutralized current acid waste (NCAW) feed. This report summarizes the results of the melter performance assessment and predicts the lifetime of the HWVP melter. It should be noted that this work was conducted before the recent Tri-Party Agreement changes, so the reference melter referred to here is the Defense Waste Processing Facility (DWPF) melter design

  9. Noble metal (NM) behavior during simulated HLLW vitrification in induction melter with cold crucible

    Demin, A.V.; Matyunin, Y.I.; Fedorova, M.I.

    1995-01-01

    The investigation of noble metal (Ru, Rh, Pd) properties in, glass melts are connected with their specific behaviors during HLLW vitrification. Ruthenium, rhodium and palladium volatilities and heterogeneous platinoid phases forming on melts are investigated in reasonable details conformably to Joule's heating ceramic melters. The vitrification conditions in melters with induction heating of melts are differ from the vitrification ones in ceramic melters on some numbers of parameters (the availability of significant temperature gradients and convection flows in melts, short time of molten mass updating in melter and probability of definite interaction between high-frequency field and melt inhomogeneities). The results of simulated HLLW solidification modelling of the vitrification process in induction melter with cold crucible to produce phosphate and boron-silicate materials are presented. The properties of received glasses and behavior of platinoids are shown to have analogies and distinctions in comparison with compounds, synthesized in ceramic melter. The structures of dispersed particles of NM heterogeneous phases forming in glass melts prepared in induction melter with cold crucible are identified. The results of investigations show, that the marked distinctions between two processes can influence (in definite degree) as on property of synthesized materials, as on behavior of platinoid during vitrifications

  10. Lid heater for glass melter

    Phillips, T.D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures

  11. Gaseous and particulate emissions from a DC arc melter.

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  12. Current status of the active test at RRP and development programs for the advanced melter

    Kanehira, Norio

    2016-01-01

    The vitrification facility in Rokkasho Reprocessing Plant started the active tests to solidify HAW into the glass in 2007 which was the examination of the final stage before the operation, but the active test had to be discontinued due to the trouble of glass melter operation with down of pouring by deposit of noble metals on the melter bottom. After the equipment and operating conditions were improved in response to the result of the mock-up tests, a series of active tests were restarted active tests in May, 2012. These tests were finished with enough confirmation of stability in the state such as glass temperature and controlling the noble metals. JNFL has been developed the advanced melter, Joule heated ceramic melter, and the design of the advanced melter is largely different from the existing one. For the confirmation of the advanced melter performances, the full-scale inactive tests had been performed and successfully finished. This paper describes outline of development for advanced melter in Rokkasho Reprocessing Plant. (author)

  13. Induction melter apparatus

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  14. History of the small cylindrical melter

    Allen, T.L.; Iverson, D.C.; Plodinec, M.J.

    1985-08-01

    The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs

  15. Preliminary evaluation of PSCM and BIPP melter design and operating conditions using physical modeling

    Skarda, R.J.; Hauser, S.G.; Fort, J.A.

    1985-05-01

    The Glass Melter Physical Modeling investigation was initiated to support Pacific Northwest Laboratory (PNL) Hanford Waste Vitrification Program. Specifically, results discussed herein are those of the modeled B-Plant Immobilization Pilot Plant (BIPP) and Pilot Scale Ceramic Melter (PSCM) designs. The purpose of this study was to evaluate various melter design features using laboratory scale models. Hydrodynamic, thermal, and electrical similarity between the modeling fluid and the molten glass were primary objectives. Stroboscopic velocity measurements (flow visualization), temperature measurements, and electrical potential measurements were used to investigate the molten glass behavior. Results from this effort are to provide input to melter design and proposed operation in addition to providing a data base for verifying numerical models. 13 refs., 48 figs., 24 tabs

  16. HWVP NCAW melter feed rheology FY 1993 testing and analyses: Letter report

    Smith, P.A.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) program has been established to immobilize selected Hanford nuclear wastes before shipment to a geologic repository. The HWVP program is directed by the U.S. Department of Energy (DOE). The Pacific Northwest Laboratory (PNL) provides waste processing and vitrification technology to assist the design effort. The focus of this letter report is melter feed rheology, Process/Product Development, which is part of the Task in the PNL HWVP Technology Development (PHTD) Project. Specifically, the melter feed must be transported to the liquid fed ceramic melter (LFCM) to ensure HWVP operability and the manufacture of an immobilized waste form. The objective of the PHTD Project slurry flow technology development is to understand and correlate dilute and concentrated waste, formatted waste, waste with recycle addition, and melter feed transport properties. The objectives of the work described in this document were to examine frit effects and several processing conditions on melter feed rheology. The investigated conditions included boiling time, pH, noble metal containing melter feed, solids loading, and aging time. The results of these experiments contribute to the understanding of melter feed rheology. This document is organized in eight sections. This section provides the introductory remarks, followed by Section 2.0 that contains conclusions and recommendations. Section 3.0 reviews the scientific principles, and Section 4.0 details the experimental methods. The results and discussion and the review of related rheology data are in Sections 5.0 and 6.0, respectively. Section 7.0, an analysis of NCAW melter feed rheology data, provides an overall review of melter feed with FY 91 frit. References are included in Section 8.0. This letter report satisfies contractor milestone PHTD C93-03.02E, as described in the FY 1993 Pacific Northwest Hanford Laboratory Waste Plant Technology Development (PHTD) Project Work Plan

  17. Melter development needs assessment for RWMC buried wastes

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  18. Compilation of information on melter modeling

    Eyler, L.L.

    1996-03-01

    The objective of the task described in this report is to compile information on modeling capabilities for the High-Temperature Melter and the Cold Crucible Melter and issue a modeling capabilities letter report summarizing existing modeling capabilities. The report is to include strategy recommendations for future modeling efforts to support the High Level Waste (BLW) melter development

  19. Slurry feed variability in West Valley's melter feed tank and sampling system

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.; Bauer, B.P.

    1989-04-01

    The present plan for disposal of high-level wastes at West Valley is to vitrify the wastes for disposal in deep geologic repository. The vitrification process involves mixing the high-level wastes with glass-forming chemicals and feeding the resulting slurry to a liquid-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the melter feed system to produce and maintain a homogeneous mixture of waste and glass-former materials. To investigate the mixing properties of the melter feed preparation system at West Valley, a statistically designed experiment was conducted using synthetic melter feed slurry over a range of concentrations. On the basis of the statistical data analysis, it was found that (1) a homogeneous slurry is produced in the melter feed tank, (2) the liquid-sampling system provides slurry samples that are statistically different from the slurry in the tank, and (3) analytical measurements are the major source of variability. A statistical quality control program for the analytical laboratory and a characterization test of the actual sampling system is recommended. 1 ref., 5 figs., 1 tab

  20. A Joule-Heated Melter Technology For The Treatment And Immobilization Of Low-Activity Waste

    Kelly, S.E.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  1. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  2. Melter Disposal Strategic Planning Document

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  3. Nuclear waste glass melter: an update of technical progress

    Brouns, R.A.; Hanson, M.S.

    1984-08-01

    The direct slurry-fed ceramic-lined melter is currently the reference US process for treating defense and civilian high-level liquid waste. Extensive nonradioactive pilot-scale testing at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory has proven the process, defined operating parameters, and identified successful equipment design concepts. Programs at PNL continue to support several of the planned US vitrification plants through preparation of equipment designs and flowsheet testing. Current emphasis is on remotization of equipment, radioactive verification testing, and resolution of remaining technical issues. Development of this technology, technical status, and planned development activities are discussed. 9 references, 4 figures

  4. Design and performance of a 100-kg/h, direct calcine-fed electric-melter system for nuclear-waste vitrification

    Dierks, R.D.

    1980-11-01

    This report describes the physical characteristics of a ceramic-lined, joule-heated glass melter that is directly connected to the discharge of a spray calciner and is currently being used to study the vitrification of simulated nuclear-waste slurries. Melter performance characteristics and subsequent design improvements are described. The melter contains 0.24 m 3 of glass with a glass surface area of 0.76 m 2 , and is heated by the flow of an alternating current (ranging from 600 to 1200 amps) between two Inconel-690 slab-type electrodes immersed in the glass at either end of the melter tank. The melter was maintained at operating temperature (900 to 1260 0 C) for 15 months, and produced 62,000 kg of glass. The maximum sustained operating period was 122 h, during which glass was produced at the rate of 70 kg/h

  5. DWPF Glass Melter Technology Manual: Volume 1

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  6. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  7. Assessment of water/glass interactions in waste glass melter operation

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended

  8. Research-scale melter test report

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  9. Research-scale melter test report

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory's (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known

  10. Arc melter demonstration baseline test results

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  11. DWPF Glass Melter Technology Manual: Volume 4

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter

  12. DWPF Glass Melter Technology Manual: Volume 4

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  13. Cold-Crucible Design Parameters for Next Generation HLW Melters

    Gombert, D.; Richardson, J.; Aloy, A.; Day, D.

    2002-01-01

    The cold-crucible induction melter (CCIM) design eliminates many materials and operating constraints inherent in joule-heated melter (JHM) technology, which is the standard for vitrification of high-activity wastes worldwide. The cold-crucible design is smaller, less expensive, and generates much less waste for ultimate disposal. It should also allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the DOE reprocessing sites are to be vitrified. A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddycurrents that produce heat and mixing. A critical difference is that inductance coupling transfers energy through a nonconductive solid layer of slag coating the metal container inside the coil, whereas the jouleheated design relies on passing current through conductive molten glass in direct contact with the metal electrodes and ceramic refractories. The frozen slag in the CCIM design protects the containment and eliminates the need for refractory, while the corrosive molten glass can be the limiting factor in the JH melter design. The CCIM design also eliminates the need for electrodes that typically limit operating temperature to below 1200 degrees C. While significant marketing claims have been made by French and Russian technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the US to support testing. A currently funded project at the Idaho National Engineering

  14. LFCM [liquid-fed eramic melter] emission and off-gas system performance for feed component cesium

    Goles, R.W.; Andersen, C.M.

    1986-09-01

    Except for volatile off-gas effluents, overall adequacy of the liquid-fed ceramic melter (LFCM) system depends most upon its effectiveness in dealing with cesium. However, the mechanism responsible for melter cesium losses has proved insensitive to many LFCM operating and processing conditions. As a result, variations in inleakage, plenum temperature, feeding rate and waste loading do not significantly influence melter cesium performance. Feed composition, specifically halogen content, is the only processing variable that has had a significant effect. Due to the submicron nature of LFCM-generated aerosols, melter disengagement design features are not expected to be particularly effective in reducing cesium emission rates. For the same reason, the cesium performance of conventional quench scrubbers is quite low, being dependent only upon the magnitude of melter entrainment losses. Although a deep bed washable filter has been effective in removing submicron aerosols from the process exhaust, high performance has only been achieved under dry operating conditions. The melter's idling state does not appear to place additional demands upon the off-gas treatment system

  15. GTS Duratek, Phase I Hanford low-level waste melter tests: 100-kg melter offgas report

    Eaton, W.C.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100-kg melter offgas report on testing performed by GTS Duratek, Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The document contains the complete offgas report on the 100-kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the GTS Duratek, Phase I Hanford Low-Level Waste Melter Tests: Final Report (WHC-SD-WM-VI-027)

  16. Final flush of the shielded cells melter

    Marshall, K.M.; Fellinger, T.L.; Harbour, J.R.

    1997-01-01

    A flush of the Savannah River Technology Center (SRTC) Shielded Cells melter was performed after the completion of a campaign to vitrify loaded crystalline silicotitanate (CST) ion exchange medium. The purpose of the flush was to lower levels of radioisotopes accumulated during the campaign and to lower the level of titanium dioxide present in the glass. This in turn would ready the melter for future campaigns involving the Defense Waste Processing Facility (DWPF)

  17. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  18. Control of radioactive waste-glass melters

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  19. Thermal effects of electrically conductive deposits in melter

    Choi, I.G.; Bickford, D.F.; Carter, J.T.

    1992-01-01

    The radioactive waste processed by the Defense Waste Processing Facility melter at the Savannah river Site contains noble metal fission-products. Operation of waste-glass melters treating commercial power reactor wastes indicates that accumulation of noble metals on melter floors can lead to distortion of electric heating patterns, loss of power, and possible electrode damage. Changes in melter geometry have been developed in Japan and Germany to minimize these effects. The two existing melters for the US Department of Energy's Defense Waste Processing Facility were designed in 1982, before this effect was known or had been characterized. Modeling and pilot scale tests are being conducted in the Integrated DWPF melter system to determine if the effect is significant for melters processing defense wastes, and if the effect can be diagnosed and corrected without significant damage or changes to the melter design. This document provides a discussion of these tests

  20. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm 2 -h

  1. Determination of halogen content in glass for assessment of melter decontamination factors

    Goles, R.W.

