WorldWideScience

Sample records for ceramic green substrate

  1. Micro Embossing of Ceramic Green Substrates for Micro Devices

    CERN Document Server

    Shan, X -C; Maw, H P; Lu, C W; Lam, Y C

    2008-01-01

    Multilayered ceramic substrates with embedded micro patterns are becoming increasingly important, for example, in harsh environment electronics and microfluidic devices. Fabrication of these embedded micro patterns, such as micro channels, cavities and vias, is a challenge. This study focuses on the process of patterning micro features on ceramic green substrates using micro embossing. A ceramic green tape that possessed near-zero shrinkage in the x-y plane was used, six layers of which were laminated as the embossing substrate. The process parameters that impact on the pattern fidelity were investigated and optimized in this study. Micro features with line-width as small as several micrometers were formed on the ceramic green substrates. The dynamic thermo-mechanical analysis indicated that extending the holding time at certain temperature range would harden the green substrates with little effect on improving the embossing fidelity. Ceramic substrates with embossed micro patterns were obtain d after co-firi...

  2. Study of mechanical response in embossing of ceramic green substrate by micro-indentation

    CERN Document Server

    Liu, Y C

    2008-01-01

    Micro-indentation test with a micro flat-end cone indenter was employed to simulate micro embossing process and investigate the thermo-mechanical response of ceramic green substrates. The laminated low temperature co-fired ceramic green tapes were used as the testing material ; the correlations of indentation depth versus applied force and applied stress at the temperatures of 25 degrees C and 75degrees C were studied. The results showed that permanent indentation cavities could be formed at temperatures ranging from 25 degrees C to 75 degrees C, and the depth of cavities created was applied force, temperature and dwell time dependent. Creep occurred and made a larger contribution to the plastic deformation at elevated temperatures and high peak loads. There was instantaneous recovery during the unloading and retarded recovery in the first day after indentation. There was no significant pile-up due to material flow observed under compression at the temperature up to 75 degrees C. The plastic deformation was t...

  3. Large Area Roller Embossing of Multilayered Ceramic Green Composites

    CERN Document Server

    Shan, X; Shi, C W P; Tay, C K; Lu, C W

    2008-01-01

    In this paper, we will report our achievements in developing large area patterning of multilayered ceramic green composites using roller embossing. The aim of our research is to pattern large area ceramic green composites using a modified roller laminating apparatus, which is compatible with screen printing machines, for integration of embossing and screen printing. The instrumentation of our roller embossing apparatus, as shown in Figure1, consists of roller 1 and rollers 2. Roller 1 is heated up to the desired embossing temperature ; roller 2 is, however, kept at room temperature. The mould is a nickel template manufactured by plating nickel-based micro patterns (height : 50 $\\mu$m) on a nickel film (thickness : 70 $\\mu$m) ; the substrate for the roller embossing is a multilayered Heraeus Heralock HL 2000 ceramic green composite. Comparing with the conventional simultaneous embossing, the advantages of roller embossing include : (1) low embossing force ; (2) easiness of demoulding ; (3) localized area in co...

  4. A New Shaping Model for Green Ceramic Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The shaping quality of green ceramic balls is directly related to the efficiency and cost of later machining for the ceramic balls. Until now the shaping for green ceramic balls is still conducted by handwork. In this paper, a new shaping model for green ceramic balls was designed. In the new model, two grinding wheels with the same generator line as circular arc are mounted on symmetry, and their axes are parallel. The green ball can be put in the enveloping space formed by the two grinding wheels. The rad...

  5. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    Manufacture of thin-film ceramic substrates with high permeability and robustness is of high technological interest. In this work thin (green state thickness ∼500 μm) porous yttria-stabilized zirconia self-supported substrates were fabricated by pouring stable colloidal aqueous suspensions...... in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...

  6. Corrosion Resistance of Ceramic Coating on Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense structure, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating,such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material.

  7. Effect of colouring green stage zirconia on the adhesion of veneering ceramics with different thermal expansion coefficients

    Institute of Scientific and Technical Information of China (English)

    Guliz Aktas; Erdal Sahin; Pekka Vallittu; Mutlu Ozcan; Lippo Lassila

    2013-01-01

    This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N5240;6 mm37 mm37 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n516) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm?min21). Neither the zirconia core material (P50.318) nor colouring (P50.188) significantly affected the results (three-way analysis of variance, Tukey’s test). But the results were significantly affected by the veneering ceramic (P50.000). Control group exhibited significantly higher mean bond strength values (45.768) MPa than all other tested groups ((27.164.1)2(39.764.7) and (27.465.6)2(35.964.7) MPa with and without colouring, respectively) (P,0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering ,1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered .1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.

  8. Application of NDE methods to green ceramics: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1984-03-01

    This paper describes a preliminary investigation to assess the effectiveness of microradiography, ultrasonic methods, nuclear magnetic resonance, and neutron radiography for the nondestructive evaluation of green (unfired), ceramics. Objective is to obtain useful information on defects, cracking, delaminations, agglomerates, inclusions, regions of high porosity, and anisotropy.

  9. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  10. Experimental analysis of green roof substrate detention characteristics.

    Science.gov (United States)

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  11. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  12. Microscale mechanics for metal thin film delamination along ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    魏悦广

    2000-01-01

    The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered. Two different f racture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films. A set of experiments have been done on the mechanism of copper films delaminating from silica substrates, based on which the peak interface separation stress and the micro-length scale of material, as well as the dislocation-free zone size are predicted.

  13. Microscale mechanics for metal thin film delamination along ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered.Two different fracture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films.A set of experiments have been done on the mechanism of copper films delaminating from silica substrates,based on which the peak interface separation stress and the micro-length scale of material,as well as the dislocation-free zone size are predicted.

  14. Permeability analysis for thermal binder removal from green ceramic bodies

    Science.gov (United States)

    Yun, Jeong Woo

    2007-12-01

    The permeability of unlaminated and laminated green tapes was determined as a function of binder content for binder removed by air oxidation. The tapes are comprised of barium titanate as the dielectric, and polyvinyl butyral and dioctyl phthalate as the main compoents of the binder mixture. The flow in porous media through the tapes was analyzed in terms of models for describing Knudsen, slip, and Poiseuille flow mechanisms. The characteristic pore size was determined to be 0.5-2 mum and thus Poiseuille flow was the dominant transport mechanism contributing to the flux. The permeability was then determined from Darcy's law for flow in porous media. The permeability was also determined from micro-structural attributes in terms of the specific surface, the pore fraction, and terms to account for tortuosity and constrictions. The permeability and adhesion strength of laminated green ceramic tapes were determined as a function of lamination conditions of time, temperature, and pressure.

  15. Alumina-based Ceramic Material for High-voltage Ceramic Substrate

    Directory of Open Access Journals (Sweden)

    S. R. Sangawar

    2006-04-01

    Full Text Available The paper presents the study of the particle size distribution, surface area and their effecton sintering of alumina (Al2O3 using additives such as magnesium oxide (MgO and silica (SiO2,so that the samples could be sintered to high relative density (~ 97.43 % with controlled graingrowth. However, the use of MgO along with SiO2 on Al2O3 produced the powder compactshaving high Green density, sintered density with minimum porosity to achieve high dielectricstrength ceramic material, so that material can be used for high-voltage insulator applications.

  16. Manipulating soil microbial communities in extensive green roof substrates.

    Science.gov (United States)

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition.

  17. Study of water infiltration in a lightweight green roof substrate

    Science.gov (United States)

    Tomankova, Klara; Holeckova, Martina; Jelinkova, Vladimira; Snehota, Michal

    2015-04-01

    Green roofs have a positive impact on the environment (e.g. improving microclimate and air quality in cities, reducing solar absorbance and storm water). A laboratory infiltration experiment was conducted on the narrow flume serving as 2D vertical model of a green roof. The lightweight Optigreen substrate Type M was used (depth of 20 cm). The front wall of the flume was transparent and inspected by digital camera. The experiment was designed to measure pressure head, volumetric water content and calculate water retention in the substrate. Experiment comprised three artificial rainfall intensities with different values of initial water content of the substrate. The experimental results confirmed that green roofs have the ability to retain rainwater and thus have a beneficial effect on reducing runoff. In the experiment with the artificial 10 minutes rainfall event (total precipitation of 29 mm), the air dry substrate retained 95.9 % of precipitation. On the other hand for moist initial condition 4.2 % of precipitations amount was captured in the substrate. Additionally, the analysis of images taken during the experiment confirmed preferential flow and uneven advancement of the wetting front. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  18. Thin-film solar cells on perlite glass-ceramic substrates

    Science.gov (United States)

    Petrosyan, Stepan G.; Babayan, Virab H.; Musayelyan, Ashot S.; Harutyunyan, Levon A.; Zalesski, Valery B.; Kravchenko, Vladimir M.; Leonova, Tatyana R.; Polikanin, Alexander M.; Khodin, Alexander A.

