WorldWideScience

Sample records for ceramic matrix composites

  1. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  2. Intermetallic bonded ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-07-01

    A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.

  3. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  4. Continuous fiber ceramic matrix composites for heat engine components

    Science.gov (United States)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  5. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  6. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    Science.gov (United States)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  7. Fatigue and frictional heating in ceramic matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, T.K.; Sørensen, B.F.; Brøndsted, P.

    1997-01-01

    This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set-up an iso...

  8. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  9. Experimental Investigation on Active Cooling for Ceramic Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    PENG Li-na; HE Guo-qiang; LIU Pei-jin

    2009-01-01

    Compared with conventional materials, the active cooling ceramic matrix composite used in ramjet or scramjet makes their structures lighter in mass and better in performance. In this paper, an active and a passive cooling refractory composite specimens are designed and tested with an experimental facility composed of multilayer smale scale cooling penel which consists of a water cooling system and a ceramic matrix composite specimen, and a gas generator used for providing lower and higher transfer rate gases to simulate the temperatures in combustion chamber of ramjst. The active cooling specimen can continuously suffer high surface temperature of 2 000K for 30s and that of 3 000 K for 9.3 s, respectively. The experiment results show that the active cooling composite structure is available for high-temperature condition in ramjet.

  10. Mechanical properties of silver matrix composites reinfroced with ceramic particles

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2006-04-01

    Full Text Available Purpose: Silver, silver alloys, as well as silver matrix based composites have been well known and applied in the electrotechnical and electronics industry for several decades. For many applications in electrotechnology, including electric contacts and brushes, unreinforced sliver alloys do not meet the requirements concerning mainly durability and wear resistance, first of all to tribological and electroerosive wear. These wear processes may be prevented by introducing to silver reinforcement particles and alloys. The target of the research included basic mechanical properties determination of the silver matrix composites reinforced with ceramic particles, manufactured with the use of suspension methods.Design/methodology/approach: In the presented paper the authors demonstrate possibilities of manufacturing of silver matrix composites on the way of casting technology utilization.Findings: The results of the research prove that applied suspension technology, based on introducing of agglomerated foundry alloy which is the carrier for reinforcement particles (SiC lub Al2O3 allows to produce in an effective and, what is important, in an economically attractive way, sliver alloys based composites.Research limitations/implications: The researches on the structure of manufactured composites and their mechanical properties that are presented in the paper prove the possibilities of mechanical mixing technology application for producing mechanical and stable connection between silver matrix and ceramic particles of aluminium oxide and silicon carbide.Originality/value: The manufacturing of this type of composites is based most of all on the utilization of powder metallurgy techniques. However the obtained results of the research prove that there is a possibility of silver matrix composites forming in the casting and plastic working processes. Extrusion process carried out in the hydraulic press KOBO has its favourably influence on ceramic reinforcement

  11. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms are...... discussed. For distributed matrix micro cracking a continuum damage model is used as the basis for describing the associated stress-strain behavior. A simplified analysis of frictional sliding at the fiber/matrix inter face is made to elucidate its effect on the stress-strain response....

  12. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.

    2000-06-06

    Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlled laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy & Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems. The EERC has two pilot-scale solid-fuel systems available for exposure of materials coupons. The slagging furnace system (SFS) was built under the DOE Combustion 2000 Program as a testing facility for advanced heat exchanger subsystems. It is a 2.5-MMBtu/hr (2.6 x 10{sup 6} kJ/hr) solid-fuel combustion system with exit temperatures of 2700 to 2900 F to ensure that the ash in the main combustor is molten and flowing. Sample coupons may be exposed in the system either within the slagging zone or near the convective air heater at 1800 F (980 C). In addition, a pilot-scale entrained-bed gasifier system known as the transport reactor development unit (TRDU) is available. Also operating at approximately 2.5 MMBtu/hr (2.6 x 10{sup 6} kJ/hr), it is a pressurized unit

  13. Recent advances in the field of ceramic fibers and ceramic matrix composites

    Science.gov (United States)

    Naslain, R.

    2005-03-01

    Progress achieved during the last decade in the field of ceramic fibers and related ceramic matrix composites is reviewed. Both SiC-based and alumina-based fine fibers have been improved in terms of thermal stability and creep resistance with temperature limit of about 1400 and 1200 ° C, respectively. Two concepts for achieving damage-tolerant ceramic matrix composites have been identified : (i) that of non-oxide composites with a dense matrix in which matrix cracks formed under load are deflected and arrested in a weak fiber coating referred to as the interphase and (ii) that of all-oxide composites with a highly porous matrix with no need of any fiber coating. The lifetime under load of non-oxide composites in oxidizing atmospheres, is improved through the use of multilayered self-healing interphases and matrices deposited from gaseous precursors by chemical vapor infiltration (CVI). Lifetime ranging from 1000 to 10,000 hours at 1200 ° C under cyclic loading in air are foreseen. Alumina-based composites although attractive for long term exposures in oxidizing atmospheres up to ≈1200 ° C, are still experimental materials.

  14. Nondestructive evaluation of a ceramic matrix composite material

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  15. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  16. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes

    Science.gov (United States)

    Boyle, Robert

    2014-01-01

    This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.

  17. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    Science.gov (United States)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  18. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  19. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  20. Ultrasonic assessment of interfacial oxidation damage in ceramic matrix composites

    Science.gov (United States)

    Chu, Y. C.; Rokhlin, S. I.; Baaklini, G. Y.

    1993-01-01

    A new approach to characterizing oxidation damage in ceramic matrix composites using ultrasonic techniques is proposed. In this approach, the elastic constants of the composite are determined nondestructively by measuring the angular dependence of both longitudinal and transverse wave velocities. A micromechanical model for composites with anisotropic constituents is used to find the anisotropic properties of an effective fiber, which is a combination of the fiber and the interface. Interfacial properties are extracted from the properties of this effective fiber by analyzing the difference between effective and actual fiber properties. Unidirectional /0/28 SiC/Si3N4 composites with 30 percent fiber volume fraction and 30 percent matrix porosity are used. The samples are exposed in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hours and then measured by ultrasonic methods at room temperature. The Young's modulus in the fiber direction of the sample oxidized at 600 C decreased significantly but it was unchanged for samples oxidized at temperatures above 1200 C. The transverse moduli obtained from ultrasonic measurements decrease continuously up to 1200 C. The shear stiffnesses show behavior similar to the transverse moduli. The effective elastic moduli of the interfacial carbon coating are determined from the experimental data, and their change due to thermal oxidation is discussed.

  1. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rokhlin, S.I.; Chu, Y.C. [Ohio State Univ., Columbus, OH (United States). Dept. of Welding Engineering; Baaklini, G.Y. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-07-01

    This paper addresses the application of ultrasonic methods to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock and oxidation at elevated temperatures. The damage-induced changes in elastic constant and elastic anisotropy are determined by measuring the velocities of ultrasonic waves in different propagation directions within the sample. Thermal shock damage measurement is performed in ceramic samples of reaction bonded silicon nitride (RBSN) and aluminum oxide. Thermal shock treatment from different temperatures up to 1,000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. Oxidation damage is studied in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1,400 C, for 100 hours. Significant changes of ultrasonic velocities were observed for composites before and after oxidation. The elastic constants of the composites were determined from the measured velocity data. The Young`s modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1,200 C. This agrees well with the results of destructive tests by other authors. The transverse longitudinal and shear moduli obtained from ultrasonic measurements decrease continually until 1,200 C. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  2. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    Science.gov (United States)

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  3. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  4. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.C.; Baaklini, G.Y.; Rokhlin, S.I.

    1993-05-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  5. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    Science.gov (United States)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  6. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  7. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  8. Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Brentnall, W.D.; Ferber, M.K.; Keiser, j.R.; Miriyala, N.; More, K.L.; Price, J.R.; Tortorelli, P.F.; Walker, L.R.

    1999-06-07

    A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204 degrees C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

  9. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  10. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    Science.gov (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (41 ksi (approx. 283 MPa) flexural strength.

  11. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  12. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  13. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  14. Effect of Microstructure of Composite Powders on Microstructure and Properties of Microwave Sintered Alumina Matrix Ceramics

    Institute of Scientific and Technical Information of China (English)

    Hanmin Bian; Yong Yang; You Wang; Wei Tian; Haifu Jiang; Zhijuan Hu; Weimin Yu

    2013-01-01

    Two kinds of different structured alumina-titania composite powders were used to prepare alumina matrix ceramics by microwave sintering.One was powder mixture of alumina and titania at a micron-submicron level,in which fused-and-crushed alumina particles (micrometers) was clad with submicron-sized titania.The other was powder mixture of alumina and titania at nanometer-nanometer level,in which nano-sized alumina and nano-sized titania particles were homogeneously mixed by ball-milling and spray dried to prepare spherical alumina-titania composite powders.The effect of the microstructure of composite powders on microstructure and properties of microwave sintered alumina matrix ceramics were investigated.Nano-sized composite (NC) powder showed enhanced sintering behavior compared with micro-sized composite (MC) powders.The asprepared NC ceramic had much denser,finer and more homogenous microstructure than MC ceramic.The mechanical properties of NC ceramic were significantly higher than that of MC ceramic,e.g.the flexural strength,Vickers hardness and fracture toughness of NC ceramic were 85.3%,130.3% and 25.7% higher than that of MC ceramic,respectively.The improved mechanical properties of NC ceramic compared with that of MC ceramic were attributed to the enhanced densification and the finer and more homogeneous microstruc.ture through the use of the nanostructured composite powders.

  15. Stereological characterization of crack path transitions in ceramic matrix composites

    Indian Academy of Sciences (India)

    Parag Bhargava; B R Patterson

    2001-04-01

    All ceramic composites involve a mismatch in physical properties the extent of which differs from one composite to another. Mismatch in thermal expansion ( ) and elastic modulus (E) is known to produce stresses that influence the path of a propagating crack. Thus, the relative effect of thermal and elastic mismatch on the crack path is expected to change with change in stress intensity. We propose that the crack path in ceramic composites should undergo a transition with the crack being strongly influenced by the thermal mismatch stresses at low stress intensity and elastic mismatch stresses at high stress intensities. Thus, a material in use under different applications each with its own loading conditions is expected to exhibit different crack propagation tendencies which may be reflected in the – characteristics of the composite material. In the present work several model composites with different combinations of thermal and elastic mismatch have been considered. Cracks propagating at different sub-critical stress intensities (velocities) were generated by a novel indentation technique. Each indentation was performed at a constant displacement rate and a peak load. A range of displacement rates were used to produce cracks propagating at different velocities. The indentations were made using a Vickers indentor fitted in a universal mechanical testing machine. The crack paths in composites were quantified by stereological technique and the proposed theory was verified.

  16. Approach to microstructure-behavior relationships for ceramic matrix composites reinforced by continuous fibers

    OpenAIRE

    Lamon Jacques

    2015-01-01

    Ceramic matrix composites (CMCs) reinforced with continuous fibers exhibit several features that differentiate them from homogeneous unreinforced materials. The microstructure consists of various distinct constituents: fibres, matrix, and fiber/matrix interfaces or interphases. Several entities at micro- and mesoscopic length scales can be defined depending on fiber arrangement. Furthermore, the CMCs contain flaw populations that govern matrix cracking and fiber failures. The paper describes ...

  17. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.

    1996-01-01

    This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.

  18. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  19. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  20. Thixoforming of SiC ceramic matrix composites in pseudo-semi-solid state

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuan-sheng; LUO Shou-jing; DU Zhi-ming

    2005-01-01

    A new forming process, ceramic matrix composites thixoforming in pseudo-semi-solid state, was proposed based on powder metallurgy technology combined with the semi-solid metal forming process. The satellite angle-frames were prepared by this technology with Alp and SiCp materials mixed with different volume fractions. It is proved that it is feasible for the forming of the ceramic matrix composites by this technology through metallographic analyses and tensile tests. The results also show that the microstructures of samples are homogeneous and they have high hardness and certain plasticity.

  1. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    Science.gov (United States)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural

  2. X-ray microtomography of ceramic and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Bhatt, R.T.; Eckel, A.J. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Engler, P.; Rauser, R.W. [Cleveland State Univ., OH (United States); Castelli, M.G. [NYMA, Inc., Cleveland, OH (United States)

    1995-09-01

    Capabilities and limitations of X-ray computed microtomography (CT) in characterizing relevant composite material issues as identified during manufacturing processes were investigated. Damage in engine subcomponents was evaluated and compared with damage detected in pedigreed coupon type specimens. The system used is a newly developed state-of-the-art X-ray computed tomography system capable of providing digital radiography, computed tomography, and computed laminography. CT was found viable for characterizing processing defects and coating effect in thermally shocked carbon fiber reinforced silicon carbide matrix (C/SiC) samples. CT results from mechanically tested silicon carbide fiber reinforced reaction bonded silicon nitride (SiC/RBSN) matrix sample were evaluated and compared to engine tested SiC/RBSN turbine vanes. Thermomechanically cycled SiC (SCS-6) fiber reinforced Timetal 21S samples showed viability of CT in detecting composite constituents and limitations of CT in detecting matrix and fiber cracking. Also an engineering analysis approach was proposed to continuously integrate nondestructive evaluation modalities in the design-manufacturing-prototyping cycle of engine components.

  3. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    Directory of Open Access Journals (Sweden)

    M. Szutkowska

    2012-10-01

    Full Text Available Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composite with unstabilized and stabilized zirconia, alumina–zirconia composite with addition of TiC and alumina–nitride-carbide titanium composite with 2wt% of zirconia. Specimens were prepared from submicro-scale trade powders. Vicker’s hardness (HV1, fracture toughness (KIC at room temperature, the indentation fracture toughness, Young’s modulus and apparent density were also evaluated. The microstructure was observed by means of scanning electron microscopy (SEM.Findings: The lowest value of KIC is revealed by pure alumina ceramics. The addition of (10 wt% unstabilized zirconia to alumina or a small amount (5 wt% of TiC to alumina–zirconia composite improve fracture toughness of these ceramics in comparison to alumina ceramics. Alumina ceramics and alumina-zirconia ceramics reveal the pronounced character of R-curve because of an increasing dependence on crack growth resistance with crack extension as opposed to the titanium carbide-nitride reinforced composite based on alumina. R-curve has not been observed for this composite.Practical implications: The results show the method of fracture toughness improvement of alumina tool ceramics.Originality/value: Taking into account the values of fracture toughness a rational use of existing ceramic tools should be expected.

  4. Mechanical behavior and properties of fiber reinforced ceramic matrix composites for high temperature use

    Institute of Scientific and Technical Information of China (English)

    Chongdu Cho; Qiang Pan; Sangkyo Lee

    2007-01-01

    Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theory for the strength of a uni-axially fiber-reinforced brittle matrix composite is presented.Also a semi-empirical frictional heating method for estimating in-situ interfacial shear in fiber-reinforced ceramic matrix composites was improved.Local uneven fiber packing variation as well as uneven micro-damage during fatigue can be expected to have effects on the composites:generation of frictional heating,thermal gradients,and residual stresses around local fiber breaks.This study examined those engineering interests by the finite element method.

  5. Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Sreeja, R. [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India); Swaminathan, B., E-mail: swami1423@gmail.co [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India); Painuly, Anil; Sebastian, T.V.; Packirisamy, S. [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India)

    2010-04-15

    In present study, partially allyl-substituted hydridopolycarbosilane (5 mol% allyl) [AHPCS] has been characterized by spectral techniques and thermal analysis. The DSC studies show that, the polymer is self-cross-linking at lower temperatures without any incorporation of cross-linking agents. The spectral and thermal characterizations carried out at different processing stages indicate the possibility of extensive structural rearrangement accompanied by the loss of hydrogen and other reactions of C and Si containing species resulting in the conversion of the branched chain segment into a 3D SiC network structure. AHPCS gave ceramic residue of 72% and 70% at 900 and 1500 deg. C respectively in argon atmosphere. XRD pattern of 1500 deg. C heat-treated AHPCS, indicates the formation of silicon carbide with the particle size of 3-4 nm. AHPCS was used as matrix resin for the preparation of C/SiC composite without any interfacial coating over the T-300 carbon fabric reinforcement. Flexural strength value of 74-86 MPa for C/SiC specimen with density of 1.7 g/cm{sup 3} was obtained after four infiltration and pyrolysis cycles.

  6. Alumina matrix ceramic-nickel composites formed by centrifugal slip casting

    Directory of Open Access Journals (Sweden)

    Justyna Zygmuntowicz

    2015-12-01

    Full Text Available The paper is focused on the possibility of fabricating the alumina matrix ceramic-nickel composites with gradient concentration of metal particles. Centrifugal slip casting method was chosen for the composite fabrication. This method allows fabrication of the graded distribution of nickel particles in the hollow cylinder composites. The horizontal rotation axis was applied. The samples were characterized by XRD, SEM and quantitative description of the microstructure. The macroscopic as well as SEM observations of the prepared composites confirmed the gradient concentration of Ni particles in the composite materials. The application of the centrifugal slip casting method allows for the graded distribution of metal particles in the samples.

  7. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  8. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  9. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  10. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  11. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  12. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  13. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  14. Ultrasonic evaluation of initiation and development of oxidation damage in ceramic-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.C.; Lavrentyev, A.I.; Rokhlin, S.I. [Ohio State Univ., Columbus, OH (United States). Nondestructive Evaluation Program; Baaklini, G.Y.; Bhatt, R.T. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-07-01

    In this paper the authors report on the development of a method for ultrasonic nondestructive characterization of oxidation damage in ceramic-matrix composites. The method is based on ultrasonic measurement of elastic moduli of the composite, which are then used to determine the elastic moduli of the fiber-matrix interphase. Thus the interphasial damage may be estimated quantitatively. As a model system they used, to demonstrate applicability of the method, a unidirectional SiC-fiber-reinforced reaction-bonded silicon nitride matrix composite (SiC/RBSN). The composite samples were oxidized in flowing oxygen for 0.1, 1, 10, and 100 h at 600, 900, 1200, and 1400 C. The ultrasonic phase velocity in the composite was measured at room temperature before and after oxidation; the data were then used to find the composite moduli, which quantify the induced damage. significant changes in ultrasonic velocities and composite moduli, which quantify the induced damage. Significant changes in ultrasonic velocities and composite moduli were found as a result of oxidation. Fiber-matrix interphasial moduli were determined by multiphase micromechanical analysis. They found that oxidation of the carbon interphasial layer is the dominant mechanism in decreasing the elastic moduli of the composite. The critical exposure time for transition from the nondamaged to the damage state of different oxidation temperatures has been determined.

  15. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  16. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  17. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  18. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  19. Damage analysis of the ceramic reinforced steel matrix composites sheets: experimental and numerical study

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2011-11-01

    Full Text Available Purpose: of this paper reports damage analysis of TiB2 (ceramic particles reinforced steel matrix composite sheets. This new steel composite receives much attention as potential structural materials due to their high specific strength and stiffness. The goal of the research described in this paper is to study the usage of this new steel family in the manufacture of light structures.Design/methodology/approach: therefore in this study is focused to the titanium diboride TiB2 reinforced steel matrix composite sheets that they were characterized by optical and scanning electron microscopes after the mechanical tests carried out on the base metal and welded specimens under dynamic and static test conditions.Findings: The non homogeneity of the structure in this type of composites makes deeply complexity of their numerical and analytical modelling to predict their damage during the loading. For example, the interfaces essentially play a key role in determining mechanical and physical properties. For this reason, a Finite Element (FEM analysis is used for modelling to simulate the macroscopic behaviour of this material, taking into account the relevant microscopic scales.Practical implications: defined in this research is based on the impact dynamic behaviour of this steel sheets by using a special impact tensile test developed formerly that all details were published in this journal. This type of test gives more comprehensible information about special steel sheets (welded or base metal in case of dynamic crash conditions.Originality/value: The present research gives detail information on the new steel matrix composite sheets reinforced TiB2 ceramic particles. This new composite was developed by ARCELOR research group and impact dynamic behaviour and weldability of the welded parts and base metals from this composite steel are discussed here in order to give practical and useful solution for industrial applications.

  20. The high frequency fatigue behavior of continuous-fiber-reinforced ceramic matrix composites

    Science.gov (United States)

    Chawla, Nikhilesh

    Many potential applications for continuous fiber ceramic matrix composites (CFCMCs), such as gas turbines and heat exchangers, will involve high frequency cyclic loading (75 Hz or higher). While most of the work in the area of fatigue of CFCMCs has concentrated on low frequency behavior, it has been shown that fatigue at high frequencies can exacerbate the accumulation of microstructural damage and significantly decrease fatigue life. "Soft" matrix composites with strong interface bonding provided superior resistance to high frequency fatigue damage. Nicalon/SiCON composites with strong interfacial bonding between the fibers and matrix exhibited very little internal heating during high frequency fatigue loading. This composite system exhibited excellent fatigue life, with fatigue runout at 10sp7 cycles occurring for stresses close to 80% of the ultimate strength (at a loading frequency of 100 Hz). Thick fiber coatings may be more effective in reducing the amount of fiber wear and damage which occur during high frequency fatigue. More effective lubrication at the fiber/matrix interface was achieved with thicker carbon coatings in Nicalon/C/SiC composites subjected to high frequency fatigue loading. Composites with thicker coatings exhibited substantially lower frictional heating and had much higher fatigue lives. The effect of laminate stacking sequence had a significant effect on the high frequency fatigue behavior of CFCMCs. In SCS-6/Sisb3Nsb4 composites, frictional heating in angle-ply laminates (±45) was substantially higher than that in cross-ply laminates (0/90). Since the angle-ply had a lower stiffness, matrix microcracking in this composite was more predominant. Finally, preliminary fatigue damage mechanism maps for CFCMCs were developed. These maps provided a means to identify which fatigue mechanisms were operating at a given stress level and number of cycles.

  1. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Science.gov (United States)

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  2. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  3. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  4. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  5. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  6. Prediction of lifetime in static fatigue at high temperatures for ceramic matrix composites

    International Nuclear Information System (INIS)

    Previous works have shown that ceramic matrix composites are sensitive to delayed failure during fatigue in oxidizing environments. The phenomenon of slow crack growth has been deeply investigated on single fibers and multi-filament tows in previous papers. The present paper proposes a multiscale model of failure driven by slow crack growth in fibers, for 2D woven composites under a constant load. The model is based on the delayed failure of longitudinal tows. Additional phenomena involved in the failure of tows have been identified using fractographic examination of 2D woven SiC/SiC composite test specimens after fatigue tests at high temperatures. Stochastic features including random load sharing, fiber overloading, fiber characteristics and fiber arrangement within the tows have been introduced using appropriate density functions. Rupture time predictions are compared to experimental data. (authors)

  7. Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code

    Science.gov (United States)

    Shah, Ashwin

    2000-01-01

    This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.

  8. The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Science.gov (United States)

    Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.

    2015-01-01

    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.

  9. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  10. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  11. Novel Vibration Damping of Ceramic Matrix Composite Turbine Blades Developed for RLV Applications

    Science.gov (United States)

    Min, James B.

    2000-01-01

    The Reusable Launch Vehicle (RLV) represents the next generation of space transportation for the U.S. space program. The goal for this vehicle is to lower launch costs by an order of magnitude from $10,000/lb to $1,000/lb. Such a large cost reduction will require a highly efficient operation, which naturally will require highly efficient engines. The RS-2200 Linear Aerospike Engine is being considered as the main powerplant for the RLV. Strong, lightweight, temperature-resistant ceramic matrix composite (CMC) materials such as C/SiC are critical to the development of the RS-2200. Preliminary engine designs subject turbopump components to extremely high frequency dynamic excitation, and ceramic matrix composite materials are typically lightly damped, making them vulnerable to high-cycle fatigue. The combination of low damping and high-frequency excitation creates the need for enhanced damping. Thus, the goal of this project has been to develop well-damped C/SiC turbine components for use in the RLV. Foster-Miller and Boeing Rocketdyne have been using an innovative, low-cost process to develop light, strong, highly damped turbopump components for the RS-2200 under NASA s Small Business Innovation Research (SBIR) program. The NASA Glenn Research Center at Lewis Field is managing this work. The process combines three-dimensionally braided fiber reinforcement with a pre-ceramic polymer. The three-dimensional reinforcement significantly improves the structure over conventional two-dimensional laminates, including high through-the-thickness strength and stiffness. Phase I of the project successfully applied the Foster-Miller pre-ceramic polymer infiltration and pyrolysis (PIP) process to the manufacture of dynamic specimens representative of engine components. An important aspect of the program has been the development of the manufacturing process. Results show that the three-dimensionally braided carbon-fiber reinforcement provides good processability and good mechanical

  12. Investigation of Effects of Material Architecture on the Elastic Response of a Woven Ceramic Matrix Composite

    Science.gov (United States)

    Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.

    2012-01-01

    To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.

  13. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    Science.gov (United States)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  14. Numerical Simulation of Dynamic Response of Fiber Reinforced Ceramic Matrix Composite Beam with Matrix Cracks Using Multiscale Modeling

    Institute of Scientific and Technical Information of China (English)

    Gao Xiguang; Song Yingdong; Sun Zhigang; Hu Xuteng

    2010-01-01

    A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed.At the global level,the finite element method is employed to simulate the dynamic response ofa CMC beam.While at the local level,the multiscale mechanical method is used to estimate the stress/strain response of the material.A distributed computing system is developed to speed up the simulation.The simulation of dynamic response of a Nicalon/CAS-Ⅱ beam being subjected to harmonic loading is performed as a numerical example.The results show that both the stress/strain responses under tension and compressive loading are nonlinear.These conditions result in a different response compared with that of elastic beam,such as:1) the displacement response is not symmetric about the axis of time;2) in the condition of small external load,the response at first order natural frequency is limited within a finite range;3) decreasing the matrix crack space will increase the displacement response of the beam.

  15. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  16. Non linear thermal behaviour induced by damage of ceramic matrix composite

    International Nuclear Information System (INIS)

    In this work the relationship between the evolution of damage and the loss of thermal properties of Ceramic Matrix Composites is investigated by a multi-scale approach. Research are conducted both experimentally and theoretically. The implemented approach is to consider two significant scales (micro and meso) where different damage mechanisms are operating and then assess the effect on the effective thermal properties by homogenization techniques. Particular attention has been given to the development of a thorough experimental work combining various characterization tools (mechanical, thermal and microstructural). At the two aforementioned scales, an experimental setup was designed to perform thermal measurements on CMC under tensile test. Thermal diffusivity of mini-composites is estimated using Lock-in thermography. Also, transverse diffusivity mapping as well as global in-plane diffusivity of woven CMC are determined by suitable rear face flash methods. The evolution of damage is then derived from acoustic emission activity along with postmortem microstructural observations. Experimental results are systematically compared to simulations. At microscale, a micromechanical-based model is used to simulate the loss of thermal conductivity of a mini-composite under tensile test. At mesoscale, a multi-scale Finite Element Model is proposed to compute the effect of damage on thermal properties of woven CMC. (author)

  17. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel

    2015-01-01

    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  18. Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh; Lang, Jerry

    2010-01-01

    Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.

  19. Preparation of Aluminum Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material

    Science.gov (United States)

    Venkata Siva, S. B.; Sahoo, K. L.; Ganguly, R. I.; Dash, R. R.; Singh, S. K.; Satpathy, B. K.; Srinivasarao, G.

    2013-08-01

    A novel method is adapted to prepare an in situ ceramic composite from waste colliery shale (CS) material. Heat treatment of the shale material, in a plasma reactor and/or in a high temperature furnace at 1673 K (1400 °C) under high vacuum (10-6 Torr), has enabled in situ conversion of SiO2 to SiC in the vicinity of carbon and Al2O3 present in the shale material. The composite has the chemical constituents, SiC-Al2O3-C, as established by XRD/EDX analysis. Particle sizes of the composite range between 50 nm and 200 μm. The shape of the particles vary, presumably rod to spherical shape, distributed preferably in the region of grain boundaries. The CS composite so produced is added to aluminum melt to produce Al-CS composite (12 vol. pct). For comparison of properties, the aluminum metal matrix composite (AMCs) is made with Al2O3 particulates (15 vol. pct) with size <200 μm. The heat-treated Al-CS composite has shown better mechanical properties compared to the Al-Al2O3 composite. The ductility and toughness of the Al-CS composite are greater than that of the Al-Al2O3 composite. Fractographs revealed fine sheared dimples in the Al-CS composite, whereas the same of the Al-Al2O3 composite showed an appearance of cleavage-type facets. Abrasion and frictional behavior of both the composites have been compared. The findings lead to the conclusion that the in situ composite developed from the colliery shale waste material has a good future for its use in AMCs.

  20. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  1. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.

    2013-01-01

    Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.

  2. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  3. Characterization of Ceramic Matrix Composite Combustor Components: Pre and Post Exposure

    Science.gov (United States)

    Ojard, G.; Linsey, G.; Brennan, J.; Naik, R.; Cairo, R.; Stephan, R.; Hornick, J.; Brewer, D.

    2001-01-01

    The pursuit of lower emissions and higher performance from gas turbine engines requires the development of innovative concepts and the use of advanced materials for key engine components. One key engine component is the combustor, where innovative design and material improvements have the potential to lower emissions. Efforts to develop a High Speed Civil Transport with low emissions were focused on the evaluation of combustor concepts with liners fabricated from a ceramic matrix composite of silicon carbide fibers in a silicon carbide matrix (SiC/SiC). The evaluation of SiC/SiC composites progressed from simple coupons (to establish a first-order database and identify operant failure mechanisms and damage accumulation processes), to feature-based subelements (to assess fabricability and in situ material response), to actual components (to assess structural integrity, dimensional, and compositional fidelity) tested under simulated engine conditions. As in the case of all evolutionary material and process work, a key element to resolving fabrication issues is the evaluation of witness areas taken from fabricated components before testing the actual component. The witness material from these components allowed microstructural and mechanical testing to be performed and compared to the ideal, flat panel, conditions and data that are typical of basic characterization. This also allowed samples of similar design to be taken from components after 115 hours of combustion exposure. Testing consisted of tensile, double notch shear, ring burst, and thermal conductivity that sampled various regions of the components. The evaluation of the witness material allowed an understanding of the fabrication process, highlighting critical issues, in an early phase of the learning curve development of these configuration and material unique parts. Residual property testing, after exposure, showed if degradation of the material under actual service conditions was occurring. This paper

  4. The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Composites

    Science.gov (United States)

    Jarzabek, Dariusz M.; Chmielewski, Marcin; Dulnik, Judyta; Strojny-Nedza, Agata

    2016-08-01

    This study investigated the influence of the particle size on the adhesion force between ceramic particles and metal matrix in ceramic-reinforced metal matrix composites. The Cu-Al2O3 composites with 5 vol.% of ceramic phase were prepared by a powder metallurgy process. Alumina oxide powder as an electrocorundum (Al2O3) powder with different particle sizes, i.e., fine powder powder of 180 µm was used as a reinforcement. Microstructural investigations included analyses using scanning electron microscopy with an integrated EDS microanalysis system and transmission microscopy. In order to measure the adhesion force (interface strength), we prepared the microwires made of the investigated materials and carried out the experiments with the use of the self-made tensile tester. We have observed that the interface strength is higher for the sample with coarse particles and is equal to 74 ± 4 MPa and it is equal to 68 ± 3 MPa for the sample with fine ceramic particles.

  5. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  6. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  7. Modeling the Effect of Oxidation on Tensile Strength of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical method has been developed to investigate the effect of oxidation on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs). The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The fiber strength degradation model and oxidation region propagation model have been adopted to analyze the oxidation effect on tensile strength of the composite, which is controlled by diffusion of oxygen gas through matrix cracks. Under tensile loading, the fibers failure probabilities were determined by combining oxidation model and fiber statistical failure model based on the assumption that fiber strength is subjected to two-parameter Weibull distribution and the loads carried by broken and intact fibers statisfy the global load sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength considering oxidation time and temperature have been analyzed.

  8. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  9. Life Limiting Behavior in Interlaminar Shear of Continuous Fiber-Reinforced Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.

    2006-01-01

    Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.

  10. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    Science.gov (United States)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2009-01-01

    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  11. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The 2.5 dimensional silica fiber reinforced nitride matrix composites (2.5D SiO2f/Si3N4-BN) were prepared through the preceramic polymer impregnation pyro- lysis (PIP) method. The ablation and radar-wave transparent performances of the composite at high temperature were evaluated under arc jet. The composition and ablation surface microstructures were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the 2.5D SiO2f/Si3N4-BN composites have a linear ablation rate of 0.33 mm/s and high radar-wave trans- parent ratio of 98.6%. The fused layer and the matrix are protected by each other, and no fused layer accumulates on the ablation surface. The nitride composite is a high-temperature ablation resistivity and microwave transparent material.