    1996-03-01

    Melter decontamination factor (DF) values for the halogens (fluorine, chlorine, and iodine) are important to the Hanford Waste Vitrification Plant (HWVP) process because of the potential influence of DF on secondary-waste recycle strategies (fluorine and chlorine) as well as its impact on off-gas emissions (iodine). This study directly establishes the concentrations of halides-in HWVP simulated reference glasses rather than relying on indirect off-gas data. For fluorine and chlorine, pyrohydrolysis coupled with halide (ion chromatographic) detection has proven to be a useful analytical approach suitable for glass matrices, sensitive enough for the range of halogens encountered, and compatible with remote process support applications. Results obtained from pyrohydrolytic analysis of pilot-scale ceramic melter (PSCM) -22 and -23 glasses indicate that the processing behavior of fluorine and chlorine is quite variable even under similar processing conditions. Specifically, PSCM-23 glass exhibited a ∼90% halogen (F and Cl) retention efficiency, while only 20% was incorporated in PSCM-22 glass. These two sets of very dissimilar test results clearly do not form a sufficient basis for establishing design DF values for fluorine and chlorine. Because the present data do not provide any new halogen volatility information, but instead reconfirm the validity of previously obtained offgas derived values, melter DF values of 4, 2, and 1 for fluorine, chlorine, and iodine, respectively, are recommended for adoption; these values were conservatively established by a team of responsible engineers at Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) on the basis of average behavior for many comparable melter tests. In the absence of further HWVP process data, these average melter DFs are the best values currently available

  2. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    Smith, M.E.; Bickford, D.F.

    1997-01-01

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  3. Vitrification of HLW in cold crucible melter

    Bordier, G.

    2005-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel the CEA (French Atomic Energy Commission), COGEMA (Industrial Operator), and SGN (COGEMA's Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities: the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed remotely in one of the R7 vitrification

  4. Detailed design data package: 3.1a-Film cooler pressure drop data; Item 3.2a - SBS packing selection; Item 3.2b, 3.2c - Pressure drop data for SBS distribution plate; and Item 3.2e - SBS distribution plate and liquid risers. PHTD pilot-scale melter testing system cost account milesonte 1.2.2.04.15A

    Whyatt, G.A.; Anderson, L.D.; Evans, J. II.

    1996-03-01

    This data package transmits information collected on the Liquid-Fed Ceramic Melter (LFCM) offgas system prior to melter feeding operations. Injection of steam to the melter plenum was used to simulate feeding of the melter. Steam surge cases were studied under steady-state surge conditions. Dynamic surges will be examined under data needs. The Fluor data needs included two blank tables requesting specific information for data needs 3.1 and 3.2. These tables are provided in Tables S.1 and S.2 below with the requested information filled in

  5. DWPF Glass Melter Technology Manual: Volume 3

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  6. Cylindrical Induction Melter Modicon Control System

    Weeks, G.E.

    1998-04-01

    In the last several years an extensive R ampersand D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM)

  7. DWPF Glass Melter Technology Manual: Volume 3

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  8. Americium/curium bushing melter drain tests

    Smith, M.E.; Hardy, B.J.; Smith, M.E.

    1997-01-01

    Americium and curium were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. They have been stored in a nitric acid solution in an SRS reprocessing facility for a number of years. Vitrification of the americium/curium (Am/Cm) solution will allow the material to be safely stored or transported to the DOE Oak Ridge Reservation. Oak Ridge is responsible for marketing radionuclides for research and medical applications. The bushing melter technology being used in the Am/Cm vitrification research work is also under consideration for the stabilization of other actinides such as neptunium and plutonium. A series of melter drain tests were conducted at the Savannah River Technology Center to determine the relationship between the drain tube assembly operating variables and the resulting pour initiation times, glass flowrates, drain tube temperatures, and stop pour times. Performance criteria such as ability to start and stop pours in a controlled manner were also evaluated. The tests were also intended to provide support of oil modeling of drain tube performance predictions and thermal modeling of the drain tube and drain tube heater assembly. These drain tests were instrumental in the design of subsequent melter drain tube and drain tube heaters for the Am/Cm bushing melter, and therefore in the success of the Am/Cm vitrification and plutonium immobilization programs

  9. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  10. Application of electrical resistance tomography to glass melter

    Ichijo, Noriaki; Sakai, Taiji; Fujiwara, Hiroaki; Matsuno, Shinsuke; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru

    2015-01-01

    This paper describes the application of electrical resistance tomography (ERT) to glass melter to monitor the accumulation of the noble metals. To minimize the modification of the melter, existing structures such as thermowells and heating electrodes are used as electrodes of ERT, and the number of electrodes is much fewer than the conventional method. Therefore, Expanding Combination Data Acquisition method (ECDA) is developed and applies to the glass melter. ECDA method uses adjacent method and opposite method as a data acquisition and current injection electrodes are used as voltage measurement electrodes to increase the number of the data. In addition, conductivity images are reconstructed only near the wall to improve the resolution. As a result of applying to the glass melter, the conductivity change inside the melter caused by temperature can be monitored. Furthermore, lower voltage is measured in case of containing the noble metals inside the melter. Therefore, the potential as a monitoring method be confirmed. (author)

  11. Program plan: DWPF/HLWDP stirred Melter Program Plan

    Smith, M.E.

    1994-01-01

    Slurry Fed Melters (SFM) have been developed in the United States, Europe, and Japan for the conversion of high-level radioactive waste (HLW) to borosilicate glass for permanent disposal. The newest design, the stirred melter, combines the high production rates and high glass quality features of the Joule-heated melters with the low-cost, compact, simple maintenance features of the pot melters. However, further engineering design and demonstrations are needed to operate the stirred melter on a large scale. This document outlines the program which develops a full scale stirred melter for the DWPF (240 pph), and provides a basis which will allow further scale-up of the technology for use in the Hanford High Level Waste Disposal Program (HLWDP) for up to four times the reference capacity

  12. Immobilization of high-level defense waste in a slurry-fed electric glass melter

    Brouns, R.A.; Mellinger, G.B.; Nelson, T.A.; Oma, K.H.

    1980-11-01

    Scoping studies have been performed at the Pacific Northwest Laboratory related to the direct liquid-feeding of a generic high-level defense waste to a joule-heated ceramic melter. Tests beginning on the laboratory scale and progressing to full-scale operation are reported. Laboratory work identified the need for a reducing agent in the feed to help control the foaming tendencies of the waste glass. These tests also indicated that suspension agents were helpful in reducing the tendency of solids to settle out of the liquid feed. Testing was then moved to a larger pilot-scale melter (designed for approx. 2.5 kg/h) where verification of the flowsheet examined in the lab was accomplished. It was found that the reducing agent controlled foaming and did not result in the precipitation of metals. Pumping problems were encountered when slurries with higher than normal solids content were fed. A demonstration (designed for approx. 50 kg/h) in a full-scale melter was then made with the tested flowsheet; however, the amount of reducing agent had to be increased. In addition, it was found that feed control needed further development; however, steady-state operation was achieved giving encouraging results on process capacities. During steady-state operation, ruthenium losses to the offgas system averaged less than 0.16%, while cesium losses were somewhat higher, ranging from 0.91 to 24% and averaging 13%. Particulate decontamination factors from feed to offgas in the melter ranged from 5 x 10 2 to greater than 10 3 without any filtration or treatment. Approximately 1050 kg of glass was produced from 2900 L of waste at rates up to 40 kg/h

  13. Maximum organic carbon limits at different melter feed rates (U)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  14. Rheology enhancement for remediated PX6 melter feed

    Marek, J.C.; Eibling, R.E.

    1996-01-01

    This document is referenced in WSRC-TR-94-0556. This memorandum summarizes results of experimental work performed on the original IDMS PX6 melter feed, the remediated IDMS PX6 melter feed, and melter feeds produced in a laboratory simulation to duplicate the IDMS remediation as well as the experimental results on the caustic treatment to enhance the rheology. Characterization of the products of excess caustic addition and what steps to take if excess caustic is inadvertently added to the IDMS PX6 melter feed are also discussed

  15. Control of DWPF melter feed composition

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility

  16. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  17. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  18. Letter report: Cold crucible melter assessment

    Elliott, M.L.

    1996-03-01

    One of the activities of the PNL Vitrification Technology Development (PVTD) Project is to assist the Tank Waste Remediation Systems (TWRS) Program in determining which melter systems should be performance tested for potential implementation in the high-level waste (HLW) vitrification plant. The Richland Operations Office (RL) has recommended that the Cold Crucible Melter (CCM) be evaluated as a candidate ''next generation'' melter. As a result, the CCM System Evaluation cost account was established under the PVTD Project so that the CCM could be initially assessed on a high-priority basis. This letter report summarizes a brief initial review and assessment of the CCM. Using the recommendations made in this document, Westinghouse Hanford Company (WHC) and RL will make a decision regarding the urgency of performance testing the CCM. If the decision is favorable, a subcontract will be negotiated for performance testing of a CCM using Hanford HLW simulants in a pilot-scale facility. Because of the aggressive nature of the schedule, the CCM evaluation was not rigorous. The evaluation consisted of a literature review and interviews with proponents of the technology during a recent trip to France. This letter report summarizes the evaluation and makes recommendations regarding further work in this area

  19. Two new research melters at the Savannah River Technology Center

    Gordon, J.R.; Coughlin, J.T.; Minichan, R.L.; Zamecnik, J.R.

    2000-01-01

    The Savannah River Technology Center (SRTC) is a US Department of Energy (DOE) complex leader in the development of vitrification technology. To maintain and expand this SRTC core technology, two new melter systems are currently under construction in SRTC. This paper discusses the development of these two new systems, which will be used to support current as well as future vitrification programs in the DOE complex. The first of these is the new minimelter, which is a joule-heated glass melter intended for experimental melting studies with nonradioactive glass waste forms. Testing will include surrogates of Defense Waste processing Facility (DWPF) high-level wastes. To support the DWPF testing, the new minimelter was scaled to the DWPF melter based on melt surface area. This new minimelter will replace an existing system and provide a platform for the research and development necessary to support the SRTC vitrification core technology mission. The second new melter is the British Nuclear Fuels, Inc., research melter system (BNFL melter), which is a scaled version of the BNFL low-activity-waste (LAW) melter proposed for vitrification of LAW at Hanford. It is designed to process a relatively large amount of actual radiative Hanford tank waste and to gather data on the composition of off-gases that will be generated by the LAW melter. Both the minimelter and BNFL melter systems consist of five primary subsystems: melter vessel, off-gas treatment, feed, power supply, and instrumentation and controls. The configuration and design of these subsystems are tailored to match the current system requirements and provide the flexibility to support future DOE vitrification programs. This paper presents a detailed discussion of the unique design challenges represented by these two new melter systems

  20. DC plasma arc melter technology for waste vitrification

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.

    1995-01-01

    This paper describes the features and benefits of a breakthrough DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Furnace system, now commercially available, is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by the industrial society, worldwide, has prompted development of technologies to address the problem. For the most part these technologies have resulted in niche solutions with limited application. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are commercially available in sizes from 50 kg/batch or 250--3,000 kg/hr on a continuous feed basis. This paper examines the design and operating benefits of a DC Plasma Arc Melter System

  1. Hanford high-level waste melter system evaluation data packages

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  2. Control of high level radioactive waste-glass melters

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  3. Melter operation results in chemical test at Rokkasho Reprocessing Plant

    Kanehira, Norio; Yoshioka, Masahiro; Muramoto, Hitoshi; Oba, Takaaki; Takahashi, Yuji

    2005-01-01

    Chemical Test of the glass melter system of the Vitrification Facility at Rokkasho Reprocessing Plant (RRP) was performed. In this test, basic performance of heating-up of the melter, melting glass, pouring glass was confirmed using simulated materials. Through these tests and operation of all modes, good results were gained, and training of operators was completed. (author)

  4. DC graphite plasma arc melter technology for waste vitrification

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.; Wilver, P.

    1995-01-01

    This paper describes the features and benefits of a DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Melter system is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by our industrial society, worldwide, has prompted development of technologies to address the problem. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters; operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, reduce gaseous emissions, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are available in sizes from 50 kg/batch or 250-3,000 kg/hr on a continuous basis

  5. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  6. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  7. Cullet Manufacture Using the Cylindrical Induction Melter

    Miller, D. H.

    2000-01-01

    The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01

  8. Feed process studies: Research-Scale Melter

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  9. Feed process studies: Research-Scale Melter

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ''channeling'' which allowed the top section to cool, reducing production rates

  10. Maximum total organic carbon limit for DWPF melter feed

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  11. Efficient particulate scrubber for glass melter off-gas

    Wright, G.T.

    1983-01-01

    Operation of joule-heated, continuous slurry-fed melters has demonstrated that off-gas aerosols are generated by entrainment of feed slurry and vaporization of volatile species from the melt. Effective off-gas stream decontamination for these aerosols can be obtained by utilizing a suitably designed and operated wet scrubber system. Results are presented for performance tests conducted with an air aspirating-type venturi scrubber processing a simulated melter off-gas aerosol. Mass overall removal efficiencies ranged from 99.5 to 99.8%. Details of the testing program and applications for melter off-gas system design are discussed

  12. Energy Efficient Glass Melting - The Next Generation Melter

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  13. Improvement of melter off-gas design for commercial HALW vitrification facility

    Ohno, A.; Kitamura, M.; Yamanaka, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan); Yoshioka, M.; Endo, N.; Asano, N. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  14. Improvement of melter off-gas design for commercial HALW vitrification facility

    Ohno, A.; Kitamura, M.; Yamanaka, T.; Yoshioka, M.; Endo, N.; Asano, N.