    2013-06-01

    For the first time, thin-film CIGS solar cells have been fabricated by co-evaporation on specially developed non-conducting perlite (an aluminum potassium sodium silicate natural mineral of volcanic origin) glass-ceramic substrates to develop a fully integrated photovoltaic and building element. Such glass-ceramic material can meet the physical requirements to solar cells substrates as well as the cost goals. The preliminary data presented show that CIGS solar cells deposited on ceramic substrates can exhibit efficiency higher than 10%.

  19. Fabrication and Characterization of Multilayer Capacitors Buried in a Low Temperature Co-Fired Ceramic Substrate

    OpenAIRE

    Chan, Y. C.; G. Y. Li

    1998-01-01

    Multilayer ceramic capacitors designed to be embedded in a low temperature co-fired ceramic substrate have been successfully fabricated. Low and high value capacitors were respectively embedded in the low K multilayer substrate and high K dielectric layer. The buried capacitor has a capacitance density range (1 kHz) from about 220 pF/cm2 to 30 nF/cm2. The design took material compatibility and shrinkage characteristics specifically into account. The effects of heating rat...

  20. Green-white-yellow tunable luminescence from doped transparent glass ceramics containing nanocrystals

    Science.gov (United States)

    Wang, X. F.; Yan, X. H.; Xuan, Y.; Zheng, J.; He, W. Y.

    2013-10-01

    , , and doped transparent ceramics containing nanocrystals were fabricated by a melt-quenching method and subsequent heating. Tetragonal phase spheres with 20 nm size are homogeneously precipitated among a borosilicate glass matrix. The photoluminescence spectrum of single doped transparent ceramics shows white light emission under 382 nm UV excitation. The emission color of co-doped transparent glass ceramics is tuned from green to white through energy transfer from to , and the emission color of co-doped transparent ceramics is tuned from white to yellow through energy transfer from to . CIE chromaticity and color temperature measurements show that the resulting transparent glass ceramics may be a candidate as a warm-white LED material pumped by a UV InGaN chip.

  1. Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates.

    Science.gov (United States)

    Pan, Z; Zavalin, A; Ueda, A; Guo, M; Groza, M; Burger, A; Mu, R; Morgan, S H

    2005-06-01

    Surface-enhanced Raman scattering (SERS) has been studied using a silver-coated porous glass-ceramic material as a new type of substrate. The porous glass-ceramic is in the CaO-TiO2-P2O5 system prepared by controlled crystallization and subsequent chemical leaching of the dense glass-ceramic, leaving a solid skeleton with pores ranging in size from 50 nm to submicrometer. Silver was coated on the surface of the porous glass-ceramic by radio frequency (RF) sputtering or e-beam evaporation in vacuum. SERS spectra of excellent quality were obtained from several dyes and carboxylic acid molecules, including rhodamine 6G, crystal violet, isonicotinic acid, and benzoic acid, using this new substrate. This new substrate showed a good compatibility with these molecules. The porous glass ceramic with a nanometer-structured surface accommodated both test molecules and silver film. The absorbed molecules were therefore better interfaced with silver for surface-enhanced Raman scattering.

  2. Nanopore fabrication by heating au particles on ceramic substrates

    NARCIS (Netherlands)

    Vreede, de Lennart J.; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    We found that gold nanoparticles, when heated to close to their melting point on substrates of amorphous SiO2 or amorphous Si3N4, move perpendicularly into the substrate. Dependent on applied temperatures, particles can become buried or leave nanopores of extreme aspect ratio (diameter congruent to

  3. Thermal Effect of Ceramic Substrate on Heat Distribution in Thermoelectric Generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    in the heat sink, a parallel microchannel heat sink is applied to a real TEG. The focus of this study is a discussion of the temperature difference variation between the cold/hot sides of the TEG legs versus the variation of the thermal conductivity of the ceramic substrate and the thickness of the substrate...... on the hot side. While the imposed heat flux on the TEG is homogeneously constant, different pressure drops are applied along the microchannel heat sink. The three-dimensional governing equations for the fluid flow and heat transfer are solved using the finite-volume method. The results show...... that the temperature difference is affected remarkably by the pressure drops in the heat sink, the thermal conductivity of the ceramic substrate, and the thickness of the substrate on the hot side....

  4. Dynamic Characteristics of Drop-substrate Interactions in Direct Ceramic Ink-jet Printing using High Speed Imaging System

    Directory of Open Access Journals (Sweden)

    Ramshankar Somasundaram

    2009-11-01

    Full Text Available Solid freeform fabrication has the potential to construct ceramic parts, directly from computer aided design (CAD data, without a mould or a die by the addition of material. Direct ceramic ink-jet printing is one of the techniques used in freeform fabrication. Ceramic tiles used in space vehicles can be produced by this method wherein a porous ceramic substrate (Al2O3/SiC can be filled with a ceramic ink and processed subsequently. The success of this process depends on the systematic preparation of ceramic inks and the deposition of the ceramic ink on the substrate. In this paper, photographic studies were made on the characteristics of ceramic ink droplets when these are deposited on a porous ceramic substrate from a burette under gravity. For this investigation, ceramic inks were prepared using different amounts (0.25–3.0 vol. % of an organic dispersant (oleic acid added to a ceramic composition containing different amounts: (a (7.5– 17.5 vol. % of alumina and (b (7.5–15.0 vol. % of zirconia with ethyl alcohol as a carrier. From this study, the drop formation, sedimentation in the drop, spread of drop on the substrate, splashing of drop impinging a previous ceramic ink layer on the substrate, and merging of droplets after deposition, are observed. This method is useful for manufacturing of parts with ceramic fibres filled with ceramic particles and this study can provide inner details on the behaviour of ink drops.Defence Science Journal, 2009, 59(6, pp.675-682, DOI:http://dx.doi.org/10.14429/dsj.59.1575

  5. Wave Concept Iterative Procedure Analysis of Patch Antennas on Nanostructured Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    Valdemir Silva Neto

    2014-02-01

    Full Text Available The wave concept iterative procedure (WCIP is proposed to analyze rectangular and circular patch antennas on nanostructured ceramic substrates. Principles of WCIP are described and advantages are emphasized. The analysis of microstrip antennas on double layered substrates is performed in space and spectral domains. In addition, Fast Fourier Transformation (FFT is used to improve the efficiency of the method. WCIP simulated results are compared to HFSS software ones. A good agreement is observed.

  6. Automatic quality control in the production of ceramic substrates by pulsed laser cutting

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper deals with the use of optical coordinate measuring machines (CMMs) in the quality control of ceramic substrates produced by a CO2 pulsed laser. A procedure of automatic measurements on a CMM equipped with a CCD camera was developed. In particular, the number and the distribution...

  7. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The effe

  8. Induced Nucleation of Diamond Films on ZnS Substrates Precoated with Ceramic Interlayer

    Institute of Scientific and Technical Information of China (English)

    GAO Xu-Hui; YANG Hai; LU Fan-Xiu; TONG Yu-Mei; GUO Hui-Bin; TANG Wei-Zhong; LI Cheng-Ming; CHEN Guang-Chao; YU Huai-Zhi; CHENG Hong-Fan

    2004-01-01

    @@ We attempt to coat a multi-spectrum chemical-vapour-deposition ZnS substrate with smooth crystalline diamond films on the top of properly designed ceramic interlayer, which provides protection for ZnS against corrosion by the H2-CH4 microwave plasma and mitigates the thermal expansion coefficient mismatching between diamond and ZnS. However, difficulties in the homogeneous diamond nucleation on a ceramic interlayer were encountered.It was found that high rate nucleation of diamond could be induced by a metal or semiconductor mask placed on the top of ZnS.