  12. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites

    Science.gov (United States)

    Eckel, Andrew J.; Bradt, Richard C.

    1990-01-01

    Thermal expansions of three two-dimensional laminate, continuous fiber/chemical-vapor-infiltrated silicon carbide matrix composites reinforced with either FP-Alumina (alumina), Nextel (mullite), or Nicalon (Si-C-O-N) fibers are reported. Experimental thermal expansion coefficients parallel to a primary fiber orientation were comparable to values calculated by the conventional rule-of-mixtures formula, except for the alumina fiber composite. Hysteresis effects were also observed during repeated thermal cycling of that composite. Those features were attributed to reoccurring fiber/matrix separation related to the micromechanical stresses generated during temperature changes and caused by the large thermal expansion mismatch between the alumina fibers and the silicon carbide matrix.

  13. ESD coating of copper with TiC and TiB2 based ceramic matrix composites

    Science.gov (United States)

    Talas, S.; Mertgenç, E.; Gökçe, B.

    2016-08-01

    In automotive industry, the spot welding is a general practice to join smaller sections of a car. This welding is specifically carried out in short time and in an elevated number with certain pressure applied on copper electrodes. In addition, copper electrodes are expected to endure against cyclic mechanical pressure and temperature that is released during the passage of the current. The deformation and oxidation behaviour of copper electrodes during service appear with increasing temperature of medium and they also need to be cleaned and cooled or replaced for the continuation of joining process. The coating of copper electrodes with ceramic matrix composites can provide alternative excellent high temperature strength and ensures both economic and efficient use of resources. This study shows that the ESD coating of copper electrodes with a continuous film of ceramic phase ensures an improved resistance to thermal effects during the service and the change in content of film may be critical for cyclic alloying.

  14. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  15. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2016-06-01

    Full Text Available Friction stir processing (FSP was applied to produce aluminum matrix composites (AMCs. Aluminum alloy AA6082 was used as the matrix material. Various ceramic particles, such as SiC, Al2O3, TiC, B4C and WC, were used as reinforcement particle. AA6082 AMCs were produced using a set of optimized process parameters. The microstructure was studied using optical microscopy, filed emission scanning electron microscopy and electron back scattered diagram. The results indicated that the type of ceramic particle did not considerably vary the microstructure and ultimate tensile strength (UTS. Each type of ceramic particle provided a homogeneous dispersion in the stir zone irrespective of the location and good interfacial bonding. Nevertheless, AA6082/TiC AMC exhibited superior hardness and wear resistance compared to other AMCs produced in this work under the same set of experimental conditions. The strengthening mechanisms and the variation in the properties are correlated to the observed microstructure. The details of fracture mode are further presented.

  16. Microstructure and Dry-Sliding Wear Behavior of B4C Ceramic Particulate Reinforced Al 5083 Matrix Composite

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-09-01

    Full Text Available B4C ceramic particulate–reinforced Al 5083 matrix composite with various B4C content was fabricated successfully via hot-press sintering under Argon atmosphere. B4C particles presented relative high wettability, bonding strength and symmetrical distribution in the Al 5083 matrix. The hardness value, friction coefficient and wear resistance of the composite were higher than those of the Al 5083 matrix. The augment of the B4C content resulted in the increase of the friction coefficient and decrease of the wear mass loss, respectively. The 30 wt % B4C/Al 5083 composite exhibited the highest wear resistance. At a low load of 50 N, the dominant wear mechanisms of the B4C/Al 5083 composite were micro-cutting and abrasive wear. At a high load of 200 N, the dominant wear mechanisms were micro-cutting and adhesion wear associated with the formation of the delamination layer which protected the composite from further wear and enhanced the wear resistance under the condition of high load.

  17. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  18. A ceramic matrix composite based on polymerization and pyrolysis of ethynylated aromatics

    Science.gov (United States)

    Hurwitz, F. I.

    1985-01-01

    A number of ethynylated aromatic monomers recently have been synthesized which thermally homopolymerize and copolymerize to produce rigid, highly cross-linked polymers with high thermal stability (Tg of about 450 C). On pyrolysis, these polymers lose few volatiles (more than 85 percent char yield) to yield carbon bodies of relatively low porosity. These properties render the ethynylated aromatics of significant interest as matrices for high temperature composites. Incorporation of a SiC particle filler in the matrix improves the rheology of the system and minimizes shrinkage during pyrolysis. Several unidirectional composites have been fabricated combining a graphite or boria-alumina-silica continuous reinforcement with an ethynylated aromatic polymer matrix and SiC filler. Thermogravimetric analysis of composite pyrolysis behavior was used to determine reaction kinetics and to establish a composite fabrication cycle. Composites retained 95 percent of their green weight on pyrolysis. Microstructure of the green and pyrolyzed composites is characterized for materials pyrolyzed at 600 C in vacuum and argon as well as for laminates heated at 1200 C in argon following pyrolysis.

  19. Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.

    1999-01-01

    Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.

  20. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Lucas, G.E. (California Univ., Santa Barbara, CA (USA))

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  1. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology.

    Science.gov (United States)

    Saucedo-Mora, L; Marrow, T J

    2016-07-13

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  2. Method Developed for the High-Temperature Nondestructive Evaluation of Fiber-Reinforced Silicon Carbide Ceramic Matrix Composites

    Science.gov (United States)

    Goldsby, Jon C.

    1998-01-01

    Ceramic matrix composites have emerged as candidate materials to allow higher operating temperatures (1000 to 1400 C) in gas turbine engines. A need, therefore, exists to develop nondestructive methods to evaluate material integrity at the material operating temperature by monitoring thermal and mechanical fatigue. These methods would also have potential as quality inspection tools. The goal of this investigation at the NASA Lewis Research Center is to survey and correlate the temperature-dependent damping and stiffness of advanced ceramic composite materials with imposed thermal and stress histories that simulate in-service turbine engine conditions. A typical sample size of 100 by 4 by 2 cubic millimeters, along with the specified stiffness and density, placed the fundamental vibration frequencies between 100 and 2000 Hz. A modified Forster apparatus seemed most applicable to simultaneously measure both damping and stiffness. Testing in vacuum reduced the effects of air on the measurements. In this method, a single composite sample is vibrated at its fundamental tone; then suddenly, the mechanical excitation is removed so that the sample's motion freely decays with time. Typical results are illlustrated in this paper.

  3. Investigation of forced and isothermal chemical vapor infiltrated SiC/SiC ceramic matrix composites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, J.; Kelkar, A.D.; Vaidyanathan, R. [North Carolina Agricultural and Technical State Univ., Greensboro, NC (United States). Dept. of Mechanical Engineering

    1993-09-01

    Mechanical properties of two different layups for each of the forced CVI (41 specimens) and isothermal CVI (36 specimens) materials were investigated in air at room temperature (RT), 1000C, and at room temperature after thermal shock (RT/TS) and exposure to oxidation (RT/OX). The FCVI specimens had a nominal interfacial coating thickness of 0.3 {mu}m of pyrolytic carbon, while CVI specimens had a coating thickness of 0.1 {mu}m. Effect of reinforcement and interfacial bond on mechanical properties of composite were investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to analyze the fiber-matrix interface and the toughening mechanisms in this ceramic composite system.

  4. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  5. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  6. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  7. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  8. Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2016-03-01

    Full Text Available In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional, 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture.

  9. Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite

    Science.gov (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.

  10. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  11. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  12. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  13. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; Ursic, Joseph

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  14. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  15. Low pressure hot pressing of B4C matrix ceramic composites improved by Al2O3 and TiC additives

    International Nuclear Information System (INIS)

    B4C matrix ceramic composites toughened by Al2O3 and TiC were prepared by low pressure hot pressing. The relative density, Vickers hardness, fracture toughness and flexural strength of the new fabricated composites were measured. Microstructure observations of the fracture surfaces and the indentation cracks of the B4C matrix ceramic composites were analyzed, and an X-ray diffraction phase analysis was performed. The experiment results showed that chemical reactions took place during the low pressure hot pressing process and resulted in the B4C/Al2O3/TiB2 composite. The densification rate of the B4C matrix ceramic composites was enhanced and the mechanical properties were improved via the introduction of Al2O3 and TiC additives. The Vickers hardness, fracture toughness and flexural strength of the composite with the addition of 4.7 wt.% Al2O3 and 10 wt.% TiC were 24.8 GPa, 4.8 MPa m1/2 and 445 MPa, respectively.

  16. Relationship Between Hysteresis Dissipated Energy and Temperature Rising in Fiber-Reinforced Ceramic-Matrix Composites Under Cyclic Loading

    Science.gov (United States)

    Longbiao, Li

    2016-06-01

    In this paper, the relationship between hysteresis dissipated energy and temperature rising of the external surface in fiber-reinforced ceramic-matrix composites (CMCs) during the application of cyclic loading has been analyzed. The temperature rise, which is caused by frictional slip of fibers within the composite, is related to the hysteresis dissipated energy. Based on the fatigue hysteresis theories considering fibers failure, the hysteresis dissipated energy and a hysteresis dissipated energy-based damage parameter changing with the increase of cycle number have been investigated. The relationship between the hysteresis dissipated energy, a hysteresis dissipated energy-based damage parameter and a temperature rise-based damage parameter have been established. The experimental temperature rise-based damage parameter of unidirectional, cross-ply and 2D woven CMCs corresponding to different fatigue peak stresses and cycle numbers have been predicted. It was found that the temperature rise-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  17. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans

  18. Notch Sensitivity of Woven Ceramic Matrix Composites Under Tensile Loading: An Experimental, Analytical, and Finite Element Study

    Science.gov (United States)

    Haque, A.; Ahmed, L.; Ware, T.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    The stress concentrations associated with circular notches and subjected to uniform tensile loading in woven ceramic matrix composites (CMCs) have been investigated for high-efficient turbine engine applications. The CMC's were composed of Nicalon silicon carbide woven fabric in SiNC matrix manufactured through polymer impregnation process (PIP). Several combinations of hole diameter/plate width ratios and ply orientations were considered in this study. In the first part, the stress concentrations were calculated measuring strain distributions surrounding the hole using strain gages at different locations of the specimens during the initial portion of the stress-strain curve before any microdamage developed. The stress concentration was also calculated analytically using Lekhnitskii's solution for orthotropic plates. A finite-width correction factor for anisotropic and orthotropic composite plate was considered. The stress distributions surrounding the circular hole of a CMC's plate were further studied using finite element analysis. Both solid and shell elements were considered. The experimental results were compared with both the analytical and finite element solutions. Extensive optical and scanning electron microscopic examinations were carried out for identifying the fracture behavior and failure mechanisms of both the notched and notched specimens. The stress concentration factors (SCF) determined by analytical method overpredicted the experimental results. But the numerical solution underpredicted the experimental SCF. Stress concentration factors are shown to increase with enlarged hole size and the effects of ply orientations on stress concentration factors are observed to be negligible. In all the cases, the crack initiated at the notch edge and propagated along the width towards the edge of the specimens.

  19. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  20. Fibrous monoliths: Economic ceramic matrix composites from powders[Final report]; FINAL

    International Nuclear Information System (INIS)

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites

  1. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder

    Indian Academy of Sciences (India)

    V Usoltsev; S Tikhov; A Salanov; V Sadykov; G Golubkova; O Lomovskii

    2013-12-01

    Porous ceramic matrix composites FeAlO/FeAl with incorporated metal inclusions (cermets) were synthesized by pressureless method, which includes hydrothermal treatment of mechanically alloyed FeAl powder followed by calcination. Their main structural, textural and mechanical features are described. Variation of FeAl powder alloying time results in non-monotonous changes of the porosity and mechanical strength. Details of the cermet microstructure and its relation to the mechanical properties are discussed.

  2. Effects of B4C addition on the micro- structural and thermal properties of hot pressed SiC ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Z. Keçeli

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to evaluate effects of B4C addition on the microstructural and thermal properties of hot pressed SiC ceramic matrix composites.Design/methodology/approach: The effect of B4C addition on microstructural and thermal properties of the SiC-B4C powder composites were investigated after high energy milling and hot pressing. SiC powders containing 5wt%, 10wt%, 15wt% B4C were mechanically alloyed in a high energy ball mill for 8 h.Findings: Microstructural characterisation investigations (SEM, XRD were carried out on mechanically alloyed SiC powder composites containing 5 wt %, 10 wt %, 15 wt % B4C powders and on these powder composites sintered in vacuum at 50 MPa at 2100ºC. The thermal properties were characterised using DTA, TGA and dilatometer. The results were evaluated.Research limitations/implications: In this study, the effect of B4C addition on microstructural and mechanical properties of the SiC-B4C powder composites was investigated after high energy milling and hot pressing.Originality/value: Ceramic matrix composite (CMC material systems are stimulating a lot of interest to be used and provide unique properties for aircraft and land-based turbine engines, defence applications, rocket motors, aerospace hot structures and industrial applications. Boron carbide (B4C-silicon carbide (SiC ceramic composites are very promising armour materials because they are intrinsically very hard. Advanced SiC-based armour is desired so that the projectile is completely defeated without penetrating the ceramic armour.

  3. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  4. Aluminium matrix composites fabricated by infiltration method

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; A. J. Nowak; Nagel, A.

    2009-01-01

    Purpose: The aim of this work is to examine the structure and properties of metal matrix composites obtained by infiltration method of porous ceramic preforms by liquid aluminium alloy.Design/methodology/approach: Ceramic preforms were manufactured by the sintering method of ceramic powder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the pore forming the carbon fibers Sigrafil C10 M250 UNS were used. Then ceramic preforms were infiltrated with liquid eutectic EN ...

  5. Impact of Material and Architecture Model Parameters on the Failure of Woven Ceramic Matrix Composites (CMCs) via the Multiscale Generalized Method of Cells

    Science.gov (United States)

    Liu, Kuang C.; Arnold, Steven M.

    2011-01-01

    It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the effects of many of these architectural parameters and material scatter of woven ceramic composite properties at the macroscale (woven RUC) will be studied to assess their sensitivity. The recently developed Multiscale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions. The macroscale responses investigated illustrate the effect of architectural and material parameters on a single RUC representing a five harness satin weave fabric. Results shows that the most critical architectural parameter is weave void shape and content with other parameters being less in severity. Variation of the matrix material properties was also studied to illustrate the influence of the material variability on the overall features of the composite stress-strain response.

  6. Effects of B4C addition on the micro- structural and thermal properties of hot pressed SiC ceramic matrix composites

    OpenAIRE

    Z. Keçeli; H. Ögünç; T. Boyraz; H. Gökçe; O. Addemir; M. Lütfi Öveçoğlu

    2009-01-01

    Purpose: The purpose of paper is to evaluate effects of B4C addition on the microstructural and thermal properties of hot pressed SiC ceramic matrix composites.Design/methodology/approach: The effect of B4C addition on microstructural and thermal properties of the SiC-B4C powder composites were investigated after high energy milling and hot pressing. SiC powders containing 5wt%, 10wt%, 15wt% B4C were mechanically alloyed in a high energy ball mill for 8 h.Findings: Microstructural characteris...

  7. Simulation of automotive wrist pin joint and tribological studies of tin coated Al-Si alloy, metal matrix composites and nitrogen ceramics under mixed lubrication

    Science.gov (United States)

    Wang, Qian

    Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain

  8. 氧化铝复合陶瓷在全髋关节置换中的应用%Alumina matrix composite ceramic-on-ceramic bearings in total hip arthroplasty

    Institute of Scientific and Technical Information of China (English)

    薛孝威; 孙国静; 赵建宁; 周利武; 丁然; 郭亭

    2013-01-01

    目的 为了改善假体的生存率,减少陶瓷部件相关的并发症,新一代氧化铝复合陶瓷开始应用于临床,文中分析氧化铝复合陶瓷对陶瓷全髋关节置换的早期临床疗效.方法 自2009年4月至2011年8月应用第4代氧化铝复合陶瓷对陶瓷对50例(59髋)髋关节疾病患者行全髋关节置换术,应用Harris评分及X线检查进行疗效评定.结果 获得有效随访43例(52髋),平均随访21.4个月(12~40个月).Harris评分由术前平均(43.0±16.3)分(11~64分)提高到末次随访时平均 (92.6±5.3)分(80~100分).未发生陶瓷组件的碎裂及假体脱位,1髋(1.9%)出现异响,1例发生症状性血栓.结论 氧化铝复合陶瓷对陶瓷界面的短期临床效果满意,大头颈陶瓷假体的使用减少了术后脱位率,关节稳定性良好.%Objective A new alumina matrix composite material was developed to improve implant longevity and reduce the risk of component-related complications. The aim of this study was evaluate to retrospectively the short-term clinical results of alumina matrix composite ceramic-on-ceramic bearings in total hip arthroplasty. Methods From April 2009 to August 2011, we performed 59 total hip arthroplasties on 50 patients using alumina matrix composite ceramic-on-ceramic bearings at our institution. The clinical results were evaluated by Hams hip score and X-rays. All patients were evaluated clinically and radiographically at follow-up. Results At the time of the latest follow-up, forty-three( 52 hips ) patients were available for follow-up. Patients had a mean follow-up of 21.4 months ( range, 12 -40 years ). The mean preoperative Harris hip score improved from 43. 0 ± 16. 3( range, 11-64 )points to 92. 6 ± 5. 3( range, 80 - 100 ) points at latest follow-up. There was no ceramic fractures and dislocations; one patient (1.9% )reported squeaking, 1 patient developed symptoms of deep veinthrombosis. Conclusion The early clinical results of alumina matrix

  9. Air Plasma-Sprayed Y2O3 Coatings for Al2O3/Al2O3 Ceramic Matrix Composites

    OpenAIRE

    Mechnich, Peter; Braue, Wolfgang

    2013-01-01

    Al2O3/Al2O3 ceramic matrix composites (CMC) are candidate materials for hot-gas leading components of gas turbines. Since Al2O3/Al2O3 CMC are prone to hot-corrosion in combustion environments, the development of environmental barrier coatings (EBC) is mandatory. Owing to its favorable chemical stability and thermal properties, Y2O3 is considered a candidate EBC material for Al2O3/Al2O3 CMC. Up to one mm thick Y2O3 coatings were deposited by means of air plasma spraying (APS) on Al2O3/Al2O3 CM...

  10. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  11. 氧化物/氧化物陶瓷基复合材料的研究进展%Research Progress on Oxide/Oxide Ceramic Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    王义; 刘海韬; 程海峰; 王军

    2014-01-01

    氧化物/氧化物陶瓷基复合材料(CMCs )具有很多优良的性能,如高比强度、高比模量、优异的抗氧化性能等,可应用于航空发动机燃烧室和尾喷管等热端部件。本文概述了氧化物/氧化物CMCs的增强纤维和陶瓷基体,指出单晶氧化物纤维和莫来石陶瓷基体应用潜力较大;从改善纤维/基体界面结合程度的角度出发,综述了从界面相和多孔基体角度提高力学性能的方案;分析了限制其应用的三个关键问题(缺口敏感度、蠕变容忍度和耐烧蚀性能),最后对其未来发展进行了展望。%Oxide/Oxide ceramic matrix composites (CMCs) possess great potential in combustion environments of gas turbines, such as combustion chamber, scramjet nozzle and so on for their favorable performances (high strength and modulus, excellent oxidation resistive properties, etc.). In this paper, reinforced fibers and ceramic ma-trices for Oxide/Oxide CMCs are summarized, and it is pointed out that both single crystal oxide fibers and mullite ceramic matrix have great application potential. The improvement approaches of their mechanical properties, inter-phases and porous matrix, are reviewed based on the adjustment of the fiber/matrix bonding. The key problems, notch sensitivity, creep tolerance and ablation resistence, which limit their applications, are analyzed, and their fu-ture development is prospected.

  12. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part I: Experimental Analysis

    Science.gov (United States)

    Longbiao, Li

    2016-04-01

    This paper presents an experimental analysis on the fatigue behavior in C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply and 2.5D woven, at room and elevated temperatures in air atmosphere. The experimental fatigue life S - N curves of C/SiC composites corresponding to different stress levels and test conditions have been obtained. The damage evolution processes under fatigue loading have been analyzed using fatigue hysteresis modulus and fatigue hysteresis loss energy. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different peak stress, fiber preforms and test conditions have been estimated. It was found that the degradation of interface shear stress and fibres strength caused by oxidation markedly decreases the fatigue life of C/SiC composites at elevated temperature.

  13. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  14. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  15. Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Longbiao, Li

    2016-10-01

    In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.

  16. Inspection of SiC{sub f}/SiC ceramic matrix composite specimens employed for fatigue experiments via laboratory X-ray computed microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Quiney, Z.; Bache, M.R.; Jones, J.P. [Swansea Univ. (United Kingdom). Inst. of Structural Materials

    2015-07-01

    Hi-Nicalon SiC{sub f}/SiC ceramic matrix composite (CMC) specimens have been inspected using laboratory based X-ray computed micro-tomography (μCT) both prior and subsequent to isothermal fatigue assessment. The fatigue specimens were in the form of a dog bone-shaped geometry with a minimum cross-sectional area of 40 mm{sup 2}. Pre-test μCT inspections were conducted to identify the subsurface composite architecture and locate associated features introduced during the manufacturing process (e.g. isolated or conjoined porosity, matrix or interface discontinuities etc.). These μCT scans were subsequently correlated with matching post-test volumes in an attempt to determine the influence of such features upon damage accumulation and the ultimate failure position and cyclic damage mode(s). The relationship between μCT scan resolution and identification of critical features is also discussed. In typical cone-beam X-ray systems, resolution is proportional to the source-to-specimen distance, but for efficiency may also be chosen so as to minimise the number of scans needed to capture the whole area of interest. The investigations are intended to provide input into the future development of an in situ mechanical testing μCT facility using lab-based X-ray systems.

  17. Metal matrix Composites

    OpenAIRE

    Pradeep K. Rohatgi

    1993-01-01

    This paper reviews the world wide upsurge in metal matrix composite research and development activities with particular emphasis on cast metal-matrix particulate composites. Extensive applications of cast aluminium alloy MMCs in day-to-day use in transportation as well as durable good industries are expected to advance rapidly in the next decade. The potential for extensive application of cast composites is very large in India, especially in the areas of transportation, energy and elec...

  18. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  19. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  20. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    Science.gov (United States)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  1. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced withα-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    Institute of Scientific and Technical Information of China (English)

    A.Mosleh; M.Ehteshamzadeh; R.Taherzadeh Mousavian

    2014-01-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced withα-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks forγ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  2. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H2/TiCl4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author)

  3. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors; Amelioration de la conductivite thermique des composites a matrice ceramique pour les reacteurs de 4. generation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrero, J.

    2009-11-15

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  4. Metal matrix Composites

    Directory of Open Access Journals (Sweden)

    Pradeep K. Rohatgi

    1993-10-01

    Full Text Available This paper reviews the world wide upsurge in metal matrix composite research and development activities with particular emphasis on cast metal-matrix particulate composites. Extensive applications of cast aluminium alloy MMCs in day-to-day use in transportation as well as durable good industries are expected to advance rapidly in the next decade. The potential for extensive application of cast composites is very large in India, especially in the areas of transportation, energy and electromechanical machinery; the extensive use of composites can lead to large savings in materials and energy, and in several instances, reduce environmental pollution. It is important that engineering education and short-term courses be organized to bring MMCs to the attention of students and engineering industry leaders. India already has excellent infrastructure for development of composites, and has a long track record of world class research in cast metal matrix particulate composites. It is now necessary to catalyze prototype and regular production of selected composite components, and get them used in different sectors, especially railways, cars, trucks, buses, scooters and other electromechanical machinery. This will require suitable policies backed up by funding to bring together the first rate talent in cast composites which already exists in India, to form viable development groups followed by setting up of production plants involving the process engineering capability already available within the country. On the longer term, cast composites should be developed for use in energy generation equipment, electronic packaging aerospace systems, and smart structures.

  5. Influence of ceramic-metal interface adhesion on crack growth resistance of ZrO{sub 2}-Nb ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolome, J.F.; Beltran, J.I.; Gutierrez-Gonzalez, C.F.; Pecharroman, C.; Munoz, M.C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Moya, J.S. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)], E-mail: jsmoya@icmm.csic.es

    2008-08-15

    Yttria-stabilized zirconia strengthened with lamellar flaky-shape Nb metal particles was obtained by hot-pressing at 1500 deg. C for 1 h. The ZrO{sub 2}-Nb interface has been studied by atomistic, first-principles calculations and by high-resolution transmission electron microscopy. The influence of the ceramic-metal interface on the crack growth resistance has been investigated. Crack growth is shown to occur with a rising resistance, governed by intact metal ligaments in the crack wake. Crack extension occurs by a combination of plastic deformation on the metal particles and interface debonding. The connection between the interface adhesion and this microstructural toughening mechanism has been evaluated.

  6. An investigation of the thermal cycling damage of 25 vol. pct SiCw/alumina ceramic matrix composite

    Science.gov (United States)

    Armstrong, William D.; Taya, Minoru

    1989-01-01

    An investigation was made of the thermal cycling damage of a 25 vol pct SiC whisker/alumina (SiCw/Al2O3) composite. Thermal cycling tests were conducted by subjecting a composite specimen to two different fluidized beds. After thermal cycling the composite specimens were subjected to elastic modulus and effective fracture toughness measurements. The thermal cycled specimens were investigated with SEM and TEM studies. It was found that this composite has a relatively high resistance to thermal cycling.

  7. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  8. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  9. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  10. Processing and Characterization of Multiphase Ceramic Composites

    Science.gov (United States)

    Men, Danju

    Multiphase ceramic composites structure design has advantages for many applications. It is not only an effective way of limiting grain growth which allows for fine-grain size superplasticity at elevated temperatures, but also a combination of various desirable properties can be obtained from different phases, which otherwise cannot be found in one single phase material. The goal of this research is to select, design and optimize multiphase ceramic systems for mainly two purposes: shape forming and inert matrix nuclear fuel. These ceramic composites feature the machinability of monazite (LaPO 4) due to weak interfacial bonding with other oxides, the superplasticity of 3 mol% tetragonal zirconia (3Y-TZP), and the high hardness and strength of Al2O3 and MgAl2O4. These materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical behavior at room temperature was characterized for the elastic modulus, hardness and fracture toughness. They were fabricated and demonstrated to have deformation rates in the superplastic range of at high temperatures and easy machinability at room temperature using conventional tools. An issue with conventional nuclear fuel, UO2, is its very low thermal conductivity that causes high central temperatures, which can lead to melting and cracking during reactor operation. The solution can be found in multiphase ceramic composites, by combining nuclear fuel particles in a heat conducting phase with high thermal conductivity and other phases that absorb fission byproducts while maintaining good radiation stability. In the current research, proposed multiphase ceramic composite materials were designed and radiation damage was characterized by scanning and transmission electron microscopy (TEM). Gold irradiation was used to represent the primary knock-on atoms damage caused by neutrons. Xenon irradiation was used to represent the fission product damage. Magnetoplumbite, was the most susceptible to

  11. Glass, Ceramics, and Composites

    International Nuclear Information System (INIS)

    Many studies of plutonium in glass and ceramics have taken place in the thirty years covered by this book. These studies have led to a substantial understanding, arising from fundamental research of actinides in solids and research and development in three technical fields: immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex and, most recently, the immobilization of weapons-grade plutonium as a result of disarmament activities

  12. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  13. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    Energy Technology Data Exchange (ETDEWEB)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  14. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    Energy Technology Data Exchange (ETDEWEB)

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Groh, Claudia; Jo, Wook; Webber, Kyle G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Reinhard, Christina [Diamond Light Source, Beamline I12 JEEP, Didcot, Oxfordshire OX11 0DE (United Kingdom); Kimpton, Justin A. [The Australian Synchrotron, Clayton, Victoria 3168 (Australia)

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  15. Characterization of CVI densification of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Stock, S.R.; Lee, S. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Ceramic matrix composites promise higher operating temperature and better thermodynamic efficiency in many enregy conversion systems. In particular, composites fabricated by the chemical vapor infiltration (CVI) process have excellent mechanical properties and, using the forced flow-thermal gradient variation, good processing economics in small scale demonstrations. Scale-up to larger, more complex shapes requires understanding of gas flow through the fiber preform and of the relationship between fiber architecture and densification behavior. This understanding is needed for design of preforms for optimum infiltration. The objective of this research is to observe the deposition of matrix material in the pores of a ceramic fiber preform at various stages of the CVI process. These observations allow us to relate local deposition rates in various regions of the composite to the connectivity of the surrounding network of porosity and to better model the relationship between gas transport and fiber architecture in CVI preforms. Our observation of the CVI process utilizes high resolution X-ray tomographic microscopy (XTM) in collaboration with Dr. John Kinney at Lawrence Livermore National Laboratory with repeated imaging of a small preform specimens after various processing times. We use these images to determine geometry and dimensions of channels between and through layers in cloth lay-up preform during CVI densification and relate these to a transport model.

  16. Development of Matrix Microstructures in UHTC Composites

    Science.gov (United States)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael

    2012-01-01

    One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.

  17. Development of high temperature resistant ceramic matrix composites based on SiC- and novel SiBNC-fibres; Entwicklung hochtemperaturbestaendiger keramischer Faserverbundwerkstoffe auf der Basis von SiC- und neuartigen SiBNC-Fasern

    Energy Technology Data Exchange (ETDEWEB)

    Daenicke, Enrico

    2014-10-01

    Novel ceramic fibres in the quaternary system Si-B-C-N exhibit excellent high temperature stability and creep resistance. In th is work it was investigated, to what extent these outstanding properties of SiBNC-fibres can be transferred into ceramic matrix composites (CMC) in comparison to commercial silicon carbide (SiC) fibres. For the CMC development the liquid silicon infiltration (LSI) as well as the polymer infiltration and pyrolysis process (PIP) was applied. Extensive correlations between fibre properties, fibre coating (without, pyrolytic carbon, lanthanum phosphate), process parameters of the CMC manufacturing method and the mechanical and microstructural properties of the CMC before and after exposure to air could be established. Hence, the potential of novel CMCs can be assessed and application fields can be derived.

  18. Tantalum-Based Ceramics for Refractory Composites

    Science.gov (United States)

    Stewart, David A.; Leiser, Daniel; DiFiore, Robert; Kalvala, Victor

    2006-01-01

    A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foam-like or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 F ( 1,600 C).

  19. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  20. Thermal Performance of Ablative/ Ceramic Composite

    Directory of Open Access Journals (Sweden)

    Adriana STEFAN

    2014-12-01

    Full Text Available A hybrid thermal protection system for atmospheric earth re-entry based on ablative materials on top of ceramic matrix composites is investigated for the protection of the metallic structure in oxidative and high temperature environment of the space vehicles. The paper focuses on the joints of ablative material (carbon fiber based CALCARB® or cork based NORCOAT TM and Ceramic Matrix Composite (CMC material (carbon fibers embedded in silicon carbide matrix, Cf/SiC, SICARBON TM or C/C-SiC using commercial high temperature inorganic adhesives. To study the thermal performance of the bonded materials the joints were tested under thermal shock at the QTS facility. For carrying out the test, the sample is mounted into a holder and transferred from outside the oven at room temperature, inside the oven at the set testing temperature (1100°C, at a heating rate that was determined during the calibration stage. The dwell time at the test temperature is up to 2 min at 1100ºC at an increasing rate of temperature up to ~ 9,5°C/s. Evaluating the atmospheric re-entry real conditions we found that the most suited cooling method is the natural cooling in air environment as the materials re-entering the Earth atmosphere are subjected to similar conditions. The average weigh loss was calculated for all the samples from one set, without differentiating the adhesive used as the weight loss is due to the ablative material consumption that is the same in all the samples and is up to 2%. The thermal shock test proves that, thermally, all joints behaved similarly, the two parts withstanding the test successfully and the assembly maintaining its integrity.

  1. The investigation of the matrix structure of ceramic brick made from carbonaceous mudstone tailings

    Science.gov (United States)

    Stolboushkin, A.; Fomina, O.; Fomin, A.

    2016-04-01

    The study of the matrix structure of ceramic brick made from carbonaceous mudstone tailings of Korkinsky coal opened pit mine is presented in the current paper. This study includes a thin sections analysis by the polarizing microscope, X-ray, SEM and infrared spectra investigations. It has been discovered that processes of solid- and liquid-phase sintering with the formation of new mineral phases occur inside and on the surfaces of granules during firing. It is shown that a liquid phase is formed in the matrix. It fills inter-grain gaps and connects mineral particles between themselves. It has been found that the advanced physical and mechanical properties of ceramic bricks obtained by creation of the matrix ceramic crock structure, intensive forming of a glass phase on the boundary of the section medium of ceramic composite and temperature reduction of the processes of solid-phase sintering.