    2001-01-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  15. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  16. High-Level Waste Melter Study Report

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  17. Next Generation Melter Optioneering Study - Interim Report

    Gray, M.F.; Calmus, R.B.; Ramsey, G.; Lomax, J.; Allen, H.

    2010-01-01

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D 2 0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  18. Freeze and restart of the DWPF Scale Glass Melter

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  19. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.

  20. Numerical analysis of historical change of the electric resistance in the TVF glass melter

    Kawamura, Takumi; Sakai, Takaaki

    2004-09-01

    Concerning to the TVF glass melter in the Tokai reprocessing center, it is being planned to detect the deposition of the noble metals in a glass melter and remove them periodically to extend the melter lifetime. Numerical analysis has been performed for the electric resistance evaluation in order to estimate the sedimentation situation and current density distribution from the melter resistance. Electric field analysis was carried out by using MAGNA-FIM code and the influence factors to melter resistance was evaluated concerning to the sedimentation situation and glass temperature. In addition, transitions of the sedimentation and melter resistances were estimated from the operation history of the TVF-1 melter. As a result, the followings were obtained. From the evaluation of the influence factors to melter resistance, it turns out that the volume and the noble metals concentration of a sediment influence notably to melter resistance when the sediment contacts to electrodes. The sediment temperature at the melter bottom has small sensitivity in case of the non-contact situation. The glass temperature in the melter upper part, however, has big sensitivity in melter resistance irrespective of the existence of contact. Based on the above sensitivity evaluation, Numerical analysis was carried out supposing the sedimentation process which suits to a melter resistance fall during the operation history of the TVF-1 melter. As input conditions, the voltage between electrodes and the temperature in the melter were referred from the operation history data. It was assumed that the noble metals concentration in a sediment increased constantly for every operation batch. As a result, the characteristics of melter resistance history was reproduced successfully in general. Thereby, it became prospective to predict the sedimentation situation by using the new resistance analysis model for the glass melter. (author)

  1. U.S. Bureau of Mines, phase I Hanford low-level waste melter tests: Melter offgas report

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC subcontract number MMI-SVV-384216. The document contains the complete offgas report for the first 24-hour melter test (WHC-1) as prepared by Entropy Inc. A summary of this report is also contained in the''U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Final Report'' (WHC-SD-WM-VI-030)

  2. Glass Ceramic Formulation Data Package

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  3. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP contract requirements. The WTP's overall mission will require the immobilization oftank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste-loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

  4. Control of high-level radioactive waste-glass melters

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  5. Graphite electrode arc melter demonstration Phase 2 test results

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O'Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau's Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of open-quotes as-receivedclose quotes heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process

  6. Graphite electrode arc melter demonstration Phase 2 test results

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  7. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  8. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  9. Impact Of Melter Internal Design On Off-Gas Flammability

    Choi, A. S.; Lee, S. Y.

    2012-01-01

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good

  10. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data

  11. Savannah River Laboratory's operating experience with glass melters

    Brown, F.H.; Randall, C.T.; Cosper, M.B.; Moseley, J.P.

    1982-01-01

    The Department of Energy, with recommendations from the Du Pont Company, is proposing that a Defense Waste Processing Facility be constructed at the Savannah River Plant to immobilize radioactive The immobilization process is designed around the solidification of waste sludge in borosilicate glass. The Savannah River Laboratory, who is responsible for the solidification process development program, has completed an experimental program with one large-scale glass melter and just started up another melter. Experimental data indicate that process requirements can easily be met with the current design. 7 figures

  12. DWPF Melter No.2 Prototype Bus Bar Test Report

    Gordon, J.

    2003-01-01

    Characterization and performance testing of a prototype DWPF Melter No.2 Dome Heater Bus Bar are described. The prototype bus bar was designed to address the design features of the existing system which may have contributed to water leaks on Melter No.1. Performance testing of the prototype revealed significant improvement over the existing design in reduction of both bus bar and heater connection maximum temperature, while characterization revealed a few minor design and manufacturing flaws in the bar. The prototype is recommended as an improvement over the existing design. Recommendations are also made in the area of quality control to ensure that critical design requirements are met

  13. Design and operation of small-scale glass melters for immobilizing radioactive waste

    Plodinec, M.J.; Chismar, P.H.

    1980-01-01

    A small-scale (3-kg), joule-heated, continuous melter has been designed to study vitrification of Savannah River Plant radioactive waste. The first melter built has been in nonradioactive service for nearly three years. This melter had Inconel 690 electrodes and uses Monofrax K-3 for the contact refractory. Several problems seem in this melter have had an impact on the design of a full-scale system. Problems include uncontrolled electric currents passing through the throat, and formation of a slag layer at the bottom of the melter. The performance of a similar melter in a low-maintenance, radioactive environment is also described. Problems such as halide refluxing, and hot streaking, first observed in this melter, are also discussed

  14. Vitrification of HLLW Surrogate Solutions Containing Sulfate in a Direct-Induction Cold Crucible Melter

    Tronche, E.; Lacombe, J.; Ledoux, A.; Boen, R.; Ladirat, C.H.

    2009-01-01

    Efforts were made in the People's Republic of China to solidify legacy high level liquid waste (HLLW) by the Liquid-Fed Ceramic Melter process (LFCM) in the 1990's. This process was to be a continuous process with high throughput as in the French Marcoule Vitrification Plant (AVM) or the LFCM. In this context, the CEA (Commissariat a l'Energie Atomique is a French government-funded technological research organization) suggests the Cold Crucible Induction Melter (CCIM) technology that has been developed by the CEA since the 1980's to improve the performance of the vitrification process. In this context a series of vitrification tests has been carried out in a CCIM. CEA and AREVA have designed an integrated platform based on the CCIM technology on a sufficient scale to be used for demonstration programs of the one-step process. In 2003 a test was carried out at Marcoule in southern France on simulated HLLW with high sulfur content. In order to ensure the tests performed at Marcoule were consistent with the Chinese waste-forms, the glass frit was supplied by a Chinese Industry. The CCIM facility is described in detail, including process instrumentation. The test run is also described, including how the solution was directly fed on the surface of the molten glass. A maximum capacity was determined according to the applied process parameters including the high operating temperature. The electrical power supply characteristics are detailed and a glass mass balance is also presented covering more than seven hundred kilograms of glass produced in a sixty-hour test run. (authors)

  15. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  16. Americium/Curium Melter 2A Pilot Tests

    Smith, M.E.; Fellinger, A.P.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T.K.; Stone, M.E.; Witt, D.C.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. To this end, the Am/Cm Melter 2A pilot system, a full-scale non- radioactive pilot plant of the system to be installed at the reprocessing facility, was designed, constructed and tested. The full- scale pilot system has a frit and aqueous feed delivery system, a dual zone bushing melter, and an off-gas treatment system. The main items which were tested included the dual zone bushing melter, the drain tube with dual heating and cooling zones, glass compositions, and the off-gas system which used for the first time a film cooler/lower melter plenum. Most of the process and equipment were proven to function properly, but several problems were found which will need further work. A system description and a discussion of test results will be given

  17. Glass melter assembly for the Hanford Waste Vitrification Plant

    Chen, A.E.; Russell, A.; Shah, K.R.; Kalia, J.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is designed to solidify high level radioactive waste by converting it into stable borosilicate after mixing with glass frit and water. The heart of this conversion process takes place in the glass melter. The life span of the existing melter is limited by the possible premature failure of the heater assembly, which is not remotely replaceable, in the riser and pour spout. A goal of HWVP Project is to design remotely replaceable riser and pour spout heaters so that the useful life of the melter can be prolonged. The riser pour spout area is accessible only by the canyon crane and impact wrench. It is also congested with supporting frame members, service piping, electrode terminals, canister positioning arm and other various melter components. The visibility is low and the accessibility is limited. The problem is further compounded by the extreme high temperature in the riser core and the electrical conductive nature of the molten glass that flows through it

  18. CERAMIC WASTE FORM DATA PACKAGE

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  19. High-Temperature Corrosion Study for the RPP Low Activity Waste Melter

    Marshall, K.M.

    2003-01-01

    The River Protection Program (RPP) low activity waste (LAW) melter design incorporates a series of bubblers used to increase convection in the molten glass. Through runs of a pilot melter at Duratek, Inc. in Columbia, Maryland, the bubblers have been identified as the major component limiting LAW melter availability, requiring frequent replacement due to corrosive degradation, primarily at the melt line. Laboratory experiments were performed to evaluate the performance of several alloys and coatings in simulated RPP low activity waste melter vapor space and molten glass environments. The performance of the alloys and coatings was studied in order to advance our understanding of how these materials react at the melt/air interface inside the melter. The ultimate goal was to identify a material with superior performance compared to that of Inconel 693, and to deliver a bubbler sub-assembly made of that material to the RPP LAW melter pilot facility for further testing

  20. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029)

  1. Electrical service and controls for Joule heating of a defense waste experimental glass melter

    Erickson, C.J.; Haideri, A.Q.

    1983-01-01

    Vitrification of radioactive liquid waste in a glass matrix is a leading candidate for long-term storage of high-level waste. This paper describes the electrical service and control system for an experimental electrically heated, nonradioactive glass melter installed at Savannah River Laboratory. Data accumulated, and design/operating experience acquired in operating this melter, are being used to design a modified melter to be installed in a processing area for use with radioactive materials

  2. Redox control of electric melters with complex feed compositions. Part I: analytical methods and models

    Bickford, D.F.; Diemer, R.B. Jr.

    1985-01-01

    The redox state of glass from electric melters with complex feed compositions is determined by balance between gases above the melt, and transition metals and organic compounds in the feed. Part I discusses experimental and computational methods of relating flowrates and other melter operating conditions to the redox state of glass, and composition of the melter offgas. Computerized thermodynamic computational methods are useful in predicting the sequence and products of redox reactions and in assessing individual process variations. Melter redox state can be predicted by combining monitoring of melter operating conditions, redox measurement of fused melter feed samples, and periodic redox measurement of product. Mossbauer spectroscopy, and other methods which measure Fe(II)/Fe(III) in glass, can be used to measure melter redox state. Part II develops preliminary operating limits for the vitrification of High-Level Radioactive Waste. Limits on reducing potential to preclude the accumulation of combustible gases, accumulation of sulfides and selenides, and degradation of melter components are the most critical. Problems associated with excessively oxidizing conditions, such as glass foaming and potential ruthenium volatility, are controlled when sufficient formic acid is added to adjust melter feed rheology

  3. Melter system technology testing for Hanford Site low-level tank waste vitrification

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  4. The behavior and effects of the noble metals in the DWPF melter system

    Hutson, N.D.; Smith, M.E.

    1992-01-01

    Fission-product noble metals have caused severe operating problems in numerous worldwide waste vitrification facilities. These dense, highly conductive noble metals have tended to accumulate on the floor of joule-heated glass melters causing electrical distortions which have, in some occurrences, rendered the melter inoperable. A pilot scale vitrification research facility at the U.S. Department of Energy's Savannah River Laboratory has been operated for more than a year with simulated feed streams containing noble metals. In this paper the behavior of these noble metals in the melter system and final glass product and their effects on the scaled DWPF-type melter are discussed

  5. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  6. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  7. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  8. Hazards analysis of TNX Large Melter-Off-Gas System

    Randall, C.T.

    1982-03-01

    Analysis of the potential safety hazards and an evaluation of the engineered safety features and administrative controls indicate that the LMOG System can be operated without undue hazard to employees or the public, or damage to equipment. The safety features provided in the facility design coupled with the planned procedural and administrative controls make the occurrence of serious accidents very improbable. A set of recommendations evolved during this analysis that was judged potentially capable of further reducing the probability of personnel injury or further mitigating the consequences of potential accidents. These recommendations concerned areas such as formic acid vapor hazards, hazard of feeding water to the melter at an uncontrolled rate, prevention of uncontrolled glass pours due to melter pressure excursions and additional interlocks. These specific suggestions were reviewed with operational and technical personnel and are being incorporated into the process. The safeguards provided by these recommendations are discussed in this report

  9. Remote viewing of melter interior Defense Waste Processing Facility

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  10. High-level waste melter alternatives assessment report

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  11. High-level waste melter alternatives assessment report

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  12. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  13. Startup and operation of a plant-scale continuous glass melter for vitrification of Savannah River Plant simulated waste

    Willis, T.A.

    1980-01-01

    The reference process for disposal of radioactive waste from the Savannah River Plant is vitrification of the waste in borosilicate glass in a continuous glass melter. Design, startup, and operation of a plant-scale developmental melter system are discussed

  14. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  15. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  16. The solidification of high-level liquid wastes in glass and ceramics

    Krause, H.