  9. Realization and characterization of high precision micro grooves on green ceramic

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Andrijasevic, Daniela; Hansen, Hans Nørgaard

    2006-01-01

    This paper presents the development of the process chain for the generation of high precision shaped micro grooves on ceramic substrate for applications in the high precision micro bonding process. The groove’s cross section consists of a 90° V shape with a depth of 200 µm and a 40 µm wide rectan...

  10. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua

    2017-08-15

    This study investigates the ability of dual-substrate-layer extensive green roofs to retain rainwater and reduce pollutant leaching. The substrates in dual-substrate-layer green roofs consist of an upper organic nutrition layer for plant growth and a lower inorganic adsorption layer for water retention and pollutant reduction. One traditional single-substrate-layer extensive green roof was built for comparison with dual-substrate-layer green roofs. During the experimental period, dual-substrate-layer green roofs supported better natural vegetation growth, with coverage exceeding 90%, while the coverage in single-substrate-layer green roof was over 80%. Based on the average retention value of the total rainfall for four types of simulated rains (the total rainfall depth (mm) was 43.2, 54.6, 76.2 and 86.4, respectively), the dual-substrate-layer green roofs, which used the mixture of activated charcoal with perlite and vermiculite as the adsorption substrate, possessed better rainfall retention performance (65.9% and 55.4%) than the single-substrate-layer green roof (52.5%). All of the dual-substrate-layer green roofs appeared to be sinks for organics, heavy metals and all forms of nitrogen in all cases, while acted as sources of phosphorus contaminants in the case of heavy rains. In consideration of the factors of water retention, pollution reduction and service life of the green roof, a mixture of activated charcoal and/or pumice with perlite and vermiculite is recommended as the adsorption substrate. The green roofs were able to mitigate mild acid rain, raising the pH from approximately 5.6 in rainfall to 6.5-7.6 in green roof runoff. No signs of a first flush effect for phosphate, total phosphorus, ammonia nitrogen, nitrate nitrogen, total nitrogen, organics, zinc, lead, chromium, manganese, copper, pH or turbidity were found in the green roof runoff. Cost analysis further proved the practicability of dual-substrate-layer green roofs in retaining rainwater, and

  11. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    Science.gov (United States)

    1992-09-30

    mixtures of the tetragonal and monoclirac ZrO: polymorphs having nanosize crys- tallites. Oxidation of the Ti substrate and reaction with zircoria during...layer being R), ZrG, (teiragonai-t and manoclieic-m) and varous zirconium ti. filled by the growing titaniumr oxide (Fig. 6). Microcnem- tonotes (ZT...atmosmnere and their phase composition, and Inorphology studied. Oxidation resistance of coated specirvens was studied at 83U0C in continuous and

  12. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  13. Effect of colouring green stage zirconia on the adhesion of veneering ceramics with different thermal expansion coefficients.

    Science.gov (United States)

    Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Ozcan, Mutlu; Lassila, Lippo

    2013-12-01

    This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (Pceramic covering ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.

  14. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    Science.gov (United States)

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends.

  15. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  16. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.

    Science.gov (United States)

    Heim, Amy; Lundholm, Jeremy

    2013-01-01

    Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  17. Characterization of Green-Emitting Translucent Zinc Oxide Ceramics Prepared Via Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [University of California; DeVito, David M [ORNL; Howe, Jane Y [ORNL; Yang, Xiaocheng [West Virginia University; Giles, Nancy C. [Air Force Institute of Technology; Neal, John S [ORNL; Munir, Zuhair [University of California

    2011-01-01

    Translucent, green-emitting zinc oxide (ZnO) bodies, 19 mm in diameter and 0.72 mm in thickness, have been prepared via spark plasma sintering method. The consolidation of ZnO powders was investigated over the temperature range of 550-1050 C and the pressure range of 55-530 MPa. Samples sintered at temperatures >850 C and pressures of {approx}120 MPa were translucent and had densities of {approx}100%. Samples sintered at 950 C and 130 MPa showed a higher maximum transmittance than the samples sintered at higher or lower temperatures or pressures, with an excellent in-line transmission of 70% in the IR region around 2330 nm. The dense ZnO ceramics exhibited a strong green emission and a weak ultraviolet emission, and the relative intensity of the green emission increased with increasing sintering temperature.

  18. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 – 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  19. Piezoelectric ceramic thick films deposited on silicon substrates by screen printing

    Science.gov (United States)

    Yao, Kui; He, Xujiang; Xu, Yuan; Chen, Meima

    2004-07-01

    Screen-printing processes offer advantages in producing directly patterned and integrated piezoelectric elements, and fill an important technological gap between thin film and bulk ceramics. However, several existing problems in the screen-printed piezoelectric thick films, such as the poor reliability and the required high sintering temperature, are significantly limiting their applications. In this work, lead zirconate titanate (PZT) ceramic films of 30 μm in thickness were deposited on Pt-coated silicon substrates by the screen-printing process, in which the ceramic pastes were prepared through a chemical liquid-phase doping approach. Porous thick films with good adhesion were formed on the substrates at a temperature of 925°C. Stable out-of-plane piezoelectric vibration of the thick films was observed with a laser scanning vibrometer (LSV), and the piezoelectric dilatation magnitude was determined accordingly. Our piezoelectric measurements through the areal displacement detection with LSV exhibited distinct advantages for piezoelectric film characterization, including high reliability, high efficiency, and comprehensive information. The longitudinal piezoelectric coefficients of the thick films were calculated from the measured dilatation data through a numerical simulation. High piezoelectric voltage constants were obtained due to the very low dielectric constant of the porous thick films. The application potentials of our screen-printed thick films as integrated piezoelectric sensors are discussed.

  20. Population sampling of the golden mussel, Limnoperna fortunei (Dunker, 1857, based on artificial ceramic substrate

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Aydos Bergonci

    2009-09-01

    Full Text Available The ceramic substrate (21cm in length, 6cm in width and 1.3cm in depth was tested for the Limnoperna fortunei population, sampling at two localities in the Jacuí delta (Jacuí Canal (Canal do Jacuí – CJ and Port Docks (Cais do Porto – PO in Rio Grande do Sul state, Brazil. The individuals were quantified through the superimposition of a squared (1cm2 and segmented (sI, sII e sIII sheet on the substrate. Using Kruskal-Wallis and Mann-Whitnney, the recruit and adult average densities were compared in each segment, surface (smooth and pipe-shaped and sampling locality (α = 0.05. In CJ, the extreme and intermediate (adult segments differed statistically (p < 0.0001, as well as the ceramic substrate surfaces (recruits (p = 0.04. The recruit and adult densities between the CJ and PO localities also differed between themselves (p < 0.0001. The method was efficient for the invasive population sampling.

  1. Nd3+,Yb3+ and Ho3+ Codoped Oxyfluoride Glass Ceramics with High Efficient Green Upconversion Luminescence

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Jie; KAWAMOTO Yoji; DAI Shi-Xun; ZHANG Li-Yan; HU Li-Li

    2004-01-01

    @@ New oxyfluoride glasses and glass ceramic codoped with Nd3+, Yb3+ and Ho3+ were prepared. The x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses could cause the precipitation of (Nd3+, Yb3+, Ho3+)-doped fluorite-type crystals. Very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2) → 5I8 transition under 800-nm excitation was observed in these transparent glass ceramics.The intensity of the green up-conversion luminescence in a 1-mo1% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+up-conversion luminescence in the oxyfluoride glass ceramics is discussed.

  2. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    Science.gov (United States)

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  3. Glass-(nAg, nCu biocide coatings on ceramic oxide substrates.

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    Full Text Available The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2 in the case of silver nanoparticles, and 10-15 µg/cm(2 for the copper nanoparticles.

  4. ANALYSIS OF WATER RELATIONS OF SUBSTRATES USED IN GREEN ROOF SYSTEMS

    Directory of Open Access Journals (Sweden)

    Anna Baryła

    2014-10-01

    Full Text Available Green roofs, as the restoration of biologically active area, are fairly common and effective method of storm water management in urban areas. Depend on the design of the green roof and the type of substrate, they are able to retain 50–90% of rainwater. The aim of the study was to determine the physicochemical properties of two substrates used in the construction of green roofs (intensive and extensive. Water retention of substrates was compared to water retention of substrates undelined with the drainage layer made from crushed autoclaved aerated concrete. In the experiment, which uses drainage layer, higher drying the top layer of the substrate was observed, which may be related to high water absorption drainage material. The effluent from the substrate using aerated concrete as a drainage layer amounted to an average of 22–51% of the volume of water supplied to the extensive substrate, whereas 19–46% of the volume of water supplied to the intensive substrate. The effluent from the substrate without the drainage layer amounted 40-48% of the volume of water supplied.