  2. Mechanical properties of ceramic composite tubes

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, W.A.; Oleksuk, L.L.; Reifsnider, K.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Stinton, D.P. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Results of axial tension tests on SiC/SiC tubular ceramic composite components fabricated by a forced-M technique are presented. Axial elastic modulus measurements on a number of tubes show that the Young`s modulus varies along the length of the tube, with occasional very stiff or very soft regions. Tests to failure on a few tubes show the initiation of non-linear stress-strain behavior to be in the range of 3-9 ksi, followed by extensive non-linear deformation up to failure. For one tube, the failure stress obtained was 20.1 ksi, but the strains to failure at various axial locations varies from 0.19%to 0.24%. The correlation between modulus and proportional limit is considered within the ACK matrix cracking theory and within a model in which matrix cracking between fiber tows occurs, both modified to account for matrix porosity. The crack size required to cause stress concentrations large enough to cause failure at the observed strength is considered. Predictions for both matrix cracking and strength suggest that the current generation of tubes are controlled by microstructural defects.

  3. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  4. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    This paper follows on from the earlier study (Part I) which investigated the fatigue behavior of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures. In this paper, a micromechanics approach to predict the fatigue life S-N curves of fiber-reinforced CMCs has been developed considering the fatigue damage mechanism of interface wear or interface oxidation. Upon first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. The two-parameter Weibull model is used to describe fibers strength distribution. The stress carried by broken and intact fibres on the matrix crack plane under fatigue loading is determined based on the Global Load Sharing (GLS) criterion. The fibres failure probabilities under fatigue loading considering the degradation of interface shear stress and fibres strength have been obtained. When the broken fibres fraction approaches critical value, the composite would fatigue fail. The fatigue life S-N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures have been predicted. The predicted results agreed with experimental data.

  5. Corrosion resistance of the sintered composite materials with the EN AW-AlCu4Mg1(a alloy matrix reinforced with ceramic particles

    Directory of Open Access Journals (Sweden)

    A. Włodarczyk-Fligier

    2010-09-01

    Full Text Available Purpose: the aim of the project was to evaluate of the effect of heat treatment and the reinforcing Al2O3 and Ti(C,N particles content on the corrosion resistance in the NaCl water solution environment on the EN AW-AlCu4Mg1(A aluminium alloy matrix composite.Design/methodology/approach: Powders of the starting materials were wet mixed in the laboratory vibratory ball mill to obtain the uniform distribution of the reinforcement particles in the matrix. The mixed powders were then dried in the air. The components were initially compacted at cold state in a die with the diameter of Ø 26 mm in the laboratory vertical unidirectional press – with a capacity of 350 kN. The selected compacting load was sufficient to obtain prepregs which would not crumble and at the same time would not be deformed too much, which would also have the adverse effect on their quality, as the excessive air pressure in the closed pores causes breaking the prepreg up when it is taken out from the die. The obtained PM compacts were heated to a temperature of 480-500˚C and finally extruded – with the extrusion pressure of 500 kN. Some of the composite materials were hyperquenched for 0.5 h at the temperature of 495ºC with the subsequent cooling in water, and were quench aged next for 6 h at 200°C. Corrosion tests were made in 5% water NaCl solution.Findings: Composite materials were examined without heat treatment and after heat treatment carried out to improve their corrosion resistance. The corrosion susceptibility of the investigated composite materials determined using the potentiodynamic method in the 3% water solution of NaCl depends on the volume fraction of the reinforcing particles and also on the heat treatment status.Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches.Originality/value: It was demonstrated corrosion resistance of the extruded composite materials with

  6. Continuous Fiber Ceramic Composites (CFCC)

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  7. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu

    2006-11-01

    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  8. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  9. ELASTIC BEHAVIOR ANALYSIS OF 3D ANGLE-INTERLOCK WOVEN CERAMIC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Chang Yanjun; Jiao Guiqiong; Wang Bo; Liu Wei

    2006-01-01

    A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.

  10. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...... induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern...

  11. Survey of aluminum matrix composites

    International Nuclear Information System (INIS)

    This is a review of the current stage of development of fiber reinforced Al matrix composites: primary and secondary fabrication, physical and mechanical properties, environmental effects, applications, current and projected costs of raw material and composites, and future developments. Boron and beryllium are among the filament materials. (101 references, 32 fig.) (U.S.)

  12. The Oxidation Kinetics of Continuous Carbon Fibers in a Cracked Ceramic Matrix Composite. Degree awarded by Case Western Reserve Univ., May 2000

    Science.gov (United States)

    Halbig, Michael C.

    2001-01-01

    Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.

  13. 正交铺设陶瓷基复合材料单轴拉伸行为%Uniaxial tensile behavior of cross-ply ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    李龙彪; 宋迎东; 孙志刚

    2011-01-01

    采用细观力学方法对正交铺设陶瓷基复合材料单轴拉伸应力-应变行为进行了研究.采用剪滞模型分析了复合材料出现损伤时的细观应力场.采用断裂力学方法、临界基体应变能准则、应变能释放率准则及Curtin统计模型4种单一失效模型确定了90°铺层横向裂纹间距、0°铺层基体裂纹间距、纤维/基体界面脱粘长度和纤维失效体积分数.将剪滞模型与4种单一损伤模型结合,对各损伤阶段应力-应变曲线进行了模拟,建立了复合材料强韧性预测模型.与室温下正交铺设陶瓷基复合材料单轴拉伸应力-应变曲线进行了对比,各个损伤阶段的应力-应变、失效强度及应变与试验数据吻合较好.分析了90°铺层横向断裂能、0°铺层纤维/基体界面剪应力、界面脱粘能、纤维Weibull模最对复合材料损伤及拉伸应力-应变曲线的影响.%The uniaxial tensile stress - strain behavior of cross-ply ceramic matrix composites has been investigated using a micro-mechanical approach. The shear-lag model was adopted to obtain the micro stress field of the damaged composites. The fracture mechanics approach, critical matrix strain energy criterion, strain energy release rate criterion and Curtin's statistical approaches were used to determine transverse crack space of 90° ply, matrix crack space of 0° ply, fiber/matrix interface debonded length and fiber failure volume fraction. By combining the shear-lag model with the failure criterion, the tensile stress - strain curve of each damage stage was modeled, and the exact model of predicting the toughness and strength of the composite was established. The uniaxial tensile stress - strain curve of cross- ply ceramic matrix composite at room temperature was compared with the present analysis. The stress- strain curve of each damage stage, the failure strength and failure strain agree well with the experimental data. The effects of fracture energy of

  14. Low cost aluminium metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Withers, G.

    2007-03-15

    Low cost, light weight Ultalite{reg_sign} is an Aluminium Metal Matrix Composite (AL-MMC) which utilises wear resistant ceramic particles derived from flyash. Ultalite AL-MMC typically contains between 10 and 30 per cent ceramic particles, and is formulated for the manufacture of wear resistant automotive components. Due to its low density and ease of processing into net shape die casting, Ultalite AL-MMC provides weight savings of up to 60 per cent over components fabricated from cast iron, thereby providing improved fuel efficiency with reduced greenhouse emissions. The original flyash material was sourced from a black coal power station in Queensland, where it contained a wide range of particles sizes. To narrow the size range and to remove impurities, a proprietary pretreatment developed by Dr Thomas Robl and co-researchers at the University of Kentucky was employed. The University of Kentucky developed the technology for the classification and benefaction of flyash to produce high-grade Pozzolan, which is used in Portland Cement product. This technology is now being applied to the production of Ultalite AL-MMC. Testing performed by Dr Robl has shown that the proprietary technology can eliminate the hollow particles, extract detrimental carbon-based impurities and remove the extremely fine and coarse particles. All that remains are dense ceramic particles with an average particle size of approximately 30 {mu}m. 9 refs., 3 figs.

  15. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  16. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    Science.gov (United States)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  17. Development of a Precipitation-Strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites

    Science.gov (United States)

    Vo, Nhon Q.; Sorensen, Jim; Klier, Eric M.; Sanaty-Zadeh, Amirreza; Bayansan, Davaadorj; Seidman, David N.; Dunand, David C.

    2016-07-01

    Recent developments in metal matrix composite-encapsulated ceramic armor show promise in lightweight armor technology. The system contains ceramic tiles, such as alumina, sandwiched between unreinforced aluminum or aluminum metal matrix composite (Al-MMC), which has a better toughness compared to the ceramic tiles. The sandwich structures should not be quenched during the fabrication, as the large mismatch in the coefficients of thermal expansion between the ceramic tiles and the unreinforced aluminum or Al-MMC creates internal stresses high enough to fracture the ceramic tiles. However, slow cooling of most commercial alloys creates large precipitates making solute unavailable for the formation of fine precipitates during aging. Here, we develop a non-quenched, high-strength metal matrix utilizing dilute Al-Sc-Zr alloys. We demonstrate that the dilute Al-0.09 Sc-0.045 Zr at.% alloy and the same alloy containing 0-4 vol.% alumina short fibers do not result in precipitation upon slow cooling from a high temperature, and can thereafter be aged to increase their strength. They exhibit a moderate strength, but improved ductility and toughness as compared to common armor aluminum alloys, such as AA5083-H131, making them attractive as armor materials and hybrid armor systems.

  18. Self-Assembling, Flexible, Pre-Ceramic Composite Preforms

    Science.gov (United States)

    Jaskowiak, Martha H.; Eckel, Andrew J.; Gorican, Daniel

    2009-01-01

    In this innovation, light weight, high temperature, compact aerospace structures with increased design options are made possible by using self-assembling, flexible, pre-ceramic composite materials. These materials are comprised of either ceramic or carbon fiber performs, which are infiltrated with polymer precursors that convert to ceramics upon thermal exposure. The preform architecture can vary from chopped fibers formed into blankets or felt, to continuous fibers formed into a variety of 2D or 3D weaves or braids. The matrix material can also vary considerably. For demonstration purposes, a 2D carbon weave was infiltrated with a SiC polymer precursor. The green or unfired material is fabricated into its final shape while it is still pliable. It is then folded or rolled into a much more compact shape, which will occupy a smaller space. With this approach, the part remains as one continuous piece, rather than being fabricated as multiple sections, which would require numerous seals for eventual component use. The infiltrated preform can then be deployed in-situ. The component can be assembled into its final shape by taking advantage of the elasticity of the material, which permits the structure to unfold and spring into its final form under its own stored energy. The pre-ceramic composites are converted to ceramics and rigidized immediately after deployment. The final ceramic composite yields a high-temperature, high-strength material suitable for a variety of aerospace structures. The flexibility of the material, combined with its high-temperature structural capacity after rigidization, leads to a less complex component design with an increased temperature range. The collapsibility of these structures allows for larger components to be designed and used, and also offers the potential for increased vehicle performance. For the case of collapsible nozzle extensions, a larger nozzle, and thus a larger nozzle exit plane, is possible because interference with

  19. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  20. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    Science.gov (United States)

    Longbiao, Li

    2016-06-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  1. BN interphase in composite materials with nicalon Si-C-O fibers and with vitro ceramic matrix of MAS type; L`interphase BN dans les materiaux composites a fibres Si-C-O nicalon et a matrice vitroceramique de type MAS

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, N.

    1994-03-14

    BN has been suggested as an interphase in silica-based glass-ceramic matrix composites with a view to use these materials in oxidizing atmospheres at medium or high temperatures. The matrix had a boron-doped MAS (MgO-Al{sub 2}O{sub 3}-SiO{sub 2}) composition and was prepared from an hydrosol precursor. Pseudo-ID composites were prepared according to a sol impregnations/calcination/hot-pressing route. Chemical and microstructural characterizations of the fiber/matrix interfacial area were conducted by mean of TEM/EELS and AES analyses. The efficiency of BN as a coupling interphase for this particular composite system was successfully demonstrated through tensile tests performed on either as-processed or aged specimens (100 hours at 1000 deg C in air or under argon). In addition, composites maintained in air at 600 deg C, 800 deg C and 900 deg C while simultaneously loaded did not fail after 150 hours or more. Thus, a BN interphase appeared to be compatible with an oxidizing environment (i.e. the oxide matrix and/or air from 600 to 1000 deg C) and should therefore successfully replace the usual carbon interphase at least for use at medium temperatures. (author)

  2. 氧化锆陶瓷基高温自润滑材料%Zirconia Ceramic Matrix High-Temperature Self-Lubricating Composites

    Institute of Scientific and Technical Information of China (English)

    孔令乾; 陈江涛; 田雨; 毕秦岭

    2013-01-01

    In order to develop materials with good tribological behavior at a wide temperature range ( especially at high temperatures) , a series of ZrO2(Y2O3) matrix composites which contain various of solid lubricants (Mo、 MoS2、BaF2、CaF2、BaF2/CaF2、CuO) were prepared by hot-pressing. Among them, ZrO2( Y2O3)-Mo-BaF2/CaF2 composites show low friction coefficient in the range of 800 to 1000℃. At 1 000℃ , the friction coefficient is 0.28 which is close to the engineering application value. The friction coefficients of the ZrO2(Y2O3)-MoS2-CaF2 composites are 0.30 to 0.20 when sliding against SiC in the range of 800 to 1 000℃. The ZrO2( Y2O3) -MoS2-CaF2 composites have good friction and wear performance over a wide temperature range. The excellent high-temperature tribological behavior was mainly attributes to the high-temperature stability of the ZrO2 and the high lubricity of molybdate which formed on the worn surface at high temperature.%为了,解决较宽温域范围内特别是高温下材料的润滑问题,本文采用热压烧结方法制备了一系列含各种不同固体润滑剂(Mo、MoS2、BaF2、CaF2、BaF2/CaF2、CuO)的氧化锆基高温自润滑陶瓷复合材料.其中ZrO2(Y2O3)-Mo-BaF2/CaF2系列复合物在800 ~1 000℃表现出较低的摩擦因数,在1 000℃摩擦因数低至0.28左右,已接近工程应用的许用值;另一种ZrO2(Y2O3)-MoS2-CaF2系列复合物同SiC陶瓷球对磨时在800~1 000℃内摩擦因数为0.30 ~0.22,具有较好的摩擦磨损性能.

  3. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  4. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  5. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    International Nuclear Information System (INIS)

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  6. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  7. Determination of precious metals in ceramic matrix

    International Nuclear Information System (INIS)

    Complete text of publication follows. The recycling of the platinum group metals (PGM) especially from spent automobile catalytic converters increases steadily in importance, due to growing demand for, and exhausted resources of, PGM. The use of expensive PGM in catalyst production has fostered the development of an accurate method of determination of PGM in spent catalysts. Catalyst sample preparation by microwave extraction with acids (instead of successful but complex fire assay to recover the PGM from the interfering matrix) was attempted to avoid the spectral interferences resulting of matrix components during ICP-OES analysis. Different spent catalyst samples based mainly on AlO3 and SiO2 containing Pt and Pd were analysed by ICP-OES and, for comparison, ICP-MS to check if the extraction was complete. The components of the matrix of catalyst samples were identified with EDXRF. Several intense emission lines for Pt, Pd and Rh were selected for the detailed investigation of the samples. The measurement method was adjusted in several steps as external standard calibration, bracketing method and standard addition. The optimized measurement method of ICP-OES was applied to BAM reference material of spent automotive catalysts with cordierite basis. Due to many spectral interferences from the sample matrix it is not possible to determine precisely the PGM in automotive catalysts without extracting from the matrix. Microwave extraction is not as effective as fire assay, but provides fast analysis for less demanding applications. The authors gratefully acknowledge the support by Norddeutsche Affinerie and BAM, which provided the samples used in this work.

  8. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels; Analyse de la fissuration au voisinage d'une interface dans les materiaux fragiles. Applications aux composites a matrice ceramique et aux combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, B

    2007-11-15

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  9. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten;

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium......, and copper oxides is inserted into a silver tube and reduced by multi-step drawing. These single-filaments are packed in a new silver tube thus forming a multi-filament containing e.g. 37 single-filaments, which is subsequently reduced by drawing and rolling to tapes approximately 0.2 mm thick by 3 mm wide...

  10. 15th annual conference on composites and advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Bhatt, R.T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  11. Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite

    NARCIS (Netherlands)

    Willemse, P.F.; Mulder, F.M.; Wei, W.; Rekveldt, M. Th.; Knight, K.S.

    2000-01-01

    During the fabrication of ceramic fiber reinforced metal matrix composites mismatch stresses will be introduced due to differences in thermal expansion coefficients between the matrix and the fibers. Calculations, based on a coaxial cylinder model, [1 and 2] predict that, for a Ti matrix SiC continu

  12. Design and Analysis of Ceramic Matrix Composite Shingle Thermal Protection System%陶瓷基复合材料盖板式热防护系统的设计与分析

    Institute of Scientific and Technical Information of China (English)

    任青梅; 张婕

    2013-01-01

    陶瓷基复合材料盖板式热防护系统是一种具有防热/承载一体化功能的新型热防护结构。本文在国内外研究基础上,对盖板热防护系统进行了初步设计与分析,提出了盖板式热防护系统设计方案,进行了相关热响应分析,并在热载荷与气动压力载荷联合作用下,进行了结构应力与变形分析,对盖板热防护系统静强度性能进行了初步评估。%Ceramic matrix composite shingle thermal protection system is a new thermal protection structure with the function incorporating insulate and carrying capacity. The preliminary design and analysis about shingle thermal protection system is done based on the oversea investigation. The shingle thermal protection system scheme is presented. Thermal response analysis of shingle thermal protection system is done. Structure stress and distortion is obtained under thermal heat lfux and aerodynamical pressure simutaneously. The static performance of shingle thermal protection system is evaluated.

  13. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  14. C/SiC陶瓷基复合材料界面力学性能的离散元模拟%Study on Interfaces Properties of C/SiC Ceramic Matrix Composites Using Discrete Element Method

    Institute of Scientific and Technical Information of China (English)

    李林涛; 谭援强; 姜胜强

    2012-01-01

    采用离散元法(DEM),用BPM(Bonded-particle model)模型分别建立并校准SiC陶瓷基体和碳纤维离散元模型,采用位移软化接触模型表征层间和纤维/基体之间的界面元损伤双线性本构关系.通过DCB试验(Double cantilever beam virtual test)和微滴脱黏试验分别对其界面强度进行收敛试验,动态地观察了塑性变形、裂纹扩展及界面脱黏过程.结果表明,位移软化接触模型可以很好地表征界面损伤过程,采用离散元法可以很好地动态模拟较复杂复合材料的损坏过程.%With the aid of BPM (Bonded-particle model), the discrete element models of SiC ceramics matrix and carbon fiber were set up and calibrated separately by the discrete element method(DEM). The bilinear cohesive law of interface element damage in interlayer and on matrix/fiber interface was characterized using displacement-softening contact models, and then calibrated by DCB test (Double cantilever beam virtual test) and microbond test, respectively. Plastic deformation, crac-king growth situation and dynamic processes of interface debonding were observed in these simulation tests. The results show that the displacement-softening contact model could characterize in-terfacial damage process nicely, and discrete element method could simulate dynamic damage process for more complex composite materials admirably.

  15. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  16. Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics

    International Nuclear Information System (INIS)

    For development of new composite materials based on lanthanum hexaaluminate and alumina ceramics, a better understanding of the microstructure-properties relationship is essential. In this paper, attention was focused on the evaluation of mechanical properties of lanthanum hexaaluminate/alumina particulate composite. It was found out that the lanthanum hexaaluminate content plays a critical role in determination of the microstructure and mechanical properties of the composite ceramics. In situ formation of plate-like lanthanum hexaaluminate in the ceramic matrix was accompanied with formation of pores so that the microstructure shifted from dense to porous. Increasing the lanthanum hexaaluminate content up to a certain value enhanced the fracture toughness, increased the hardness, and increased the elastic modulus of the composite materials. Further increase in the lanthanum hexaaluminate content degraded the hardness as well as the elastic modulus of composite ceramics. The influence of lanthanum hexaaluminate on mechanical properties was described by means of microstructure, porosity, and intrinsic characteristics of lanthanum hexaaluminate.

  17. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti{sub 3}SiC{sub 2} was investigated depending on the compositions of the preform and melt. In most cases, TiSi{sub 2} was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti{sub 3}SiC{sub 2} was the connection with the pressurizing.

  18. Synthesis of tailored 2D SiC f/SiC ceramic matrix composites with BN/C interphase through ICVI

    Science.gov (United States)

    Udayakumar, A.; Raole, P. M.; Balasubramanian, M.

    2011-10-01

    Synthesis of 2D SiC f /SiC composites for applications in fusion reactors is a challenging task due to the stringent specification requirements on various mechanical and thermo-mechanical properties, chemical compatibility (with Pb-Li), oxidation resistance and irradiation resistance. Three types of SiC f/SiC composites with C interface and BN interface, with and without intermediate heat treatment are prepared through isothermal and isobaric chemical vapor infiltration process. Dense SiC seal coat applied to the composites has improved their oxidation resistance. The tensile, flexural and fracture toughness values of composite with BN interface were found to be improved by stabilizing the BN interface through thermal treatment. The electrical and thermal conductivity values obtained for composites with C interface are in the range of 10-29 S/m and 2.5-3.25 W/mK for the temperature range 500-900 °C as required for fusion reactor applications.

  19. Aluminium matrix composites: Challenges and opportunities

    Indian Academy of Sciences (India)

    M K Surappa

    2003-02-01

    Aluminium matrix composites (AMCs) refer to the class of light weight high performance aluminium centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibres, whisker or particulates, in volume fractions ranging from a few percent to 70%. Properties of AMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. Presently several grades of AMCs are manufactured by different routes. Three decades of intensive research have provided a wealth of new scientific knowledge on the intrinsic and extrinsic effects of ceramic reinforcement vis-a-vis physical, mechanical, thermo-mechanical and tribological properties of AMCs. In the last few years, AMCs have been utilised in high-tech structural and functional applications including aerospace, defence, automotive, and thermal management areas, as well as in sports and recreation. It is interesting to note that research on particle-reinforced cast AMCs took root in India during the 70’s, attained industrial maturity in the developed world and is currently in the process of joining the mainstream of materials. This paper presents an overview of AMC material systems on aspects relating to processing, microstructure, properties and applications.

  20. Composites (CFCCs) for low cost energy and cleaner environment. Continuous fiber ceramic composites program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    For many industrial applications, materials are desired which combine light weight, high temperature strength, and stability in corrosive environments. Among competing materials, ceramics are noteworthy candidates for such applications. The use of ceramics is often constrained, however, by brittleness; i.e., low toughness. Ceramic composites are being developed to overcome this limitation. With recent advances in ceramic fiber technology, it is possible to design a composite material based on continuous ceramic fibers embedded in a ceramic matrix. The use of ceramic composites in industrial applications will result in reduced fuel consumption, but will also prevent airborne pollution (principally NO, SO{sub x}, CO{sub 2}, and particulates), and economically benefit the end user through energy and environmental savings and increased competitiveness. Industry will also benefit through increased productivity and consumers will benefit through lower energy and environmental costs and a cleaner environment. The development and use of CFCCs could become an important factor in the international competitiveness of U.S. industry. CFCCs will be a critical enabling material in the design and engineering of advanced components, systems, and processes. If CFCC technology is developed outside the United States, domestic users of these materials may be forced to rely on foreign suppliers of the products fabricated from CFCCs, as well as the materials themselves. Foreign countries, including Japan and France, have embarked on government-supported CFCC development efforts. With the market for CFCC products expected to be a $10 billion dollar market by 2010, CFCC development will be important for the competitiveness of U.S. industry and for retaining and creating jobs for U.S. citizens. This document summarizes the potential energy, environmental, and economic benefits that CFCCs will have for the U.S. economy and particularly for the industrial sector.

  1. Toughening and strengthening of ceramics composite through microstructural refinement

    Science.gov (United States)

    Anggraini, Lydia; Isonishi, Kazuo; Ameyama, Kei

    2016-04-01

    Silicon carbide with 50 mass% zirconia ceramic matrix composites were processed by mechanical milling (MM) followed by spark plasma sintering (SPS). By controlling the parameters of MM and SPS, an ultra-fine ZrO2 grain was homogeneously dispersed and refined on the surface of a fine SiC powder, forming a harmonic microstructure. The mechanical properties and the densification behavior of the SiC-ZrO2 composites were investigated. The effects of the milling time on the microstructure and on the mechanical properties of the composite are discussed. The results indicate that the composite mechanically milled for 144 ks and sintered at 1773 K had the highest relative density of 98 %, along with a fracture toughness of 10.7 MPa.m1/2 and a bending strength of 1128 MPa. These superior mechanical properties were influenced by the microstructure characteristics such as the homogeneous grain dispersion. Thus, the microstructural refinement forming harmonic dispersion can be considered a remarkable design tool for improving the mechanical properties of SiC-ZrO2, as well as other ceramic composite materials.

  2. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications

    Directory of Open Access Journals (Sweden)

    Huinan Liu

    2010-04-01

    Full Text Available Huinan Liu, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale ceramics to polymers enhances bone cell functions. However, in order to fully take advantage of the promising nanometer size effects that nanoceramics can provide when added to polymers, it is critical to uniformly disperse them in a polymer matrix. This is critical since ceramic nanoparticles inherently have a strong tendency to form larger agglomerates in a polymer matrix which may compromise their properties. Therefore, in this study, model ceramic nanoparticles, specifically titania and hydroxyapatite (HA, were dispersed in a model polymer (PLGA, poly-lactic-co-glycolic acid using high-power ultrasonic energy. The mechanical properties of the resulting PLGA composites with well-dispersed ceramic (either titania or HA nanoparticles were investigated and compared with composites with agglomerated ceramic nanoparticles. Results demonstrated that well-dispersed ceramic nanoparticles (titania or HA in PLGA improved mechanical properties compared with agglomerated ceramic nanoparticles even though the weight percentage of the ceramics was the same. Specifically, well-dispersed nanoceramics in PLGA enhanced the tensile modulus, tensile strength at yield, ultimate tensile strength, and compressive modulus compared with the more agglomerated nanoceramics in PLGA. In summary, supplemented by previous studies that demonstrated greater osteoblast (bone-forming cell functions on well-dispersed nanophase ceramics in polymers, the present study demonstrated that the combination of PLGA with well-dispersed nanoceramics enhanced mechanical properties

  3. Colloidal processing of Fe-based metalceramic composites with high content of ceramic reinforcement

    OpenAIRE

    Escribano, J.A.; Ferrari, Begoña; Alvaredo Olmos, Paula; Gordo Odériz, Elena; Sánchez-Herencia, A. J.

    2013-01-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases...

  4. Transport properties of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1995-08-01

    This project involves experimental and modeling investigation of the transport properties of chemical vapor infiltration (CVI) preforms and densified composites, with particular emphasis on gas permeability and mass diffusivity. The results of this work will be useful both for on-going CVI process development and for evaluation and optimization of composite materials for fossil energy applications. With preforms made with 500 filaments/tow Nicalon at 40 vol% fiber loading, permeability values are similar for square-weave cloth layup and 3-D weave at low density. At greater densification the 3-D weave permeability is lower and approaches zero with significantly more closed porosity than the cloth layup. For filament wound preforms we were unable to make reliable measurements with the available materials. A model for gas transport in these materials utilizes percolation theory concepts. The ultimate achievable density is related to the closing of a continuous gas path through the preform. As the density approaches this limit the gas permeability and diffusivity vanish exponentially. The value of this limit is controlled primarily by the preform fiber architecture. The observed difference between the cloth layup and 3-D weave materials is due to the larger pores at tow crossing points found in the 3-D weave.

  5. Fiber reinforced superalloys, ceramics, and refractory metals, and directionally solidified eutectics (heat-resistant composites)

    International Nuclear Information System (INIS)

    High-temperature composites have been shown to have excellent elevated-temperature tensile and stress-rupture strengths and specific strengths. Tungsten alloy fiber reinforced superalloys have been demonstrated to have stress rupture strengths at 20000F superior to superalloys and sufficient impact resistance for gas turbines. Recently developed tungsten alloy fibers should permit production of composites with use-temperatures (gas turbine blades, vanes) as high as 24000F. Their main problem is associated with the direction and perfection of growth of strong whiskers or lamina in irregularly shaped components. Artificially made whisker composites are believed to warrant serious consideration. Use-temperatures of refractory metal matrix composites can be as much as 25000F for Nb matrix composites and over 30000F for W matrix composites. Ceramic matrix composites with use-temperatures ranging from 18000F to over 30000F are possibilities. Stationary, large, turbines for power generation may make use of refractory fiber/superalloy matrix, ceramic matrix, and coated refractory matrix composites. Such an application may capitalize on the high-temperature strength and high use-temperatures of the composites, which, in turn, will enhance engine performance. (127 references, 62 fig, 22 tables) (U.S.)

  6. Microstructural characterization of interpenetrating light weight metal matrix composites

    International Nuclear Information System (INIS)

    Interpenetrating metal matrix composites, MMCs, were fabricated successfully by infiltrating of porous ceramic preforms with Al and Mg alloys by a pressure supported casting process. Open porosity of the preforms varied from 50 to 60%, the pore diameters were in the range of 1-10 μm. The microstructure of the materials was characterized using light optical-, scanning electron-, transmission electron microscopy and X-ray diffraction. Several observations indicate the formation of a thin MgAl2O4 spinel at the interface Al2O3 to Mg matrix alloy.

  7. Transport properties of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-08-01

    Instrumentation and procedures have been completed for measurement of gas permeability and mass diffusivity of fiber preforms and porous materials. Results are reported for composites reinforced with Nicalon fiber in cloth lay-up and 3-D weave and with Nextel fiber in multi-layer braid. Measured permeability values range from near 100 to less than 0.1 darcies. Mass diffusivity is reported as a structure factor relating the diffusion through the porous material to that in free space. This measure is independent of the diffusing species and depends only on the pore structure of the material. Measurements are compared to predictions of a node-bond model for gas transport. Model parameters adjusted to match measured transport properties relate to physical microstructure features of the different architectures. Combination of this transport model with the CVI process model offers a predictive method to evaluate the densification behavior of various fiber preforms.

  8. Preparation and Microstructure of Glass-ceramics and Ceramic Composite Materials

    Institute of Scientific and Technical Information of China (English)

    HE Feng; XIE Junlin; HAN Da

    2008-01-01

    The technology and microstructure of glass-ceramics and ceramic composite materials were studied.A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics.According to the expansion coefficient of the ceramic body,that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted.a-wollastonite was found present as the major crystalline phase in glass-ceramic.The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period.The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1100℃.resulting in an interface between them.To achieve good sintered properties of glass-ceramics and the chosen ceramic body,at least a four-hour sintering time is used.

  9. Improved C/SiC Ceramic Composites Made Using PIP

    Science.gov (United States)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber

  10. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    Science.gov (United States)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  11. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  12. Nickel and nickel-phosphorous matrix composite electrocoatings

    Institute of Scientific and Technical Information of China (English)

    Nicolas SPYRELLIS; Evangelia A. PAVLATOU; Styliani SPANOU; Alexandros ZOIKIS-KARATHANASIS

    2009-01-01

    Nickel and nickel-phosphorous matrix composite coatings reinforced by TiO2, SiC and WC particles were produced under direct and pulse current conditions from an additive-free Watts' type bath. The influence of the variable electrolysis parameters (type of current, frequency of current pulses and current density) and the reinforcing particles properties (type, size and concentration in the bath) on the surface morphology and the structure of the deposits was examined. It is demonstrated that the embedding of ceramic particles modifies in various ways the nickel electrocrystallisation process. On the other hand, Ni-P amorphous matrix is not affected by the occlusion of the particles. Overall, the imposition of pulse current conditions leads to composite coatings with increased embedded percentage and more homogenous distribution of particles in the matrix than coatings produced under direct current regime.

  13. Review on Fabrication Methods of in situ Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper deals with a series of novel processing techniques based on the in situ production of metal matrix composites (MMCs). In situ techniques involve a chemical reaction resulting in the formation of a very fine and thermodynamically stable reinforcing ceramic phase within a metal matrix. As a result, this provides thermodynamic compatibility at the matrix-reinforcement interface. The reinforcement surfaces are also likely to be free of contamination and, therefore, a stronger matrix-dispersion bond can be achieved. Some of these technologies including DIMOXTM, XD, PRIMEXTM, reactive gas infiltration, high-temperature self-propagating synthesis (SHS), and liquid-solid, or solid-gas-liquid reactions as well as plasma in situ MMCs are expressed in this paper.