    1989-01-01

    In spent nuclear fuel reprocessing a highly radioactive waste solution is produced. It must be converted into a solid product, which binds the radionuclides, be hydrolytic as well as radiation and temperature resistant. Borosilicate glasses fulfil these requirements and, jointly with the barriers of a repository, they prevent inadmissible amounts of radionuclides from escaping into the biocycle. Two techniques were developed for industrial-scale vitrification: a rotary kiln calciner combined with an induction heated metallic melter and the electrode heated ceramic melters. Both techniques were already demonstrated on an industrial scale and under radioactive conditions. (AVM, Marcoule and PAMELA, Mol). (orig./MM) [de

  17. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS, TEST PLAN 09T1690-1

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.; Joseph, I.

    2009-01-01

    glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m 2 and depth of ∼1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP contract requirements. The WTP's overall mission will require the immobilization oftank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste-loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

  18. Results of a pilot scale melter test to attain higher production rates

    Elliott, M.L.; Perez, J.M. Jr.; Chapman, C.C.

    1991-01-01

    A pilot-scale melter test was completed as part of the effort to enhance glass production rates. The experiment was designed to evaluate the effects of bulk glass temperature and feed oxide loading. The maximum glass production rate obtained, 86 kg/hr-m 2 , was over 200% better than the previous record for the melter used

  19. Startup of a Joule-heated glass melter with a graphite slurry

    Allen, T.L.; Porter, M.A.; Routt, K.R.

    1984-01-01

    Startup of a Joule-heated glass melter using a graphite slurry as a conducting medium was demonstrated. This technique can be used for the initial startup and for the restart of a melter used for vitrifying high-level radioactive waste. Theory, physical property data, and a demonstration test are reported

  20. Hanford low-level vitrification melter testing -- Master list of data submittals

    Hendrickson, D.W.

    1995-01-01

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes

  1. Maximum total organic carbon limits at different DWPF melter feed maters (U)

    Choi, A.S.

    1996-01-01

    The document presents information on the maximum total organic carbon (TOC) limits that are allowable in the DWPF melter feed without forming a potentially flammable vapor in the off-gas system were determined at feed rates varying from 0.7 to 1.5 GPM. At the maximum TOC levels predicted, the peak concentration of combustible gases in the quenched off-gas will not exceed 60 percent of the lower flammable limit during a 3X off-gas surge, provided that the indicated melter vapor space temperature and the total air supply to the melter are maintained. All the necessary calculations for this study were made using the 4-stage cold cap model and the melter off-gas dynamics model. A high-degree of conservatism was included in the calculational bases and assumptions. As a result, the proposed correlations are believed to by conservative enough to be used for the melter off-gas flammability control purposes

  2. Development of HWVP melter/turntable components for canyon-remote maintenance and replacement

    Siemens, D.H.; Beary, M.M.; Berger, D.N.; Heath, W.O.; Larson, D.E.

    1985-03-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: (1) a turntable for handling waste canisters under the melter; (2) a removable discharge cone in the melter overflow section; (3) a thermocouple jumper that extends into a shielded cell; (4) remote instrument and electrical connectors; (5) remote, mechanical, and heat transfer aspects of the melter glass overflow section; (6) a reamer to clean out plugged nozzles in the melter top; (7) a closed circuit camera to view the melter interior; and (8) a device to retrieve samples of the glass product. 14 figs

  3. Improved mixing and sampling systems for vitrification melter feeds

    Ebadian, M.A.

    1998-01-01

    This report summarizes the methods used and results obtained during the progress of the study of waste slurry mixing and sampling systems during fiscal year 1977 (FY97) at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The objective of this work is to determine optimal mixing configurations and operating conditions as well as improved sampling technology for defense waste processing facility (DWPF) waste melter feeds at US Department of Energy (DOE) sites. Most of the research on this project was performed experimentally by using a tank mixing configuration with different rotating impellers. The slurry simulants for the experiments were prepared in-house based on the properties of the DOE sites' typical waste slurries. A sampling system was designed to withdraw slurry from the mixing tank. To obtain insight into the waste mixing process, the slurry flow in the mixing tank was also simulated numerically by applying computational fluid dynamics (CFD) methods. The major parameters investigated in both the experimental and numerical studies included power consumption of mixer, mixing time to reach slurry uniformity, slurry type, solids concentration, impeller type, impeller size, impeller rotating speed, sampling tube size, and sampling velocities. Application of the results to the DWPF melter feed preparation process will enhance and modify the technical base for designing slurry transportation equipment and pipeline systems. These results will also serve as an important reference for improving waste slurry mixing performance and melter operating conditions. These factors will contribute to an increase in the capability of the vitrification process and the quality of the waste glass

  4. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    Hendrickson, D.W.

    1995-01-01

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences

  5. Yield Stress Reduction of DWPF Melter Feed Slurries

    Stone, M.E.; Smith, M.E.

    2007-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame

  6. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  7. Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter

    Imrich, K.J.

    2000-01-01

    A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture

  8. PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)

    Hansen, E

    2005-03-31

    The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

  9. Portfolio: Ceramics.

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  10. Compilation of information on modeling of inductively heated cold crucible melters

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler's discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE

  11. Melter Throughput Enhancements for High-Iron HLW

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  12. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  13. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Stegen, G.E.; Wilson, C.N.

    1996-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described

  14. Startup of a Joule-heated glass melter with a graphite slurry

    Allen, T.L.; Routt, K.R.; Porter, M.A.

    1983-01-01

    This paper discusses the theoretical equations and physical and electrical property data of various graphite slurries for starting up a glass melter. An application test is also included to demonstrate the graphite slurry startup technique

  15. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  16. Electrical power supply and controls for a remotely operated glass melter for nuclear waste

    Haideri, A.Q.

    1985-01-01

    An electrical power supply, controls and instruments used for a joule heated glass melter for nuclear waste are discussed. Remotely replaceable interconnection wiring assemblies for power, controls and instruments are also described

  17. Investigation of U3O8 immobilization in the GP-91 borosilicate glass by induction melter with a cold crucible (CCIM)

    Matyunin, Y.I.; Demin, A.V.; Smelova, T.V.; Yudintsev, S.V.; Lapina, M.I.

    1997-01-01

    One of the most promising and intensively developed methods for the solidification of high-level wastes is their vitrification with the use of a cold crucible induction melter (CCIM), which offers a number of advantages over ceramic melter. This work is concerned with comparison studies on the behavior of uranium in vitreous borosilicate materials synthesized by the traditional technique (melting in muffle furnaces) and CCIM method. The incorporation of uranium oxide U 3 O 8 into the GP-91 borosilicate glass with the use of CCIM technology is investigated. The limiting solubility of uranium in the GP-91 borosilicate glass is evaluated. The phase composition of precipitated dispersed particles based on uranium is determined. Some physicochemical properties of synthesized materials are explored. Investigations into the behavior of uranium in borosilicate glass prepared in the CCIM show a feasibility to synthesize the X-ray amorphous homogeneous borosilicate glasses incorporating as much as 25 - 28 wt% uranium, which is 4 - 5 times larger than that in glasses obtained by the traditional method. (author)

  18. Nuclear waste glass melter design including the power and control systems

    Chapman, C.C.

    1982-01-01

    An energy balance of a joule-heated nuclear waste glass melter is used to discuss the problems in the design of the melter geometry and in the specifications of the power and control systems. The relationships between geometry, electrode current density, production rate, load voltage, and load power are presented graphically. The influence of liquid feeding on the surface of the glass and the variability of nuclear waste glass on the design and control during operation is discussed. 10 refs

  19. EFFECT OF MELTER-FEED-MAKEUP ON VITRIFICATION PROCESS

    Kruger, A.A.; Hrma, P.R.; Schweiger, M.J.; Humrickhouse, C.J.; Moody, J.A.; Tate, R.M.; Tegrotenhuis, N.E.; Arrigoni, B.M.; Rodriguez, C.P.

    2009-01-01

    Increasing the rate of glass processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will allow shortening the life cycle of waste cleanup at the Hanford Site. While the WTP melters have approached the limit of increasing the rate of melting by enhancing the heat transfer rate from molten glass to the cold cap, a substantial improvement can still be achieved by accelerating the feed-to-glass conversion kinetics. This study investigates how the feed-to-glass conversion process responds to the feed makeup. By identifying the means of control of primary foam formation and silica grain dissolution, it provides data needed for a meaningful and economical design of large-scale experiments aimed at achieving faster melting

  20. Settling of Spinel in A High-Level Waste Glass Melter

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters

  1. U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report

    Eaton, W.C.; Oden, L.L.; O'Connor, W.K.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032)

  2. U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report

    Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States); Oden, L.L.; O`Connor, W.K. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032).

  3. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  4. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    NONE

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  5. Advanced Ceramics

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  6. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    Kruger, A A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Callow, Richard A. [The Catholic University of America, Washington, DC (United States); Abramowitz, Howard [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Brandys, Marek [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

  7. Sampling data summary for the ninth run of the Large Slurry Fed Melter

    Sabatino, D.M.

    1983-01-01

    The ninth experimental run of the Large Slurry Fed Melter (LSFM) was completed June 27, 1983, after 63 days of continuous operation. During the run, the various melter and off-gas streams were sampled and analyzed to determine melter material balances and to characterize off-gas emissions. Sampling methods and preliminary results were reported earlier. The emphasis was on the chemical analyses of the off-gas entrainment, deposits, and scrubber liquid. The significant sampling results from the run are summarized below: Flushing the Frit 165 with Frit 131 without bubbler agitation required 3 to 4.5 melter volumes. The off-gas cesium concentration during feeding was on the order of 36 to 56 μgCs/scf. The cesium concentration in the melter plenum (based on air in leakage only) was on the order of 110 to 210 μgCs/scf. Using <1 micron as the cut point for semivolatile material 60% of the chloride, 35% of the sodium and less than 5% of the managanese and iron in the entrainment are present as semivolatiles. A material balance on the scrubber tank solids shows good agreement with entrainment data. An overall cesium balance using LSFM-9 data and the DWPF production rate indicates an emission of 0.11 mCi/yr of cesium from the DWPF off-gas. This is a factor of 27 less than the maximum allowable 3 mCi/yr

  8. Enhancement of the life of refractories through the operational experience of plasma torch melter

    Moon, Young Pyo [Technology Institute, Korea Radioactive waste Agency (KORAD), Daejeon (Korea, Republic of); Choi, Jaang Young [Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

  9. Off-gas chemistry study of melter feed by Springborn Laboratories

    Crow, K.R.

    1985-01-01

    The purpose of the off-gas chemistry study of melter feed samples was to support and help substantiate glass melter thermochemistry models developed for the DWPF. Both sludge-only and sludge-precipitate feed samples were analyzed. Each slurry sample was pyrolyzed at temperatures from 150 to 1000 0 C in air and inert atmospheres, and the head space products were analyzed by chromatographic and mass spectrometric methods. Thermogravimetric, differential scanning calorimetric and Fourier transform infrared analyses were also performed on each sample. There were no unusually high exothermic reactions that would be cause for concern in the DWPF melter. Results for two types of sludge-precipitate feed were compared. One type contained simulated precipitate hydrolysis aqueous (PHA) product as fed to the SCM-2 melter. The second type contained PHA from the lab-scale acid hydrolysis reactor in 677-T. A major difference between the two types was a small, but distinct, presence of higher aromatics in gas from feed with reactor-produced PHA. This feed also evolved more CO and CO 2 than feed with simulated PHA at high pyrolytic temperatures (>750 0 C). Recent analyses have identified the higher boiling aromatics in reactor-produced PHA as primarily diphenylamine and p-terphenyl. These compounds will be included in future PHA simulations that are fed to research melters. Under an inert atmosphere, benzene and phenol were the two most abundant organics evolved during pyrolysis of sludge-precipitate feed

  10. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  11. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    Kruger, A A.; Joseph, Innocent; Matlack, Keith S.; Callow, Richard A.; Abramowitz, Howard; Pegg, Ian L.; Brandys, Marek; Kot, Wing K.

    2012-01-01

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m 2 and depth of ∼ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage

  12. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  13. Demonstration test of 'multi-purpose incinerating melter system'

    Miyazaki, Hitoshi; Tanimoto, Kenichi; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko.

    1994-01-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of 60 Co, 54 Mn, 59 Fe, 137 Cs, 22 Na and 106 Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10 4 thru 1x10 5 for 60 Co, 2x10 2 thru 2x10 3 for 137 Cs and 2x10 2 thru 1x10 4 for 106 Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author)

  14. Demonstration test of 'multi-purpose incinerating melter system'

    Miyazaki, Hitoshi; Tanimoto, Kenichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko

    1994-03-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of [sup 60]Co, [sup 54]Mn, [sup 59]Fe, [sup 137]Cs, [sup 22]Na and [sup 106]Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10[sup 4] thru 1x10[sup 5] for [sup 60]Co, 2x10[sup 2] thru 2x10[sup 3] for [sup 137]Cs and 2x10[sup 2] thru 1x10[sup 4] for [sup 106]Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author).

  15. Density of simulated americium/curium melter feed solution

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  16. Density of simulated americium/curium melter feed solution

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  17. The University of Missouri Research Reactor facility can melter system

    Edwards, C.B. Jr.; Olson, O.L.; Stevens, R.; Brugger, R.M.