  5. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature.

  6. Crystallization Kinetics of Nanophase Glass-Ceramics as Magnetic Disk Substrate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Glass-ceramics containingβ-quartz as a main crystal phase based on the system of SiO2-Al2O3-Li2O-K2O-MgO-ZnO were investigated for the application to magnetic storage substrate for higher storage capacity.Parent glasses were prepared, then nucleated and crystallized at certain temperatures for 3~4 h. The crystallization kinetics of glass-ceramics was also studied. The grain size was estimated by Scherrer formula and image treatment of transmission electron microscopy (TEM). The results showed that the Avrami exponent was determined to be 3.88, the activation energy 189.3±7 kJ/mol and the grain size 30~60 nm. A detailed microstructure of the glass-ceramics, including grain distribution and the morphology of nano-crystalline was characterized by TEM, X-ray diffraction (XRD), differential scanning calorimeter (DSC), differential thermal analysis (DTA). The relationship between microstructure and mechanical properties was also discussed.

  7. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    Science.gov (United States)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  8. Physical properties and hydrological response of green roof substrates based on recycled construction materials

    Science.gov (United States)

    Vanwalleghem, Tom; Hayas, Antonio; Jiménez-Quiñones, Daniel; Peña, Adolfo; Giráldez, Juan Vicente

    2015-04-01

    Green roofs in urban areas improve the building's energy efficiency and provide a wide array of additional environmental benefits. Characterizing and predicting the physical properties and hydrological response of green roofs is necessary to understand the roof's heat balance, which is controlled to a large extent by the substrate's water content, to predict the runoff response and functioning as a part of sustainable urban drainage systems and to plan irrigation of the plants in drier climates. This study examines 10 different extensive green roof substrates, based on recycled construction materials. Green roof simulation decks were installed in boxes of 0,6 m x 0,4 m to a depth of 70 mm, 10 with and 10 without plants. Total water holding capacity of the substrates varied between 10,4 - 23,9 %, with an additional 19 % retained by the drainage layer and geotextiles used in the simulation deck. An important compaction of 30 % on average was observed after 1,5 months. Final bulk densities are between 1457 - 1993 kg m-3. In an evaporation experiment, it was shown that the water evaporated from the green roofs is controlled mainly by the relative moisture content. Substrate properties exerted only a secondary control, with the lowest evaporation rates from the substrates with highest coarse crushed aggregate content and with the highest clay content. The evaporation model proposed here was shown to work well to simulate the evolution of the water balance and therefore the specific unit weight over longer time periods in all substrates, with a Nash-Sutcliffe model efficiency of 0.989. Finally, plants were found to grow satisfactorily in all substrates. Therefore, when regular irrigation is provided, it was concluded that green roofs based on recycled construction materials are a viable option. Future research will have to explore the long-term plant dynamics under water-limited conditions.

  9. Cumulative Effect of Pressing and Drying on Stress Generation within a Green Ceramic Compact

    Directory of Open Access Journals (Sweden)

    E. Vidal-Sallé

    2014-01-01

    Full Text Available The internal stress field induced by uniaxial pressing and subsequent convective drying of a green ceramic powder was simulated by the finite element method. A density dependent elastoplastic constitutive law was used for the mechanical modeling of the compaction. A diffusive water transfer equation and a purely elastic behavior with imposed hydrostrain involving shrinkage were applied for the modeling of the drying process. The key material properties (hydrodiffusivity, hydrocontraction coefficient, Young’s modulus, Poisson’s ratio, and yield surface parameters had been experimentally measured and introduced as functions of material density and water content. If residual stresses due to the compaction operation were taken into account, the maximum value of the tensile stress at the top external edge of the wheel and at the beginning of the drying process was two times higher than for a stress free green ceramic compact. Beyond the residual stress onset, the compaction operation induced density heterogeneities which had important consequences on the mechanical behavior of the compact.

  10. Interfacial Bonding Strength of TiN Film Coated on Si3N4 Ceramic Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The fraction of TiN/Si3N4 in the cross section was observed with scanning electric microscope (SEM), and residual stresses of TiN coated on the surface of Si3N4 ceramic were measured with X-ray diffraction (XRD).The hardness of TiN film was measured, and bonding strength of TiN film coated on Si3N4 substrate was measured by scratching method. The formed mechanism of residual stress and the failure mechanism of the bonding interface in the film were analyzed, and the adhesion mechanism of TiN film was investigated preliminarily. The results show that residual stresses of TiN film are all behaved as compressive stress, and TiN film is represented smoothly with brittle fracture, which is closely bonded with Si3N4 substrate. TiN film has high hardness and bonding strength of about 500 MPa, which could satisfy usage requests of the surface of cutting Si3N4 ceramic.

  11. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  12. a-Si/c-Si heterojunction solar cells on SiSiC ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    LI Xudong; XU Ying; CHE Xiaoqi

    2006-01-01

    Silicon thin-film solar cells are considered to be one of the most promising cells in the future for their potential advantages, such as low cost, high efficiency, great stability, simple processing, and none-pollution. In this paper, latest progress on poly-crystalline silicon solar cells on ceramic substrates achieved by our group was reported. Rapid thermal chemical vapor deposition (RTCVD) was used to deposited poly-crystalline silicon thin films, and the grains of as-grown film were enlarged by Zone-melting Recrystallization (ZMR). As a great changein cell's structure, traditional diffused pn homojunction was replaced by a-Si/c-Si heterojunction, which lead is to distinct improvement in cell's efficiency.A conversion efficiency of 3.42% has been achieved on 1cm2 a-Si/c-Si heterojunction solar cell ( Isc =16.93 mA, Voc =310.9 mV, FF =06493, AM =1.5 G,24 ℃), while the cell with diffused homojunction only gotan efficiency of 0.6%. It indicates that a-Si emitter formed at low temperature might be more suitable for thin film cell on ceramics.

  13. Binder extraction from green multilayer ceramics using a weight loss rate-controlled thermogravimetric analyzer

    Science.gov (United States)

    Witt, Jason; Speyer, Robert F.; Murali, Lakshman

    1997-06-01

    A weight loss rate-controlled organic extraction furnace was built and demonstrated using a multilayer green ceramic. Multirate weight loss schedules as well as automated atmosphere control and detection were demonstrated. The low thermal mass furnace showed good tracking with 300 °C heating and cooling rates. This furnace, coupled with appropriate PID control constants, facilitated feedback control which could extract organics rapidly without self-ignition to uncontrolled combustion. Controlled organic burnout was demonstrated at weight loss rates up to 0.5%/min in air. Damage-free multilayers were observed using a burnout rate requiring 150 min for extraction, rather than the days commonly associated with this task when using conventional furnaces.

  14. Effect of substrate depth and rain-event history on the pollutant abatement of green roofs.

    Science.gov (United States)

    Seidl, Martin; Gromaire, Marie-Christine; Saad, Mohamed; De Gouvello, Bernard

    2013-12-01

    This study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry. Otherwise the roofs may behave as a source of pollutants, principally for carbon and phosphorus. Both field and column studies showed an important retention for Zn and Cu. The column showed, however, lower SS, DOC and metal concentrations in the percolate than could be observed in the field even if corrected for run-off. This is most probably due to the difference in exposition history and weathering processes.