  14. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  15. DC conductivity of silicon nitride based carbon-ceramic composites

    Directory of Open Access Journals (Sweden)

    B. Fényi

    2007-12-01

    Full Text Available The silicon nitride ceramics are usually known as strongly refractory and enduring materials and have typical electrically insulating properties. If the reinforcing phase of ceramic composite (that is mainly put in the material to improve mechanical properties is a good electrical conductor, it is worth to investigate the composite in electrical aspect. In this work carbon nanotubes, black-carbon and graphite were added to the basic silicon nitride ceramic and the electrical conductivity of the prepared carbon-ceramic composites was determined. The conductivity of the ceramic composites with different type and concentration of the carbon additives was observed by applying four point DC resistance measurements. Insulator and conductor composites in a wide conductivity range can be produced depending on the type and quantity of the additives. The additive types as well as the sintering parameters have influence on the basic electrical properties of the conductor composites.

  16. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    OpenAIRE

    Myriounis, Dimitrios

    2009-01-01

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical prope...

  17. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm2. These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al2O3 will be presented

  18. Effect of different matrix sintering temperature on performance of alumina-zirconia nano-composite infiltrated ceramic%氧化铝-氧化锆纳米复合渗透陶瓷基体烧成温度对其性能的影响

    Institute of Scientific and Technical Information of China (English)

    吴恙; 邓雨峰; 辜向东

    2012-01-01

    目的 研究不同基体烧成温度对氧化铝-氧化锆纳米复合渗透陶瓷性能的影响.方法 采用1 250、1 300、1 350 ℃的基体烧成温度制备氧化铝-氧化锆纳米复合渗透陶瓷,测试其基体堆积密度和线收缩率;扫描电镜观察其显微结构.结果 基体烧成温度采用1 250、1 300、1 350 ℃所得复合渗透陶瓷的线收缩率分别为(2.16±0.51)‰、(2.92±0.97)‰、(3.76±0.70)‰,差异有统计学意义(P0.05).结论 1 250 ℃是较合适的氧化铝-氧化锆纳米复合渗透陶瓷基体烧成温度.%Objective To investigate the influence of different matrix sintering temperature on the performance of alumina-zirco-nia nano-composite infiltrated ceramic. Methods The alumina-zirconia nano-composite infiltrated ceramic was prepared by different matrix sintering temperatured (1 250,1 300,1 350 ℃). The matrix stacking density and linear shrinkage were measured. The micro-structure was observed by scanning electron microscope. Results The linear shrinkage rates of composite infiltrated ceramic prepared by matrix sintering temperature 1 250, 1 300 and 1 350 ℃ were (2. 16 ±0. 51) % , (2. 92 ± 0. 97) % , (3. 76 ± 0. 70)%, .respectively, with statistical difference(P0. 05). Conclusion 1 250 ℃ is the relatively suitable matrix sintering temperature for alumina-zirconia nano-composite infiltrated ceramic.

  19. Investigation of properties and performance of ceramic composite components

    Energy Technology Data Exchange (ETDEWEB)

    Stinchcomb, W.W.; Reifsnider, K.L.; Dunyak, T.J. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics)

    1992-06-15

    The objective of the work reported herein is to develop an understanding of the mechanical behavior of advanced ceramic composites subjected to elevated temperature and dynamic (cyclic) loading, to develop a test system and test methods to obtain the properties and performance information required to design engineering components made from ceramic composite materials, and to provide critical and comprehensive evaluations of such materials to material synthesizers and developers to support and enhance progress in ceramic composite material development. The accomplishments of the investigation include the design, development, and demonstration of a high temperature, biaxial mechanical test facility for ceramic composite tubes and the development and validation of a performance simulation model (MRLife) for ceramic composites.

  20. Fundamental alloy design of oxide ceramics and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I.W.

    1992-01-01

    The main research was on microstructural development of oxide ceramics. Projects were completed and the publications given. Abstracts are given on: Reactive CeO[sub 2]powders by homogeneous precipitation, SiC whisker-reinforced lithium aluminosilicate composite, solute drag on grain boundary in ionic solids (space charge effect), in-situ alumina/aluminate platelet composites, exaggerated texture and grain growth of superplastic silicon nitride (SiAlON), hot extrusion of ceramics, control of grain boundary pinning in Al[sub 2]O[sub 3]/ZrO[sub 2] composites with Ce[sup 3+]/Ce[sup 4+] doping, superplastic forming of ceramic composites, computer simulation of final stage sintering (model, kinetics, microstructure, effect of initial pore size), development of superplastic structural ceramics, and superplastic flow of two-phase ceramics containing rigid inclusions (zirconia/mullite composites). A proposed research program is outlined: materials, solute drag, densification and coarsening, and grain boundary electrical behavior.

  1. Factors Affecting Fiber Design and Selection for Advanced Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.

    1998-01-01

    Structural Ceramic Matrix Composites (CMC) have the potential for application in the hot sections of a variety of advanced propulsion and power systems. It is therefore necessary to have a general understanding of the key properties of CMC and Reinforcing Fibers. This need is complicated by the wide variety of application conditions and structural requirements for which CMC's will be used, and the proprietary concerns of the design engineers. CMC's, to be successful, must display properties which are competitive with the currently used high temperature structural materials: (i.e., Iron and Nickel based superalloys, tough monolithic ceramics, and carbon/carbon composites.) Structural CMC offers several areas of competition: (1) performance, (i.e., strength and strength retention, creep resistance, and thermal conductivity), (2) reliability (i.e., environmental durability, and damage tolerance) and (3) processing (i.e., capability for varying sizes and shapes, and cost effective fabrication). The presentation further discusses, and illustrates with fiber and CMC data the key fiber properties and processes which strongly affect each CMC area of competition. The presentation further discusses the current knowledge of the important factors which control the key fiber properties. A design guidelines for the optimum fiber characteristics is developed, and the currently available fibers are compared against those guidelines.

  2. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  3. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  4. Glass-ceramic composition for hermetic seals

    Science.gov (United States)

    Ballard, Jr., Clifford P.

    1979-01-01

    The invention relates to a glass-ceramic composition having a high fracture strength adaptable for hermetically sealing to chromium bearing iron or nickel base alloys at temperatures of between about 950.degree. C to about 1100.degree. C to form a hermetically sealed insulator body, comprising from about 55 to about 65 weight percent SiO.sub.2, from about 0 to about 5 weight percent Al.sub.2 O.sub.3, from about 6 to about 11 weight % Li.sub.2 O, from about 25 to about 32 weight percent BaO, from about 0.5 to about 1.0 weight percent CoO and from about 1.5 to about 3.5 weight percent P.sub.2 O.sub.5.

  5. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  6. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    Science.gov (United States)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  7. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  8. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W.

    1999-06-30

    The Facility for the Analysis of Chemical Thermodynamics (FACT) computer code was used to calculate the vaporization and condensation behavior of germanium (Ge) and lead (Pb) in coal gasification systems. Since condensation occurs at specific temperatures, the elements can concentrate in deposits that foul or corrode structures within an integrated gasification combined-cycle system or form very small particles that may be sticky in particle filter systems or be difficult to collect in a particulate-control cyclone. The calculations were performed in two steps: (1) vaporization from ash constitutents at 1600C at a system pressure of 22.9 atm and (2) condensation of GeX and PbX components at lower temperatures. The calculations indicate that Ge vaporizes as GeS and GeO and condenses through chemical vapor deposition as solid GeO2, Pb vaporizes primarily as PbS, with some Pb metal, and condenses as PbS as high as 880C for concentrations in the feed of 100 ppm on a mass basis. Although these concentrations would never be expected in the raw fuel, such levels could be reached if by-product dusts are recirculated into the gasifier feed material. Therefore, the calculations are useful in determining the maximum amount of recirculated material that can be allowed in the feed material to prevent formation of condensates at specific temperatures. The calculations also indicate that chlorine in the fuel has little effect on the behavior of Ge, but increases the concentration of vapor phase Pb as PbCl4 at temperatures below 800F, most significantly near 400F, at which temperature approximately 1/10 of the lead may be in the vapor phase as PbCl4. It is expected that this vapor would be collected in the system's scrubber.

  9. Design Concepts for Cooled Ceramic Composite Turbine Vane

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  10. Aluminium EN AC-AlSi12 alloy matrix composite materials reinforced by Al2O3 porous preforms

    OpenAIRE

    Nagel, A.; M. Kremzer; L.A. Dobrzański,

    2007-01-01

    Purpose: The purpose of this work is to elaborate the method of manufacturing of composite materials based on porous ceramic preforms infiltrated by eutectic aluminium alloy.Design/methodology/approach: The material for investigations was fabricated by pressure infiltration method of ceramic porous preforms. The eutectic aluminium alloy EN AC – AlSi12 was use as a matrix while as reinforcement were used ceramic preforms fabricated by sintering of Al2O3 Alcoa CL 2500 powder with addition of po...

  11. Microwave Processed Multifunctional Polymer Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified polymer matrix composites (PMCs) as a critical need for launch and in-space vehicles, but the significant costs of such materials limits their...

  12. Spark plasma sintering of aluminum matrix composites

    Science.gov (United States)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  13. Polypropylene matrix composites reinforced with coconut fibers

    OpenAIRE

    Maria Virginia Gelfuso; Pedro Vieira Gurgel da Silva; Daniel Thomazini

    2011-01-01

    Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples) or mechanically treated (ultrasonic shockwave-CMUV samples) were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (%) of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanic...

  14. Electrochemical process for the manufacturing of titanium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    V. Soare

    2009-07-01

    Full Text Available The paper presents a new method for precursors’ synthesis of titanium alloys matrix composites through an electrochemical process in molten calcium chloride. The cathode of the cell was made from metallic oxides powders and reinforcement ceramic particles, which were pressed and sintered into disk form and the anode from graphite. The process occurred at 850 °C, in two stages, at 2,7 / 3,2 V: the ionization of the oxygen in oxides and the reduction with calcium formed by electrolysis of calcium oxide fed in the electrolyte. The obtained composite precursors, in a form of metallic sponge, were consolidated by pressing and sintering. Chemical and structural analyses on composites samples were performed.

  15. Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres

    Institute of Scientific and Technical Information of China (English)

    Hua-Xin PENG

    2005-01-01

    Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre arrangement has been carefully controlled either in square or hexagonal arraysthroughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.

  16. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    OpenAIRE

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity h...

  17. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels;

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  18. Experimental 511 W Composite Nd:YAG Ceramic Laser

    Institute of Scientific and Technical Information of China (English)

    LI Hai-Feng; XU De-Gang; YANG Yang; WANG Yu-Ye; ZHOU Rui; ZHANG Tie-Li; ZHAO Xin; WANG Peng; YAO Jian-Quan

    2005-01-01

    @@ We demonstrate a 511 W laser diode pumped composite Nd:YAG ceramic laser. The optical pumping system is consisted of five laser diode stacked arrays arranged in a pentagonal shape around the ceramic rod whose size is φ6.35×144mm. When the pumping power is 1600W, the cw laser output up to 511 W at 1064nm can be obtained with a linear plano-plano cavity, and the optical-to-optical efficiency is 31.9%. To our knowledge, this is the highest value of laser output by using a newly invented composite Nd:YAG ceramic rod as the gain medium.

  19. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  20. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    Science.gov (United States)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  1. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  2. Modeling and simulation of continuous fiber-reinforced ceramic composites

    Science.gov (United States)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  3. Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2014-01-01

    Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012

  4. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  5. Thermal, mechanical and electrical properties of polyanaline based ceramic nano-composites

    Science.gov (United States)

    Sohail, M.; Khan, M. S.; Khattak, N. S.

    2016-08-01

    Micro/nanohybrid materials have vast applications due to their great potentialities in the field of nanoscience and nanotechnology. Herein we report an investigation on the fabrication and physicochemical characterization of ceramic (Fe0.01La0.01Al0.5Zn0.98O) and hybrid ceramic-polyaniline nano-composits. Ceramic nano-particles were prepared by sol-gel technique while optimizing the molar ratios of the constituent's metal nitrates. The prepared inorganic particles were then embedded in the polymer matrix via one-pot blending method. The prepared ceramic particles and their composites with polyaniline were analysed under FT- IR, SEM and TGA. The presence of some chemical species was observed at the interface of the compositing materials. TGA analysis showed the thermal stability of the composite material. Frequency dependent dielectric properties were analysed and it was found that conducting polyaniline has an additional effect on the electrical behaviour of the composite. Rheology study showed enhanced mechanical properties of composite material as compared to their constituting counterparts.

  6. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  7. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  8. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  9. Study on Microstructure of Alumina Based Rare Earth Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Analysis techniques such as SEM, TEM and EDAX were used to investigate the microstructure of rare earth reinforced Al2O3/(W, Ti)C ceramic composite. Chemical and physical compatibility of the composite was analyzed and interfacial microstructure was studied in detail. It is found that both Al2O3 and (W, Ti)C phases are interlaced with each other to form the skeleton structure in the composite. A small amount of pores and glass phases are observed inside the material which will inevitably influence the physical and mechanical property of the composite. Thermal residual stresses resulted from thermal expansion mismatch can then lead to the emergence of dislocations and microcracks. Interfaces and boundaries of different types are found to exist inside the Al2O3/(W, Ti)C rare earth ceramic composite, which is concerned with the addition of rare earth element and the extent of solid solution of ceramic phases.

  10. High resolution energy loss research: Si compound ceramics and composites. [1990 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R W; Lin, S H

    1990-12-31

    This report discusses proposed work on silicon compound ceramics and composites. High resolution composition and structure analysis of interfaces in ceramic and metal matrix composites and certain grain boundaries in silicon and its interfaces with oxides and nitrides is proposed. Composition and bonding analysis will be done with high spatial resolution (20 Angstroms or better) parallel electron energy loss spectroscopy using a field emission analytical electron microscope. Structural analysis will be done at the 1.8 Angstrom resolution level at 200kV by HREM. Theoretical electron energy loss cross section computations will be used to interpret electronic structure of these materials. Both self-consistent field MO and multiple scattering computational methods are being done and evaluated.

  11. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  12. Actively Cooled Ceramic Composite Nozzle Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I Project demonstrated the capability of the Pyrowave? manufacturing process to produce fiber-reinforced ceramics (FRCs) with integral metal features,...

  13. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo

    2013-01-01

    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  14. Fracture toughness and reliability in high-temperature structural ceramics and composites: Prospects and challenges for the 21st Century

    Indian Academy of Sciences (India)

    Sunil Dutta

    2001-04-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defence and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fibre into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fibre reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibres should display sufficient high temperature strength and creep resistance at service temperatures above 1000°C. The greatest challenge to date is the development of high quality ceramic fibres with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are preparation of optimum matrix precursors, precursor infiltration into fibre array, and matrix densification at a temperature, where grain crystallization and fibre degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  15. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  16. X-ray and neutron diffraction studies of syntactic metal foams and metal matrix composites

    Science.gov (United States)

    Balch, Dorian Kenneth

    2002-11-01

    Synchrotron x-ray and neutron diffraction can provide both the in-situ elastic phase strains and the phases present in metal matrix composites subjected to thermo-mechanical loading by measuring the lattice spacings parallel and perpendicular to the loading axis, as well as changes in the crystalline structure of the composite constituents. Such measurements can give insight into load transfer between phases, the onset of matrix or reinforcement plasticity or damage, and thermally or mechanically induced phase transformations. Four composite systems are presented: (a) bulk metallic glass composites containing low volume fractions of tungsten and tantalum particles, (b) bulk metallic composites containing low volume fractions of both tantalum particles and crystallized matrix inclusions, (c) copper composites containing high volume fractions of particles of the negative thermal expansion ceramic zirconium tungstate, and (d) aluminum matrix syntactic foams containing high volume fractions of hollow ceramic spheres. In the bulk metallic glass composites, plasticity of the metallic reinforcement was observed during mechanical cycling, leading to residual stresses that may alter the subsequent composite behavior. The zirconium tungstate present in the low thermal expansion copper composites was observed to undergo both thermal and stress induced transformations during thermal cycling, confirming the interpretation of ex-situ thermal expansion measurements. In the aluminum syntactic foams, matrix plasticity and ceramic microsphere damage were seen, as well as relative unloading of the matrix during mechanical testing and an improvement in elastic properties due to presence of the hollow spheres. For all systems, continuum mechanical modeling using the Eshelby method was performed, with good agreement found between predictions and measurements.

  17. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  18. Hot extruded carbon nanotube reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Leparoux, Marc

    2012-10-01

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics.

  19. Hot extruded carbon nanotube reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al–CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al–CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress–strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress–strain curve. The yield strengths of the Al–CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. (paper)

  20. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    Science.gov (United States)

    Dolata, A. J.; Dyzia, M.

    2012-05-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  1. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    Science.gov (United States)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  2. Preparation and properties of nano-composite ceramic coating by thermo chemical reaction method

    Institute of Scientific and Technical Information of China (English)

    MA Zhuang; SUN Fang-hong; LI Zhi-chao

    2007-01-01

    Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic phases, such as MgAl2O4, ZnAl2O4,Al2SiO5, Ni3Fe and Fe3Al, are formed on the coating during the process of solidifying at 600 ℃. The ceramic coating is dense and the high bonding strength is obtained. The average bonding strength between the coating and matrix could be 14.22 MPa. The acid resistance of the coating increase by 8.8 times, the alkali resistance by 4.1 times, the salt resistance by 10.3 times, and the wear resistance by 2.39 times.

  3. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  4. Preparation and Easy-Cleaning Property of Rare Earth Composite Ceramic

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rare earth and far-infrared mineral composite materials were added to ceramic glazes to prepare easy-cleaning ceramic. The morphology of easy-cleaning ceramic was observed by SEM. The influence of easy-cleaning ceramic on water surface tension and contact angles of water were investigated. Through calculation of ceramic surface free energy and observation of oil drop on ceramic surface in water, the easy-cleaning mechanism of rare earth composite ceramic was studied. It is found that the rare earth composite ceramic can make water surface tension decrease. The surface free energy and the polar component of rare earth composite ceramic are increased. The rare earth composite ceramics have the easy-cleaning property.

  5. Application of pressure infiltration to the manufacturing of aluminium matrix composite materials with different reinforcement shape

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; Nagel, A.

    2007-01-01

    Purpose: The purpose of this work is to investigate the influence of reinforcing phase’s shape on structure and properties of composite materials with aluminium alloy matrix.Design/methodology/approach: The material for studies was produced by a method of pressure infiltration of the porous ceramic framework. In order to investigate the influence of reinforcing phase’s shape the comparison was made between the properties of the composite material based on preforms obtained by Al2O3 Alcoa CL...

  6. Resolidification of metal matrix composites in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Vugt, L. van; Froyen, L. [Leuven Univ., Heverlee (BE). Dept. of Metallurgy and Materials Engineering (MTM)

    2000-07-01

    During EuroMIR 94 (Altibor) and EuroMIR 95 (Alinsitu) space experiments, the influence of gravity on segregation and clustering of ceramic particles in an aluminium matrix is investigated, in combination with the effect of the thermal gradient and cooling rate. The reinforcements were respectively TiB{sub 2} and SiC. On comparison with the ground processed reference samples it appears that the distribution of the particles in the resolidified material is much more homogeneous, due to sedimentation of the reinforcements. On microscopic scale, differences in particle distribution can be found at a slow and fast cooling. The agglomeration of particles increases with a decreasing of the thermal gradient. In all used systems the particles arranged as a three dimensional skeleton during the liquid state, which interact with the solid-liquid interface during solidification. (orig.)

  7. Emerging Trends in Polymer Matrix Composites .

    Directory of Open Access Journals (Sweden)

    Vikas M. Nadkarni

    1993-10-01

    Full Text Available The performance characteristics of PMC products are determined by the microstructure developed during the processing of composite materials. The structure development in processing is the result of integration of process parameters and inherent material characteristics. The properties of PMCs can thus be manipulated through both changes in the materials composition and process conditions. The present article illustrates the scientific approach followed in engineering of matrix materials and optimization of the processing conditions with specific reference to case studies on toughening of thermosetting resins and structure development in injection molding of thermoplastic composites. A novel approach is demonstrated for toughening of unsaturated polyester resins that involves the use of reactive liquid polymers chemically bonded to the matrix. The use of processing science is demonstrated by the significant effect of the mold temperature on the crystallinity and properties of molded poly (phenylene sulfide, a high performance engineering thermoplastic. An interactive approach is proposed for specific product and applications development.

  8. Fracture Behavior of Alumina-based Prismatic Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fracture toughness and fracture work of Al2O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.

  9. High efficiency tantalum-based ceramic composite structures

    Science.gov (United States)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  10. Fabrication and Microstructure of BN Matrix Composites with Electrical Conductivity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB2 ceramic has excellent electric conductivity,high melting points, and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB2 ceramics is expected to have a combination of above-mentioned properties,thereby can be used as self- heating crucible.In this paper,hot pressing technology was used to fabricate the high performance BN-TiB2 composite materials.microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.The results show that the microstructure of composites has a great influence on the physical property of composites.The BN-TiB2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.

  11. Perspectives of SiC-Based Ceramic Composites and Their Applications to Fusion Reactors 6.Recent Research Activities regarding SiC-Based Ceramic Composites for Aerospace Applications

    Science.gov (United States)

    Ogasawara, Toshio

    In this article, the present and future prospects of the research and development regarding continuous SiC fiber reinforced ceramic matrix composites (CMCs) for aerospace applications are reviewed. These activities in Japan are described in term of their major applications, i.e. turbo fan engine components for aircrafts, rocket propulsion components, thermal protection system for future re-entry vehicles, thruster for satellites. It is suggested that high performance, affordable processing cost, and excellent reliability will be important factors in the practical use of CMCs in the future.

  12. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Jamillah Amer [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Prajitno, Djoko Hadi [Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy, Bandung 40132 (Indonesia); Saidin, Syafiqah [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Nur, Hadi, E-mail: hadi@kimia.fs.utm.my [Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Department of Physics, Institut Sains dan Teknologi Nasional, Jl. Moh. Kahfi II, Jagakarsa, Jakarta Selatan 12640 (Indonesia); Hermawan, Hendra, E-mail: hendra.hermawan@gmn.ulaval.ca [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Québec City G1V 0A6 (Canada)

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO{sub 4}{sup 2−} ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite.

  13. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO2 or stabilized ZrO2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr2O3-A12O3) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  14. Polypropylene matrix composites reinforced with coconut fibers

    Directory of Open Access Journals (Sweden)

    Maria Virginia Gelfuso

    2011-09-01

    Full Text Available Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples or mechanically treated (ultrasonic shockwave-CMUV samples were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (% of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanical properties were investigated according to ASTM D570-98 and ASTM D638-03, respectively. Electrical characterizations were carried out to identify applications of these composites in the electrical sector. NBR 10296-Electrical Tracking Standard (specific to industry applications and conductivity measurements were obtained applying 5 kV DC to the samples. CMUV samples containing 5 vol. (% fiber presented superior tensile strength values (σ~28 MPa compared to the untreated fibers composite (σ~22 MPa or alkali treatment (σ~24 MPa. However, CMUV composites containing 10 vol. (% fiber presented best results for the electrical tracking test and electrical resistivity (3 × 10(7 Ω.m. The results suggest that composites reinforced with mechanically treated coconut fibers are suitable for electrical applications.

  15. INTELLIGENT MATERIALS BASED ON CERAMIC COMPOSITES

    OpenAIRE

    Maximov, Y.; Merzlikin, V.; Sidorov, O.; Suttugin, V.

    2010-01-01

    The paper examines the possibility to design intellectual materials based on film composites. Ferroelectric composites are offered to use as the film composites. The authors discuss ferroelectric composites of different structures. Sensors and intellectual materials on the basis of the obtained composites are considered.

  16. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    OpenAIRE

    Mahboub, F.; Zarrati, S.

    2010-01-01

    Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite. Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25) and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricated following manufacturer’s instructions and the marginal gap was measured by a stereomicroscope at...

  17. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  18. ON THE EFFECT OF NANO-PARTICLE CLUSTERING ON TOUGHENING OF NANO-COMPOSITE CERAMICS

    Institute of Scientific and Technical Information of China (English)

    董照旭; 方岱宁; 苏爱嘉

    2002-01-01

    In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles,leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data.

  19. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    International Nuclear Information System (INIS)

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu3Ti4O12 core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 104 at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization

  20. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Q. G., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, L. [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); College of Electrical Engineering, Suihua University, Suihua 152061 (China); Wang, X.; Chen, Y., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com; Dong, J. F.; Cui, Y.; Lei, Q. Q. [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China)

    2015-11-15

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu{sub 3}Ti{sub 4}O{sub 12} core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 10{sup 4} at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.

  1. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  2. Microstructure and Scratch Resistance of TaC Dense Ceramic Layer on an Iron Matrix

    Science.gov (United States)

    Zhao, Nana; Xu, Yunhua; Zhong, Lisheng; Yan, Honghua; Ovcharenko, Vladimir E.

    2016-06-01

    A tantalum carbide dense ceramic layer with a thickness of ~20 μm was produced on the surface of an iron matrix using an in situ technique. The morphology, microstructure, and phase composition of the layer were characterized by means of SEM, TEM, and XRD. The results show fairly agglomerated and uniformly sized (~200 nm) TaC particulates with a face-cantered cubic structure. The values of nano-hardness for the surface and cross section of reinforcing layer can be as high as 29.5 ± 0.6 and 26.7 ± 0.1 GPa, respectively, which were analyzed using a nano-indentation apparatus. Moreover, the scratch resistance of the layer was measured by scratch tests under a progressively increasing load of 0-100 N. A high critical load of 90.4 N is obtained. It is worthy to note that there are only cracking, slight splitting, and small flaking pits (even at the maximum load) all over the whole scratch process, namely the reinforcing layer can protect the iron matrix from serious abrasion effectively. In addition, the excellent scratch resistance and mechanism are discussed in detail.

  3. Composite definition features using the eastern ornament in ceramic tiles

    OpenAIRE

    Uss, V. F.; National Aviation University, Kyiv, Ukraine; Sahno, K. S.; National Aviation University, Kyiv

    2013-01-01

    This paper was asked a series of questions for the study of composition of the artistic shaping of ceramic tile with oriental ornaments and how to use in interior design. Particular attention is paid to individual elements of ornament and use them in areas such as kitchens, bathrooms, hookah area, cafe and more.

  4. Testing and Characterizing of Continuous Fiber Ceramic Composites

    Science.gov (United States)

    Lowden, Richard M.; Moore, Karren L.; Tortorelli, Pete F.; Lara-Curzio, Edgar

    1996-01-01

    Understanding interfacial microstructural evolution during environmental testing and use is critical to the development of stable continuous fiber ceramic composites (CFCC's) for their use in 'corrosive' environments. The use of advanced characterization techniques is required to track subtle microstructural changes. These techniques must be coordinated with other CFCC tasks to completely evaluate their interfacial behavior.

  5. KNN–NTK composite lead-free piezoelectric ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K. [NGK SPARK PLUG Co., Ltd., 2808 Iwasaki, Komaki, Aichi 485-8510 (Japan)

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  6. Mechanical behavior of ceramic composite hot-gas filters after exposure to severe environments

    Energy Technology Data Exchange (ETDEWEB)

    Pysher, D.J.; Weaver, B.L.; Smith, R.G. [Ceramic Technology Center, St. Paul, MN (United States)] [and others

    1995-08-01

    A novel type of hot-gas filter based on a ceramic fiber reinforced ceramic matrix has been developed, as reported at previous Fossil Energy Materials Conferences, through research activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company. Simulated testing has been done at the Westinghouse Science and Technology Center. This filter technology has been extended to full size, 60 mm OD by 1.5 meter long candle filters and a commercially viable process for producing the filters has been developed filters are undergoing testing and demonstration use throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Demonstration tests of this ceramic composite filter along with other filters are in progress at the Tidd PFBC plant Mechanical tests were performed on the 3 M brand Ceramic Composite Candle Filter after exposure to various corrosive environments in order to assess its ability to function as a hot gas filter in coal-fired applications. Due to the different construction of ceramic composite filters and the thin composite wall versus the typical thick-walled monolithic filter, standard mechanical property tests had to be refined or modified to accurately determine the filters properties. These tests and filter property results will be described Longitudinal tensile and diametral O-ring compression tests were performed on as-produced candle filters as well as on filters which had been exposed to various environments. The exposures were for 1000 hrs at 850{degrees}C in wet air, in wet air containing Na{sub 2}CO{sub 3}, and in wet air containing NaCl. In addition, a filter which bad been coated with ash (Old Grimethorpe) was exposed to wet air at 850{degrees}C for 1000 hours.

  7. Calculation of thermal stresses in glass-ceramic composites

    OpenAIRE

    Ganghoffer, Jean-François

    2015-01-01

    Opto-electronics make intensive use of composite materials based on amorphous materials, which can be considered as smart materials since they are capable of high performances in their final state. Particularly, glass-ceramic composites involved in welding operations for microelectronics applications are subjected to important thermal stresses during their production, which can deteriorate their properties at room temperature, until the failure stage is reached. It is then essential to be abl...

  8. Combustion Synthesis of h-BN-SiC Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    LI Hong-bo; ZHENG Yong-ting; ZHOU Li-juan; HAN Jie-cai

    2006-01-01

    The feasibility was demonstrated to fabricate h-BN-SiC ceramics through combustion synthesis of the mixture of boron carbide and silicon powders under 100 MPa nitrogen pressure. The mass fraction of BN and SiC in the combustion products were found to be 72 % and 28 % respectively. The thermodynamics of the synthesis reaction and the adiabatic combustion temperature were calculated on the theoretical ground. The bending strengths of the ceramics were measured to be 65.2 MPa at room temperature and 55 MPa at 1350 ℃. The phase composition and microstructure of the combustion products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  9. Ceramic nanotubes for polymer composites with stable anticorrosion properties

    Science.gov (United States)

    Fakhrullin, R. F.; Tursunbayeva, A.; Portnov, V. S.; L'vov, Yu. M.

    2014-12-01

    The use of natural halloysite clay tubes 50 nm in diameter as nanocontainers for loading, storing, and slowly releasing organic corrosion inhibitors is described. Loaded nanotubes can be mixed well with many polymers and dyes in amounts of 5-10 wt % to form a ceramic framework (which increases the strength of halloysite composites by 30-50%), increase the adhesion of these coatings to metals, and allow for the slow release of corrosion inhibitors in defects of coatings. A significant improvement of protective anticorrosion properties of polyacryl and polyurethane coatings containing ceramic nanotubes loaded with benzotriazole and hydroxyquinoline is demonstrated.

  10. Phase composition of murataite ceramics for excess weapons plutonium immobilization

    Science.gov (United States)

    Sobolev, I. A.; Stefanovsky, S. V.; Myasoedov, B. F.; Kullako, Y. M.; Yudintsev, S. V.

    2000-07-01

    Among the host phases for actinides immobilization, murataite (cubic, space group Fm3m) with the general formula A4B2C7O22-x (A=Ca, Mn, Na, Ln, An; B=Mn, Ti, Zr, AnIV; C=Ti, Al, Fe; 0ceramics in detail has shown occurrence of several murataite varieties with three-, five-, and eight-fold fluorite unit cells. [1-3] The goal of the present step of work is to study an effect of waste elements on phase composition of murataite ceramic and isomorphic capacity of waste elements.

  11. Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites

    Science.gov (United States)

    Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.

    2016-04-01

    Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.

  12. Curing of epoxy matrix composite in stratosphere

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela

    Large structures for habitats, greenhouses, space bases, space factories are needed for next stage of space exploitation. A new approach enabling large-size constructions in space relies on the use of the polymerization technology of fiber-filled composites with a curable polymer matrix applied in the free space environment. The polymerisation process is proposed for the material exposed to high vacuum, dramatic temperature changes, space plasma, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The stratospheric flight experiments are directed to an investigation of the curing polymer matrix under the stratospheric conditions on. The unique combination of low atmospheric pressure, high intensity UV radiation including short wavelength UV and diurnal temperature variations associated with solar irradiation strongly influences the chemical processes in polymeric materials. The first flight experiment with uncured composites was a part of the NASA scientific balloon flight program realised at the NASA stratospheric balloon station in Alice Springs, Australia. A flight cassette installed on payload was lifted with a “zero-pressure” stratospheric balloon filled with Helium. Columbia Scientific Balloon Facility (CSBF) provided the launch, flight telemetry and landing of the balloon and payload. A cassette of uncured composite materials with an epoxy resin matrix was exposed 3 days in the stratosphere (40 km altitude). The second flight experiment was realised in South Australia in 2012, when the cassette was exposed in 27 km altitude. An analysis of the chemical structure of the composites showed, that the space irradiations are responsible for crosslinking of the uncured polymers exposed in the stratosphere. The first prepreg in the world was cured successfully in stratosphere. The investigations were supported by Alexander von Humboldt Foundation, NASA and RFBR (12-08-00970) grants.