    1987-01-01

    At the University of Missouri Research Reactor (MURR), a waste compacting system for reducing the volume of radioactive aluminum cans has been designed, built and put into operation. In MURR's programs of producing radioisotopes and transmutation doping of silicon, a large volume of radioactive aluminum cans is generated. The Can Melter System (CMS) consists of a sorting station, a can masher, an electric furnace and a gas fired furnace. This system reduces the cans and other radioactive metal into barrels of solid metal close to theoretical density. The CMS has been in operation at the MURR now for over two years. Twelve hundred cu ft of cans and other metals have been reduced into 150 cu ft of shipable waste. The construction cost of the CMS was $4950.84 plus 1680 man hours of labor, and the operating cost of the CMS is $18/lb. The radiation exposure to the operator is 8.6 mR/cu ft. The yearly operating savings is $30,000. 20 figs., 10 tabs

  18. Effect of melter feed foaming on heat flux to the cold cap

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.

  19. Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations

    Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

    1991-01-01

    The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ''fix-up'' time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation

  20. Modeling principles applied to the simulation of a joule-heated glass melter

    Routt, K.R.

    1980-05-01

    Three-dimensional conservation equations applicable to the operation of a joule-heated glass melter were rigorously examined and used to develop scaling relationships for modeling purposes. By rigorous application of the conservation equations governing transfer of mass, momentum, energy, and electrical charge in three-dimensional cylindrical coordinates, scaling relationships were derived between a glass melter and a physical model for the following independent and dependent variables: geometrical size (scale), velocity, temperature, pressure, mass input rate, energy input rate, voltage, electrode current, electrode current flux, total power, and electrical resistance. The scaling relationships were then applied to the design and construction of a physical model of the semiworks glass melter for the Defense Waste Processing Facility. The design and construction of such a model using glycerine plus LiCl as a model fluid in a one-half-scale Plexiglas tank is described

  1. Volatilization and redox testing in a DC arc melter: FY-93 and FY-94

    Grandy, J.D.; Sears, J.W.; Soelberg, N.R.; Reimann, G.A.; McIlwain, M.E.

    1996-07-01

    The purpose of these experiments was to study the dissolution, retention, volatilization, and trapping of transuranic radionuclide elements (TRUs), mixed fission and activation products, and high vapor pressure metals (HVPMS) during processing in a high temperature arc furnace. In all cases, surrogate elements (lanthanides) were used in place of radioactive ones. The experiments were conducted utilizing a small DC arc melter developed at the Idaho National Engineering Laboratory (INEL) Research Center (IRC). The small arc melter was originally developed in 1992 and has been used previously for waste form studies of iron enriched basalt (IEB) and IEB with zirconium and titanium additions (IEB4). Section 3 contains a description of the small arc melter and its operational capabilities are discussed in Chapter 4. The remainder of the document describes each testing program and then discusses results and findings

  2. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  3. Bench-scale arc melter for R ampersand D in thermal treatment of mixed wastes

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800 degrees C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter's ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions

  4. Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser

    Miller, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-28

    This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recovery strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.

  5. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    Bickford, D.F.

    1993-01-01

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE's needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included

  6. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  7. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  8. Control of high level radioactive waste-glass melters - Part 5: Modeling of complex redox effects

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Computerized thermodynamic computations are useful in predicting the sequence and products of redox reactions and in assessing process variations. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Continuous melter test results have been compared to this improved staged-thermodynamic model of redox behavior

  9. Rheological Studies on Pretreated Feed and Melter Feed from AW-101 and AN-107

    Bredt, Paul R; Swoboda, Robert G

    2001-01-01

    Rheological and physical properties testing were conducted on actual AN-107 and AW-101 pretreated feed samples prior to the addition of glass formers. Analyses were repeated following the addition of glass formers. The AN-107 and AW-101 pretreated feeds were tested at the target sodium values of nominally 6, 8, and 10 M. The AW-101 melter feeds were tested at these same concentrations, while the AN-107 melter feeds were tested at 5, 6, and 8 M with respect to sodium. These data on actual waste are required to validate and qualify results obtained with simulants

  10. Tunable molten oxide pool assisted plasma-melter vitrification systems

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  11. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling

  12. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative

  13. Ceramic joining

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  14. FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste

    Musick, C.A.

    1997-11-01

    A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997

  15. Sensitive Ceramics

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  16. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    Kruger, Albert A.; Rodriguez, Carmen P.; Lang, Jesse B.; Huckleberry, Adam R.; Matyas, Josef; Owen, Antoinette T.

    2012-01-01

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T L ) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2 O 4 ]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T L of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ∼14.9 +- 1 nm/s determined for this glass will result in ∼26 mm thick layer in 20 days of melter idling

  17. Glass science tutorial: Lecture number-sign 2, Operating electric glass melters. James N. Edmonson, Lecturer

    Kruger, A.A.

    1994-10-01

    This report contains basic information on electric furnaces used for glass melting and on the properties of glass useful for the stabilization of radioactive wastes. Furnace nomenclature, furnace types, typical silicate glass composition and properties, thermal conductivity information, kinetics of the melting process, glass furnace refractory materials composition and thermal conductivity, and equations required for the operation of glass melters are included

  18. Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

    2009-10-01

    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

  19. Characterization of high level nuclear waste glass samples following extended melter idling

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high-level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  20. [Ceramic posts].

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  1. Plasma/arc melter review for vitrification of mixed wastes: Results

    Eddy, T.L.; Soelberg, N.R.; Raivo, B.D. [MeltTran, Inc., Idaho Falls, ID (United States)

    1995-12-31

    In October of 1994, the Idaho Waste Treatment Program (IWTP) sponsored a workshop to review the results of a plasma/arc melter system preliminary design for treating mixed waste. Attention focused on (1) the melter design, (2) the offgas system design, and (3) the overall system design. The inclusion of feed preparation and handling systems, as well as monitoring and control systems, were considered premature until decisions regarding the melter and offgas treatment were resolved. The evaluation was based on the constraints of the transuranic-contaminated mixed waste in the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Major factors are the retention of the transuranics in the basaltic slag, maintenance in a radioactive environment, reliability of components to prevent any major problems, upsets, or safety concerns, and the collection, elimination, or reduction of hazardous materials for appropriate stabilization. Several modifications were recommended by the group at large, discussed by the subcommittees, and accepted as the preferred options by the design team. Though all questions were not answered, the preferred systems for mixed waste treatment were the arc melters with graphite electrode systems with appropriate cooling which reduced maintenance and the possibility of eruptions that have occurred with plasma torches. Arc melters can also result in the minimum footprint and shielding. The preferred offgas systems were the wet/dry systems, that essentially eliminate the formation of carcinogenic compounds so they do not have to be destroyed down stream. This system also puts all of the particulate matter into one stream, instead of two.

  2. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  3. Noble metals-compatible melter features development Phase 1: Establishing functional and design criteria and design concepts

    Elmore, M.R.; Siemens, D.H.; Chapman, C.C.

    1996-03-01

    Premature failures have occurred in melters at Japan's Tokai Mockup Facility and at the Federal Republic of Germany (FRG) PAMELA plant during processing of feeds with high levels of noble metals. Melter failure was due to the accumulation of an electrically conductive, noble metals-containing precipitates in the glass, that then resulted in short circuiting of the electrodes. A comparison was made of the anticipated Hanford Waste Vitrification Plant (HWVP) feed with the feeds processed in the FRG and Japanese melters. The evaluation showed that comparable levels of noble metals and other potential precipitate-forming components (e.g. Cr/Fe/Ni-spinels) exist in the HWVP feed. As a result, the HWVP project made a decision to modify the present reference melter design to include features to prevent the precipitation and accumulation or otherwise accommodate precipitated phases on a routine basis without loss of production capacity

  4. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    Bickford, D.F.

    1999-10-20

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  5. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  6. Oxide ceramics

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  7. Analysis of cascade impactor and EPA method 29 data from the americium/curium pilot melter system

    Zamecnik, J.R.

    1997-11-01

    The offgas system of the Am/Cm pilot melter at TNX was characterized by measuring the particulate evolution using a cascade impactor and EPA Method 29. This sampling work was performed by John Harden of the Clemson Environmental Technologies Laboratory, under SCUREF Task SC0056. Elemental analyses were performed by the SRTC Mobile Laboratory.Operation of the Am/Cm melter with B2000 frit has resulted in deposition of PbO and boron compounds in the offgas system that has contributed to pluggage of the High Efficiency Mist Eliminator (HEME). Sampling of the offgas system was performed to quantify the amount of particulate in the offgas system under several sets of conditions. Particulate concentration and particle size distribution were measured just downstream of the melter pressure control air addition port and at the HEME inlet. At both locations, the particulate was measured with and without steam to the film cooler while the melter was idled at about 1450 degrees Celsius. Additional determinations were made at the melter location during feeding and during idling at 1150 degrees Celsius rather than 1450 degrees Celsius (both with no steam to the film cooler). Deposition of particulates upstream of the melter sample point may have, and most likely did occur in each run, so the particulate concentrations measured do no necessarily reflect the total particulate emission at the melt surface. However, the data may be used in a relative sense to judge the system performance

  8. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  9. Vitrification of HLW produced by uranium/molybdenum fuel reprocessing in cogema's cold crucible melter

    Quang, R. Do; Petitjean, V.; Hollebeque, F.; Pinet, O.; Flament, T.; Prodhomme, A.; Dalcorso, J. P.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12% in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  10. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  11. Characterization of a High-Level Waste Cold Cap in a Laboratory-Scale Melter

    Dixona, Derek R; Schweiger, Michael J; Hrma, Pavel [Pacific Northwest National Laboratory, Richland (United States)

    2013-05-15

    The feed, slurry or calcine, is charged to the melter from above. The conversion of the melter feed to molten glass occurs within the cold cap, a several centimeters thin layer of the reacting material blanketing the surface of the melt. Between the cold-cap top, which is covered by boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by ∼900 .deg. C. The heat is delivered to the cold cap from the melt that is stirred mainly by bubbling. The feed contains oxides, hydroxides, acids, inorganic salts and organic materials. On heating, these components react, releasing copious amounts of gases, while molten salts decompose, glass-forming melt is generated, and crystalline phases precipitate and dissolve in the melt. Most of these processes have been studied in detail and became sufficiently understood for a mathematical model to represent the heat and mass transfer within the cold cap. This allows US to relate the rate of melting to the feed properties. While the melting reactions can be studied, and feed properties, such as heat conductivity and density, measured in the laboratory, the actual cold-cap dynamics, as it evolves in the waste glass melter, is not accessible to direct investigation. Therefore, to bridge the gap between the laboratory crucible and the waste glass melter, we explored the cold cap formation in a laboratory-scale melter (LSM) and studied the structure of quenched cold caps. The LSM is a suitable tool for investigating the cold cap. The cold cap that formed in the LSM experiments exhibited macroscopic features observed in scaled melters, as well as microscopic features accessible through laboratory studies and mathematical modeling. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open shafts through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move

  12. Formulation of special glass frit and its use for decontamination of Joule melter employed for vitrification of high level and radioactive liquid waste

    Valsala, T.P.; Mishra, P.K.; Thakur, D.A.; Ghongane, D.E.; Jayan, R.V.; Dani, U.; Sonavane, M.S.; Kulkarni, Y.

    2012-01-01

    Advanced vitrification system at TWMP Tarapur was used for successful vitrification of large volume of HLW stored in waste tank farm. After completion of the operational life of the joule melter, dismantling was planned. Prior to the dismantling, the hold up inventory of active glass product from the melter was flushed out using specially formulated inactive glass frit to reduce the air activity buildup in the cell during dismantling operations. The properties of the special glass frit prepared are comparable with that of the regular product glass. More than 94% of holdup activity was flushed out from the joule melter prior to the dismantling of the melter. (author)

  13. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  14. Integrated DM 1200 Melter Testing Of HLW C-106/AY-102 Composition Using Bubblers VSL-03R3800-1, Rev. 0, 9/15/03

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Bardakci, T.; Gong, W.; D'Angelo, N.A.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  15. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  16. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  17. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  18. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  19. Testing of the melter lid refractory for the West Valley Demonstration Project (WVDP)

    Gupta, A.; Jain, V.; Mahoney, J.L.; Holman, T.M.