  15. Using soil microbial inoculations to enhance substrate performance on extensive green roofs.

    Science.gov (United States)

    Molineux, Chloe J; Gange, Alan C; Newport, Darryl J

    2017-02-15

    Green roofs are increasing in popularity in the urban environment for their contribution to green infrastructure; but their role for biodiversity is not often a design priority. Maximising biodiversity will impact positively on ecosystem services and is therefore fundamental for achieving the greatest benefits from green roofs. Extensive green roofs are lightweight systems generally constructed with a specialised growing medium that tends to be biologically limited and as such can be a harsh habitat for plants to thrive in. Thus, this investigation aimed to enhance the soil functioning with inoculations of soil microbes to increase plant diversity, improve vegetation health/performance and maximise access to soil nutrients. Manipulations included the addition of mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs, with complex relationships between depth and type of substrate and the type of microbial inoculant applied, with no clear pattern being observed. For bait plant measurements (heights, leaf numbers, root/shoot biomass, leaf nutrients), a compost tea may have positive effects on plant performance when grown in substrates of shallower depths (5.5cm), even one year after inoculums are applied. Results from the species richness surveys show that diversity was significantly increased with the application of an AM fungal treatment and that overall, results suggest that brick-based substrate blends are most effective for vegetation performance as are deeper depths (although this varied with time). Microbial inoculations of green roof habitats appeared to be sustainable; they need only be done once for benefits to still been seen in subsequent years where treatments are added independently (not in combination). They seem to be a novel and viable method of enhancing

  16. Development of low dielectric constant alumina-based ceramics for microelectronic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S. J. [Lawrence Berkeley Lab., CA (United States). Materials Science Div.; California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1993-05-01

    The performance of high speed computers depends not only on IC chips, but also on the signal propagation speed between these chips. The signal propagation delay in a computer is determined by the dielectric constant of the substrate material to which the IC chips are attached. In this study, a ceramic substrate with a low dielectric constant (k {approx} 5.0) has been developed. When compared with the traditional alumina substrate (k {approx} 10.0), the new material corresponds to a 37% decrease in the signal propagation delay. Glass hollow spheres are used to introduce porosity (k = 1.0) to the alumina matrix in a controlled manner. A surface coating technique via heterogeneous nucleation in aqueous solution has been used to improve the high temperature stability of these spheres. After sintering at 1,400 C, isolated spherical pores are uniformly distributed in the almost fully dense alumina matrix; negligible amounts of matrix defects can be seen. All pores are isolated from each other. Detailed analyses of the chemical composition find that the sintered sample consists of {alpha}-alumina, mullite and residual glass. Mullite is the chemical reaction product of alumina and the glass spheres. Residual glass exists because current firing conditions do not complete the mullitization reaction. The dielectric constant of the sintered sample is measured and then compared with the predicted value using Maxwell`s model. Mechanical strength is evaluated by a four-point bending test. Although the flexural strength decreases exponentially with porosity, samples with 34% porosity (k {approx} 5.0) still maintain adequate mechanical strength for the proper operation of a microelectronic substrate.

  17. The impact of green roof ageing on substrate characteristics and hydrological performance

    Science.gov (United States)

    De-Ville, Simon; Menon, Manoj; Jia, Xiaodong; Reed, George; Stovin, Virginia

    2017-04-01

    Green roofs contribute to stormwater management through the retention of rainfall and the detention of runoff. However, there is very limited knowledge concerning the evolution of green roof hydrological performance with system age. This study presents a non-invasive technique which allows for repeatable determination of key substrate characteristics over time, and evaluates the impact of observed substrate changes on hydrological performance. The physical properties of 12 green roof substrate cores have been evaluated using non-invasive X-ray microtomography (XMT) imaging. The cores comprised three replicates of two contrasting substrate types at two different ages: unused virgin samples; and 5-year-old samples from existing green roof test beds. Whilst significant structural differences (density, pore and particle sizes, tortuosity) between virgin and aged samples of a crushed brick substrate were observed, these differences did not significantly affect hydrological characteristics (maximum water holding capacity and saturated hydraulic conductivity). A contrasting substrate based upon a light expanded clay aggregate experienced increases in the number of fine particles and pores over time, which led to increases in maximum water holding capacity of 7%. In both substrates, the saturated hydraulic conductivity estimated from the XMT images was lower in aged compared with virgin samples. Comparisons between physically-derived and XMT-derived substrate hydrological properties showed that similar values and trends in the data were identified, confirming the suitability of the non-invasive XMT technique for monitoring changes in engineered substrates over time. The observed effects of ageing on hydrological performance were modelled as two distinct hydrological processes, retention and detention. Retention performance was determined via a moisture-flux model using physically-derived values of virgin and aged maximum water holding capacity. Increased water holding

  18. Infrared-to-green upconversion luminescence and mechanism of Ho3+, Nd3+ and Yb3+ ions in oxyfluoride glass ceramics

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun-Jie; Kawamoto Yoji; Dai Shi-Xun

    2004-01-01

    New oxyfluoride glasses and glass ceramics co-doped with Nd3+, Yb3+ and Ho3+ were prepared. The upconversion of infrared radiation into green fluorescence has been studied for Nd3+, Yb3+ and Ho3+ in the transparent oxyfluoride glass ceramics. At room temperature very strong green upconversion luminescence due to the Ho3+: (5F4, 5S2) →5I8transition under 800 nm excitation was observed in the glass ceramics. The intensity of the green upconversion luminescence in a 1mol% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ upconversion luminescence in the oxyfluoride glass ceramics is discussed. The upconversion mechanism is also investigated.

  19. The Y{sub 2}BaCuO{sub 5} oxide as green pigment in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.; Colon, C.; Duran, A.; Barajas, R. [Universidad Politecnica de Madrid (Spain). EUITI; D`Ors, A.; Becerril, M. [Escuela Madrilena de Ceramica de la Moncloa, Ayuntamiento de Madrid, E-28008 Madrid (Spain); Llopis, J.; Paje, S.E. [Dpto. Fisica de Materiales, Fac. CC. Fisicas, UCM, E-28040 Madrid (Spain); Saez-Puche, R.; Julian, I. [Dpto. Q. Inorganica, Fac. CC. Quimicas, UCM, E-28040 Madrid (Spain)

    1998-07-24

    Fine particles of green yttrium-barium-copper-oxide pigments Y{sub 2}BaCuO{sub 5} have been prepared using two different synthesis methods. The process of combustion of mixed nitrates and urea needs a maximal temperature of 900 C and provides samples formed by aggregates of homogeneous small particles with a size of about 0.3 {mu}m. However, the ceramic method requires 1050 C as synthesis temperature, and yields rather higher particle sizes. Even after grinding, these samples are formed by heterogeneous particles with mean sizes of about 3 {mu}m. Diffuse reflectance spectra reveal that the samples obtained using the former method present a higher brilliancy, so they have been selected to be tested as green pigment in ceramics with good results. (orig.) 10 refs.

  20. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    Science.gov (United States)

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity.

  1. [Influence of the substrate composition in extensive green roof on the effluent quality].

    Science.gov (United States)

    Chen, Yu-Lin; Li, Tian; Gu, Jun-Qing

    2014-11-01

    By monitoring the effluent quality from different green roof assemblies during several artificial rain events, the main pollutant characteristics and the influence of substrate composition in extensive green roof on the effluent quality were studied. Results showed that the main pollutants in the effluent were N, P and COD; with the increase of cumulative rain, the concentrations of pollutants in the effluent decreased, which had obvious leaching effect; The average concentrations of heavy metals in the early effluent from all assemblies reached drinking water standard, including the assemblies using crushed bricks; When garden soil and compost were used as organic matter, the assemblies had serious leaching of nutrient substance. After the accumulated rainfall reached 150 mm, the TN, TP and COD concentrations of effluent were 2.93, 0.73 and 78 mg x L(-1), respectively, which exceeded the Surface water V class limit. By means of application of the Water Treatment Residual, the leaching of TP from green planting soil was decreased by about 60%. The inorganic compound soil had better effluent quality, however we also need to judge whether the substrate could be applied in extensive green roof or not, by analyzing its ability of water quantity reduction and the plant growth situation.

  2. Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

    Science.gov (United States)

    2003-04-03

    Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition DISTRIBUTION: Approved for public...Society H2.4 Microstructural and Electrical Characterization of Barium Strontium Titanate- based Solid Solution Thin Films Deposited on Ceramic...investigated and report the microstructural and electrical characterization of selected barium strontium titanate-based solid solution thin films

  3. The use of reactive material for limiting P-leaching from green roof substrate.

    Science.gov (United States)

    Bus, Agnieszka; Karczmarczyk, Agnieszka; Baryła, Anna

    2016-01-01

    The aim of the study is to assess the influence of drainage layer made of reactive material Polonite(®) on the water retention and P-PO(4) concentration in runoff. A column experiment was performed for extensive substrate underlined by 2 cm of Polonite(®) layer (SP) and the same substrate without supporting layer as a reference (S). The leakage phosphorus concentration ranged from 0.001 to 0.082 mg P-PO(4)·L(-1), with average value 0.025 P-PO(4)·L(-1) of S experiment and 0.000-0.004 P-PO(4)·L(-1) and 0.001 P-PO(4)·L(-1) of SP experiment, respectively. The 2 cm layer of Polonite(®) was efficient in reducing P outflow from green roof substrate by 96%. The average effluent volumes from S and SP experiments amounted 61.1 mL (5.8-543.3 mL) and 46.4 mL (3.3-473.3 mL) with the average irrigation rate of 175.5 mL (6.3-758.0 mL). The substrate retention ability of S and SP experiments was 65% and 74%, respectively. Provided with reactive materials, green roof layers implemented in urban areas for rain water retention and delaying runoff also work for protection of water quality.