  13. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  14. Novel Hybrid Ablative/Ceramic Layered Composite for Earth Re-entry Thermal Protection: Microstructural and Mechanical Performance

    OpenAIRE

    Triantou, K.; Mergia, K.; Marinou, A.; Vekinis, G.; Bárcena, Jorge; Florez, S; Perez, B; Pinaud, G.; Bouilly, J.M.; Fischer, W.P.P.

    2015-01-01

    In view of spacecraft re-entry applications into planetary atmospheres, hybrid thermal protection systems based on layered composites of ablative materials and ceramic matrix composites are investigated. Joints of ASTERM (TM) lightweight ablative material with C-f/SiC (SICARBON (TM)) were fabricated using commercial high temperature inorganic adhesives. Sound joints without defects are produced and very good bonding of the adhesive with both base materials is observed. Mechanical shear tests ...

  15. Nanotube reinforced thermoplastic polymer matrix composites

    Science.gov (United States)

    Shofner, Meisha Lei

    The inherent high strength, thermal conductivity, and electrical conductivity make nanotubes attractive reinforcements for polymer matrix composites. However, the structure that makes them desirable also causes highly anisotropic properties and limited reactivity with other materials. This thesis isolates these problems in two separate studies aimed at improving mechanical properties with single wall nanotube (SWNT) reinforced thermoplastic polymer composites. The two studies demonstrate the effect of solid freeform fabrication (SFF) and chemical functionalization on anisotropy and limited reactivity, respectively. Both studies showed mechanical property improvements. The alignment study demonstrates a maximum increase of 93% in tensile modulus with single wall nanotubes (SWNTs). The chemical functionalization study shows a larger increase in storage modulus for functionalized SWNTs as compared to purified SVWNTs with respective increases of 9% and 44% in storage modulus. Improved interfacial properties are also observed as a decrease in mechanical damping. Maximum property increases in composites are obtained when nanotubes are aligned, requiring additional processing consideration to the anisotropic structure. Melt spinning and extrusion processing effectively align nanotubes, but the end product of these techniques, composite fibers, requires further processing to be incorporated into finished parts. Extrusion-based SFF is a novel technique for processing nanotube reinforced composites because it allows for the direct fabrication of finished parts containing aligned nanotubes. SFF processing produces parts containing preferentially oriented nanotubes with improved mechanical properties when compared to isotropic composites. Functionalization of the nanotube surface disrupts the rope structure to obtain smaller ropes and promote further interfacial bonding. The chemically inert nature of nanotubes resulting from a structure containing few defects and the

  16. Broadband dielectric response of AlN ceramic composites

    Directory of Open Access Journals (Sweden)

    Iryna V. Brodnikovska

    2014-03-01

    Full Text Available Aluminium nitride (AlN is considered as a substrate material for microelectronic applications. AlN ceramic composites with different amount of TiO2 (up to 4 vol.% were obtained using hot pressing at different sintering temperature from 1700 to 1900 °C. It was shown that milling of the raw AlN powder has strongly influence on sintering and improves densification. Broadband dielectric spectroscopy was used as a nondestructive method for monitoring of the ceramic microstructures. TiO2 additive affects the key properties of AlN ceramics. Thus, porosity of 0.1 %, dielectric permeability of σ = 9.7 and dielectric loss tangent of tanδ = 1.3·10-3 can be achieved if up to 2 vol.% TiO2 is added.

  17. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng(王鹏); ZHU,Guo-Yi(朱果逸)

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate (CuHCF)nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite, which was used as electrode material to fabricate surface-renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voitammetry.Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.

  18. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng; ZHU,Guo-Yi

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate(CuHCF) nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite,which was used as electrode materials to fabricate surface-renewable CuHCF-modified electrodes.Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclinc voltammograms at various scan rates indicated that peak currents were suface-confined at low scan rates.In the presence of glutathione,a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes.In addition,the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper,as well as ease of preparation,and good chemical and mechanical stability in a flowing stream.

  19. Investigation of properties and performance of ceramic composite components. Final report on Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, W.A.; Reifsnider, K.L.; Oleksuk, L.L.S.; Stinchcomb, W.W. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1994-10-31

    The purpose of Phase 2 of the Investigation of Properties and Performance of Ceramic Composite Components has been to build on and extend the work completed during Phase 1 to further advance the transition from properties of ceramic composite materials to performance of ceramic composite components used in fossil energy environments. The specific tasks of Phase 2 were: (1) develop and validate reliable and accurate high temperature, biaxial mechanical tests methods for structural ceramic composite components; (2) test and evaluate ceramic composite components, specifically tubes; (3) characterize long-term, mechanical performance of ceramic composite tubes at high temperatures; (4) develop a fundamental understanding of the mechanical degradation and performance limitations of ceramic composite components under service conditions; (5) develop predictive models for damage tolerance and reliability; and (6) relate component performance to microstructure and, thereby, provide feedback to the associated process-development effort, to improve performance. Accomplishments for each task are given.

  20. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    Science.gov (United States)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  1. Shock wave profiles in polymer matrix composite

    Science.gov (United States)

    Boteler, J. Michael; Rajendran, A. M.; Grove, David

    2000-04-01

    The promise of lightweight armor which is also structurally robust is of particular importance to the Army for future combat vehicles. Fiber reinforced organic matrix composites such as Polymer Matrix Composite (PMC) are being considered for this purpose due to their lower density and promising dynamic response. The work discussed here extends the prior work of Boteler who studied the delamination strength of PMC and Dandekar and Beaulieu who investigated the compressive and tensile strengths of PMC. In a series of shock wave experiments, the wave profile was examined as a function of propagation distance in PMC. Uniaxial strain was achieved by symmetric plate impact in the ARL 102 mm bore single-stage light gas gun. Embedded polyvinylidene flouride (PVDF) stress-rate gauges provided a stress history at three unique locations in the PMC and particle velocity history was recorded with VISAR. All stress data was compared to a Lagrangian hydrocode (EPIC) employing a model to describe the viscoelastic response of the composite material in one-dimension. The experimental stress histories displayed attenuation and loading properties in good agreement with model predictions. However, the unloading was observed to be markedly different than the hydrocode simulations. These results are discussed.

  2. Process optimisation and numerical modelling of powder metallurgical aluminium matrix composites

    OpenAIRE

    O'Donnell, Gareth

    1999-01-01

    The present research focuses on optimisation of a novel application of the cold uniaxial pressing and liquid phase sintering powder metallurgical method to the processing of ceramic particulate reinforced aluminium matrix composites and the numerical modelling of these advanced materials. The investigated process areas include material selection, powder mixing and powder heat treatment, lubrication type, quantity and method, compaction and ejection, green sample conditioning, sintering time, ...

  3. Mechanical properties of alumina-zirconia composites for ceramic abutments

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Corrêa de Sá e Benevides de Moraes

    2004-12-01

    Full Text Available The need for new materials to substitute injured or damaged parts of the human body has led scientists of different areas to investigate bioceramics since the 70's, when other materials in use started to show rejection problems. Ceramics show some advantages like being the material that best mimics the bone tissue, although present low toughness when compared with the metallic materials. As patients have become more and more demanding regarding esthetic and biocompatibility aspects of their dental restorations, ceramic material has become a main object of scientific interest especially from the material point of view. The alumina-zirconia composites are one of the relatively good and promising candidate for biomaterials application, due to biocompatibility and their mechanical properties that combines high flexural strength with a high toughness. The aim of the present work is to analyze the mechanical properties of these composites, where Y-TZP zirconia content was varied from 5 to 80 wt.% These systems can achieve a flexural strength 93 % and fracture toughness 29 % superior when compared to the pure alumina ceramics. These results showed that ceramic abutments components can be prepared for prosthetic rehabilitations with dental implants.

  4. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  5. Development of ceramic composites from mixture of alumina and ceramic precursor polymer poly (silsesquioxane))

    International Nuclear Information System (INIS)

    Processing of ceramics materials, by polymer precursors pyrolysis, has been intensively researched over the past decades, due to advantages that this path provides, such as: lower temperature process compared to conventional techniques; structure control at molecular level; synthesis possibility of a wide range of ceramic compounds; obtaining parts with dimensions of the final product etc. The active filler controlled polymer pyrolysis (AFCOP) process, enables the synthesis of ceramic composites, by reaction between added filler (oxides, metals, intermetallic etc.) and solid and gaseous products, from polymer decomposition. In this study, based on this process, samples of alumina, with addition of 10 and 20 mass% of poly silsesquioxane polymer precursor, were manufactured. These samples were pyrolyzed at 900 degree C and thermal treated at temperatures of 1100, 1300 and 1500 degree C. The samples were characterized for bulk density, porosity and hardness, after each stage of thermal treatment. Structural transformations were analyzed by X-ray diffraction, scanning electron microscopy and infrared spectroscopy. Samples treated until 1300 degree C resulted in composites of alumina and silicon oxycarbide, while those treated at 1500 degree C, formed composites of mullite and alumina. The samples with 20% of polymer added started to density around 800 degree C and high retraction rate was observed at 1400 degree C. (author)

  6. Graphite fiber reinforced glass matrix composites for aerospace applications

    Science.gov (United States)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  7. NANOSTRUCTURED CERAMICS AND COMPOSITES FOR REFRACTORY APPLICATIONS IN COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Paul Brown

    2005-01-31

    A class of ceramics, capable of exhibiting low coefficients of thermal expansion and catalytic properties was investigated. Investigations were directed towards nanoengineering of NZP ceramics and NZP-based composites by chemical means by controlling their compositions and processing variables. NaZr{sub 2}(PO{sub 4}){sub 3} (NZP) was synthesized by combining water-soluble precursors leading to the precipitation of a gel that was dried, calcined, pressed into pellets, then fired at 850 C. Without chemical additives, the resulting ceramic comprised pores ranging in size from approximately 25 to 50 nm and a surface area of about 30m{sup 2}/g. Hydroxyapatite, which has a needle-like morphology, was mechanically mixed with the calcined gel to template NZP crystallization. What resulted was a coarsening of the pore structure and a decrease in surface area. When copper nitrate was added to the solution during synthesis, the resulting ceramic underwent shrinkage upon firing as well as an increase in strength. HAp and copper additions combined resulted in 40% volume shrinkage and a doubling of the tensile strength to 16MPa. A very different type of porosity was achieved when silica was partly substituted for phosphorous in the NZP structure. Na{sub 3}Zr{sub 2}(Si{sub 2}P)O{sub 12} (NASCION) was synthesized in the same manner as NZP, but the fired ceramic possessed a reticulated pore structure comprising large cavities ranging in size from 5 to 50 {micro}m. The NASCION ceramic either shrank or expanded upon firing depending on when the silica was added during synthesis. When the silica precursor (amorphous, precipitated silica) was added before the calcining step, the pressed pellets expanded during firing, whereas they shrank when the silica was added after the gel was calcined. The observed dilation increased with increasing calcining temperature and particle size, up to 26%. The contraction of the ceramic when fired increased with increasing calcining temperature and a

  8. Characterization of Hybrid CNT Polymer Matrix Composites

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  9. FRACTURAL PROCESS AND TOUGHENING MECHANISM OF LAMINATED CERAMIC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore,discussed in this paper.

  10. Studying the sintering behavior of BeOx-SiC1-x Composite ceramic Material

    Science.gov (United States)

    Issa, Tarik Talib

    2011-12-01

    The sintering behavior for BeO-SiC compacts composite ceramic at different sintering temperatures in air were conducted, resulting data indicated that the percentage of SiC (Wt% 5) sintered at 800 C° lead to higher sintering density of (1.80 gm/cm3). The x-ray diffraction pattern analysis indicated nothing change concerning the crystal structure. Microstructure development has been studied as a function SiC content. Silicon carbide found to be suppressed the sinter ability of the matrix BeO powder.

  11. XPS Investigation of ceramic matrixes for disposal of long-living radioactive waste products

    OpenAIRE

    Teterin Yury A.; Stefanovskij Serguei V.; Yudintsev Serguei V.; Bek-Uzarov George N.; Teterin Anton Yu.; Maslakov Konstantin I.; Utkin Igor O.

    2004-01-01

    The synthesis of ceramic matrixes for the long-term storage of highly active radionuclide wastes and determination of physical and chemical forms of radionuclides in them is one of the important problems in radioecology. It enables to create purpose fully materials for the long-term storage of radionuclides. In the present work the samples of ceramics [CaCe0.9Ti2O6.8(I) and CaCeTi2O7(II}] formed under various conditions were investigated with the X-ray photo electron spectroscopy. It is neces...

  12. Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    J. Kent Leach

    2012-05-01

    Full Text Available Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide (PLG and either hydroxyapatite (HA, β-tricalcium phosphate (TCP, or bioactive glass (Bioglass 45S®, BG were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts to composite scaffolds by alkaline phosphatase (ALP activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

  13. Ceramic-metal composite formation by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Fahrenholtz, W.G. [New Mexico Univ., Albuquerque, NM (United States). Advanced Materials Lab.; Lakshman, B.B. [Sandia National Labs., Albuquerque, NM (United States)

    1996-11-01

    Ceramic-metal composites can be made to near-net-shape by reactive penetration of dense ceramic preforms by molten metals. Reactive metal penetration is driven by a strongly negative Gibbs energy for reaction. For Al, the general form of the reaction is (x+2) Al + (3/y) MO[sub y] yields Al[sub 2]O[sub 3] + M[sub 3/y]Al[sub x], where MO[sub y] is an oxide that is wet by molten Al. In low PO[sub 2] atmospheres and at temperatures above about 900 degrees C, molten Al reduces mullite to produce Al[sub 2]O[sub 3] and Si. The Al/mullite reaction has a delta G[sub r] degree(927 degrees C) of -338 per mole of mullite and, for fully dense mullite, the theoretical volume change on reaction is less than 1%. Experiments with commercial mullite containing a silicate grain boundary phase average less than 2% volume change on reaction. In the Al/mullite system, reactive metal penetration produces a fine-grained alumina skeleton with an interspersed metal phase. With > or =15 vol.% excess aluminum, mutually interpenetrating ceramic-metal composites are produced. Properties measurements show that ceramic-metal composites produced by reactive metal penetration of mullite by Al have a Young`s modulus and hardness similar to that of Al[sub 2]O[sub 3], with improved fracture toughness. Other compositions also are candidates for in- situ reaction synthesis, but they exhibit differences in reaction kinetics, most probably due to different wetting behavior.

  14. Calcium phosphate-based ceramic and composite materials for medicine

    International Nuclear Information System (INIS)

    The topical problems in chemistry and technology of materials based on calcium phosphates aimed at both the replacement of damaged bone tissue and its regeneration are discussed. Specific features of the synthesis of nanocrystalline powders and the fabrication of ceramic implants are described. Advances in the development of porous scaffolds from resorbable and osteoconductive calcium phosphates and of hybrid composites that form the basis of bone tissue engineering are considered.

  15. Failure of Ceramic Composites in Non-Uniform Stress Fields

    Science.gov (United States)

    Rajan, Varun P.

    Continuous-fiber ceramic matrix composites (CMCs) are of interest as hot-section components in gas turbine engines due to their refractoriness and low density relative to metallic alloys. In service, CMCs will be subjected to spatially inhomogeneous temperature and stress fields. Robust tools that enable prediction of deformation and fracture under these conditions are therefore required for component design and analysis. Such tools are presently lacking. The present work helps to address this deficiency by developing models for CMC mechanical behavior at two length scales: that of the constituents and that of the components. Problems of interest are further divided into two categories: '1-D loadings,' in which the stresses are aligned with the fiber axes, and '2-D loadings,' in which the stress state is more general. For the former class of problems, the major outstanding issue is material fracture, not deformation. A fracture criterion based on the attainment of a global load maximum is developed, which yields results for pure bending of CMCs in reasonable agreement with available experimental data. For the latter class of problems, the understanding of both the micro-scale and macro-scale behavior is relatively immature. An approach based upon analysis of a unit cell (a single fiber surrounded by a matrix jacket) is pursued. Stress fields in the constituents of the composite are estimated using analytical models, the accuracy of which is confirmed using finite element analysis. As part of a fracture mechanics analysis, these fields enable estimation of the steady-state matrix cracking stress for arbitrary in-plane loading of a unidirectional ply. While insightful at the micro-scale, unit cell models are difficult to extend to coarser scales. Instead, material deformation is typically predicted using phenomenological constitutive models. One such model for CMC laminates is investigated and found to predict material instability where none should exist. Remedies to

  16. SiC reinforced-MoSi sub 2 based matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Honnell, R.E.

    1990-01-01

    SiC reinforced-MoSi{sub 2} based matrix composites possess very significant potential as high temperature structural materials for temperatures above 1200{degree}C in oxidizing environments, due to their combination of oxidation resistance, thermodynamic stability, machinability, elevated temperature ductility and strength, and ability to alloy the MoSi{sub 2} matrix with other silicides. The fabrication, microstructures, oxidation, and mechanical properties of these materials are described, and their current properties are compared to high temperature metals and structural ceramics. 22 refs., 5 figs., 2 tabs.

  17. Recent developments in transparent spinel ceramic and composite windows

    Science.gov (United States)

    Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jas; Chin, Geoff; Hunt, Michael; Sadowski, Bryan; Miklos, Fritz; Aggarwal, Ishwar

    2013-09-01

    The U.S. Naval Research Laboratory has pioneered the development of sintering processes for making highly transparent optical ceramics. For example, we have demonstrated the fabrication of record low absorption loss spinel as an exit window for High Energy Laser systems and rare earth doped Y2O3 and Lu2O3 for solid-state ceramic lasers. We have also developed thick spinel windows for submarine photonic masts and predicted the performance of an imaging system using testing and modeling. More recently, we have developed a novel approach of hot pressing where a transparent ceramic is produced in the net shape without requiring post polishing. This technology will result in significant cost savings associated with polishing the final optical element. We are also developing motheye structures on spinel surface to provide rugged anti-reflective solutions. We had earlier identified a Barium GalloGermanate (BGG) glass with matching index and expansion coefficient to spinel. We had demonstrated fabrication of a laminated dome for the Joint Air to Ground Missile (JAGM) program and the technology was transitioned to industry. We have pushed this technology further by developing a BGG glass - spinel ceramic transparent micro-composite, which can be processed well below spinel sintering temperatures. To address the relatively lower strength of BGG glass compared with spinel, we developed an ion-exchange process and achieved strengths up to 450 MPa. This paper gives a summary of our recent findings.

  18. Effect of Rare Earth Phosphate Composite Materials on Cleanout Oil-Dirty Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    Liang Jinsheng; Zhang Jin; Liang Guangchuan; Wang Lijuan; Li Guosheng; Meng Junping; Pan Yanfen

    2004-01-01

    The ceramics with cleaning easily up oil-dirty property were prepared by doping enamel slurry with rare earth elements phosphate composite materials, and then the influence mechanisms of rare earth elements phosphate composite materials on the cleaning easily up oil-dirty property of ceramic were studied by testing the surface tension and contact angle of water, latex stability inside of ceramic product. Results that the ceramic doped enamel slurry with rare earth phosphate composite materials can reduce obviously the surface tension and contact angle of water, and make latex more stable, and so the ceramics possess excellent cleanout oil-dirty property.

  19. Carbon–ceramic composites for enzyme immobilization

    OpenAIRE

    Lathouder, Karen de; Lozano Castelló, Dolores; Linares Solano, Ángel; Wallin, Sten A.; Kapteijn, Freek; Moulijn, Jacob

    2006-01-01

    Tunable carbon nanofiber-coated monoliths as carriers for enzyme adsorption are presented. Carbon-nanofibers (CNFs) were grown on monoliths with different microstructure. ‘‘Classical’’ cordierite monoliths were compared to novel acicular mullite (ACM) monoliths, with a more open wall structure. This open structure allows for a higher CNF-loading without affecting the open structure of the monoliths. The composites were used as a carrier for lactase from Aspergillus oryzae. ACM monoli...

  20. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    Science.gov (United States)

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  1. Ceramic compositional analysis in archaeological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L.; Rands, R.L.; Holley, G.R.

    1980-01-01

    The primary significance of compositional analysis in archaeology lies on the spatial dimension, in distinguishing products made by locally or regionally-based groups. If compositional analysis is to be carried beyond the descriptive recording of similarities and differences, the resource procurement zone (and its geographical relationship to inferred places of manufacture) is a basic operational concept (Rands and Bishop 1980). A zonal concept is clearly indicated in the case of pottery, which frequently is derived from raw materials, clay and temper, that do not necessarily coincide in their place of procurement. Moreover, depending on geomorphological and geochemical variables, these materials may show considerable homogeneity over a fairly extended area. On the other hand, unless there is strong, selective patterning in the exploitation of resources, great heterogeneity within a restricted region may result in fragmented procurement zones that are difficult to equate with the products of specific manufacturing centers. Under favorable circumstances, however, it appears that methods of compositional analysis are approaching the point at which microzones of limited geographical extent can be recognized and assigned heuristically useful boundaries.

  2. Electro-mechanical properties of free standing micro- and nano-scale polymer-ceramic composites for energy density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paritosh; Borkar, Hitesh [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India); Singh, B.P.; Singh, V.N. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India)

    2015-11-05

    The integration of inorganic fillers in polymer matrix is useful for superior mechanical strength and functional properties of polymer-ceramic composites. We report the fabrication and characterization of polyvinylidene fluoride-CoFe{sub 2}O{sub 4} (PVDF-CFO) (wt% 80:20, respectively) and PVDF-Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–CoFe{sub 2}O{sub 4} (PVDF-PZT-CFO) (wt% 80:10:10, respectively) free standing 50 μm thick ferroelectric-polymer-ceramic composites films. X-ray diffraction (XRD) patterns and Raman spectra revealed the presence of major semi-crystalline β-PVDF along with α-phase which is responsible for ferroelectric nature in both the composite systems. Ferroelectric, dielectric and mechanical strength measurements were performed in order to evaluate the effects of CFO and PZT inorganic fillers in PVDF matrix. The inclusion of CFO and PZT micro-/nano-particles in PVDF polymer matrix improved the polarization behavior, dielectric properties and mechanical strength. The energy density was calculated by polarization-electric field hysteresis loop and found in the range of 6–8 J/cm{sup 3} may be useful for microelectronics. - Graphical abstract: Large area PVDF-PZT-CFO nano- and micro-composite films have been fabricated for high energy density storage flexible capacitor. Presence of nanocrystalline PZT and CFO particles in polymer matrix significantly enhanced their energy density capacity. - Highlights: • Physical interaction of cobalt iron oxide with polymer matrix results β-PVDF phase. • Evidence of Micro and Nano crystalline CFO and PZT fillers in polymer matrix. • The CFO and PZT fillers provide better mechanical strength to composite films. • PVDF-ceramic nanocomposites show low leakage behavior for high electric field.

  3. Nickel immobilization in ceramic matrix admixed with waste nickel hydroxide.

    Science.gov (United States)

    Osińska, Malgorzata; Stefanowicz, Tadeusz; Paukszta, Dominik

    2003-01-01

    WAXS examinations performed with nickel hydroxide samples heated to various temperatures showed that freshly settled wet nickel hydroxide sample contains some amount of crystalline beta-Ni(OH)(2) structure and its share increased when sample was dried during 3 weeks at ambient temperature. However, the share significantly decreased when the sample was dried at 110 degrees C and more so at 250 degrees C. Crystalline phase traces of Ni(OH)(2) disappeared after sample burning at 980 degrees C and instead the distinct presence of crystalline NiO was determined. The above samples were examined for solubility in stoichiometric amount of sulphuric acid diluted with water to pH 1.9 and 2.8. Solubility was determined by measuring nickel ion concentration in leachate by the AAS method. The dissolving rate was found to decrease with the rise of temperature to which the nickel hydroxide samples were heated. The solubility of Ni(OH)(2) sample burnt at 980 degrees C was undetectable during 90 h solubility-testing time likely due to its transformation into sparingly soluble crystalline NiO. The latter is considered to be the reason for effective immobilization of waste nickel hydroxide in ceramic prepared by blending with clay and sintering at 980 degrees C. PMID:14583250

  4. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  5. SHS/PHIP of ceramic composites using ilmenite concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Kholghy, M. [Yerevan State University and Isfahan University of Technology, Dept. of Materials Eng (Iran, Islamic Republic of); Kharatyan, S. [Yerevan State University, Yerevan, A. Manukyan str. 1, AM-0025 (Armenia); Edris, H., E-mail: h-edris@cc.iut.ac.i [Isfahan University of Technology, Dept. of Materials Eng. Isfahan, 8415683111 (Iran, Islamic Republic of)

    2010-07-23

    Self-propagating high-temperature synthesis (SHS) process in the mixture of ilmenite, boron carbide and aluminum combined with a pseudo hot isostatic pressing (PHIP) is used in this research to produce a compact multi-ceramic composite Al{sub 2}O{sub 3}/TiB{sub 2}/TiC with Fe as a binder. Several tests were performed to identify the optimum partial weight percent of the ilmenite, boron carbide and aluminum to produce a suitable amount of each components of the product. On the other hand, a number of tests were performed to measure the delay time, optimum compaction time and optimum compaction force to produce a compact high toughness samples. The results of phase analysis using XRD tests and microstructure using SEM and EDS show that the product is a multi-ceramic composite of the Al{sub 2}O{sub 3}/TiB{sub 2}/TiC with Fe as a binder. It was shown that there are no primary reactants in the product. In this work, the combustion characteristics (combustion wave propagation velocity and temperature) of the process, as well as density and hardness of the combustion product were measured. The fracture toughness of the product was measured using Vickers indenter and Brazilian test. This shows that the samples have a high toughness in comparison to conventional ceramics.

  6. Neural network applied to elemental archaeological Marajoara ceramic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S., E-mail: rosimeiritoy@yahoo.com.b, E-mail: camunita@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Boscarioli, Clodis, E-mail: boscarioli@gmail.co [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas. Colegiado de Informatica; Hernandez, Emilio D.M., E-mail: boscarioli@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Neves, Eduardo G.; Demartini, Celia C., E-mail: eduardo@pq.cnpq.b [Museu de Arqueologia e Etnologia (MAE/USP), Sao Paulo, SP (Brazil)

    2009-07-01

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  7. Neural network applied to elemental archaeological Marajoara ceramic compositions

    International Nuclear Information System (INIS)

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  8. Reaction hot-pressing and property-composition relationships of modified sialon - boron nitride hetero-modulus ceramics

    Science.gov (United States)

    Wang, Y.; Shabalin, I. L.; Zhang, L.; Zhdanov, V. B.

    2011-10-01

    Hetero-modulus ceramics (HMC) present the combination of a ceramic matrix with inclusions of a dispersed phase with considerably lower values of Young's modulus, resulting in a material with significantly advanced properties. Densified '-Si6-xAlxOxN8-x based HMC materials, with various volume contents of low-modulus α-BN phase and modifiers such as TiN or ZrO2 in sialon matrix, were prepared by high-temperature reaction hot-pressing in nitrogen atmosphere. The pristine blend composition for reaction hot-pressing consisted of mixed fine powders of Si, Al, B, Ti nitrides and Al, Zr oxides. Statistical design of 25-2 fractional factorial and third-order simplex-grid types was used for the experimental studies to estimate the effects of some technological factors on the densification of hot-pressed products and the property-composition relationships of modified HMC materials.

  9. Summary of workshop on ceramic composite interface coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Commercialization of fiber-reinforced composites has been limited because of the stability of the interface coatings that control the mechanical properties of the composites. Typical materials are currently manufactured with pyrolytic carbon interface coatings that perform well in inert atmospheres or when stresses are kept very low (<70 MPa). Unfortunately, carbon coatings are not stable at high temperatures in air or oxidizing conditions which results in degradation of the mechanical properties of the composites. The problem of oxidation resistant interface coatings is not unique to the Fossil Program. Such coatings are also a concern to the United States Air Force, the Continuous Fiber-reinforced Ceramic Composites Program, the Fusion Energy Materials Program, and to the European Community. This workshop was organized to compare and discuss the need for and development of oxidation-resistant interface coatings in each of these programs.

  10. Dielectric properties of BST/MZO ceramic composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ba0.6Sr0.4TiO3/Mg1-xZnxO (MZO, x = 0, 0.05, 0.10, 0.15 and 0.20) ceramic composites were prepared by traditional ceramic processing. The crystal structure, fracture surface morphology, and dielectric properties were investigated. The samples with x = 0, 0.05 and 0.10 exhibited favorable sintering behavior, and homogeneous diphase microstructure was obtained. Nevertheless, the microstructure of the samples with x = 0.15 and 0.20 was inhomogeneous and abnormal grain growth could be observed, and the abnormal grain growth induced the degradation of dielectric strength. The sample with x = 0.10 has relatively low dielectric loss (1.26×10-3) and the optimal FOM value (about 174).

  11. Dielectric properties of BST/MZO ceramic composites

    Institute of Scientific and Technical Information of China (English)

    GUI JianDong; WANG Yi; DONG GuiXia; DU Jun

    2009-01-01

    Ba0.6Sr0.4TiO3/Mg1-xZnxO (MZO, x = 0, 0.05, 0.10, 0.15 and 0.20) ceramic composites were prepared by traditional ceramic processing. The crystal structure, fracture surface morphology, and dielectric properties were investigated. The samples with x = 0, 0.05 and 0.10 exhibited favorable sintering be-havior, and homogeneous diphase microstructure was obtained. Nevertheless, the microstructure of the samples with x = 0.15 and 0.20 was inhomogeneous and abnormal grain growth could be observed, and the abnormal grain growth induced the degradation of dielectric strength. The sample with x = 0.10 has relatively low dielectric loss (1.26×10-3) and the optimal FOM value (about 174).

  12. The influence of reinforcement shape on wear behaviour of aluminium matrix composite materials

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-09-01

    Full Text Available urpose: The purpose of this paper is to present the research results of modern metal matrix composite materials. The matrix material was EN AC - AlSi12 alloy while the reinforcement ceramic performs. In order to investigate the influence of reinforcing phase’s shape on tribological properties the comparison was made between the composite material based on preforms obtained by Al2O3 Alcoa CL 2500 powder sintered with addition of pore forming agent in form of carbon fibres Sigrafil C 10 M250 UNS from Carbon Group company and composite materials based on much more expensive commercial fibrous preforms.Design/methodology/approach: The composite was produced by the use of porous material pressure infiltration method. Obtained composite materials were examined with light and scanning electron microscopy. Hardness test was carried out with Rockwell method in A scale. Additionally, the wear resistance was measured by the use of device designed in the Institute of Engineering Materials and Biomaterials. The device realize dry friction wear mechanism of reciprocating movement conditions.Findings: The obtained results show the possibility of manufacturing the new composite materials by the method of porous sintered framework pressure infiltration based on the ceramic particles, with desired microstructure and properties, being a cheaper alternative for materials with base of ceramic fibers.Practical implications: Tested composite materials can be apply among the others in automotive and aircraft industries.Originality/value: Worked out technology of composite materials manufacturing can be used in the production of near net shape and locally reinforced elements

  13. Metal/ceramic interface structures and segregation behavior in aluminum-based composites

    International Nuclear Information System (INIS)

    Trimodal Al alloy (AA) matrix composites consisting of ultrafine-grained (UFG) and coarse-grained (CG) Al phases and micron-sized B4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation at AA/B4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. In this study, we use high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B4C reinforcement particles. The amorphous layers consist of nonstoichiometric AlxOy, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B4C interfaces

  14. Resin composite or ceramic inlays/onlays in posterior permanent teeth : a review of the literature

    OpenAIRE

    Breistrand, Joakim Lund; Juliussen, Øyvind

    2011-01-01

    Objective: To compare the clinical survival and long-term costs of extensive composite restorations to ceramic inlays and onlays. The hypothesis was that ceramic inlays and onlays can be more tooth substance saving and long-term economic for the patient than composite restorations. Methods: The dental literature, predominantly since 1990, was reviewed for prospective clinical studies of longevity of ceramic inlays/onlays and direct composite restorations in permanent posterior teeth. Only ...