    1991-01-01

    Monofrax H and Mulfrax 202 refractory were tested for potential application as the melter lid refractory for the WVDP. Resistance to spalling and corrosion by the slurry and offgas salts were primary criteria for selection. Test specimens were subjected to thermal cycling between 450 and 1,100C for five weeks. Visual examination indicated some corrosion but no spalling. SEM/EDS analysis was performed to determine the glass/refractory interface corrosion mechanism. The refractory selection basis will be discussed

  20. Melting characteristics of a plasma torch melter according to the waste feeding method

    Kim, T. W.; Choi, J. R.; Park, S. C.; Lu, C. S.; Park, J. K.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    By using a batch type plasma torch melting system, continuous feeding and melting tests of non-combustible waste were executed. Using the results, the establishment of a heat transfer model and its verification were executed; the characteristics of the molten slag, exhaust gas, fly dust, volatilization of Cs, and leaching of slag were analyzed. In order to establish the heat transfer mode, the followings were considered; the electrical energy supplied to the plasma torch, the absorbed energy to the plasma torch for generating the plasma gas, the absorbed energy to the cooling water of the plasma torch, the energy supplied to the melter from the plasma gas by radiant heat, the energy loss through the exhaust gas, the waste melting energy, and the heating energy of an inner crucible and the melter. The concrete and soil were melted for the verification of the model. The waste was fed through waste feeder by the amount of 0.5kg or 1kg that was calculated by using the model. The experiment for the verification resulted in that the model was fitted well until the melter was heated sufficiently. If the electrical energy of 128kW were supplied to the plasma torch, energy balance of the plasma melting system was calculated with the model: the absorbed energy to the plasma torch for generating the plasma gas (27kW), the absorbed energy to the cooling water of the plasma torch (0∼ 36kW), the energy loss through the exhaust gas (5 ∼ 8kW), the waste melting energy (14kW), and the heating energy of an inner crucible and the melter (82 ∼ 43kW)

  1. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  2. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  3. Effect of melter feed foaming on heat flux to the cold cap

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  4. Off-gas system data summary for the ninth run of the large slurry fed melter

    Colven, W.P.

    1983-01-01

    The ninth melter campaign successfully demonstrated extended operation of both melter and off-gas systems. Two critical problem areas associated with the handling of melter off-gases were resolved leading to firm definition of the DWPF Off-Gas Treatment System. These two concerns, wet scrubber decontamination efficiency and the reduction of solids deposition at the off-gas line entrance, were the primary focus of off-gas system studies during the 63-day run (LSFM-9). The Hydro-Sonic Scrubber was confirmed to be the superior candidate for wet scrubbing by outperforming all other scrubbers tested at the Equipment Test Facility (ETF). The two stage, steam-driven scrubber achieved consistent decontamination factors for cesium exceeding the required DWPF flowsheet DF of 50. As a result, the device was selected as the reference wet scrubber for the DWPF. The Off-Gas Film Cooling device continued to show promising results for reducing three accumulation of solid deposits at the entrance to the off-gas line. In addition, a rotating wire brush cleaning device provided easy and efficient removal of deposits which had accumulated. The combination of the two has adequately resolved the deposit accumulation problem and both devices have been incorporated in the DWPF design

  5. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  6. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-01-01

    The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680 deg C, we focus in this work on the λ(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap

  7. Thermal stress analysis of an Am/Cm stabilization bushing melter

    Gong, C.; Hardy, B.J.

    1996-01-01

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am 243 and Cm 244 . Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to the Oak Ridge National Laboratory (ORNL) for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. The vitrification process in the Platinum-Rhodium alloy vessel generates a wide spectrum of temperature distributions. The melter is partially supported by a suspension system and confined by the flexible insulation. The combination of the fluctuation of temperature distribution and variable boundary conditions, induces stresses and strains in the melter. The thermal stress analysis is carried out with the finite element code ABAQUS. This analysis is closely associated with the design, manufacture and testing of the melter. The results were compared with the test data

  8. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.; Joseph, I.; Matlack, K. S.; Kot, W. K.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACT testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.

  9. Ceramic Seal.

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  10. Ceramic Seal

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  11. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  12. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    Oden, L.L.; O'Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-01-01

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests

  13. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  14. ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-01-23

    The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy discussed in this report was developed to gain insight into specific technical issues that could limit or compromise the ability of glass formulation efforts to target higher WLs for future sludge batches at the Savannah River Site (SRS). These technical issues include Al-dissolution, higher TiO{sub 2} limits and homogeneity issues for coupled-operations, Al{sub 2}O{sub 3} solubility, and nepheline formation. To address these technical issues, a test matrix of 28 glass compositions has been developed based on 5 different sludge projections for future processing. The glasses will be fabricated and characterized based on

  15. DC Graphite Arc Melter for vitrification of low-level waste

    Desrosiers, A.E.; Wilver, P.J.; Wittle, J.K.

    1996-01-01

    The volume of mixed waste continues to increase with few options for its permanent disposal other than storage on site. This mixed waste is being generated by not only the Department of Energy at government sites but by the private sector in hospitals and at electrical utility sites. Bartlett Services, Inc. proposes to offer a service to treat these materials to both reduce the volume and stabilize the radionuclides in a vitrified material. This product will be formed in the DC Graphite Arc Melters developed by Electro-Pyrolysis, Inc. and being offered for commercial design, sale and installation by Svedala Industries, Pyro Division. The process is a high temperature procedure which pyrolytically decomposes the organic portion of the waste to form clean hydrogen and carbon monoxide and solid carbon. The inorganic portion, containing the radioactive components, melts to produce a stable glass which is resistant to environmental leaching and will remain stable until the radioactivity has decreased to a safe level. Glasses produced with surrogate materials such as cesium and cerium have been shown to pass the Product Compatibility Test (PCT). The process being proposed for this treatment utilizes a sealed melter system having the capability of melting wastes containing both metallic and inorganic materials. This process, unlike joule heated melters, is capable of operating to temperatures of 1600 degrees C or higher. Since the system is heated electrically, oxidation is not required to create the heat. Since the system is pyrolytic, relatively small quantities of gas are produced. These gases may have beneficial uses in producing chemicals or may be used as a clean fuel

  16. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  17. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  18. DEMONSTRATION AND EVALUATION OF POTENTIAL HIGH LEVEL WASTE MELTER DECONTAMINATION TECHNOLOGIES FOR SAVANNAH RIVER SITE

    Weger, Hans; Kodanda, Raja Tilek Meruva; Mazumdar, Anindra; Srivastava, Rajiv Ph.D.; Ebadian, M.A. Ph.D.

    2003-01-01

    Four hand-held tools were tested for failed high-level waste melter decontamination and decommissioning (D and D). The forces felt by the tools during operation were measured using a tri-axial accelerometer since they will be operated by a remote manipulator. The efficiency of the tools was also recorded. Melter D and D consists of three parts: (1) glass fracturing: removing from the furnace the melted glass that can not be poured out through normal means, (2) glass cleaning: removing the thin layer of glass that has formed over the surface of the refractory material, and (3) K-3 refractory breakup: removing the K-3 refractory material. Surrogate glass, from a formula provided by the Savannah River Site, was melted in a furnace and poured into steel containers. K-3 refractory material, the same material used in the Defense Waste Processing Facility, was utilized for the demonstrations. Four K-3 blocks were heated at 1150 C for two weeks with a glass layer on top to simulate the hardened glass layer on the refractory surface in the melter. Tools chosen for the demonstrations were commonly used D and D tools, which have not been tested specifically for the different aspects of melter D and D. A jackhammer and a needle gun were tested for glass fracturing; a needle gun and a rotary grinder with a diamond face wheel (diamond grinder) were tested for glass cleaning; and a jackhammer, diamond grinder, and a circular saw with a diamond blade were tested for refractory breakup. The needle gun was not capable of removing or fracturing the surrogate glass. The diamond grinder only had a removal rate of 3.0 x 10-4 kg/s for K-3 refractory breakup and needed to be held firmly against the material. However, the diamond grinder was effective for glass cleaning, with a removal rate of 3.9 cm2/s. The jackhammer was successful in fracturing glass and breaking up the K-3 refractory block. The jackhammer had a glass-fracturing rate of 0.40 kg/s. The jackhammer split the K-3 refractory

  19. Industrial ceramics

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  20. Consolidated waste forms: glass marbles and ceramic pellets

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  1. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    Lowery, P.S.; Lessor, D.L.

    1991-02-01

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservation laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs

  2. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    MARINIK, ANDREW

    2004-01-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter

  3. Characterization of off-gases from a small-scale, joule-heated ceramic melter for nuclear waste vitrification

    Woolsey, G.B.; Wilhite, E.L.

    1980-01-01

    This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste

  4. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    Bickford, D.F.

    1999-12-17

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  5. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  6. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  7. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    Sundaram, S.K.; Elliott, M.L.; Bickford, D.

    1999-01-01

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described

  8. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  9. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    Lee, S.M.; Hrma, P.; Kloužek, Jaroslav; Pokorný, R.; Hujová, Miroslava; Dixon, D.R.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 43, č. 16 (2017), s. 13113-13118 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : oxygen mass balance * feed-to-glass conversion * evolved gas * oxygen partial pressure * Fe redox ratio Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.986, year: 2016

  10. Effect of melter feed foaming on heat flux to the cold cap

    Lee, S.; Hrma, P.; Pokorný, R.; Kloužek, Jaroslav; VanderVeer, B.J.; Dixon, D.R.; Luksic, S.A.; Rodriguez, C.P.; Chun, J.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 496, DEC 1 (2017), s. 54-65 ISSN 0022-3115 Institutional support: RVO:67985891 Keywords : cold cap * foam layer * heat flux * heat conductivity * evolved gas Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.048, year: 2016

  11. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  12. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.; Gong, W.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, and urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. Determine feed processability and product quality with the above additives. Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions

  13. Ceramic Laser Materials

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  14. Ceramic Laser Materials

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  15. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    Seymour, R.G.

    1995-01-01

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing

  16. Creep in ceramics

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  17. Ceramic Parts for Turbines

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  18. Forming of superplastic ceramics

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  19. Ceramic gas turbine shroud

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  20. Thin film ceramic thermocouples

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  1. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs

  2. Connecting section and associated systems concept for the spray calciner/in-can melter process

    Petkus, L.L.; Gorton, P.S.; Blair, H.T.

    1981-06-01

    For a number of years, researchers at the Pacific Northwest Laboratory have been developing processes and equipment for converting high-level liquid wastes to solid forms. One of these processes is the Spray Calciner/In-Can Melter system. To immobilize high-level liquid wastes, this system must be operated remotely, and the calcine must be reliably conveyed from the calciner to the melting furnace. A concept for such a remote conveyance system was developed at the Pacific Northwest Laboratory, and equipment was tested under full-scale, nonradioactive conditions. This concept and the design of demonstration equipment are described, and the results of equipment operation during experimental runs of 7 d are presented. The design includes a connecting section and its associated systems - a canister sypport and alignment concept and a weight-monitoring system for the melting furnace. Overall, the runs demonstrated that the concept design is an acceptable method of connecting the two pieces of process equipment together. Although the connecting section has not been optimized in all areas of concern, it provides a first-generation design of a production-oriented system

  3. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.; Owen, A. T.; Jansik, D. P.; Lang, J. B.

    2012-01-01

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ∼185+-155 μm, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers

  4. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  5. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  6. Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behaviour of high-level radioactive waste melter feed

    Lee, S.; Hrma, P.; Pokorný, R.; Kloužek, Jaroslav; VanderVeer, B.J.; Rodriguez, C.P.; Chun, J.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 2, č. 11 (2017), s. 603-608 ISSN 2059-8521 Institutional support: RVO:67985891 Keywords : foam * specific heat * porosity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics

  7. Analyses of fine paste ceramics

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  8. Science and Technology of Ceramics

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  9. Analyses of fine paste ceramics

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  10. [Ceramic inlays and onlays].

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  11. Ceramic Electron Multiplier

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  12. Displacive Transformation in Ceramics

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  13. Continuous Fiber Ceramic Composites

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  14. Piezo-electrostrictive ceramics

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  15. Method of sintering ceramic materials

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  16. Defect production in ceramics

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  17. Ceramic piezoelectric materials

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  18. Corrosion of Ceramic Materials

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  19. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States); Miller, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods. Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory

  20. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy's Mound Plant, Miamisburg, Ohio

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement

  1. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  2. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  3. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  4. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    Hartmann, Thomas [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Mechanical Engineering

    2017-09-01

    Technetium-99 (Tc, t1/2 = 2.13x105 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the off gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.

  5. Final Report Integrated DM1200 Melter Testing Using AZ-102 And C-106/AY-102 HLW Simulants: HLW Simulant Verification VSL-05R5800-1, Rev. 0, 6/27/05

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  6. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  7. Volatilization of heavy metals and radionuclides from soil heated in an induction ''cold'' crucible melter

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-01-01

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO x , carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported

  8. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  9. Ceramic Technology Project

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  10. New ceramic materials

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  11. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  12. Mounting for ceramic scroll

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  13. Ceramic heat exchanger

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  14. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Xu, Kai, E-mail: kaixu@whut.edu.cn [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Washton, Nancy; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2017-01-15

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min{sup −1} to 700 °C was investigated with transmission electron microscopy, {sup 27}Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m{sup 2} g{sup −1}). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification. - Highlights: • Porous amorphous alumina formed in a simulated high-Al HLW melter feed during heating. • The feed had a high specific surface area at 300 °C ≤ T ≤ 500 °C. • Porous amorphous alumina induced increased specific surface area.