  4. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection.

    Science.gov (United States)

    Fu, Wen Liang; Zhen, Shu Jun; Huang, Cheng Zhi

    2013-05-21

    In this contribution, graphene oxide/gold nanoparticle (GO/AuNPs) hybrids were in situ fabricated through a green one-pot procedure by using tyrosine as an environment friendly and biocompatible reducing agent, which can be used as highly efficient surface enhanced Raman scattering (SERS) substrates with the enhancement factor at 3.8 × 10(3). The as-prepared GO/AuNPs hybrids have good biocompatibility, providing the prospect of applications for biomedicine determinations. In addition, taking the advantages of the electromagnetic and chemical enhancement mechanism and the high affinity of GO and AuNPs towards positive dyes, a sensitive, selective and label-free malachite green (MG) detection method was demonstrated. The SERS measurement showed that the minimum detection concentration of MG in water was as low as 2.5 μmol L(-1) with a linear response range from 2.5 to 100 μmol L(-1) (R(2) = 0.996). Moreover, this method can be applied to detect MG in a fishery water sample with satisfactory results.

  5. Moisture content behaviour in extensive green roofs during dry periods: the influence of vegetation and substrate characteristics

    OpenAIRE

    Berretta, C; Poe, S.; Stovin, V.

    2014-01-01

    Evapotranspiration (ET) is a key parameter that influences the stormwater retention capacity, and thus the hydrological performance, of green roofs. This paper investigates how the moisture content in extensive green roofs varies during dry periods due to evapotranspiration. The study is supported by 29 months continuous field monitoring of the moisture content within four green roof test beds. The beds incorporated three different substrates, with three being vegetated with sedum and one lef...

  6. Bonding polycarbonate brackets to ceramic: : Effects of substrate treatment on bond strength

    NARCIS (Netherlands)

    Özcan, Mutlu; Vallittu, Pekka K.; Peltomäki, Timo; Huysmans, Marie-Charlotte; Kalk, Warner

    2004-01-01

    This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were

  7. Bonding polycarbonate brackets to ceramic : Effects of substrate treatment on bond strength

    NARCIS (Netherlands)

    Özcan, Mutlu; Vallittu, Pekka K.; Peltomäki, Timo; Huysmans, Marie-Charlotte; Kalk, Warner

    2004-01-01

    This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were

  8. Differential substrate subsidence of the EnviHUT project pitched extensive green roof

    Directory of Open Access Journals (Sweden)

    Nečadová Klára

    2017-01-01

    Full Text Available In primary phase of testing building physical characteristics of the EnviHUT project extensive and semi-intensive roofs with 30° inclination occurred exceptional substrate subsidence. An extensive testing field with retaining geocell-system evinced differential subsidence of individual sectors after six months. Measured subsidence of installed substrate reached 40 % subsidence compared to originally designed height (intended layer thickness. Subsequent deformation of geocell-system additionally caused partial slide of substrate to drip edge area. These slides also influenced initial development of stonecrop plants on its surface. Except functional shortages the aesthetical function of the whole construction is influenced by the mentioned problem. The stated paper solves mentioned issues in view of installation method optimization, selection and modification of used roof substrate and in view of modification of geometric and building installed elements retaining system arrangement. Careful adjustment of roof system geometry and enrichment of original substrate fraction allow full functionality from pitched extensive green roof setting up. The modification scheme and its substantiation is a part of this technical study output.

  9. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    Science.gov (United States)

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed.

  10. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect.

    Science.gov (United States)

    Fujioka, Kouki; Iwamoto, Takeo; Shima, Hidekazu; Tomaru, Keiko; Saito, Hideki; Ohtsuka, Masaki; Yoshidome, Akihiro; Kawamura, Yuri; Manome, Yoshinobu

    2016-04-11

    For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style) in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG) by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass Spectrometry (LC-MS/MS) analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS) production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  11. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2016-04-01

    Full Text Available For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC and liquid chromatography–tandem mass Spectrometry (LC-MS/MS analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  12. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    Directory of Open Access Journals (Sweden)

    Luana Menezes de MENDONÇA

    2014-07-01

    Full Text Available Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives: To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein, used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin, after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods: Thirty molars were distributed in three groups (N=10 according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal and R (resin- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5 were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results: Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231. Two-way ANOVA showed significant effect of substrates (p<0.001 and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007. Conclusion: The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the

  13. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses.

  14. Study on deposition technique and properties of Pd/Ag alloy film sensor supported on ceramic substrate

    Science.gov (United States)

    Geng, Z. T.; He, Q.; Jin, C. G.

    2016-07-01

    Developing high-quality hydrogen sensitive material is the core part of hydrogen sensor, whose performance is determined by the sensitive response, reproducibility and recovery of hydrogen material etc. In order to overcome the defects of hydrogen embrittlement in previous hydrogen sensor which were based on the pure palladium, sliver as the second component added to the palladium was studied. Using photochemical etching technology to produce a bent metal mask, the mask is put on the ceramic substrate. Firstly, the thin film of Ta2O5 as a transition layer grew on the ceramic substrate. Then, a series of Pd/Ag alloy film sensors were prepared, and each performance characterization of Pd/Ag alloy film was studied. Testing results indicated that the thin film had a good linear output performance at 0∼⃒30% hydrogen concentration range, and demonstrates a high responsiveness and good repeatability. With temperature increasing, the strength of the responsive signal of the Pd/Ag alloy film decreases and its responsive time was also shortened.

  15. Effect of Adhesive Type on the Shear Bond Strength of Metal Brackets to Two Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2014-04-01

    Full Text Available Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin.Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM.The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05. There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected.Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.

  16. Preparation of Zeolite X Membranes on Porous Ceramic Substrates with Zeolite Seeds

    Institute of Scientific and Technical Information of China (English)

    Zhongqiang Xu; Qingling Chen; Guanzhong Lu

    2002-01-01

    Zeolite X membranes were investigated by in-situ hydrothermal synthesis on porous ceramic tubes precoated with zeolite X seeds or precursor amorphous aluminosilicate, and porous α-Al2O3 ceramic tubes with a pore size of 50 200 nm were employed as supports. Zeolite X crystals were synthesized by the classic method and mixed into deionized water as a slurry with a concentration of 0.2 0.5wt%, having a range of crystal sizes from 0.2 to 2μm. Crystal seeds were pressed into the pores near the inner surface of the ceramic tubes, and crystallization took place at 95℃ for 24-96 h. It was also investigated that Boehmite sol added with zeolite X seeds was precoated on ceramic supports to form a layer of γ-Al2O3 by heating, and hydrothermal crystallization could then take place to prepare the zeolite membranes on the composite ceramic tubes. The crystal species were characterized by XRD, and the morphology of the supports subjected to crystallization was characterized by SEM. The composite zeolite membranes have zeolitic top-layers with a thickness of 10-25 μm, and zeolite crystals can be intruded into pores of the supports as deeply as 100μm. The experimental results indicate that the precoating of zeolitic seeds on supports is beneficial to crystallization by shortening the synthesis time and improving the membrane strength. The resulting zeolite X membrane shows permselectivity to tri-n-butylamine((C4H9)3N) over perfluro-tributyl-amine ((C4Fg)3N), and a permeance ratio of 57 for ((C4Hg)3N to (C4F9)3N could be reached at 350℃. Permeances of BZ, EB and TIPB through the zeolite membrane were also measured and were found to slightly increase with temperature.