  15. The preparation of dental glass-ceramic composites with controlled fraction of leucite crystals

    Directory of Open Access Journals (Sweden)

    Martina Mrázová

    2008-06-01

    Full Text Available This work is dealing with synthesis of leucite powder, which can be used for the preparation of dental glassceramic composites by subsequent thermal treatment. Newly developed procedure is based on preparation of dental raw material as a mixture of two separate compounds: the crystalline leucite powder prepared at relatively low temperature and a commercial matrix powder.Hydrothermal synthesis of tetragonal leucite particles (KAlSi2O6 with the average size of about 3 μm was developed in our laboratory. The leucite dental raw material was prepared by mixing of 20 wt.% of synthetic tetragonal leucite with commercial matrix. Dental composites were prepared from the dental raw material by uniaxial pressing and firing up to 960°C. Dilatometric measurements confirmed that the coefficient of thermal expansion increased by 32% when 20 wt.% of the tetragonal leucite was added into the basic matrix. In addition, it was showed that the synthesized leucite powder was suitable for the preparation of leucite composites with controlled coefficient of thermal expansion. High value of the thermal expansion coefficient enables application of prepared composite in metal-ceramics restorations.

  16. Mechanical Properties of a new Dental all-ceramic Material-zirconia Toughened Nanometer-ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    CHAI Feng; XU Ling; CHAO Yong-lie; LIAO Yun-mao; ZHAO Yi-min

    2003-01-01

    Objectives:All-ceramic dental restorations are attractive to the dental community because of their advantages.But they're also challenged by relatively low flexural strength and intrinsic poor resistance to fracture.This paper aims to investigate mechanical properties of a new dental all-ceramic material, i.e. zirconia toughened nanometer-ceramic composite (α-Al2O3/nZrO2).Methods:α-Al2O3/nZrO2 ceramics powder (W) was processed with combined methods of chemical co-precipitation method and ball milling. Scanning electron microscopy (SEM)was used to determine the particle size distribution and to characterize the particle morphology of the powders. Four kinds of powders with different ZrO2 content (5wt%, 10wt%, 15wt% and 20wt%) were prepared by using α-Al2O3 powder to dilute the higher ZrO2 content powder (W). The ceramic matrix compacts were made by slip-casting technique and sintering to 1 200~1 600 ℃. The flexural strength and the fracture toughness of the matrix materials were measured via three-point bending test and single-edge notch beam methods, respectively.Results:1) The particle distribution of the Al2O3/nZrO2 powder ranged from 0.02~3.0 μm, with the superfine particles almost accounting for 20%;2) There is a significant difference of flexural strength (P<0.05) between the groups with 1 450 ℃ and 1 600 ℃ sintering temperature and 1 200 ℃;3) There is a significant difference of flexural strength (P<0.05) between different zirconia volume fraction groups with the same sintering temperature, the ceramic matrix samples with higher nZrO2 (W) content had much better mechanical properties than those of pure α-Al2O3 ceramics.Conclusions:The studied nanometer α-Al2O3/nZrO2 powder was homogeously distributed within the matrix and had reasonable powder-size gradation to improve mechanical properties of ceramics.%目的:口腔全瓷修复体以其独特优越性受到医患青睐,但脆性问题一直限制其应用范围及使用可靠性.本研

  17. Multifunctional Metal Matrix Composite Filament Wound Tank Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal Matrix Composite (MMC) materials offer tremendous potential for lightweight propellant and pressurant tankage for space applications. Thin MMC liners for...

  18. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  19. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  20. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Science.gov (United States)

    Wołkowycki, Grzegorz

    2016-03-01

    The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators' matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  1. Glass-ceramic frits for porcelain stoneware bodies: effects on sintering, phase composition and technological properties

    OpenAIRE

    Zanelli, Chiara; Baldi, Giovanni; Dondi, Michele; Ercolani, Giampaolo; Guarini, Guia; Raimondo, Maria Rosa

    2008-01-01

    In the present work, the effects of glass-ceramic frits (10wt%) added to a porcelain stoneware body in replacement of non-plastic raw materials, were evaluated simulating the tile-making process. Each glass-ceramic frit plays its own peculiar effect on the compositional properties and only some precursors behave as real glass ceramic materials. The positive influence of glass-ceramic precursors in promoting the sintering stands out when temperature onset densification and sintering rate are c...

  2. Thermal conductivity and acid dissolution behavior of MgO-ZrO 2 ceramics for use in LWR inert matrix fuel

    Science.gov (United States)

    Medvedev, P. G.; Lambregts, M. J.; Meyer, M. K.

    2006-02-01

    Dual-phase MgO-ZrO 2 ceramics are proposed for use in inert matrix fuel for disposition of plutonium and minor actinides in existing light water reactors. The concept for use of this composite material was developed with the intent to capitalize on the known advantages of the composite's constituents: high thermal conductivity of MgO, and stability of ZrO 2 in LWR coolant. The study presented in this paper addressed the thermal conductivity and nitric acid solubility of MgO-ZrO 2 ceramics. Thermal analysis, based on experimental and analytical techniques, established that the product of all investigated compositions has the thermal conductivity superior to that of UO 2. Nitric acid dissolution experiments showed that only the free MgO phase dissolves in the nitric acid, leaving behind a porous pellet consisting of a ZrO 2-based solid solution.

  3. Application of pressure infiltration to the manufacturing of aluminium matrix composite materials with different reinforcement shape

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-10-01

    Full Text Available Purpose: The purpose of this work is to investigate the influence of reinforcing phase’s shape on structure and properties of composite materials with aluminium alloy matrix.Design/methodology/approach: The material for studies was produced by a method of pressure infiltration of the porous ceramic framework. In order to investigate the influence of reinforcing phase’s shape the comparison was made between the properties of the composite material based on preforms obtained by Al2O3 Alcoa CL 2500 powder sintered with addition of pore forming agent in form of carbon fibres Sigrafil C 10 M250 UNS from Carbon Group company and composite materials based on much more expensive commercial fibrous preforms. The matrix consisted of cast aluminium alloy EN AC – AlSi12. The observations of the structure were made on the light microscope and in the scanning electron microscope. The strength properties were established on the basis of static tensile tests.Findings: The composite materials, obtained on the basis of ceramic preforms consisted of Al2O3 particles, are showing better strength properties in comparison to materials obtained by the fibrous preform infiltration.Practical implications: The composite materials made by the developed method can find application as the elements of devices where beside the benefits from utilizable properties the small weight is required (mainly in aircraft and motorization industries.Originality/value: The obtained results show the possibility of manufacturing the composite materials by the method of porous sintered framework pressure infiltration based on the ceramic particles, characterized with the better properties than similar composites reinforced with fibres.

  4. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    Science.gov (United States)

    Indyka, P.; Beltowska-Lehman, E.; Bigos, A.

    2012-03-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al2O3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al2O3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al2O3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al2O3 composite coatings have been determined.

  5. XPS Investigation of ceramic matrixes for disposal of long-living radioactive waste products

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2004-01-01

    Full Text Available The synthesis of ceramic matrixes for the long-term storage of highly active radionuclide wastes and determination of physical and chemical forms of radionuclides in them is one of the important problems in radioecology. It enables to create purpose fully materials for the long-term storage of radionuclides. In the present work the samples of ceramics [CaCe0.9Ti2O6.8(I and CaCeTi2O7(II}] formed under various conditions were investigated with the X-ray photo electron spectroscopy. It is necessary for synthesis of ceramic matrixes, for the disposal of the plutonium and others tetravalent actinides. A technique was developed for the determination of cerium oxidation state (Ce3+ and Ce4+ on the basis of the X-ray photo electron spectroscopy spectral structure characteristics. It was established that the sample (I formed at 300 MPa and T = 1400 °C in the air atmosphere contained on the surface two types of cerium ions in the ratio – 63 atomic % of Ce3+ and 37 atomic % of Ce4+, and the sample (II formed at 300 MPa and T= 1300 °C in the oxygen atmosphere contained on its surface two types of cerium ions also, but in the ratio – 36 atomic % of Ce3+ and 64 atomic % of Ce4+. It was established that on the surface of the studied ceramics carbonates of calcium and/or cerium could be formed under influence of the environment that leads to the destruction of ceramics.

  6. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  7. New toughening concepts for ceramic composites from rigid natural materials.

    Science.gov (United States)

    Mayer, George

    2011-07-01

    The mechanisms underlying the toughening in rigid natural composites exhibited by the concentric cylindrical composites of spicules of hexactinellid sponges, and by the nacre (brick-and-mortar) structure of mollusks such as Haliotis rufescens (red abalone), as well as the crossed-lamellar structure of Strombus gigas (queen conch) show commonalities in the manner in which toughening takes place. It is proposed that crack diversion, a new kind of crack bridging, resulting in retardation of delamination, creation of new surface areas, and other energy-dissipating mechanisms occur in both natural systems. However, these are generally different from the toughening mechanisms that are utilized for other classes of structural materials. Complementary to those mechanisms found in rigid natural ceramic/organic composites, special architectures and thin viscoelastic organic layers have been found to play controlling roles in energy dissipation in these structures. PMID:21565715

  8. Reinforcing and toughening alumina/titania ceramic composites with nano-dopants from nanostructured composite powders

    International Nuclear Information System (INIS)

    Nanostructured alumina/titania composite powders were prepared using nanosized alumina and titania doped with nanosized zirconia and ceria through ball-milling, spray drying and heat treating. The nanostructured reconstituted powders were then cool isostatic pressed and pressureless sintered into bulk ceramic composites. The phase constitution and microstructures of as-prepared ceramic composites were characterized by using X-ray diffractometer and scanning electron microscope. The mechanical properties of the ceramic composites were evaluated by Vickers hardness test, flexural strength test and fracture toughness test. The effects of nano-dopants and sintering temperatures on the microstructures and mechanical properties of the composites were investigated. It was found that nano-dopants had the effects of lowering sintering temperature, accelerating densification, reinforcing and toughening the composites. The maximum flexural strength, fracture toughness and Vickers hardness of the composites with nano-dopants were 51, 20 and 56% higher than that of the composites without nano-dopants. The reinforcing and toughening mechanisms are discussed in detail.

  9. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. PMID:26042695

  10. Micro-morphological changes prior to adhesive bonding: high-alumina and glassy-matrix ceramics

    Directory of Open Access Journals (Sweden)

    Marco Cícero Bottino

    2008-06-01

    Full Text Available The aim of this study was to qualitatively demonstrate surface micro-morphological changes after the employment of different surface conditioning methods on high-alumina and glassy-matrix dental ceramics. Three disc-shaped high-alumina specimens (In-Ceram Alumina, INC and 4 glassy-matrix ceramic specimens (Vitadur Alpha, V (diameter: 5 mm and height: 5 mm were manufactured. INC specimens were submitted to 3 different surface conditioning methods: INC1 - Polishing with silicon carbide papers (SiC; INC2 - Chairside air-borne particle abrasion (50 µm Al2O3; INC3 - Chairside silica coating (CoJet; 30 µm SiOx. Vitadur Alpha (V specimens were subjected to 4 different surface conditioning methods: V1 - Polishing with SiC papers; V2 - HF acid etching; V3 - Chairside air-borne particle abrasion (50 µm Al2O3; V4 - Chairside silica coating (30 µm SiOx. Following completion of the surface conditioning methods, the specimens were analyzed using SEM. After polishing with SiC, the surfaces of V specimens remained relatively smooth while those of INC exhibited topographic irregularities. Chairside air-abrasion with either aluminum oxide or silica particles produced retentive patterns on both INC and V specimens, with smoother patterns observed after silica coating. V specimens etched with HF presented a highly porous surface. Chairside tribochemical silica coating resulted in smoother surfaces with particles embedded on the surface even after air-blasting. Surface conditioning using air-borne particle abrasion with either 50 µm alumina or 30 µm silica particles exhibited qualitatively comparable rough surfaces for both INC and V. HF acid gel created the most micro-retentive surface for the glassy-matrix ceramic tested.

  11. Recent trend and problems of whisker reinforced composite ceramics. Whisker fukugo ceramics no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Wonseung; Hayashi, K. (The Univ. of Tokyo, Tokyo (Japan). Inst. of Industrial Science)

    1994-03-01

    The maximum purpose of the whisker composite is to overcome a brittleness of the ceramics and to raise a reliability. In order to do so, it is required that a toughening mechanism by the whisker should be investigated, and that an addition effect of the whisker should be exhibited to be the maximum by an improvement of the process. For the sake of using the composite ceramics as the high temperature structural materials in a wide range, in addition, besides the mechanical properties such as a fracture toughness (K[sub IC]) and a flexural strength (FS), the various properties such as a resistance to oxidation, fatigue strength, creep strength, thermal shock resistance, wear and abrasion resistance and so forth are necessary to be investigated. Because the kinds of whisker used, kind and quantity of the sintering auxiliary, preparation condition, evaluation method of K[sub IC] and FS and so forth are currently different depending on the researchers, and moreover the test procedure, specimen dimension and test condition are often different even in the same evaluation method, the mutual comparison of data are rather difficult. By achieving the furthermore toughening, by establishing the design technology and complex molding technology, by reducing the price drastically and so forth, an expansion of their application is expected. 115 refs., 9 figs., 4 tabs.

  12. Thermal conductivity of microPCMs-filled epoxy matrix composites

    NARCIS (Netherlands)

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of

  13. The mechanical properties and microstructure of the bionic alloy-ceramic laminated composite

    International Nuclear Information System (INIS)

    Highlights: → The bionic alloy-ceramic laminated composite was fabricated by EB-PVD. → Mechanical properties and microstructure of laminated composite were investigated. → Laminated composite was heat treated in order to improve the tensile strength. -- Abstract: In the present work, the bionic alloy-ceramic laminated composite was fabricated by electron beam-physical vapor deposition method. The ingots of Ni-20Co-12Cr-4Al (wt.%) and ZrO2-8 mol%Y2O3 were used as the sources of the alloy layer and ceramic layer, respectively. The laminated composite was generally destroyed within the ceramic layer when the interlaminar strength was determined, which revealed that the excellent interface bonding between the ceramic layer and the alloy layer. The obvious diffusion interfaces between the ceramic and alloy layers were readily detected, which was favorable to the mechanical properties of the laminated composite. In the heat treatment process, the diffusion of the flaws within the ceramic layer and/or alloy layer to the interface between the ceramic layer and alloy layer was easier compared with the occurrence of interlaminar diffusion. It was confirmed by the X-ray diffractometer that the reaction of the ceramic layer with alloy layer was simple physical diffusion. The tensile strength of the laminated composite increased first and then decreased as the heat treatment time increased, which was attributed to the mutual reaction of the increase in the relative density with the formation of the flaws located at the interface.

  14. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Maddrell, Ewan, E-mail: ewan.r.maddrell@nnl.co.uk [National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Thornber, Stephanie; Hyatt, Neil C. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-01-15

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}–SiO{sub 2} glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio.

  15. Physics-Based Design Tools for Lightweight Ceramic Composite Turbine Components with Durable Microstructures

    Science.gov (United States)

    DiCarlo, James A.

    2011-01-01

    Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.

  16. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  17. PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    魏悦广

    2001-01-01

    The influences of particle size on the mechanical properties of the particulate metal matrix composite are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material,are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally,the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.

  18. A study of ceramic-lined composite steel pipes prepared by SHS centrifugal-thermite process

    OpenAIRE

    Li Yuxin; Jiang Letao; Lu Qing; Bai Peikang; Liu Bin; Wang Jianhong

    2016-01-01

    Al2O3 ceramic-lined steel pipe was produced by self-propagating high-temperature synthesis centrifugal thermite process (SHS C-T process) from Fe2O3 and Al as the raw materials. The composition, phase separation and microstructures were investigated. The result showed the ceramic lined pipe is composed of the three main layers of various compositions, which were subsequently determined to be Fe layer, the transition layer and the ceramic layer. Fe layer is ...

  19. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m1/2. - Abstract: The effects of substitution of Ba2+ by Sr2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba1−xSrxFe12O19, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  20. Synthesis of TiN/AlON composite ceramics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The synthesis process of TiN/AlON composite ceramics was studied, the thermodynamics, mechanical properties and microstructures of TiN/AlON have also been investigated. The TiN/AlON composite ceramics has been synthesized by both hot-pressing and pressureless sintering. The characterizations of the material synthesized were analyzed with XRD (X-ray diffraction) and TEM (transmission electronic microscope). The density and toughness strength of TiN/AlON are 3.57 g/cm3 and 4.74 MPa@ m1/2, respectively. The bending strength was measured at both room temperature and high temperatures and the results are 399 MPa (room temperature), 406 MPa (1 073 K), 417 MPa (1 273 K) and 323 MPa (1 573 K). Pattern Recognition (PR) and Artificial Neural Network (ANN) were used to optimize the parameters and to predict the expected values. A proper parameter for pressureless sintering of TiN/AlON has been obtained and testified, the parameters are temperature (1978 K), AlN / (AlN + Al2O3) ratio (0.22), MgO (4.7%) and TiO2 (7.2%).

  1. Microstructural, compositional and mechanical properties of the archaeological indigenous ceramics of Caninhas, Sao Paulo,Brazil; Analise microestrutural, composicional e propriedades mecanicas das ceramicas indigenas do sitio arqueologico Caninhas, Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, F.P.; Taguchi, S.P., E-mail: japaum@alunos.eel.usp.b [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Engenharia de Materiais; Ribeiro, R.B.; Rosa, S.J.L. [Faculdades Integradas Teresa D' Avila (FATEA), Lorena, SP (Brazil). Rede Salesianas. Dept. de Desenho Industrial; Bornal, W.G.; Queiroz, C.M. [Fundacao Cultural de Jacarehy, Jacarei, SP (Brazil). Nucleo de Arqueologia do Vale do Paraiba

    2009-07-01

    Archaeological ceramics contain infinity of data about social and cultural indigenous site Caninhas/SP. The ceramics present a gradient of color (ochre to dark gray), when from the surface to the center of the piece, indicating compositional variability caused by inefficient sintering carried out by indigenous peoples. It was analyzed the composition phases by X-rays diffraction (XRD) and mapping by EDS, identifying the illite, quartz and lutecite phases (ochre region) and illite, quartz, hydrated alumina and lutecite phases (dark gray region). The results of EDS confirmed the stages identified by X-rays diffraction and suggesting the presence of roots and scrap of ceramics sintered in the composition of indigenous ceramics, when compared by optical microscope and scanning electron microscope. Vickers hardness identified as fragile and heterogeneous are archaeological ceramics, reaching approximately 203 HV in the grains of silica and 16 HV in the ceramic matrix. (author)

  2. Piezoelectric ceramic fibers for active fiber composites: a comparative study

    Science.gov (United States)

    Kornmann, Xavier; Huber, Christian; Elsener, Hans-Rudolf

    2003-08-01

    The morphology and the free strain performances of three different piezoelectric ceramic fibers used for the manufacture of active fiber composites (AFCs) have been investigated. The morphology of the fibers has a direct influence on the manufacture of the AFCs. Fibers with non-uniform diameters are more difficult to contact with the interdigitated electrodes and can be the cause of irreparable damages in AFCs. An indirect method requiring the use of a simple analytical model is proposed to evaluate the free strain of active fiber composites. This indirect method presents a relatively good agreement with direct free strain measurements performed with strain gages glued on both sides of an AFC. The results show a systematic difference of ca. 20 % between the indirect and the direct methods. However, the indirect method did not permit to see differences of piezoelectric performance between the types of fibers.

  3. Preparation of Ceramic Composite Pipes Through Paste Extrusion

    Institute of Scientific and Technical Information of China (English)

    Zhongchun Chen; Takenobu Takeda; Keisuke Kikuchi

    2000-01-01

    An experimental investigation was carried out in order to prepare ceramic composite pipes used for tubular solid oxide fuel cells by using a multi-billet extrusion technique. Particular emphasis was given to the forming possibility and extrusion behavior of a two-layer pipe consisting of NiO-YSZ(PSZ) (anode) and YSZ (electrolyte). It is shown that the extrusion pressure and binder content required decrease with increasing the fraction of nickel oxide in the anode layers. The porosity in the anode layers depends on the binder content in pastes. It is feasible to prepare anode/electrolyte composite pipes by means of co-extrusion of different pastes.Furthermore, it is possible to obtain sound sintered pipes even under pressureless sintering conditions.

  4. Spark plasma sintering of silicon carbide, multi-walled carbon nanotube and graphene reinforced zirconium diboride ceramic composite

    Science.gov (United States)

    Balaraman Yadhukulakrishnan, Govindaraajan

    Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.

  5. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  6. The selection of phase composition of silicon nitride ceramics for shaping with the use of EDM machining

    Directory of Open Access Journals (Sweden)

    P. Putyra

    2011-09-01

    Full Text Available Purpose: The purpose of this study is the selection of phase composition of Si3N4 matrix ceramics with the addition of conducting phases so as to make shaping of those materials possible by means of electro discharge machining (EDM. Silicon nitride matrix materials with the addition of oxide phases (Al2O3, MgO, ZrO2 and conducting phases (TiB2, TiN were sintered by the method of SPS (Spark Plasma Sintering. Additionally the effect of oxide phases on silicon nitride sintering capacity, the value of electric resistance of nitride ceramics depending on the addition of a conducting phase and the effect of sintering parameters on selected features of produced materials were determined.Design/methodology/approach: Materials were sintered with the use of a SPS device marked with FCT-HP D 5. Apparent density ρp was measured by the hydrostatic method. Hardness was determined by the Vicker’s method at the load of 980.7 mN with the use of a Future Tech Corp digital hardness tester FM7. For the purpose of those tests a surface was prepared with the use of a Struers cutting grinder ACUTOM. Measurements of Young’s modulus for sintered samples were carried out using a ultrasonic method of transverse and longitudinal wave speed measurement with the use of a Panametrics Epoch III detector. Resistance measurement was done with the use of Wheatstone and Thomson technical bridges.Findings: The addition of titanium nitride had no effect on the reduction of electric resistance of Si3N4 matrix ceramics. The lack of electric conductivity of those materials is the result of used additions influencing sintering capacity, mainly magnesium oxide. Si3N4 matrix materials with the addition of titanium diboride are characterised by low electrical resistance with high physical and mechanical features maintained. Electric conductivity of those materials and the initial electro discharge cutting attempts prove that it is possible to shape Si3N4 matrix ceramic materials with

  7. Interface coatings for Carbon and Silicon Carbide Fibers in Silicon Carbide Matrixes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Interface coatings for fiber-reinforced composites are an enabling technology for high temperature ceramic matrix composites. Because of their availability and...

  8. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  9. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  10. Strain measurements and imaging of metal matrix composites using high-energy X-rays

    Science.gov (United States)

    Young, Marcus L.

    Metal matrix composites (MMCs) are of technological importance for a variety of applications [1, 2]. One important aspect of MMCs is their unique mechanical behavior, which is controlled by the load transfer occurring between matrix and reinforcement. Load transfer is affected by the mismatch in stiffness between matrix and reinforcement, by plastic deformation of the metallic matrix and by damage of the ceramic reinforcement or its interface with the matrix. The goal of this thesis is to study the micromechanics of load transfer in MMC by a combination of x-ray diffraction and imaging, using high-energy synchrotron x-rays in conjunction with in-situ mechanical loading. Diffraction was used for direct measurements of internal elastic strains of all phases within the bulk (rather than near surface) of MMCs during in-situ mechanical loading. Imaging was done using an edge-enhanced, phase-contrast technique providing high spatial resolution radiographic images providing insight into the macro- and micro-mechanical evolution of damage. Three MMC systems with widely different architectures, composition, and end-use were studied: ultrahigh-carbon steels, superconducting fiber composites, and co-continuous composites. First, ultrahigh-carbon steels exhibiting spherical Fe3C particles in a Fe matrix are characterized by no load transfer in the elastic range, followed by marked load transfer in the plastic range of the matrix. Second, superconducting composites consisting of continuous MgB2 fibers in a Mg matrix show mostly elastic (and somewhat plastic) load transfer from matrix to reinforcement, which is complicated by the presence of cracks and a WB4 core in the fibers. Finally, a complex three-dimensional (3-D) Al2O3 preform infiltrated with an Al matrix, like the superconducting composites, show mostly elastic load transfer from matrix to reinforcement. For the latter two composites, differences were found between average bulk measurements and spatially

  11. Test on Sensor Effect of Cement Matrix Piezoelectric Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoming; LI Zhongxian; DING Yang; LI Zongjin

    2005-01-01

    A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.

  12. Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites

    Science.gov (United States)

    Hilfi, H.; Brar, N. S.

    1996-05-01

    High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.

  13. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    Science.gov (United States)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  14. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  15. Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles

    OpenAIRE

    A. Włodarczyk-Fligier; L.A. Dobrzański; M. Kremzer; M. Adamiak

    2008-01-01

    Purpose: The purpose of the paper is to show and compare of modern method composite materials with aluminium alloy matrix reinforced by Al2O3 particles manufacturing.Design/methodology/approach: Material for investigation was manufactured by two methods: powder metallurgy (consolidation, pressing, hot extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1(A) and ceramic particles Al2O3) and pressure infiltration of porous performs by liquid alloy EN AC AlSi12 (performs were prepared by sint...

  16. Fabrication of aluminum matrix composite reinforced with carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1.0 wt.% carbon nanotube (CNT) reinforced 2024A1 matrix composite was fabricated by cold isostatic press and subsequent hot extrusion techniques. The mechanical properties of the composite were measured by a tensile test. Meanwhile, the fracture surfaces were examined using field emission scanning electron microscopy. The experimental results show that CNTs are dispersed homogeneously in the composite and that the interfaces of the Al matrix and the CNT bond well. Although the tensile strength and the Young's modulus of the composite are enhanced markedly, the elongation does not decrease when compared with the matrix material fabricated under the same process. The reasons for the increments may be the extraordinary mechanical properties of CNTs, and the bridging and pulling-out role of CNTs in the Al matrix composite.

  17. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  18. A novel BN–MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Delong; Yang, Zhihua, E-mail: zhyang@hit.edu.cn; Duan, Xiaoming; Liang, Bin; Li, Qian; Jia, Dechang, E-mail: dcjia@hit.edu.cn; Zhou, Yu

    2015-05-01

    A novel composite ceramics with excellent mechanical properties was fabricated by means of low temperature hot-pressing using hexagonal boron nitride (h-BN) and magnesium aluminum silicate (MAS) as raw materials. The influences of starting MAS content on the microstructural evolution and mechanical properties of the composites were investigated. The results indicate that the effective enhancement of relative density of composites has been achieved, which shows that MAS is an effective liquid-phase sintering aid during the hot-pressing. MAS also can improve the structural ordering of h-BN flakes. On the other hand, h-BN exhibits significant inhibiting effect on the crystallization of α-Cordierite. Furthermore, h-BN flakes with layered structure can play a role in strengthening the MAS matrix. So h-BN and MAS are considered to be co-enhanced by each other, resulting in better sintering ability and the mechanical properties of composite ceramics are better than that of both h-BN and MAS. Composite ceramics incorporated with 50 wt% MAS exhibits the highest bending strength and fracture toughness of 213±25 MPa and 2.49±0.35 MPa m{sup 1/2}, respectively.

  19. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    Science.gov (United States)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  20. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  1. Ultra-Low-Density (ULD) Polymer Matrix Composites (PMCs) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR proposal seeks to demonstrate a new class of ultra-low-density (ULD) polymer matrix composites of high specific modulus and specific strength...

  2. Laser Assisted Machining of Metal Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal matrix composites (MMC's) are of great interest in aerospace applications where their high specific strength provides a weight saving alternative to standard...

  3. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    OpenAIRE

    Sharbani Bhattacharya

    2014-01-01

    Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  4. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    Directory of Open Access Journals (Sweden)

    Sharbani Bhattacharya

    2014-07-01

    Full Text Available Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  5. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  6. Steel-SiC Metal Matrix Composite Development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Don D.

    2005-07-17

    The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

  7. Review on preparation techniques of particle reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparatior techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  8. Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process

    Institute of Scientific and Technical Information of China (English)

    刘公平; 卫旺; 金万勤; 徐南平

    2012-01-01

    Pervaporation (PV), as an environmental friendly and energy-saving separation technology, has been received increasing attention in recent years. This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes. The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane (PDMS) and hydrophilic poly(vinyl alcohol) (PVA), chitosan (CS) and polyelectrolytes. The effects of ceramic support treatment, polymer solution properties, interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed. Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussio.n. The.applications of these composite_membranesi_n_ pervaporation process are summarized as well, which contain the bio-fuels recovery, gasoline desulfuration and PV coupled process using PDMS/ceramic composite membrane, and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane. Finally, a brief conclusion remark on polymer/ceramic composite mem- branes is given and possible future research is outlined.

  9. Continuous fiber ceramic composites for energy related applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-07

    The US Department of Energy has established the Continuous Fiber Ceramic Composites (CFCC) program to develop technology for the manufacture of CFCC`s for use in industrial applications where a reduction in energy usage or emissions could be realized. As part of this program, the Dow Chemical Company explored the manufacture of a fiber reinforced/self reinforced silicon nitride for use in industrial chemical processing. In Dow`s program, CFCC manufacturing technology was developed around traditional, cost effective, tape casting routes. Formulations were developed and coupled with unique processing procedures which enabled the manufacture of tubular green laminates of the dimension needed for the application. An evaluation of the effect of various fibers and fiber coatings on the properties of a fiber reinforced composites was also conducted. Results indicated that fiber coatings could provide composites exhibiting non-catastrophic failure and substantially improved toughness. However, an evaluation of these materials in industrial process environments showed that the material system chosen by Dow did not provide the required performance improvements to make replacement of current metallic components with CFCC components economically viable.

  10. Ceramic matrix composites (continuous fiber reinforced) thermal protection systems

    Science.gov (United States)

    Riccitiello, Salvatore R.

    1993-01-01

    Concluded remarks are: (1) advanced carbon-carbon (ACC) substrate fabrication technology in good shape; (2) ACC coating improvements satisfactory but additional work needed; (3) non-destructive test techniques to monitor hardware during operational life needed; and (4) cost reduction approaches a high priority.

  11. Preparation of Machinable Y-TZP/LaPO4 Composite Ceramics by Liquid Precursor Infiltration

    Institute of Scientific and Technical Information of China (English)

    周振君; 杨正方; 袁启明; 李秀华

    2002-01-01

    A machinable Y-TZP/LaPO4 composite ceramic was prepared by infiltrating LaPO4 liquid precursor into Y-TZP porous ceramic. Sintered Y-TZP ceramic preformed with 35% (volume fraction) open pore volume was made by adding graphite (30%, volume fraction). The Y-TZP/LaPO4 composite ceramics containing different LaPO4 contents were obtained by infiltration and pyrolysis cycles. The machinability and mechanical properties of materials were investigated. The results show that the machinable Y-TZP/LaPO4 composite ceramics containing 2.3% to 7.5% (volume fraction) LaPO4 has good machinability as well as outstanding mechanical properties.

  12. Influence of Alumina Addition on the Optical Property of Zirconia/Alumina Composite Dental Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIAO Yunmao; LI Wei; WAN Qianbing; ZHAO Yongqi

    2011-01-01

    The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated.The relative sintered densities,transmittances,color and the microstructure of the composite ceramics were studied.The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition.The lightness increased obviously but the chroma change was small.Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance,while the transmittance and the lightness of slight addition changed significantly.The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.

  13. Fatigue of continuous fiber reinforced titanium matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1991-01-01

    Several lay-ups of SCS-6/Ti-15-3 composites were investigated. Static and fatigue tests were conducted for both notched and unnotched specimens at room and elevated temperatures. Test results indicated that the stress in the 0 fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be dependent on the level of residual stresses and the fiber/ matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix material without breaking fibers. These matrix cracks can significantly reduce the residual strength of notched composite.

  14. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    Science.gov (United States)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  15. Numerical Homogenization of Protective Ceramic Composite Layers using the Hybrid Finite-Discrete Element Methods

    Directory of Open Access Journals (Sweden)

    Zainorizuan Mohd Jaini

    2013-12-01

    Full Text Available Innovative technologies have resulted in more effective ceramic composite as high rate loading-resistance and protective layer. The ceramic composite layer consists of ceramic frontal plate that bonded by softer-strong reinforced polymer network, consequently gains the heterogeneous condition. These materials serve specific purposes of defeating high rate loading and maintaining the structural integrity of the layer. Further due to the lack of a constituent material and tedious problem in heterogonous material modelling, a numerical homogenization is employed to analyse the isotropic material properties of ceramic composite layer in homogenous manner. The objective of this study is to derive a constitutive law of the ceramic composite using the multi-scale analysis. Two-dimensional symmetric macrostructure of the ceramic composite was numerically modelled using the hybrid finite-discrete element method to investigate the effective material properties and strength profile. The macrostructure was modelled as brittle material with nonlinear material properties. The finite element method is incorporated with a Rankine-Rotating Crack approach and discrete element to model the fracture onset. The prescribed uniaxial and biaxial loadings were imposed along the free boundaries to create different deformations. Due to crack initiation on the macrostructure, the averaged stresses were calculated to plot the stress-strain curves and the effective yield stress surface. From the multi-scale analysis, the rate-dependency of Mohr-Coulomb constitutive law was derived for the ceramic composite layer.