  15. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  16. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  17. Industrial ceramics - Properties, forming and applications

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  18. Ceramic breeder materials

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  19. Corrosion resistant ceramic materials

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  20. Ceramic injection molding

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  1. Applications of Piezoelectric Ceramics

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  2. Corrosion resistant ceramic materials

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  3. Making Ceramic Cameras

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  4. Selecting Ceramics - Introduction

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  5. Cavitation damage of ceramics

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  6. Final Report - Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests, VSL-09R1520-1, Rev. 0, dated 6/22/09

    Kruger, Albert A.; Matlack, K. S.; Kot, W.; Pegg, I. L.; Chaudhuri, M.; Lutze, W.

    2013-11-13

    The principal objective of the work was to evaluate the effects of spinel and chromium oxide particles on WTP HLW melter operations and potential impacts on melter life. This was accomplished through a combination of crucible-scale tests, settling and rheological tests, and tests on the DM100 melter system. Crucible testing was designed to develop and identify HLW glass compositions with high waste loadings that exhibit formation of crystalline spinel and/or chromium oxide phases up to relatively high crystal contents (i.e., > 1 vol%). Characterization of crystal settling and the effects on melt rheology was performed on the HLW glass formulations. Appropriate candidate HLW glass formulations were selected, based on characterization results, to support subsequent melter tests. In the present work, crucible melts were formulated that exhibit up to about 4.4 vol% crystallization.

  7. Final Report Tests On The Duramelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants VSL-02R0100-2, Rev. 1, 2/17/03

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Bardakci, T.; Gong, W.; D'Angelo, N.A.; Schatz, T.R.; Pegg, I.L.

    2011-01-01

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter(trademark) 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 (1). Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m 2 /d. Previous testing on the DMIOOO system (1) concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger

  8. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D' ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  9. Large ceramics for fusion applications

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  10. Clinical application of bio ceramics

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  11. The history of ceramic filters.

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  12. Clinical application of bio ceramics

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  13. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  14. An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste

    Hayward, P.J.; George, I.M.

    1987-01-01

    Corrosion tests have been performed on twelve candidate refractories in contact with borosilicate, titanosilicate, and aluminosilicate melts, in order to rank them for use in an all-electric melter for the production of waste form materials suitable for immobilising nuclear fuel recycle wastes. Viscosities and electrical conductivities of the melts have also been measured to enable optimum processing conditions to be determined. Of the materials tested, the choice of glass contact refractory for the Joule heated melting of the borosilicate and titanosilicate compositions is Monofrax K3 or SEPR 2161, in conjunction with tin oxide electrodes. The aluminosilicate glass waste form would require an alternative method of production (sol-gel processing, or sintering of a precursor frit), because of its high viscosity. (author)

  15. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  16. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  17. Testing method for ceramic armour and bare ceramic tiles

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  18. Testing method for ceramic armor and bare ceramic tiles

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  19. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  20. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  1. Mechanical properties of ceramics

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  2. Fatigue of dental ceramics.

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Ceramic combustor mounting

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Ceramic impregnated superabrasives

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  6. Diffusion in ceramics

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  7. High flow ceramic pot filters

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  8. Ceramic composites: Enabling aerospace materials

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  9. Technology and equipment based on induction melters with ''cold'' crucible for reprocessing active metal waste

    Pastushkov, V.G.; Molchanov, A.V.; Serebryakov, V.P.; Smelova, T.V.; Shestoperov, I.N.

    2000-01-01

    The operation and, particularly, the decommissioning of NPPs and radiochemical plants result in substantial arisings of radioactive metal waste (RAMW) having different activity levels (from 5 x 10 -4 to ∼ 40 Ci/kg). The paper reviews the specific features of the technology and equipment used to melt RAMW in electric arc and induction furnaces with ceramic or 'cold' crucibles. The experimentally determined and calculated data are given on the level to which RAMW is decontaminated from the main radionuclides as well as on the distribution of the latter in the products of melting (ingot, slag, gaseous phase). Special attention is focused on the process and the facility for the induction-slag melting of RAMW in furnaces equipped with 'cold' crucibles. The work is described that is under way at SSC RF VNIINM to master the technology of melting simulated high activity level Zr-alloy and stainless steel waste. (authors)

  10. Verification of Ceramic Structures

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  11. Test plan for glass melter system technologies for vitrification of hign-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    Higley, B.A.

    1995-01-01

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock ampersand Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing

  12. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  13. MELTER: A model of the thermal response of cargos transported in the Safe-Secure Trailer subject to fire environments for risk assessment applications

    Larsen, M.E.

    1994-08-01

    MELTER is an analysis of cargo responses inside a fire-threatened Safe-Secure Trailer (SST) developed for the Defense Program Transportation Risk Assessment (DPTRA). Many simplifying assumptions are required to make the subject problem tractable. MELTER incorporates modeling which balances the competing requirements of execution speed, generality, completeness of essential physics, and robustness. Input parameters affecting the analysis include those defining the fire scenario, those defining the cargo loaded in the SST, and those defining properties of the SST. For a specified fire, SST, and cargo geometry MELTER predicts the critical fire duration that will lead to a failure. The principal features of the analysis include: (a) Geometric considerations to interpret fire-scenario descriptors in terms of a thermal radiation boundary condition, (b) a simple model of the SST's wall combining the diffusion model for radiation through optically-thick media with an endothermic reaction front to describe the charring of dimensional, rigid foam in the SST wall, (c) a transient radiation enclosure model, (d) a one-dimensional, spherical idealization of the shipped cargos providing modularity so that cargos of interest can be inserted into the model, and (e) associated numerical methods to integrate coupled, differential equations and find roots

  14. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  15. Piezoelectric displacement in ceramics

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  16. Dense ceramic articles

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  18. Dissolution of crystalline ceramics

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  19. Ceramic analysis in Greece

    Hilditch, J.

    2016-01-01

    Scientific, analytical or ‘archaeometric’ techniques for investigating ceramic material have been used within archaeology for over 50 years and now constitute an indispensable tool for archaeologists in the Aegean world (see Jones 1986 for a detailed summary of early work in Greece and Italy) and

  20. Ceramic solid electrolytes

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  1. Coated ceramic breeder materials

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  2. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  3. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  4. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  5. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  6. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters - 12240

    Day, Delbert E.; Brow, Richard K.; Ray, Chandra S.; Reis, Signo T. [Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65409 (United States); Kim, Cheol-Woon [MO-SCI Corporation, 4040 HyPoint North, Rolla, MO 65401 (United States); Vienna, John D.; Sevigny, Gary [Pacific North West National Laboratory, Battelle Blvd., Richland, WA 99352 (United States); Peeler, David; Johnson, Fabienne C.; Hansen, Eric K. [Savannah River National Laboratory, Savannah River Site, 999-W, Aiken, SC 29803 (United States); Soelberg, Nick [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States); Pegg, Ian L.; Gan, Hao [Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States)

    2012-07-01

    An iron phosphate composition for vitrifying a high sulfate (∼17 wt%) and high alkali (∼80 wt%) Hanford low activity waste (LAW), known as AZ-102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ-102 which corresponded to a total alkali and sulfate (represented as SO{sub 3}) content of 21 and 4.4 wt%, respectively. A slurry (7 M Na{sup +}) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090 deg. C for 10 days in a small JHM at PNNL and for 70 hours in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their canister centerline cooled (CCC) counterparts met the requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT) responses in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract. These glass waste forms retained up to 77 % of the SO{sub 3} (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium (used as a surrogate for Tc) all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition was melted continuously in a slurry fed JHM and in the US, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste. The following conclusions are drawn from the results of the present work. (1) An iron phosphate composition, designated as MS26AZ102F-2, containing 26 wt% of the simulated high sulfate (17 wt%), high alkali (80 wt%) Hanford AZ-102 LAW meets all the criteria for processing in a JHM and CCIM. This

  7. Positron annihilation in transparent ceramics

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  8. Positron annihilation in transparent ceramics

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  9. Ceramic hot-gas filter

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  10. Ceramic hot-gas filter

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  11. Ceramics for fusion applications

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  12. Ceramics for fusion applications

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  13. Ceramic Composite Thin Films

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  14. Advanced ceramic in structural engineering

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  15. The technical ceramics (second part)

    Auclerc, S.; Poulain, E.

    2004-01-01

    This work deals with ceramics used in the nuclear and the automotive industries. Concerning the nuclear sector, ceramics are particularly used in reactors, in the treatment of radioactive wastes and for the storage of the ultimate wastes. Details are given about the different ceramics used. In the automobile sector, aluminium is principally used for its lightness and cordierite, basic material of catalyst supports is especially used in the automobile devices of cleansing. (O.M.)

  16. Ceramic superconductors II

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  17. Piezoelectric Ceramics Characterization

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  19. Ion conductivity of nasicon ceramics

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  20. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  1. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-01-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and

  2. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  3. Technetium Retention In WTP Law Glass With Recycle Flow-Sheet DM10 Melter Testing VSL-12R2640-1 REV 0

    Abramowitz, Howard; Callow, Richard A.; Joseph, Innocent

    2012-01-01

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the 99m Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the 99m Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P and ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives

  4. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    Abramowitz, Howard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Brandys, Marek [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Cecil, Richard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; D& #x27; Angelo, Nicholas [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Muller, Isabelle S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Callow, Richard A. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  5. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  6. Micromolding for ceramic microneedle arrays

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  7. Ceramics in nuclear waste management

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  8. Science and Technology of Ceramics

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Science and Technology of Ceramics - Functional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 12 December 1999 pp 21-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Science and Technology of Ceramics

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Science and Technology of Ceramics - Traditional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 8 August 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Low thermal expansion glass ceramics

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  11. Ceramic membrane development in NGK

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  12. Ceramic membrane development in NGK

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  13. Method of forming a ceramic matrix composite and a ceramic matrix component

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  14. Zirconia based ceramics

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  15. Directionally Solidified Multifunctional Ceramics

    2006-12-01

    Vidrio , Vol. 44 [5] (2005) pp 347 - 352. 9. F. W. Dynys and A. Sayir, "Self Assemble Silicide Architectures by Directional Solidification," Journal...Sociedad Espanola de Ceramica y Vidrio , Vol. 43 [4] (2004) pp 753 - 758. 21. A. Sayir and F. S. Lowery, "Combustion-Resistance of Silicon-Based Ceramics...Espafiola de Cerdmica y Vidrio , Vol. 43 [3], 2004. ISSN-0366-3175-BSCVB9. 14 37. P. Berger, A. Sayir and M. H. Berger, "Nuclear Microprobe using Elastic

  16. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  17. Nano-ceramics and its molding technologies

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  18. Preparation of 147Pm ceramic source core

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  19. Fibrous monolithic ceramics

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  20. Ceramic fiber reinforced filter

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  1. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  2. Ceramic drug-delivery devices.

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  3. High flow ceramic pot filters

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  4. Hardness of ion implanted ceramics

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  5. Porous ceramics out of oxides

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  6. Agglomeration of ceramic powders

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  7. Creep in electronic ceramics

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  8. Ceramics for fusion devices

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  9. Moessbauer studies of Inca ceramics

    Wagner, U.; Wagner, F.E.; Marticorena, B.; Salazar, R.; Schwabe, R.; Riederer, J.

    1986-01-01

    To obtain information on the firing of Inca ceramics, 7 samples from different locations were studied by Moessbauer spectroscopy including a detailed laboratory refiring procedure. The glaze typical for the surface of this ware was studied by Moessbauer scattering. (Auth.)

  10. Non destructive evaluation of ceramics

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  11. Low Thermal Expansion Glass Ceramics

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  12. Inorganic glass ceramic slip rings

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  13. Metal-ceramic joint assembly

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  14. Multiphase-Multifunctional Ceramic Coatings

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  15. Nano-Ceramic Coated Plastics

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  16. Method for preparing ceramic composite

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  17. Fracture-dissociation of ceramic liner.

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  18. Ceramics as nuclear reactor fuels

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  19. Microwave sintering of ceramic materials

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  20. Method for Waterproofing Ceramic Materials

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  1. Design and In-Situ Processing of Metal-Ceramic and Ceramic-Ceramic Microstructures

    Sass, Stephen

    1997-01-01

    .... Metal-ceramic microstructures have been synthesized in situ by a variety of novel processing techniques, including the partial reduction of oxide compounds and displacement reactions and sol-gel...

  2. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  3. All-ceramic crowns: bonding or cementing?

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  4. Exoelectron emission from magnesium borate glass ceramics

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  5. Producing ceramic laminate composites by EPD

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  6. Final Report Integrated DM1200 Melter Testing Of Bubbler Configurations Using HLW AZ-101 Simulants VSL-04R4800-4, Rev. 0, 10/5/04

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Lutze, W.; Callow, R.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved

  7. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was

  8. Disc piezoelectric ceramic transformers.

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  9. Bar piezoelectric ceramic transformers.

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  10. Reliability of ceramics for heat engine applications

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  11. III Advanced Ceramics and Applications Conference

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  12. Panel report on high temperature ceramics

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  13. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D'Amico, N.