  17. InGaN based green laser diodes on semipolar GaN substrate

    Science.gov (United States)

    Adachi, Masahiro

    2014-10-01

    This paper reviews the development of the InGaN-based green laser diodes on semipolar GaN substrates, especially focusing on (20\\bar{2}1) plane. The reduction of piezoelectric fields in InGaN quantum wells on the (20\\bar{2}1) planes was investigated by a small blue shift in electroluminescence peaks, and high crystal quality was confirmed by clear interfaces in a transmission electron microscopy image, narrower FWHM in electroluminescence peaks, and smaller localization energy in time resolved PL results, as compared with the other planes. These physical characteristics of the (20\\bar{2}1) leads to better laser properties: lower threshold current densities, higher output powers of over 100 mW in the spectral region beyond 530 nm, and higher wall plug efficiencies as high as 7.0-8.9% in the wavelength range of 525-532 nm, compared to those of the other planes. Estimated lifetimes were over 5000 h at 50 mW and 2000 h at 70 mW under cw operation with auto power control at a case temperature of 55 °C. The (20\\bar{2}1) plane is the promising candidate for InGaN-based true green laser diodes.

  18. A high-power high-stability Q-switched green laser with intracavity frequency doubling using a diode-pumped composite ceramic Nd:YAG laser

    Institute of Scientific and Technical Information of China (English)

    Wang Yu-Ye; Xu De-Gang; Liu Chang-Ming; Wang Wei-Peng; Yao Jian-Quan

    2012-01-01

    We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight plano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal.By using a composite ceramic Nd:YAG rod and a type-Ⅱ high gray track resistance KTP (HGTR-KTP) crystal,a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz,with a diode-to-green optical conversion of 14.68%,and a pulse width of 162 ns.To the best of our knowledge,both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date.The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.

  19. Effects of Interlayer Composition on Bond Strength and Interfacial Microstructure of Green Joined CePO4-ZrO2 Ceramics

    Institute of Scientific and Technical Information of China (English)

    高海; 刘家臣; 刘名郑; 王丽娟; 霍伟荣

    2003-01-01

    Effects of interlayer composition on bonding strength and interfacial microstruc ture of green joined CePO4-ZrO2 ceramics were studied. Green bodies of 25%C ePO4/ZrO2 and ZrO2 ceramics were joined by using interlayer composed of Ce PO4 and ZrO2 at 1450 ℃ for 120 min without applied pressure.The effects of CePO4/(CePO4+ZrO2) ratio on the bond strength of the joints were investiga ted. Under the experimental conditions, the grain size of the particles grown in the joint is smaller than those in joined ceramics. The microstructure of the joint is more homogeneous than that of the matrix and without obvious cracks, pores and other defects.

  20. Inverse analysis determining interfacial properties between metal film and ceramic substrate with an adhesive layer

    Institute of Scientific and Technical Information of China (English)

    Haifeng Zhao; Yueguang Wei

    2008-01-01

    In the present study, peel tests and inverse analysis were performed to determine the interfacial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250μm and three peel angles of 90°,135°and 180°were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result

  1. Analysis of integrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates.

    NARCIS (Netherlands)

    Ruijter, J.E. de; Brugge, P.J. ter; Dieudonne, S.C.; Vliet, S.J. van; Torensma, R.; Jansen, J.A.

    2001-01-01

    Earlier we observed that calcium phosphate (Ca-P)-coated implant substrates stimulated the differentiation of osteoblast-like cells compared to uncoated substrates. This suggests that this difference in osteogenic induction is due to the chemical composition of the substratum. We hypothesized that C

  2. Differential activities of fungi-derived tannases on biotransformation and substrate inhibition in green tea extract.

    Science.gov (United States)

    Baik, Joo Hyun; Suh, Hyung Joo; Cho, So Young; Park, Yooheon; Choi, Hyeon-Son

    2014-11-01

    Tannases are important enzymes in the antioxidant potential of tea leaves. In this study, we evaluated the effect of two tannases (T1 and T2) on biotransformation of tea polyphenols and antioxidative activities from catechins in green tea extract (GTE). The T1 tannase-catalyzed reaction was inhibited by the addition of >2.0% GTE substrate, whereas the T2-catalyzed reaction was not inhibited, even by addition of 5.0% GTE. Furthermore, the T1 tannase-catalyzed reaction was inhibited by addition of 10 mg mL(-1) EGCG, whereas the T2 tannase-catalyzed reaction did not display any inhibitory effect. These results indicate that T2 tannase was more tolerant than T1 tannase to substrate inhibition in degallation reactions. Specifically, the substrate EGCG (90,687.1 μg mL(-1)) was transformed into gallic acid (50,242.9 μg mL(-1)) and EGC (92,598.3 μg mL(-1)) after 1-h treatment with T2 tannase (500 U g(-1)). The tannase-mediated product displayed higher in vitro radical-scavenging activity than the control. IC50 value of GTE on ABTS and DPPH radicals (46.1 μg mL(-1) and 18.4 μg mL(-1), respectively) decreased markedly after T2 tannase treatment (to 35.8 μg mL(-1) and 15.1 μg mL(-1), respectively). These results indicate that T2 tannase treatment of GTE enhanced its radical-scavenging activity, an increase that was also observed in the reaction using EGCG substrate. Taken together, our results revealed that T2 tannase is more suitable for biotransformation of catechins in GTE than T1 tannase, and T2 treatment provides an enhanced radical-scavenging effect.

  3. On the use, characterization and performance of silane coupling agents between organic coatings and metallic or ceramic substrates

    Science.gov (United States)

    van Ooij, W. J.; Zhang, B. C.; Conners, K. D.; Hörnström, S.-E.

    1996-01-01

    Examples are given of the use of organofunctional silane coupling agents for promoting bonding between organic coatings and metallic or ceramic (i.e. oxide) substrates. The orientation of the silane molecules and the type of bonding with the metal oxide can be determined successfully by Time-of-Flight SIMS. Oriented films of aminosilanes are demonstrated to be unstable in air. A prerinse with an inorganic silicate is introduced as a suitable method for masking the ubiquitous carbonaceous contamination at the metal surface, thus promoting the proper orientation and covalent bonding. Some practical applications are described, such as the pretreatment of Galvalume■ surfaces as a replacement of existing chromate treatments in coil coating applications. Electrochemical Impedance Spectroscopy (EIS) is shown to be a powerful tool for studying the performance of the silane treatment under a paint.

  4. Substrates with green manure compost and leaf application of biofertilizer on seedlings of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Cristiane Muniz Barbosa Barros

    2013-12-01

    Full Text Available Substrates and fertilization are fundamental for seedling production, which well nourished can produce earlier and are more resistant to stresses. Animal manures are often used in non-industrialized substrates with good results, but their costs are increasing. Other residues may be used for plant nutrition, in substrates or in leaf fertilization. The aim of this work was to evaluate substrates prepared with green manure composts and the leaf application of biofertilizer on the formation of yellow passion fruit seedlings. A greenhouse experiment was conducted between December 2009 and February 2010, with a split-plot random block design. Plots received or not leaf application of supermagro biofertilizer. Subplots consisted of different substrates: soil; soil + cattle manure; soil + cattle manure composted with black oats straw; soil + cattle manure composted with ryegrass straw; soil + cattle manure composted with turnip straw; and soil + cattle manure composted with vetch straw. There were three dates of leaf fertilization: 10, 25 and 40 days after emergence (DAE. At 50 DAE plants were collected for evaluation of growth and accumulation of biomass and nutrients: N, P, K, Ca, Mg, Cu, Mn and Zn. Data were submitted to analysis of variance and means compared by Tukey test. The substrate soil + cattle manure promoted higher stem diameter, plant height, leaf area, root length and volume and nutrient accumulation. Among substrates with green manure composts, those prepared with black oats and turnip straw outranked the others. The use of leaf biofertilizer showed diverse results on seedling formation, being beneficial when combined to substrates with black oats composted straw, and prejudicial when combined to soil + cattle manure and soil + turnip composted straw substrates. The accumulation of nutrients by the seedlings occurred in the following order: K>Ca>N>Mg>P>Zn>Cu=Mn.

  5. Manipulating soil microbial communities in extensive green\\ud roof substrates

    OpenAIRE

    Molineux, Chloe; Connop, Stuart; Gange, Alan

    2014-01-01

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated,we added mycorrhizal fungi and a microbial mixture (‘compost tea’) to green...