  16. Bond strength durability of a resin composite on a reinforced ceramic using various repair systems

    NARCIS (Netherlands)

    Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Leite, Fabiola; Bottino, Marco Antonio

    2009-01-01

    Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems. Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-

  17. Thermodynamic Investigation of Synthesizaing Metastable β—Sialon—Alon Composite Ceramic

    Institute of Scientific and Technical Information of China (English)

    HUANGXiangdong; LIWenchao; 等

    1999-01-01

    Based on its thermodynamic analysis ,β-Sialon-Alon metastable composite ceramic has been prepared by hot pressing sintering,XRD results indicate that the product of hot pressing singering is indeed Sialon-Alon metastable omposite ceramic ,which is in accordance with thermodynamic analysis

  18. Minimal compliance design for metal–ceramic composites with lamellar microstructures

    DEFF Research Database (Denmark)

    Piat, R.; Sinchuk, Y.; Vasoya, M.;

    2011-01-01

    . Micromechanical models are applied for the calculation of the effective elastic properties of the composites. Optimized local lamella orientations and ceramic contents are calculated, and the difference between the initial (specimen with constant ceramic content and orientation) and the optimized designs...

  19. Fatigue damage criteria - Matrix, fibers and interfaces of continuous fiber reinforced metal matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1988-01-01

    Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high temperature, stiffness critical parts that will be subjected to cyclic loadings. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four catagories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage are discussed and illustrated by examples. The emphasis is on the fatigue of unnotched laminates.

  20. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    F. Mahboub

    2010-06-01

    Full Text Available Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite.Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25 and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricatedfollowing manufacturer's instructions and the marginal gap was measured by a stereomicroscope at magnification 40× before cementation. After cementation of inlays and restoring the third group by direct composite, all the specimens were thermocycled and the marginal gaps were measured exactly as previously described. Repeated measure ANOVA and post-hoc Tukey test were used for pairwise comparison of occlusal, proximal, and gingival marginal gaps in each group. One-way ANOVA and post-hoc Tukey test wereused for comparison of mean marginal gap in the three groups and for comparison of marginal gap before and after cementation in inlays, paired T-test was used.Results: The marginal gap of direct composite (19.96 μm was significantly lower than that of indirect composite inlay (48.47 μm, which in itself was significantly lower than that of glass-ceramic inlay (60.96 μm. In all the restorations, marginal gap in the gingival margin was significantly higher than occlusal and proximal margins. The marginal gap of inlays did not change after cementation and thermocycling.Conclusion: This study indicated that the marginal gaps of the evaluated restorations are less than 100 μm, which is clinically acceptable.

  1. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  2. Composite Matrix Systems for Cryogenic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As an alternative material to aluminum-lithium, cryotanks developed from fiber reinforced composites can offer significant weight savings in applications for fuel...

  3. Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Kyu Cho

    2012-07-01

    Full Text Available Potential of widespread industrial applications of magnesium has been realized in recent years. A variety of magnesium alloy matrix composites are now being studied for mechanical properties. Since magnesium is the lightest structural metal, it can replace aluminum in existing applications for further weight savings. This review presents an overview of hollow particle filled magnesium matrix syntactic composite foams. Fly ash cenospheres are the most commonly used hollow particles for such applications. Fly ash cenospheres primarily have alumino-silicate composition and contain a large number of trace elements, which makes it challenging to study the interfacial reactions and microstructure in these composites. Microstructures of commonly studied AZ and ZC series magnesium alloys and their syntactic foams are discussed. Although only a few studies are available on these materials because of the nascent stage of this field, a comparison with similar aluminum matrix syntactic foams has provided insight into the properties and weight saving potential of magnesium matrix composites. Analysis shows that the magnesium matrix syntactic foams have higher yield strength at the same level of density compared to most other metal matrix syntactic foams. The comparison can guide future work and set goals that need to be achieved through materials selection and processing method development.

  4. Development and characterization of 430L matrix composites gradient materials

    Directory of Open Access Journals (Sweden)

    Elisa Maria Ruiz-Navas

    2005-03-01

    Full Text Available This paper deals with a new concept that is Functionally Gradient Materials (FGM. The materials developed in this work are constituted by a 430L matrix core and composite materials with this matrix and gradient concentration with NbC reinforcement, from the core to the surface, through different steps. Composite powders of different content in NbC were produced through high energy milling in order to obtain the gradient composition. The morphology and microhardness of these powders were characterised and subsequently were processed through conventional P/M techniques, pressing and sintering. The materials obtained show improved wear behaviour.

  5. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  6. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  7. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  8. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  9. Composite Eshelby model and domain band geometries of ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A method of composite Eshelby inclusion is proposed for aferroelectric grain with domain switching embedded in a polycrystalline ferroelectric matrix. The method quantifies the twinning structure due to spontaneous polarization, as well as the conventional and non-conventional domain structures after poling induced domain reorientation of 90 degree. The predicted parameters include the volume fraction, the thickness, and the surface inclination angle of switched domain plates. The domain wall energy for non-conventional domain structures is derived in terms of the arrays of misfit dislocations. The domain geometries predicted by the present work agree with the measured domain morphology near an indentation crack tip when subjected to lateral electric field.

  10. Synthesis and exchange bias effect of CoFe2O4/CoO composite ceramics

    International Nuclear Information System (INIS)

    Composite ceramics composed of the ferrimagnetic (FM) CoFe2O4 and the antiferromagnetic (AFM) CoO were synthesized by using the chemical combustion method. The characterization measurements including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis show that CoFe2O4 nano-particles are embedded in CoO matrix. The magnetic measurements show that the hysteresis loops display a small negative exchange bias field (He) of 106 Oe as the ceramic is cooled to 10 K in an applied field of 10,000 Oe. Furthermore, the magnetic parameters including coercivity, remanence, and He show clear dependence on temperature and the applied magnetic field in the cooling procedures. This exchange bias effect is ascribed to the exchange coupling at the FM/AFM interfaces.

  11. A study of ceramic-lined composite steel pipes prepared by SHS centrifugal-thermite process

    Directory of Open Access Journals (Sweden)

    Li Yuxin

    2016-01-01

    Full Text Available Al2O3 ceramic-lined steel pipe was produced by self-propagating high-temperature synthesis centrifugal thermite process (SHS C-T process from Fe2O3 and Al as the raw materials. The composition, phase separation and microstructures were investigated. The result showed the ceramic lined pipe is composed of the three main layers of various compositions, which were subsequently determined to be Fe layer, the transition layer and the ceramic layer. Fe layer is composed of austenite and ferrite, the transition layer consisted of Al2O3 ceramic and Fe, the ceramic layer consisted of the dendritic-shaped Al2O3 and the spinel-shaped structured FeAl2O4.

  12. Dynamic stiffness matrix of partial-interaction composite beams

    Directory of Open Access Journals (Sweden)

    Guangjian Bao

    2015-03-01

    Full Text Available Composite beams have a wide application in building and bridge engineering because of their advantages of mechanical properties, constructability and economic performance. Unlike static characteristics, the methods of studying the dynamic characteristics of partial-interaction composite beams were limited, especially dynamic stiffness matrix method. In this article, the dynamic stiffness matrix of partial-interaction composite beams was derived based on the assumption of the Euler–Bernoulli beam theory, and then it was used to predict the frequencies of the free vibration of the single-span composite beams with various boundary conditions or different axial forces. The corresponding vibration modes and buckling loads were also obtained. From the comparison with the existing results, the numerical results obtained by the proposed method agreed reasonably with those in the literatures. The dynamic stiffness matrix method is an accurate method which can determine natural vibration frequencies and vibration mode shapes in any precision theoretically. As a result, when the higher precision or natural frequencies of higher order are required, the dynamic stiffness matrix method is superior when compared to other approximate and numerical methods. The dynamic stiffness matrix method can also be combined with the finite-element method to calculate the free vibration frequencies and natural mode shapes of composite beams in complex conditions.

  13. Mechanical properties of a carbon fiber reinforced self-healing multilayered matrix composite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chengyu, E-mail: cyzhang@nwpu.edu.cn [National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Qiao Shengru; Yan Kefei; Liu Yongsheng; Wu Qi; Han Dong; Li Mei [National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-03-25

    Research highlights: {yields} The tensile, interlaminar shear and in-plane shear strengths exhibited a significant dependency on the temperature. {yields} The debonding of the interface between the different layers in the matrix can arrest and deflect the cracks in the multilayered matrix. {yields} The thermal residual stress and the volume shrinkage caused by the crystallization of the boron-containing phase can contribute to the variation of strength with temperature. - Abstract: The mechanical properties of a two dimensional carbon fiber reinforced multilayered ceramic matrix composite (C/Si-B-C) were investigated at elevated temperatures. The fracture surfaces were examined by a scanning electron microscope. The results show that the tensile strength and failure strain of the C/Si-B-C increase with increase in temperatures up to 1273 K, then decrease at temperature of above 1273 K. However, the tensile modulus keeps constant in the investigated temperature range. The reduced nonlinear region and short pullout length of fibers suggest a strong interfacial strength between the fibers and the matrix. The interlaminar shear strength (ILSS) and the in-plane shear strength (IPSS) present the similar tendency to the tensile strength. IPSS is about three times of ILSS regardless of temperature. The variation of strength with temperature can be explained by thermal residual stress and crystallization of B{sub 4}C in the multilayered matrix.

  14. Immobilization of preconditioned spent fuel from nuclear research reactors in a ceramic matrix

    International Nuclear Information System (INIS)

    The fuel elements from nuclear research reactors consist in a laminated sandwich of aluminum with a core of some uranium compound. To process this material its necessary to previously eliminate the aluminum covering the fuel, before the conditioning of the rest of the fuel in a stable matrix, in order to obtain an acceptable waste form for a subsequent disposition in a geological repository. Normally, mechanical and chemical methods are proposed for that purpose. One of the most developed techniques for immobilization of the radioactive elements above mentioned, is the vitrification. In this work we propose a method named CERUS (in Spanish Ceramizacion de Elementos Radiactivos con Uranio Sinterizado - Ceramization of radioactive elements with sintered uranium). This is a sinterization of the pre-treated fuel elements mixed with natural uranium oxide. The properties of the blocks obtained are adequate for final disposal in a deep geological reservoir. (author)

  15. Residual stresses in polymer matrix composite laminates

    Science.gov (United States)

    Hahn, H. T.

    1976-01-01

    Residual stresses in composites are induced during fabrication and by environmental exposure. The theory formulated can describe the shrinkage commonly observed after a thermal expansion test. Comparison between the analysis and experimental data for laminates of various material systems indicates that the residual stress-free temperature can be lower than the curing temperature, depending on the curing process. Effects of residual stresses on ply failure including the acoustic emission characteristics are discussed.

  16. Cavitation-erosion mechanism of laser cladded SiC particle reinforced metal matrix composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-hua; ZHANG Song; YANG Hong-gang; ZHU Sheng-long; MAN Hau-chung; CAI Qing-kui

    2005-01-01

    With 2 kW continuous wave Nd-YAG laser,SiC ceramic powder was laser-cladded on the AA6061 aluminium alloy surface.Within the range of process parameters investigated,the parameters were optimized to produce the SiCp reinforced metal matrix composites(MMC) modified layer on AA6061 alloy surface.After being treated,the modified layer is crack-free,porosity free,and has good metallurgical bond with the substrate.The microstructure and chemical composition of the modified layer were analyzed by such detection devices as scanning electronic microscope(SEM-EDX) and X-ray diffractometer(XRD).The performance of electrochemical corrosion and cavitation erosion and their mechanism were estimated by the microhardness tester,potentiostat and ultrasonicinduced cavitation device.

  17. Dielectric Properties of La2O3 Doped Composite (PbxSr1−xTiO3 Borosilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    C. R. Gautam

    2013-01-01

    Full Text Available Ferroelectric (PbxSr1−xTiO3 (PST perovskite phase has been crystallized in borosilicate glassy matrix with a suitable choice of composition and heat treatment schedule. La2O3 is a donor dopant for PST and can make it semiconducting. Dispersion of semiconducting perovskite phase in insulating glassy matrix in glass-ceramic samples may lead to the formation of space charge polarization around crystal-glass interface, leading to a high value of effective dielectric constant, εr. Therefore, with the aim of the developing glass ceramics with high dielectric constant, glasses in the system 64[(PbxSr1−xO·TiO2]-25[2SiO2·B2O3]-5[K2O]-5[BaO]-1[La2O3] have been prepared (0.5≤x≤1. It is found that the addition of La2O3 strongly affected the crystallization and dielectric behavior of glass-ceramic with PST perovskite phase. All glass ceramic samples show a diffuse broad Curie peak in their εr versus T plots. Curie peak temperature, Tc, depends on compositions of the glass-ceramic samples as well as frequency of measurements.

  18. Properties and Structure of Magnesium Matrix Composite Reinforced with CNTs

    Institute of Scientific and Technical Information of China (English)

    LI Si-nian; SONG Shou-zhi; YU Tian-qing; CHEN Hui-min; ZHANG You-shou; SHEN Jin-long

    2004-01-01

    By using high pure Magnesium (99.9 wt% )as matrix and multi-walled bended carbonnanotubes ( CNTs ) as reinforced phase, carbon nanotubes/magnesium matrix composite was prepared by thefoundry method under the argon gas protection, and its mechanical properties were tested. The interface structureand component of plating and un-plating carbon nanotubes were analyzed by TEM and EDS, and the action mech-anism was discussed. The experiment results show that the CNTs can strengthen mechanical properties of the nano-tube- reinforced Mg matrix composite, the tensile strength and elongation ratio are greatly improved. Furthermore,the plating CNTs are better than un-plating CNTs in strengthening effects. The tensile strength is inereased by150% and the elongation ratio is increased by 30% than that of matrix when content of CNTs is 0.67 wt% .

  19. Radiation-protective polymer-matrix nanostructured composites

    Energy Technology Data Exchange (ETDEWEB)

    Kaloshkin, S.D.; Tcherdyntsev, V.V. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gorshenkov, M.V., E-mail: mvg@misis.ru [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gulbin, V.N. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Kuznetsov, S.A. [Russian State Technological University ' MATI' , Orshanskaya 3, Moscow (Russian Federation)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Radiation-protective composites were fabricated by solid state intermixing and thermal pressing. Black-Right-Pointing-Pointer The composites based on UHMWPE contain B{sub 4}S and W nanopowders as fillers. Black-Right-Pointing-Pointer The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. Black-Right-Pointing-Pointer For composites containing 12% B{sub 4}C and 12% W the mechanical properties were studied prior to and after the irradiation with fast neutrons. - Abstract: UHMWPE-based nanostructured composites containing B{sub 4}C and W nanopowders were fabricated and studied. The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. For selected composites the mechanical properties were studied prior to and after the irradiation.

  20. Role of work hardening characteristics of matrix alloys in the strengthening of metal matrix composites

    Indian Academy of Sciences (India)

    K T Kashyap; C Ramachandra; C Dutta; B Chatterji

    2000-02-01

    The strengthening of particulate reinforced metal–matrix composites is associated with a high dislocation density in the matrix due to the difference in coefficient of thermal expansion between the reinforcement and the matrix. While this is valid, the role of work hardening characteristics of the matrix alloys in strengthening of these composites is addressed in the present paper. It is found that commercial purity aluminium which has the lowest work hardening rate exhibits the highest strength increment. This effect is due to increased prismatic punching of dislocations. This relationship of decreasing work hardening rate associated with increasing prismatic punching of dislocations in the order 7075, 2014, 7010, 2024, 6061 and commercial purity aluminium leading to increased strength increments is noted.

  1. Nickel matrix micro/nano SiC composite electrodeposition

    OpenAIRE

    Albert Calbeto, Sònia

    2010-01-01

    Electrochemical codeposition is widely used in the last decade to produce composite metal matrix coatings. Hard particles such as oxides or carbides embedded in a metal matrix coating aim to increase its mechanical and wear properties. The use of nanometric particles could also change the microstructure of the electrodeposits leading to a more compact structure and thus to an increased corrosion resistance. The aim of this work is the production of pure nickel, nickel containing SiC micro-...

  2. Extracellular matrix composition of the cricopharyngeus muscle.

    Science.gov (United States)

    Tavares, Raquel Aguiar; Sennes, Luiz Ubirajara; Mauad, Thais; Imamura, Rui; da Silva, Luiz Fernando Ferraz; Carrau, Ricardo Luis

    2012-06-01

    The aim of this study was to analyze the presence and distribution of total collagen, type I and type III collagen, elastic fibers, fibronectin, and versican in the endomysium of cricopharyngeus muscles from adults of various ages. The study was a cross-sectional analysis of human cricopharyngeus muscles. Twenty-seven muscles obtained from autopsies of men and women ranging in age from 28 to 92 years were analyzed with the Picrosirius method, oxidized Weigert resorcin-fuchsin, immunohistochemistry, and image analysis. Collagen had the highest density among the analyzed components. Elastic fibers surrounded each muscle cell; they were aligned longitudinally by their long axis and associated with traversing fibers, thereby forming a fiber network with embedded muscle cells. The fibronectin and versican contents varied widely among the specimens. We found no statistically significant differences between the proportion of extracellular matrix (ECM) components and factors such as gender and race. We conclude that the higher proportion of type I and type III collagen is compatible with the cricopharyngeus muscle's sphincteric behavior, and the arrangement of the elastic fibers may also contribute to the muscle's elasticity. We found no statistically significant correlation between the ECM components and age. PMID:21874509

  3. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al2O3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al2O3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al2O3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al2O3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  4. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  5. Corrosion Behavior of Silicon Carbide/7091 Aluminum Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Wooseung [Inha Technical College, Incheon (Korea, Republic of)

    2012-04-15

    The effects of volume fraction (15-30%) of SiC particulate reinforcements on the corrosion behavior of SiCp/7091 Al composites in the 3.5% NaCl solution were studied by electrochemical techniques and scanning electron microscopy. The results showed that the amount of SiC particulate reinforcements did not cause much difference in the corrosion behavior of SiCp/7091 Al composites but the corrosion rate was proportional to the amount of SiCp reinforcement. And numerous pits and severe dissolution of the matrix was observed probably due to the discontinuities and galvanic effects between Al matrix and SiC reinforcements.

  6. Ductility of a continuous fiber reinforced aluminum matrix composite

    Science.gov (United States)

    Jansson, S.; Leckie, Frederick A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers have been investigated. The composite is subjected to both mechanical and cyclic thermal loading. The ductility can vary by an order of magnitude according to the operating conditions. For high mechanical and low thermal loading the ductility is small, for low mechanical and high thermal loading the ductility is an order of magnitude higher. Experiments on a beam in bending confirm that the ductility is strongly dependent on the loading conditions. The observations suggest a means of utilizing the inherent ductility of the matrix.

  7. Columnar-to-Equiaxed Transition in Metal-Matrix Composites Reinforced with Silicon Carbide Particles

    Directory of Open Access Journals (Sweden)

    Alicia E. Ares

    2013-01-01

    Full Text Available The present work is focused on the study of the effect of directional heat extraction on the silicon-carbide (SiC distribution in zinc-aluminum matrix composites (MMCs and on the columnar-to-equiaxed (CET position in directionally solidified samples. To this end, a ZA-27 alloy matrix was reinforced with ceramic particles of SiC and vertically directionally solidified. The cooling rates, temperature gradients, and interphase velocities were then measured, and their influence on the solidification microstructure of the MMCs was analyzed. The recalescence detected and measured during the equiaxed transition was of the order of 3.5°C to 1.1°C. The values of the temperature gradients reached a minimum during the CET and were even negative in most cases (between −3.89 K and 0.06 K. The interphase velocities varied between 0.07 mm/s and 0.44 mm/s at the transition. Also, the presence of ceramic particles in ZA-27 alloys affected the thermodynamic local conditions and the kinetics of nucleation, producing a finer microstructure.

  8. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  9. High temperature deformation of ZrB2-SiC-AlN ceramic composite

    International Nuclear Information System (INIS)

    ZrB2 ceramic composites are powerful candidates for use in ultra-high temperature structural materials given their strength under high temperatures, superb ablation resistance, and good oxidation resistance. Unfortunately, ZrB2 ceramic composites are difficult to deform due to inherent brittle property, which impedes large-scale application. High temperature deformation of ZrB2-SiC-AlN ceramic composite at 1900 deg. C with inert gas protection is investigated using deep drawing technique. The deformation behavior under biaxial stress and the microstructure characteristics are analyzed using scanning electron microscopy (SEM) along with energy dispersive spectroscopy (EDS). The results indicate that the fine grain ZrB2-SiC-AlN ceramic composites have excellent high temperature deformation property at 1900 deg. C. The effects of inducting AlN into ZrB2-SiC ceramic and punch rate on high temperature deformation are discussed. The deformation mechanism of ceramic composites is proposed correspondingly.

  10. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  11. Electron beam curing of polymer matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Wheeler, D. [Sandia National Lab., Albuquerque, NM (United States); Saunders, C. [AECL Technologies, Inc., Rockville, MD (United States)] [and others

    1998-01-08

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world`s largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide.

  12. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  13. Fabrication and Performances of 1-3-2 Piezoelectric Ceramic/Polymer Composite

    Institute of Scientific and Technical Information of China (English)

    Likun Wang; Guang Li; Hongliang Du; Lei Qin; Shuxiang Li

    2006-01-01

    A novel 1-3-2 piezoelectric composite has been developed, which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite. The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves. The piezoelectric and electromechanical properties of the novel composite were determined.The results show a coefficient d33 of 405 pC/N, a vibration displacement of 113.5 pm, an acoustic impendence of 13.3 Mraly,a bandwidth of 12 kHz and a thickness electromechanical coupling coefficient of 0.56.

  14. CONSTITUTIVE RELATION OF DISCONTINUOUS REINFORCED METAL-MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    季葆华; 王自强

    2001-01-01

    A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned reinforcements.The minimum energy principle is used to determine the unknown coefficients of the displacement field of the unit cell. The constitutive behavior of composites is studied to obtain the relationship between the main variables of matrix and reinforcements.It is concluded that the flow strength of composites is strongly influenced by volume fraction, aspect ratio of reinforcement, and the strain hardening exponent of matrix.An analytical constitutive relation of composites is obtained. The predicted results are in agreement with the existing experimental and numerical results.

  15. Comparative Study of Dielectric and Magnetic Properties of Selected 3D Reticulated Ceramics and Their Same Composition Ceramic Disks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO.6Fe2O3(30%), SiC(35%) and TiO2(35%), sintered at 1200℃ in N2.The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800℃ and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of 3DRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.

  16. Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automobile catalyst.

    Science.gov (United States)

    Kim, Wantae; Kim, Boungyoung; Choi, Doyoung; Oki, Tatsuya; Kim, Sangbae

    2010-11-15

    Natural resources of platinum group metals (PGMs) are limited and their demand is increasing because of their extensive uses in industrial applications. The low rate of production of PGMs due to low concentration in the related natural ores and high cost of production have made the recovery of PGMs from previously discarded catalytic converters a viable proposition. The ceramic-honeycomb-type automobile catalytic converter contains appreciable amount of PGMs. These valuable substances, which are embedded in the catalyst layer and covered on the surface of the supporting matrix, were selectively recovered by attrition scrubbing. The attrition scrubbing was effective for the selective recovery of catalyst layer. The process was convinced as the comminution and separation process by physical impact and shearing action between particles in the scrubbing vessel. The catalyst layer was dislodged from the surface of the supporting matrix into fine particles by attrition scrubbing. The recovery of Al(2)O(3) and total PGMs in the fraction less than 300 μm increased with the residence time whereas their contents in the recovered materials slightly decreased. The interparticle scrubbing became favorable when the initial input size increased. However, the solid/liquid ratio in the mixing vessel was slightly affected by the low density of converter particles. PMID:20728274

  17. Fabrication of Al-based composites reinforced with Al2O3-Tib2 ceramic composite particulates using vortex-casting method

    Directory of Open Access Journals (Sweden)

    Roshan M.R.

    2013-01-01

    Full Text Available Vortex casting is one of the simplest methods of producing metal matrix composites (MMCs. However, this simple method does have some drawbacks, which reduce the mechanical properties of the produced composites. In this study, we tried to modify the process of composite production before, during, and after the casting procedure. Low-cost Al2O3-TiB2 ceramic composite particles, which produced after combustion synthesis, were used as reinforcement. These powders, which are thermodynamically stable with molten aluminum below 900°C, were mixed with aluminum and magnesium powders before casting using ball milling and the mixed powders were injected into the molten metal (pure Al. This process was applied to enhance the wettability of ceramic particles with molten aluminum. After casting, warm equal channel angular pressing (ECAP and hot extrusion processes were applied to investigate their effects on the mechanical properties of the final composites. It was revealed that both warm ECAP and hot extrusion have a strong influence on increasing the mechanical properties mainly due to decreasing the amount of porosities.

  18. Development of Ceramic Fibers for Reinforcement in Composite Materials

    Science.gov (United States)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  19. Thermosetting polymer-matrix composites for structural repair applications

    Science.gov (United States)

    Goertzen, William Kirby

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporation of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  20. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  1. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    Indian Academy of Sciences (India)

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  2. Quantitative fracture analysis of a biological ceramic composite

    Science.gov (United States)

    Hill, Thomas Jerald

    The purpose of this study was to analyze the improved mechanical properties of the Strombus gigas over non-biogenic aragonite (CaCO3) by controlling and analyzing the presence of the proteinaceous matrix and water. The specific objectives of this study were to (1) estimate the relative increase of mechanical properties from structure and proteinaceous interface of the Strombus gigas, (2) determine if ions in aqueous solution of stress redistribution from the presence of water was the primary mechanism in increasing work of fracture, (3) identify if water activates any viscoelastic effects from the proteinaceous matrix, and (4) identify if the fractal dimension can discern if toughening mechanisms are present in the complex composite. The Strombus gigas system was chosen for this study because it has demonstrated a 10000-fold increase in the amount of energy to cause failure over monoliths composed of the same basic material. It was concluded that the presence of the protein interface causes an order of magnitude increase in work of fracture, while water increases the work of fracture approximately two-fold over just the protein alone. The water appears to redistribute the stress throughout the structure lowering local stress distribution which was demonstrated by the use of stressing rates. Finally, the fractal dimension appears to be able to discern between some toughening mechanisms occurring in this material.

  3. Fracture criteria for discontinuously reinforced metal matrix composites

    Science.gov (United States)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnarparkhi, P.

    1988-01-01

    The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry.

  4. Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er3+/Yb3+

    Science.gov (United States)

    Haas, Sylvio; Hoell, Armin; Wurth, Roman; Rüssel, Christian; Boesecke, Peter; Vainio, Ulla

    2010-05-01

    Here, we describe the analysis of the nanostructure and average chemical compositions of each phase present in an oxyfluoride glass ceramic, which is composed of fluoride nanocrystals and an oxide glass matrix. The overall composition of the oxyfluoride glass ceramic as prepared is 21.1%SiO26.5%B2O37.0%Al2O321.0%PbF214.3%CdF211.0%YbF30.5%ErF311.0%PbO7.6%CdO(mole%) . Nanocrystals begin to grow at temperatures above the glass transformation temperature at 678 K as observed by x-ray diffraction. We report results from anomalous small-angle x-ray scattering taken at energies of x-ray absorption edges of Er, Yb, Pb, and Cd. By nonlinear regression of the scattering curves obtained from different edges simultaneously, the nanocrystals were found to be describable as polydisperse spheroids. The length of the smaller axis was found to be 6.4±1.4nm while the larger axis was found to be 17.7±3.9nm . By analyzing the scattering contrast as a function of the x-ray energy we found cadmium only in the glass matrix.

  5. Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er3+/Yb3+

    International Nuclear Information System (INIS)

    Here, we describe the analysis of the nanostructure and average chemical compositions of each phase present in an oxyfluoride glass ceramic, which is composed of fluoride nanocrystals and an oxide glass matrix. The overall composition of the oxyfluoride glass ceramic as prepared is 21.1%SiO2 6.5%B2O3 7.0%Al2O3 21.0%PbF2 14.3%CdF2 11.0%YbF3 0.5%ErF3 11.0%PbO 7.6%CdO(mole %). Nanocrystals begin to grow at temperatures above the glass transformation temperature at 678 K as observed by x-ray diffraction. We report results from anomalous small-angle x-ray scattering taken at energies of x-ray absorption edges of Er, Yb, Pb, and Cd. By nonlinear regression of the scattering curves obtained from different edges simultaneously, the nanocrystals were found to be describable as polydisperse spheroids. The length of the smaller axis was found to be 6.4±1.4 nm while the larger axis was found to be 17.7±3.9 nm. By analyzing the scattering contrast as a function of the x-ray energy we found cadmium only in the glass matrix.

  6. Reaction hot-pressing and property-composition relationships of modified sialon - boron nitride hetero-modulus ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Shabalin, I L [Materials and Physics Research Centre, University of Salford, Salford, Greater Manchester, M5 4WT (United Kingdom); Zhang, L [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Zhdanov, V B, E-mail: i.shabalin@salford.ac.uk [Department of Less-Common Metals, Ural State Technical University, Yekaterinburg 620002 (Russian Federation)

    2011-10-29

    Hetero-modulus ceramics (HMC) present the combination of a ceramic matrix with inclusions of a dispersed phase with considerably lower values of Young's modulus, resulting in a material with significantly advanced properties. Densified '-Si{sub 6-x}Al{sub x}O{sub x}N{sub 8-x} based HMC materials, with various volume contents of low-modulus {alpha}-BN phase and modifiers such as TiN or ZrO{sub 2} in sialon matrix, were prepared by high-temperature reaction hot-pressing in nitrogen atmosphere. The pristine blend composition for reaction hot-pressing consisted of mixed fine powders of Si, Al, B, Ti nitrides and Al, Zr oxides. Statistical design of 2{sup 5-2} fractional factorial and third-order simplex-grid types was used for the experimental studies to estimate the effects of some technological factors on the densification of hot-pressed products and the property-composition relationships of modified HMC materials.

  7. Synthesis and microstructure analysis of composite Nd: YAG/YAG transparent ceramics

    Institute of Scientific and Technical Information of China (English)

    Benxue Jiang; Tongde Huang; Yusong Wu; Wenbin Liu; Yubai Pan

    2009-01-01

    Transparent Nd:YAG/YAG composite ceramics are synthesized by solid-state reaction method using highpurity Y2O3,Al2O3,and Nd2O3 powders as raw materials.The mixed powder compacts are sintered at 1780 ℃ for 10 h under vacuum and annealed at 1450 ℃ for 20 h in air.The Nd:YAG/YAG ceramics exhibit a pore free structure with an average grain size of about 30 μm.The microstructure of the Nd:YAG/YAG composite transparent ceramics is studied and there is no interface between Nd:YAG and YAG ceramics.The Nd ion distribution in one grain is also studied,which shows that there is no segregation of Nd ions as in Nd:YAG crystals.

  8. Phase composition and structure of grain boundary of oversintered Y3Al5O12 ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Chang-qing; ZUO Hong-bo; HAN Jie-cai; ZHANG Ming-fu; MENG Song-he; YAO Tai

    2006-01-01

    Phase composition and microstructures of grain boundary of oversintered yttrium aluminum garnet (Y3Al5O12, YAG) ceramics by vacuum sintering at 1 850 ℃ were investigated. For synthesizing YAG, grain boundary is a key factor for YAG ceramics. The morphology of grain boundary was observed by SEM, TEM and its composition was analyzed by EDS. It is identified that the grain boundary is composed of α-Al2O3 and yttrium aluminum perovskite (YAP, YAlO3) eutectics. At the edge of YAG crystal grain, YAG phase is decomposed into perovskite YAP and α-Al2O3 during high temperature sintering. Due to refractive indexes of YAP and α-Al2O3 phases in wide grain boundary are different from those of YAG, the transmittance of oversintered YAG ceramics is lower than that of YAG ceramics sintered at 1 750 ℃.

  9. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.