    1994-01-01

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D'Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace

  14. Ceramics: past, present, and future.

    Lemons, J E

    1996-07-01

    The selection and application of synthetic materials for surgical implants has been directly dependent upon the biocompatibility profiles of specific prosthetic devices. The early rationale for ceramic biomaterials was based upon the chemical and biochemical inertness (minimal bioreactivity) of elemental compounds constituted into structural forms (materials). Subsequently, mildly reactive (bioactive), and partially and fully degradable ceramics were identified for clinical uses. Structural forms have included bulk solids or particulates with and without porosities for tissue ingrowth, and more recently, coatings onto other types of biomaterial substrates. The physical shapes selected were application dependent, with advantages and disadvantages determined by: (1) the basic material and design properties of the device construct; and (2) the patient-based functional considerations. Most of the ceramics (bioceramics) selected in the 1960s and 1970s have continued over the long-term, and the science and technology for thick and thin coatings have evolved significantly over the past decade. Applications of ceramic biomaterials range from bulk (100%) ceramic structures as joint and bone replacements to fully or partially biodegradable substrates for the controlled delivery of pharmaceutical drugs, growth factors, and morphogenetically inductive substances. Because of the relatively unique properties of bioceramics, expanded uses as structural composites with other biomaterials and macromolecular biologically-derived substances are anticipated in the future.

  15. Shock compression profiles in ceramics

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  16. Transparent ceramic lamp envelope materials

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  17. High flow ceramic pot filters.

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Emerging Ceramic-based Materials for Dentistry

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  19. Ion implantation and fracture toughness of ceramics

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  20. Ceramic cutting tools materials, development and performance

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  1. Ferroelastic ceramic-reinforced metal matrix composites

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  2. Development of advanced ceramics at AECL

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  3. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  4. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  5. Dense high temperature ceramic oxide superconductors

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  6. Ceramic component with reinforced protection against radiations

    Dubuisson, J.; Laville, H.; Le Gal, P.

    1986-01-01

    Ceramic components hardened against radiations are claimed (for example capacitors or ceramic substrates for semiconductors). They are prepared with a sintered ceramic containing a high proportion of heavy atoms (for instance barium titanate and a bismuth salt) provided with a glass layer containing a high proportion of light atoms. The two materials are joined by vitrification producing a diffusion zone at the interface [fr

  7. Study of brazilian market of advanvced ceramics

    Veiga, M.M.; Soares, P.S.M.; SIlva, A.P. da; Alvarinho, S.B.

    1989-01-01

    The brazilian actual market survey of advanced ceramics, divided in sectors according to their function is described. The electroelectronics, magnetics, optics, mechanics and nuclears ceramics are presented. A forecasting of the brazilian market in advanced ceramics are also mentioned. (C.G.C.) [pt

  8. Polymer-ceramic piezoelectric composites (PZT)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  9. Surface treatment of ceramic articles

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  10. Dynamic properties of ceramic materials

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  11. Superplastic forging nitride ceramics

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  12. Chemical characterization of marajoara ceramics

    Toyota, Rosimeiri Galbiati

    2009-01-01

    In this study the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined by instrumental neutron activation analysis (INAA) in 204 fragments of Marajoara archaeological ceramics, of which 156 were provided by the Archaeology and Ethnology Museum of Sao Paulo University (MAE) and 48 were provided by Dr. Denise Pahl Schaan, Marajo Museum curator. Also, 9 contemporary ceramics produced and marketed at Marajo Island were analyzed. Electron paramagnetic resonance (EPR) analyses were performed in 8 archaeological samples and 1 contemporary sample in order to identify the burning temperature of the samples. X-ray diffraction (XRD) analyses were performed in 13 archaeological samples and 2 contemporary samples for the investigation of their mineralogical composition. Mahalanobis distance was used for the study of outlier while modified filter was used for the study of the temper added to the ceramic paste. Result interpretation was performed using cluster analysis, principal components analysis and discriminant analysis. Procrustes analysis was used for variable selection and it showed that the Ce, Fe, Eu, Hf, K and Th variables are adequate for the characterization of the analyzed samples. The comparative study among the archaeological and contemporary ceramics showed the arrangement of two well-defined and close groups for the archaeological samples and a third, distant group for the contemporary ones. This result indicates that the archaeological and contemporary ceramics differ in their composition. EPR and XRD analysis were inconclusive for the differentiation of archaeological and contemporary ceramics. (author)

  13. Final Report Melter Tests With AZ-101 HLW Simulant Using A Duramelter 100 Vitrification System VSL-01R10N0-1, Rev. 1, 2/25/02

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m 2 /d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  14. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  15. Uranium determination in dental ceramics

    Jacobson, I.; Gamboa, I.; Espinosa, G.; Moreno, A.

    1984-01-01

    There are many reports of high uranium concentration in dental ceramics, so they require to be controlled. The SSNTD is an optional method to determine the uranium concentration. In this work the analysis of several commercial dental ceramics used regularly in Mexico by dentists is presented. The chemical and electrochemical processes are used and the optimal conditions for high sensitivity are determined. CR-39 (allyl diglycol polycarbonate) was used as detector. The preliminary results show some materials with high uranium concentrations. Next step will be the analysis of equivalent dose and the effects in the public health. (author)

  16. Fracture mechanics of ceramics. Vol. 7

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.

    1986-01-01

    This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines

  17. MHD oxidant intermediate temperature ceramic heater study

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  18. Ceramic nanostructures and methods of fabrication

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  19. A new classification system for all-ceramic and ceramic-like restorative materials.

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  20. Industrial ceramics in Spain

    Regueiro, M.

    2000-02-01

    Full Text Available The Spanish ceramic industry has experienced a amazing growth in the last four years. Such expansion has affected all sector, but has been particularly noteworthy in those directly related to construction: tiles. glazes, bricks and roof tiles. A combination of an extraordinary exporting effort, together with a record figure in new housing projects (415 000 houses in 1999, are responsible for such outburst. Other sectors, such as refractories have undergone significant growths due to the high rate of steel production increase, also in historical record figures (15m t in 1999. All this sectors doubled altogether the growing rate of their main European competitors. Raw material production has had an even more effervescent trend, almost doubling 1995 production. Such dynamic growth has been associated to a remarkable quality increase and to an unparalleled technological innovation process.

    La industria española de la cerámica ha experimentado un notable crecimiento en los últimos cuatro años; expansión que ha alcanzado a todos los sectores, pero que ha sido especialmente notable en los mas directamente asociados a la construcción: revestimientos, esmaltes, tejas y ladrillos. La combinación de un extraordinario esfuerzo exportador unido a las cifras récord en la viviendas iniciadas, 415 000 en 1999, justifican este auge. Otros sectores como refractarios han experimentado crecimientos significativos ante el ritmo elevado en la producción de acero, que alcanzó asimismo un récord histórico, 15 Mt en 1999. Para el conjunto de estos sectores el ritmo de crecimiento ha duplicado el de los principales competidores europeos. La producción de materias primas han experimentado un dinamismo aún mas elevado duplicándose prácticamente las cifras respecto a 1995. Este crecimiento ha estado asociado a un notable incremento en la calidad y en los procesos de innovación tecnológica.

  1. Final Report Start-Up And Commissioning Tests On The Duramelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants VSL-01R0100-2, Rev. 0, 1/20/03

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Brandys, M.; Wilson, C.N.; Schatz, T.R.; Gong, W.; Pegg, I.L.

    2011-01-01

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter(trademark) 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI (1). Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  2. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  3. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  4. Dispersion toughened silicon carbon ceramics

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  5. Microstructural Design for Tough Ceramics

    1994-10-01

    or Rockwell cones) where the contact pressure (i.e. the ’hardness’) is effectively independent of load (Sperisen, Carry and Mocellin 1986, Makino...148. RrrcHM, R. 0., 1988, Mater. Sci. Engng, A, 103, 15. SPERmEN, T., CARRY, C., and MOCELLIN , A, 1986, Fracture Mechanics of Ceramics, Vol. 8, edited

  6. Electrical Degradation in Ceramic Dielectrics

    1988-09-09

    and D. M. Smyth, " Positron Annihilation in Calcium-Doped Barium Titanate", in Electro- Ceramics and Solid State Ionsi, H. L. Tuller and D. M. Smyth...2 with the formation of ompensating oxygen vacancies, and this causes an increase in the ioni conductivity: 2CaO CaC + Call + 20 + (5) TiO2 --- V

  7. Natural Radioactivity in Ceramic Materials

    Abu Khadra, S.A.; Kamel, N.H.

    2005-01-01

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  8. Radiation Effects in Nuclear Ceramics

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  9. Ceramic microspheres for cementing applications

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  10. Ceramic microspheres for cementing applications

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  11. Ceramic microspheres for cementing applications

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  12. [Posterior ceramic bonded partial restorations].

    Mainjot, Amélie; Vanheusden, Alain

    2006-01-01

    Posterior ceramic bonded partial restorations are conservative and esthetic approaches for compromised teeth. Overlays constitute a less invasive alternative for tooth tissues than crown preparations. With inlays and onlays they are also indicated in case of full arch or quadrant rehabilitations including several teeth. This article screens indications and realization of this type of restorations.

  13. GEORGIAN PRODUCTION PREFABRICATED CERAMIC FIREPLACE

    Gaprindashvili, G.; Chemia, M.; Kartozia, L.

    2006-01-01

    General description and basic working principles of new construction prefabricated ceramic fireplace are given. The presented fireplace represents a unique synthesis of various fireplaces distributed in Georgian and some European countries; however, it is distinguished for its higher efficiency and other advantages. (author)

  14. Monolithic Integrated Ceramic Waveguide Filters

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  15. Compositionally Graded Multilayer Ceramic Capacitors.

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.

  16. Soft lithography of ceramic patterns

    Göbel, Ole; Nedelcu, M.; Steiner, U.

    2007-01-01

    Polymer-based precursor solutions are patterned using a soft-lithographic patterning technique to yield sub-micrometer-sized ceramic patterns. By using a polymer-metal-nitrate solution as a lithographic resist, we demonstrate a micromolding procedure using a simple rubber stamp that yields a

  17. Science and Technology of Ceramics

    These ceramics are developed by chemical synthesis, in other words, they ... Science in 1980 and was a post doctoral ... complex crystal structures that have anisotropic characteristics. (Box 1) .... is a rare-earth or transition metal ion) and hexagonal ferrites. .... dielectric loss factor and dielectric strength normally determine.

  18. Photovoltaic effect in ferroelectric ceramics

    Epstein, D. J.; Linz, A.; Jenssen, H. P.

    1982-01-01

    The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv).

  19. Doubled-ended ceramic thyratron

    1974-01-01

    The double-ended ceramic thyratron CX 1171 B, with its coaxial voltage divider for the SPS. Such a switch, paralleled by three ignitrons in series forms the "thyragnitron" arrangement, and can switch 10 kA, 25 ms pulses, with very fast rise times.

  20. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  1. Application of neutron activation analysis in study of ancient ceramics

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Huang Zhongxiang; Jia Xiuqin; Han Song

    2000-01-01

    Trace-elements in ancient ceramics and imitative ancient ceramics were determined by neutron activation analysis (NAA). The NAA data are then analyzed by fuzzy cluster method and the trend cluster diagram is obtained. The raw material sources of ancient ceramics and imitative ancient ceramics are determined. The path for improving quality of imitative ancient ceramics is found

  2. Translucency of dental ceramics with different thicknesses.

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. Method of forming a ceramic to ceramic joint

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  4. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  5. Final Report Integrated DM1200 Melter Testing Of Redox Effects Using HLW AZ-101 And C-106/AY-102 Simulants VSL-04R4800-1, Rev. 0, 5/6/04

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Lutze, W.; Bizot, P.M.; Callow, R.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  6. Ceramic fiber reinforced glass-ceramic matrix composite

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  7. Evaluation of Monolithic Ceramics and Ceramic Thermal Barrier Coatings for Diesel Engine Applications

    Swab, Jeffrey J

    2001-01-01

    The Metals and Ceramics Research Branch (MCRB) of the Weapons and Materials Research Directorate is providing ceramic material characterization and evaluation to the Tank Automotive Research, Development, and Engineering Center (TARDEC...

  8. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  9. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  10. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  11. Salt splitting with ceramic membranes

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  12. Ceramics: Durability and radiation effects

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  13. Interfaces in ceramic nuclear fuels

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  14. Silsesquioxane-derived ceramic fibres

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  15. Microimpurity composition of superconducting ceramics

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  16. Surface treatment of zirconia ceramics

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  17. Tensile Properties of Open Cell Ceramic Foams

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  18. Acid-base properties of ceramic powders

    Bleier, A.

    1983-01-01

    This chapter addresses the fundamental aspects of potentiometric titration, electrokinetics, and conductometric titration in evaluating surface and interfacial thermodynamic behavior. Emphasizes the characterization of aqueous systems which are pertinent to the processing of ceramic powders. Attempts to clarify the role of novel analytical techniques that will increasingly contribute to the advanced characterization of ceramic powders. Evaluates recently developed acid-base and complexation concepts and their applications to the processing of oxide ceramics

  19. Structure and conductivity of nanostructured YBCO ceramics

    Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.

    2017-12-01

    Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.

  20. Advanced ceramics: the present and the perspectives

    Freitas, C.T. de.

    1990-04-01

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author) [pt