  10. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  11. Wear Studies on Metal Matrix Composites: a Taguchi Approach

    Institute of Scientific and Technical Information of China (English)

    S. Basavarajappa; G. Chandramohan

    2005-01-01

    An attempt has been made to study the influence of wear parameters like applied load, sliding speed, sliding distance and percentage of reinforcement on the dry sliding wear of the metal matrix composites. A plan of experiments,based on techniques of Taguchi, was pedormed to acquire data in controlled way. An orthogonal array and the analysis of variance were employed to investigate the influence of process parameters on the wear of composites. The objective is to establish a correlation between dry sliding wear of composites and wear parameters. These correlations were obtained by multiple regressions. Finally, confirmation tests were conducted to verify the experimental results foreseen from the mentioned correlations.

  12. Corrosion Resistance of Plasma Sprayed Ceramic CompositeCoatings on Q235 Substrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The corrosion resistance of SiO2/Al2O3, TiO2/Al2O3 and (SiO2+TiO2)/Al2O3 ceramic composite coatings on Q235 substrate fabricated by means of plasma spraying was investigated. The results show that Al2O3+13 wt pct TiO2 ceramic coating has the highest density, the lowest connected porosity and the best corrosion resistance. The corrosion mechanism of Q235 with ceramic coating has also been studied.

  13. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications

    OpenAIRE

    Webster, Thomas

    2010-01-01

    Huinan Liu, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical) of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale) ceramics to polymers enhances bone cell functions. However, in order to fully ta...

  14. Processing of continuous fiber composites using thermoplastic polyimide matrix resins

    Energy Technology Data Exchange (ETDEWEB)

    Kranjc, M.D.

    1993-01-01

    Composites have been produced which contain a solvent resistant polyimide matrix with favorable physical properties. The polyimide matrix resin has been designated as P12. The prepegs used to produce the composite contain a low molecular weight resin which is the polyamic acid precursor to P12. Polymerization and imidization of the precursor resin occurs in-situ during processing. Similar commercial systems are often processed in an autoclave and pressure is used at high temperatures to obtain consolidation between prepreg laminates. Pressure is generally applied after polymerization and imidization are complete and at temperatures above the melting point of the polymer. In this research a significant decrease in composite void content was obtained by applying pressure earlier in the cure. Obtaining composites with low void content with these types of systems can be difficult. This is due in part to the generation of low molecular weight reaction by products, water and methanol. High void content results in a decrease in the physical properties of the composite structure. This is especially true for fracture properties. An empirical equation was used to describe the rate of resin removal from the composite to the bleeder cloth during processing. This equation is based on Springer-Loos resin flow model. The conditions in which this model does not apply were also determined. Determining resin removal rates is helpful in producing composites with consistent fiber/resin ratios. In addition, conditions which favor void growth can be prevented.

  15. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Science.gov (United States)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  16. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; Rooij, de Matthijn; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  17. Composition analysis of medieval ceramics by laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Genc Oztoprak, B.; Sinmaz, M. A.; Tülek, F.

    2016-05-01

    Laser-induced breakdown spectroscopy (LIBS) technique is expected to be one of the most preferred techniques in archaeology research since it does not disrupt the structural and chemical form of archaeological samples, and it is considered virtually nondestructive analysis method. In this work, LIBS is used for analyses of glaze, paint, and clay of medieval ceramics collected from East Plain Cilicia, Osmaniye Province during archaeological survey. Transparent glazed and colour-painted ceramics of the Islam and Byzantine pottery traditions are analysed to detect distinctive and common features of the chemical compositions of their glazes. The spectral lines of Islamic and Byzantine glazes indicate that their structures are same. However, strontium (Sr) is determined in the transparent glaze of Islamic ceramics. Elemental composition and homogeneity of paint on one of the sample are determined by LIBS analysis. Colour changes are related with composition differences of the paint content in the archaeological ceramic. In addition, the clay classification of archaeological ceramics taken from the Yapılıpınar mounds, Taşlıhöyük mounds, and Örenşehir ancient sites is done using PCA and PLS-DA chemometric techniques. According to the results of the classification, Yapılıpınar mounds terracotta ceramics differ from those of Taşlıhöyük and Örenşehir ancient sites.

  18. Alumina Matrix Composites with Non-Oxide Nanoparticle Addition and Enhanced Functionalities

    Directory of Open Access Journals (Sweden)

    Dušan Galusek

    2015-01-01

    Full Text Available The addition of SiC or TiC nanoparticles to polycrystalline alumina matrix has long been known as an efficient way of improving the mechanical properties of alumina-based ceramics, especially strength, creep, and wear resistance. Recently, new types of nano-additives, such as carbon nanotubes (CNT, carbon nanofibers (CNF, and graphene sheets have been studied in order not only to improve the mechanical properties, but also to prepare materials with added functionalities, such as thermal and electrical conductivity. This paper provides a concise review of several types of alumina-based nanocomposites, evaluating the efficiency of various preparation methods and additives in terms of their influence on the properties of composites.

  19. High Strain-Rate Mechanical Behaviour of a Copper Matrix Composite for Nuclear Applications

    CERN Document Server

    Peroni, L

    2012-01-01

    Aim of this work is the investigation of mechanical behaviour of an alumina dispersion strengthened copper, known by the trade name GLIDCOP®, subjected to dynamic loads: it is a composite material with a copper matrix strengthened with aluminium oxide ceramic particles. Since the particle content is quite small the material keeps the OFE copper physical properties, such as thermal and electrical conductivity, but with a higher yield strength, like a mild-carbon steel. Besides, with the addition of aluminium oxide, the good mechanical properties are retained also at high temperatures and the resistance to thermal softening is increased: the second phase blocks the dislocation movement preventing the grain growth. Thanks to these properties GLIDCOP® finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collim...

  20. Strengthening of porous matrix materials with evaporation/condensation sintering for composite materials applications

    Science.gov (United States)

    Haslam, Jeffery John

    1998-12-01

    The need for improved fuel economy and reduced environmental emissions from power turbines has prompted the development of high temperature fiber composite materials. One use of these materials is for liners of the hot combustion regions of jet engines and land based power turbines. Stability of the composite materials against oxidative damage during long term use at high temperatures has motivated recent research into fiber composite materials composed entirely of oxide ceramics. All-oxide fiber reinforced composites containing porous, strongly bonded matrices have become of interest. The porosity provides for crack deflection along the fibers to prevent catastrophic failure of the fiber reinforcements. A new application of a processing method that produces evaporation/condensation sintering was employed to prevent shrinkage of the matrix. This processing method and the properties of the matrix, fibers, and composite were evaluated in this work. Producing a matrix without shrinkage is important to prevent undesirable crack-like voids from forming in the matrix. These voids are caused by constraint against shrinkage by the fiber reinforcements. Dry hydrogen chloride gas produced a reactive gas atmosphere that was used to sinter the zirconia particles with minimal shrinkage because the gas promotes evaporation/condensation sintering with zirconia. Sintering of samples that did not contain fiber reinforcements was studied to evaluate the properties of the matrix material. The sintering of monoclinic, tetragonal, and cubic zirconias in the reactive gas atmosphere was compared. Additions of mullite (which did not sinter significantly at processing temperatures) further reduced the shrinkage. The effects of the processing conditions on the sintering shrinkage, microstructure development, and mechanical properties were studied. Cubic and monoclinic zirconia coarsened significantly in the HCl gas sintering atmosphere. The coarsening of the particles during the sintering

  1. Tailored ceramic consolidation forms for ICPP waste compositions

    International Nuclear Information System (INIS)

    This paper reports a polyphase tailored ceramic developed for the consolidation of simulated ICPP (Idaho Chemical Processing Plant)-type high Zr content high-level waste (HLW) calcines. The ceramic is specifically designed to provide chemically stable host phases for each species present in the HLW and to maximize waste volume reduction through high loadings and form density. The ceramic is designed for a 73 wt% waste loading with a density of 3.35 ± 0.05 (g/cm3). The major phase in the ceramic is a high-silica glass, which contains the neutron poison boron as well as the majority of the nonrefractory species in the waste. The primary crystalline phases are calcium fluoride, calcium-yttrium stabilized cubic zirconia, a hexagonal apatite type silicate containing the plutonium simulant Ce, and a Cd metal phase. Minor phases include zircon, zirconolite, and a sphene-type. Leaching testing and microscopic analysis shows the ceramic form to be chemically durable, with only the glass phase showing any detectable dissolution in deionized water at 90 degrees C

  2. Reinforcement/matrix interaction in SiC fiber-reinforced Ni3Al matrix composites

    International Nuclear Information System (INIS)

    This paper presents an investigation of the interfacial reaction characteristics of two different types of SiC fibers with Ni3Al (Ni-Al-Cr-Zr-B) matrix. The microstructure and chemical compositions across the reaction zone have been analyzed quantitatively using microscopy and electron probe microanalysis. In both types of SiC/Ni3Al composites, it was found that Ni was the dominant diffusing species responsible for the overall reaction. The C-rich layer outside the SCS-6 fiber provided an incubation period, but could not stop the inward diffusion of Ni. It could, however, effectively stop the diffusion of Al,Zr and Cr. No significant increase in reaction zone thickness after exposure at temperatures below 900 degrees C for up to 100 hours was observed. When the C-rich layer was depleted, a rapid increase in reaction zone thickness and the formation of multilayer reaction products occurred. In the case of Sigma/Ni3Al composite, extensive reaction between the fiber and the matrix occurred at all the temperatures studied. Diffusion barrier coating for both types of fibers is required to develop nickel aluminide matrix composites

  3. Fiber-Matrix Interface Studies on Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Drazel, L.T.; Janke, C.J.; Yarborough, K.D.

    1999-05-23

    The recently completed Department of Energy (DOE) and industry sponsored Cooperative Research and Development Agreement (CRADA) entitled, ''Electron Beam Curing of Polymer Matrix Composites,'' determined that the interlaminar shear strength properties of the best electron beam cured IM7/epoxy composites were 19-28% lower than autoclave cured IM7/epoxy composites (i.e. IM7/977-2 and IM7/977-3). Low interlaminar shear strength is widely acknowledged as the key barrier to the successful acceptance and implementation of electron beam cured composites in the aircraft/aerospace industry. The objective of this work was to improve the interlaminar shear strength properties of electron beam cured composites by formulating and evaluating several different fiber sizings or coating materials. The researchers have recently achieved some promising results by having discovered that the application of epoxy-based, electron beam compatible sizings or coatings onto surface-treated, unsized IM7 carbon fibers improved the composite interlaminar shear strength properties by as much as 55% versus composites fabricated from surface-treated, unsized IM7 fibers. In addition, by applying these same epoxy-based sizings or coatings onto surface-treated, unsized IM7 fibers it was possible to achieve an 11% increase in the composite interlaminar shear strength compared to composites made from surface-treated, GP-sized IM7 fibers. Work is continuing in this area of research to further improve these properties.

  4. A honeycomb composite of mollusca shell matrix and calcium alginate.

    Science.gov (United States)

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering.

  5. Ballistic Impact Response of Ceramic-Faced Aramid Laminated Composites Against 7.62 mm Armour Piercing Projectiles

    Directory of Open Access Journals (Sweden)

    Nityananda Nayak

    2013-07-01

    Full Text Available Ballistic impact response of ceramic- composite armor, consisting of zirconia toughened alumina (ZTA ceramic front and aramid laminated composite as backing, against 7.62 mm armor piercing (AP projectiles has been studied. Two types of backing composite laminates i.e. Twaron-epoxy and Twaron-polypropylene (PP of 10 mm and 15 mm thickness were used with a ceramic face of 4mm thick ZTA. The ceramic- faced and the stand alone composite laminates were subjected to ballistic impact of steel core 7.62 mm AP projectiles with varying impact velocities and their V50 ballistic limit (BL was determined. A sharp rise in BL was observed due to addition of ceramic front layer as compared to stand alone ones. The impact energy was absorbed during penetration primarily by fracture of ceramic, deformation and fracture of projectile and elastic-plastic deformation of flexible backing composite layer. The breaking of ceramic tiles were only limited to impact area and did not spread to whole surface and projectile shattering above BL and blunting on impact below BL was observed. The ceramic- faced composites showed higher BL with Twaron-PP as backing than Twaron-epoxy laminate of same thickness. This combination of ceramic-composite laminates exhibited better multi-hit resistance capability; ideal for light weight armor.Defence Science Journal, 2013, 63(4, pp.369-375, DOI:http://dx.doi.org/10.14429/dsj.63.2616

  6. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Upadhyay

    2015-04-01

    Full Text Available Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi0.95Sn0.05O3 (BTSO- 0.1 Ni0.8Zn0.2Fe2O4 (NZFO prepared with microwave assisted radiant hybrid sintering (MARH are reported. Phase purity and isovalent substitution of Ti4+ by Sn4+ of the samples is confirmed from x-ray diffraction and 119Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO phase in the ferroelectric (BTSO matrix as evidenced from back-scattered scanning electron micrographs.

  7. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    Science.gov (United States)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra; Gupta, S. M.; Chauhan, N.; Gupta, Ajay

    2015-04-01

    Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi0.95Sn0.05O3 (BTSO)- 0.1 Ni0.8Zn0.2Fe2O4 (NZFO) prepared with microwave assisted radiant hybrid sintering (MARH) are reported. Phase purity and isovalent substitution of Ti4+ by Sn4+ of the samples is confirmed from x-ray diffraction and 119Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO) phase in the ferroelectric (BTSO) matrix as evidenced from back-scattered scanning electron micrographs.

  8. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy.ugcdaecsr@nic.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Gupta, S. M. [Ceramic Laboratory, Laser Materials Development and Devices Division, RRCAT, Indore 452013 (India); Chauhan, N. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Noida 201313 (India)

    2015-04-15

    Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi{sub 0.95}Sn{sub 0.05}O{sub 3} (BTSO)- 0.1 Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (NZFO) prepared with microwave assisted radiant hybrid sintering (MARH) are reported. Phase purity and isovalent substitution of Ti{sup 4+} by Sn{sup 4+} of the samples is confirmed from x-ray diffraction and {sup 119}Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO) phase in the ferroelectric (BTSO) matrix as evidenced from back-scattered scanning electron micrographs.

  9. Sintering densification and properties of Al2O3/PSZ(3Y) ceramic composites

    Institute of Scientific and Technical Information of China (English)

    马伟民; 修稚萌; 闻雷; 孙旭东; 铁维麟

    2004-01-01

    The content of partially stabilized zirconia has remarkable influence on densification and mechanical properties of Al2 O3/PSZ(3Y) ceramic composites. When 15%PSZ(3Y) is added to Al2 O3, after vacuum sintering for 2h at 1 550 ℃, the fracture toughness and bending strength of the Al2O3/PSZ(3Y) ceramic composite reaches 8.2properties was investigated. The change of rn-ZrO2 and t-ZrO2 phases content before and after fracture was measured by X-ray diffraction quantitative phase analysis. It is confirmed that improvement in bending strength and fracture toughness of the Al2O3/PSZ(3Y) ceramic composite is due to the phase transformation toughening mechanism of PSZ(3Y).

  10. Composite orthogonal projection methods for large matrix eigenproblems

    Institute of Scientific and Technical Information of China (English)

    贾仲孝

    1999-01-01

    For classical orthogonal projection methods for large matrix eigenproblems, it may be much more difficult for a Ritz vector to converge than for its corresponding Ritz value when the matrix in question is non-Hermitian. To this end, a class of new refined orthogonal projection methods has been proposed. It is proved that in some sense each refined method is a composite of two classical orthogonal projections, in which each refined approximate eigenvector is obtained by realizing a new one of some Hermitian semipositive definite matrix onto the same subspace. A priori error bounds on the refined approximate eigenvector are established in terms of the sine of acute angle of the normalized eigenvector and the subspace involved. It is shown that the sufficient conditions for convergence of the refined vector and that of the Ritz value are the same, so that the refined methods may be much more efficient than the classical ones.

  11. Method of thermal strain hysteresis reduction in metal matrix composites

    Science.gov (United States)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  12. Geometrically nonlinear bending analysis of Metal-Ceramic composite beams under thermomechanical loading

    Science.gov (United States)

    Torabizadeh, Mohammad Amin

    2013-07-01

    A new method is developed to derive equilibrium equations of Metal-Ceramic beams based on first order shear deformation plate theory which is named first order shear deformation beam theory2(FSDBT2). Equilibrium equations obtained from conventional method (FSDBT1) is compared with FSDBT2 and the case of cylindrical bending of Metal-Ceramic composite plates for non-linear thermomechanical deformations and various loadings and boundary conditions. These equations are solved by using three different methods (analytical, perturbation technique and finite element solution). The through-thickness variation of the volume fraction of the ceramic phase in a Metal-Ceramic beam is assumed to be given by a power-law type function. The non-linear strain-displacement relations in the von-Kármán sense are used to study the effect of geometric non-linearity. Also, four other representative averaging estimation methods, the linear rule, Mori-Tanaka, Self-Consistent and Wakashima-Tsukamoto schemes, by comparing with the power-law type function are also investigated. Temperature distribution through the thickness of the beams in thermal loadings is obtained by solving the one-dimensional heat transfer equation. Finally it is concluded that for Metal-Ceramic composites, these two theories result in identical static responses. Also the displacement field and equilibrium equations in the case of cylindrical bending of Metal-Ceramic plates are the same as those supposed in FSDBT2.

  13. A method for preparing composite diffusion coating alloy on ceramic surface

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongxia; Wang Wenxian; Chen Shaoping; Wei Yinghui

    2008-01-01

    Metallization of the ceramic surfaces of Si3N4 and Al2O3 was carried out in a composite diffusion coating vacuum furnace using a Ti-Cu composite target. The experimental process and influencing factors were discussed. Optical microscope (OM), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffusion (XRD) and sound emissive scratch test (SEST) were applied to evaluate the alloy layer formed on the ceramic surface. It was indicated that the diffusion coating alloy layer contained Cu, Ti, Fe, Al and Si etc. XRD result indicated that the diffusion coating alloy layer was composed of CuTi2, Cu, Si2Ti and CuTi, Al2TiO5, Ti3O5. It was found that the diffusion coating alloy layer got bonded with ceramic well, and no spallation occurred under the maximum load of 100N. Deposited Si3N4 ceramic was welded with Q235 and the joining quality was examined. Robust joint was formed between Si3N4 ceramic/Q235. This present method has advantages in high efficiency and low cost and provides a new approach for producing ceramic and metal bond.

  14. EFFECT OF RICE HUSKS AS FILLER IN POLYMER MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    K. Hardinnawirda

    2012-06-01

    Full Text Available In this study, rice husk-filled polyester composites were produced with rice husks (RH as the filler and unsaturated polyester resin (UPR as the matrix. Several percentages of filler loadings were used (10, 15, 20 and 25 wt % in order to gain insights into the effect of filler content on the mechanical properties and water intake of the composites. The tensile strength of the RH-filled UPR composites was found to decrease as the filler loading increased; however, as it reached 25 wt %, the strength showed a moderate increase. The Young’s modulus showed a remarkable increase for 15 wt % of RH but decreased as the RH percentage increased further to 25 wt %. A water absorption test was conducted and the results showed that the composites absorb more water as the percentage weight of RH increased, which is attributed to the ability of the RH filler to absorb water.

  15. Damping behaviors of metal matrix composites with interface layer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel technique of designing the interface layer in metal matrix composites of high damping capacity was developed via different CVD coatings on carbon fibers in Cf/Al composites. It was shown that the interface layer improved the tensile strength, elastic modulus and damping capacity of the Cf/Al composites. A carbon layer showed the highest improvement and a silicon layer the lowest, while a mixed carbon and silicon layer exhibited an intermediate effect. Moreover, the thickness of interface layer also influences the damping capacity. A thicker carbon layer produced a better damping capacity because the dependence of damping capacity on strain amplitude was increased. It is suggested that a micro-sliding action occurring in the interface layer is the main mechanism responsible for the high damping capacity of the composites.

  16. Preparation of SiC Fiber Reinforced Nickel Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Nanlin Shi; Jun Gong; Chao Sunt

    2012-01-01

    A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.

  17. Cure shrinkage effects in epoxy and polycyanate matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, G.P.

    1995-12-22

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLA RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.

  18. Tensile and compressive test results for metal matrix composites

    Science.gov (United States)

    Shuart, M. J.; Herakovich, C. T.

    1977-01-01

    Experimental results of the mechanical behavior of two metal matrix composite systems at room temperature are presented. Ultimate stress, ultimate strain, Poisson's ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in uniaxial tension and Boron/Aluminum in uniaxial tension and compression. Poisson's ratio is used for nonlinear stress-strain behavior. A comparison of compression results for B/Al as obtained from sandwich beam compression specimens and IITRI coupon compression specimens is presented.

  19. METAL MATRIX COMPOSITES BASED ON ALUMINIUM LITHIUM AND SILICON CARBIDE

    OpenAIRE

    White, J.; Hughes, I; Willis, T.; Jordan, R.

    1987-01-01

    The present study tests the feasibility of producing metal matrix composites based on aluminium-lithium alloys. The first step in this process has been to produce an MMC based on 8090 with SiC. This has been successfully produced by Alcan International using the "Osprey" spray deposition process. The raw billets have been processed initially by extrusion. The tensile properties of this material have been determined and the strength compares favourably with DC cast alloys. Modulus is improved ...

  20. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [ORNL; Howell, Dave [ORNL; Norris, Robert E. [ORNL

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  1. Micromechanical modelling of thermoplastic elastomer composite with a Polypropylene matrix

    OpenAIRE

    Parenteau, Thomas

    2009-01-01

    Due to their high consumption, the vulcanized elastomeric products are an important source of waste. One way of recycling these materials is their reuse under the form of particles in polymer matrix composites to reduce stiffness and increase their resistance to low-energy impacts. This study is born of a collaboration between the LIMATB and the Technische Universität Chemnitz, which develops this concept of materials.The aim of this study is to conduct experimental characterization and to de...

  2. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  3. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  4. Oxidation of O'-SiAlON-ZrO2 Composite Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The oxidation kinetics of O'-SiAlON-ZrO2 composite ceramics in the temperature range of 1373-1773K has been studied. The oxidation experiments with powder and plates of O'-SiAlON-ZrO2 composite ceramics in air have been carried out. The overall activation energy of oxidation reaction is 263.69 kJ / mol. The products and structures of O'-SiAlON-ZrO2 oxidation layer have been analysed by XRD (X-ray diffraction), SEM (scanning electron microscope) and AFM (atomic force microscope).

  5. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  6. Randomized Clinical Trial of Indirect Resin Composite and Ceramic Veneers : Up to 3-year Follow-up

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Kalk, Warner; Ozcan, Mutlu

    2013-01-01

    Purpose: This randomized controlled split-mouth clinical trial evaluated the short-term survival rate of indirect resin composite and ceramic laminate veneers. Materials and Methods: A total of 10 patients (mean age: 48.6 years) received 46 indirect resin composite (Estenia; n = 23) and ceramic lami

  7. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  8. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    Science.gov (United States)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2016-06-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  9. Processing and characterization of an Al2O3/WC/TiC micro- nano-composite ceramic tool material

    International Nuclear Information System (INIS)

    An Al2O3-based composite ceramic tool material reinforced with WC microparticles and TiC nano-particles was fabricated by using hot-pressing technique with MgO and NiO as sintering aids. The experimental results showed that optimal mechanical properties were achieved for the composite with the addition of 24 vol.% TiC nano-particles and 16 vol.% WC microparticles, with the flexural strength, fracture toughness and Vicker's hardness being 842 MPa, 6.82 MPa m1/2 and 22.19 GPa, respectively. The microstructure and phase composition of the composites were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The fracture surface of the Al2O3/16 vol.%WC/24 vol.%TiC micro- nano-composite was characterized by a mix of intergranular and transgranular fracture as a result of the presence of both intergranular and intragranular secondary phase particles. It is believed that inhibition of matrix grain growth by intergranular secondary phase particles, sub-grain boundaries and dislocations pinning inside Al2O3 grains induced by intragranular TiC nano-particles contribute to the strengthening of the composite. Meanwhile, the dislocations and microcracks inside the matrix grains can also increase the flaw-tolerance leading to high toughness of the composite. Additionally, some extrinsic processes including crack deflection, crack bridging and crack branching caused by the microstructural discontinuities and local stress state can absorb a great amount of fracture energy, which are beneficial for the toughening of the composite. However, future research will need to quantitatively understand the synergistic effect of TiC nano-particles and WC microparticles on strengthening and toughening mechanisms.

  10. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    Science.gov (United States)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  11. Ion sputtering erosion mechanisms of h-BN composite ceramics with textured microstructures

    International Nuclear Information System (INIS)

    Highlights: • Textured h-BN ceramics were made by hot press sintering using mullite as additives. • Sintering pressures play important role on ions sputtering resistance properties. • Textured microstructures lead to various surface morphologies by ion sputtering. • Sputtering erosion mechanisms include B–N bonds breaking and BN layers delamination. - Abstract: Since the hexagonal boron nitride (h-BN) grain shows typical lamellar structures, textured materials can be obtained by arranging h-BN grains along one direction. In this work, textured h-BN composite ceramics with the c-axis orientation arranged along the pressure direction are manufactured by hot-press sintering using mullite as the sintering additive. The results show that sintering pressures not only play a major role in the density and the textured degrees of composite ceramics, but also influence Xe ion erosion resistance performances. After Xe ion sputtering, compositions of both h-BN and mullite stay stable, while the elemental compositions have changed due to the so-called “preferential sputtering”. Sputtered surfaces along different orientations show diverse morphologies attributed to the textured microstructures. The erosion mechanisms of h-BN grains during Xe ion sputtering are breaking of B–N bonds and delamination of BN layers. While the mass loss of composite ceramics is due to the erosion of h-BN grains and mullite coupled with partial detachment of h-BN grains from the surface

  12. Synthesis and characterization of a nanostructured matrix hydroxyapatite ceramic bone reconstruction

    International Nuclear Information System (INIS)

    The nanostructured ceramics have been shown promise as biomaterials for bone reconstruction. Among calcium phosphates, hydroxyapatite Ca/P ratio = 1.67 mol stands out because of its crystallographic similarity with the mineral bone phase and biocompatibility. This work was based on synthesis and characterization of a nanostructured hydroxyapatite for use in reconstituting bone tissue. The synthesis method for obtaining the bioceramic powder occurred at process of dissolution/precipitation, involving CaO solid/liquid and phosphoric acid required for forming the composition of Ca/P = 1.67 mole. The material recovered from the synthesis was calcined at 900 ° C/2h, providing the hydroxyapatite powder nanometer. This was subjected to mechanical fragmentation process in mill attritor, providing a hydroxyapatite with modified surface morphology. The results presented relate to morphological characterization studies (SEM), mineralogical (XRD), chemical (FTIR) and particle size distribution, using the laser particle size analysis method. Such results showed the formation of hydroxyapatite phase and morphology satisfactory for use in reconstituting bone tissue

  13. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Namit Nagar

    2013-01-01

    Full Text Available Objectives: To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X MonoTM♦, a restorative resin with the traditional orthodontic composite Transbond XTTM† and to evaluate the site of bond failure using Adhesive Remnant Index. Materials and Methods: Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XTTM† (Group I and Ceram-X MonoTM♦ (Group II according to manufacturer′s protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired ′t′ test and Chi square test. Results: The mean shear bond strength of Group I (Transbond XTTM† was 12.89 MPa ± 2.19 and that of Group II (Ceram-X MonoTM was 7.29 MPa ± 1.76. Unpaired ′t′ test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Conclusions: Ceram-X MonoTM♦ had a lesser mean shear bond strength when compared to Transbond XTTM† which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X MonoTM† and Transbond XTTM† showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  14. High-temperature tensile behavior of a boron nitride-coated silicon carbide-fiber glass-ceramic composite

    International Nuclear Information System (INIS)

    Tensile properties of a cross-ply glass-ceramic composite were investigated by conducting fracture, creep, and fatigue experiments at both room temperature and high temperatures in air. The composite consisted of a barium magnesium aluminosilicate (BMAS) glass-ceramic matrix reinforced with SiC fibers with a SiC/BN coating. The material exhibited retention of most tensile properties up to 1,200 C. Monotonic tensile fracture tests produced ultimate strengths of 230--300 MPa with failure strains of ∼1%, and no degradation in ultimate strength was observed at 1,100 and 1,200 C. In creep experiments at 1,100 C, nominal steady-state creep rates in the 10-9 s-1 range were established after a period of transient creep. Tensile stress rupture experiments at 1,100 and 1,200 C lasted longer than one year at stress levels above the corresponding proportional limit stresses for those temperatures. Tensile fatigue experiments were conducted in which the maximum applied stress was slightly greater than the proportional limit stress of the matrix, and, in these experiments, the composite survived 105 cycles without fracture at temperatures up to 1,200 C. Microscopic damage mechanisms were investigated by TEM, and microstructural observations of tested samples were correlated with the mechanical response. The SiC/BN fiber coatings effectively inhibited diffusion and reaction at the interface during high-temperature testing. The BN layer also provided a weak interfacial bond that resulted in damage-tolerant fracture behavior

  15. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy

    International Nuclear Information System (INIS)

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  16. Design, fabrication and evaluation of two-dimensional to three-dimensional nanostructured ceramic/polymer composites for orthopedic regeneration and controlled drug delivery

    Science.gov (United States)

    Liu, Huinan

    Desirable cytocompatibility properties of nano-sized ceramics were combined with the tunable degradability and deformability of a select polymer (poly-lactide-co-glycolide, or PLGA) to optimize biological and mechanical properties for orthopedic tissue regeneration. Nanophase ceramics mimic the size scale of constituent components of natural bone and enhance the adsorption of proteins that mediate bone cell adhesion. Results have shown significantly promoted osteoblast (bone-forming cell) adhesion and long-term functions (alkaline phosphatase activity and calcium deposition) on nanophase ceramics compared to conventional (micron-scale) ceramics. Therefore, nano-titania particles were first dispersed in a model polymer (PLGA) matrix using sonication to imitate the nano-sized surface features and distribution of nano-ceramics in/on bone. Surface characteristics of the composites (such as topography, surface area and surface roughness) were studied. Importantly, results showed that osteoblast adhesion was the greatest when surface roughness values of the composites were closer to that of natural bone; this was mediated by controlling the dispersion of titania in PLGA. Moreover, this study demonstrated that the dispersion of nanophase titania in PLGA decreased the harmful acidic pH changes of PLGA as it degrades. From the perspective of mechanical properties, compared to agglomerated nano-titania in PLGA, well-dispersed nanophase titania in PLGA improved the tensile and compressive moduli and strength of these composites. In order to mimic the hierarchical structure of bone, a novel aerosol-based 3D printing technique was used to further fabricate nanostructured 3D ceramic/polymer composites. Osteoblast interactions with these 3D scaffolds provided evidence of an even further promoted bone cell infiltration into such 3D structures. Lastly, nanocomposites were used as novel drug delivery systems to promote bone growth. Specifically, a bone morphogenetic protein (BMP-7

  17. Utilization of niobium pentoxide as aditive for reducing the 'in situ' reaction temperature of ceramic composites in the system mullite-zirconia

    International Nuclear Information System (INIS)

    Ceramics Composites of the system mullite-zirconia were produced through reaction sintering, following the equation: 27rSiO4 + 3A12O3 + x(A12O3 + Nb2O5) --> 2ZrO2 + A16Si2O13 + 2xA1NbO4, with different x values (0.05, 0.1 e 0.25), trying to investigate the role of niobia as sintering aid. Through X-ray difraction was evaluated the fraction of zirconia tetragonal phase retained in the ceramic matrix, and the produced composites were characterizated as to the apparent porosity and density, sintering shrinkage and rupture strength. The reaction sintering temperature was reduced from 1600 oC (X=0) to 1400 oC (with x=0.1). (author)

  18. Wear and friction of nanostructured zirconia and alumina ceramics and composites

    NARCIS (Netherlands)

    Kerkwijk, Bas

    1999-01-01

    The work described in this thesis is about wear and friction of zirconia and alumina ceramics and composites of zirconia and alumina. Tribological properties are system properties that can only be studied for given combinations of materials and operating conditions. The tribological properties of ce

  19. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  20. Thermal Fatigue Limitations of Continuous Fiber Metal Matrix Composites

    Science.gov (United States)

    Halford, Gary R.; Arya, Vinod K.

    1997-01-01

    The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites (MMC's) are legendary. When compared to their monolithic matrices, MMC's possess superior properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the fibers are less dense than the matrix matErial they replace. The potential has been demonstrated unequivocally both analytically and experimentally, especially at ambient temperatures. Successes prompted heavily-funded National efforts within the United States (USAF and NASA) and elsewhere to extend the promise of MMC's into the temperature regime wherein creep, stress relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for which alternative high-temperature materials are becoming mandatory, since further enhancement of state- of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.