  6. Use of green coconut shells as an alternative substrate for the production of xanthan gum on different scales of fermentation

    Directory of Open Access Journals (Sweden)

    Tatiana Barreto Rocha Nery

    2013-01-01

    Full Text Available Xanthan, a biopolymer with extensive industrial applications, is commercially produced by fermenting glucose or sucrose using the bacteria Xanthomonas. Green coconut shells, rich in nutrients, could be an alternative substrate to obtain xanthan. This study aimed to evaluate the production and rheological properties of xanthan obtained on different fermentation scales using green coconut shells as the substrate, using its production from sucrose for comparison. Media containing minimal nutritional requirements (carbon, urea, phosphate were prepared. Upon changing from the conventional medium to the alternative medium there was a 30% increase in production using the shaker and 81% increase using the bioreactor. Increasing the fermentation scale resulted in an increased yield of xanthan and a 30% increase in apparent viscosity. Coconut shells deserve special attention, constituting a possibility for the large scale production of xanthan with cost reduction and application of a residue.

  7. Pressure slip casting and cold isostatic pressing of aluminum titanate green ceramics: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Ramanathan Papitha

    2013-12-01

    Full Text Available Aluminum titanate (Al2TiO5 green bodies were prepared from mixture of titania and alumina powders with different particle sizes by conventional slip casting (CSC, pressure slip casting (PSC and cold isostatic pressing (CIP. Precursor-powder mixtures were evaluated with respect to the powder properties, flow behaviours and shaping parameters. Green densities were measured and correlated with the fractographs. A substantial increase in green densities up to 60 %TD (theoretical density of 4.02 g/cm3, calculated based on rule of mixtures is observed with the application of 2–3 MPa pressure with PSC. While particle size distribution and solid loading are the most influential parameters in the case of CSC, with PSC pressure also plays a key role in achieving the higher green densities. Being a dry process, high pressure of > 100 MPa for CIP is essential to achieve densities in the range of 60–65 %TD. Slip pressurization under PSC conditions facilitate the rearrangement of particles through rolling, twisting and interlocking unlike CIP processing where pressure is needed to overcome the inter-particle friction.

  8. Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics

    Science.gov (United States)

    Berretta, Christian; Poë, Simon; Stovin, Virginia

    2014-04-01

    Evapotranspiration (ET) is a key parameter that influences the stormwater retention capacity, and thus the hydrological performance, of green roofs. This paper investigates how the moisture content in extensive green roofs varies during dry periods due to evapotranspiration. The study is supported by 29 months continuous field monitoring of the moisture content within four green roof test beds. The beds incorporated three different substrates, with three being vegetated with sedum and one left unvegetated. Water content reflectometers were located at three different soil depths to measure the soil moisture profile and to record temporal changes in moisture content at a five-minute resolution. The moisture content vertical profiles varied consistently, with slightly elevated moisture content levels being recorded at the deepest substrate layer in the vegetated systems. Daily moisture loss rates were influenced by both temperature and moisture content, with reduced moisture loss/evapotranspiration when the soil moisture was restricted. The presence of vegetation resulted in higher daily moisture loss. Finally, it is demonstrated that the observed moisture content data can be accurately simulated using a hydrologic model based on water balance and two conventional Potential ET models (Hargreaves and FAO56 Penman-Monteith) combined with a soil moisture extraction function. Configuration-specific correction factors have been proposed to account for differences between green roof systems and standard reference crops.

  9. Roles of Poly(propylene Glycol) During Solvent-Based Lamination of Ceramic Green Tapes

    Science.gov (United States)

    Suppakarn, Nitinat; Ishida, Hatsuo; Cawley, James D.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Solvent lamination for alumina green tapes is readily accomplished using a mixture of ethanol, toluene and poly(propylene glycol). After lamination, the PPG is clearly present as a discrete film at the interface between the laminated tapes. This condition, however, does not generate delamination during firing. Systematic sets of experiments are undertaken to determine the role of PPG in the lamination process and, specifically, the mechanism by which it is redistributed during subsequent processing. PPG slowly diffuses through the organic binder film at room temperature. The PPG diffusion rapidly increases as temperature is increased to 80 C. The key to the efficiency of adhesives during green-tape lamination is mutual solubility of the nonvolatile component of the glue and the base polymeric binder.

  10. Materials design considerations involved in the fabrication of implantable bionics by metallization of ceramic substrates.

    Science.gov (United States)

    Patel, Sunil; Guenther, Thomas; Dodds, Christopher W D; Kolke, Sergej; Privat, Karen L; Matteucci, Paul B; Suaning, Gregg J

    2013-01-01

    The Pt metallization of co-fired Al2O3/SiO2 substrates containing Pt feedthroughs was shown to be a suitable means to construct implantable bionics. The use of forge welding to join an electrode to such a metallized feedthrough was demonstrated and subsequently evaluated through the use of metallography and electron microscopy. Metallurgical phenomena involved in forge welding relevant to the fabrication of all types of biomedical implants are discussed within this paper. The affect of thermal profiles used in brazing or welding to build implantable devices from metal components is analysed and the case for considered selection of alloys in implant design is put forward.

  11. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo [v1; ref status: indexed, http://f1000r.es/2ha

    Directory of Open Access Journals (Sweden)

    Amy Heim

    2013-12-01

    Full Text Available Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  12. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo [v2; ref status: indexed, http://f1000r.es/2v4

    Directory of Open Access Journals (Sweden)

    Amy Heim

    2014-01-01

    Full Text Available Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  13. Green

    Institute of Scientific and Technical Information of China (English)

    孙继山

    2005-01-01

    The Green Games-this is a Chinese promise to the world. Green it has to be when the Olympic Games are opened at a spectacular venue in the north of Beijing in 2008. However, those who live in the capital still worry whether it will be possible to turn the rather polluted city. into a green or even half-green city. But time and again, China has proved that this kind of huge challenge can be met. Nevertheless,this time around it is a tough call indeed and a little over three years are left to execute and complete an audacious task.

  14. Development of Energy-Efficient Cryogenic Leads with High Temperature Superconducting Films on Ceramic Substrates

    Science.gov (United States)

    Pan, A. V.; Fedoseev, S. A.; Shcherbakova, O. V.; Golovchanskiy, I. A.; Zhou, S.; Dou, S. X.; Webber, R. J.; Mukhanov, O. A.; Yamashita, T.; Taylor, R.

    High temperature superconductor (HTS) material can be used for the implementation of high-speed low-heat conduction data links to transport digital data from 4 K superconductor integrated circuits to higher-temperature parts of computing systems. In this work, we present a conceptual design of energy efficient interface and results in fabricating such HTS leads. Initial calculations have shown that the microstrip line cable geometry for typical materials employed in production of HTS thin films can be a two-layered film for which the two layers of about 10 cm long are separated by an insulation layer with as low permittivity as possible. With this architecture in mind, the pulsed laser deposition process has been designed in a 45 cm diameter vacuum chamber to incorporate an oscillating sample holder with homogeneous substrate heating up to 900°C, while the laser plume is fixed. This design has allowed us to produce 200 nm to 500 nm thick, 7 cm to 10 cm long YBa2Cu3O7 thin films with the homogeneous critical temperature (Tc) of about 90 K. The critical current density (Jc) of the short samples obtained from the long sample is of (2 ± 1) × 1010 A/m2. Lines of 3-100 μm wide have been successfully patterned along the length of the samples in order to directly measure the Tc and Jc values over the entire length of the samples, as well as to attempt the structuring of multichannel data lead prototype.

  15. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  16. Differential substrate subsidence of the EnviHUT project pitched extensive green roof

    OpenAIRE

    Nečadová Klára; Selník Petr; Karafiátová Hana

    2017-01-01

    In primary phase of testing building physical characteristics of the EnviHUT project extensive and semi-intensive roofs with 30° inclination occurred exceptional substrate subsidence. An extensive testing field with retaining geocell-system evinced differential subsidence of individual sectors after six months. Measured subsidence of installed substrate reached 40 % subsidence compared to originally designed height (intended layer thickness). Subsequent deformation of geocell-system additiona...

  17. 钙长石陶瓷基片的水基流延成型工艺研究%Study on Processing of Anorthite Ceramic Substrate by Aqueous Tape Casting

    Institute of Scientific and Technical Information of China (English)

    董伟霞; 包启富; 顾幸勇; 游雯

    2011-01-01

    The preparation of ceramic substrate by tape casting technique using aqueous slurries containing latex binder was studied. Effects of the solid phase content, dispersing agent, pH and plasticizer on the viscosities of the ceramic slurries of green tapes were discussed. The results showed that: when the solid content is 48vo1%, pH of slurry about 10, latex binder 6wt%-8wt%, plasticizer 4wt%-6wt%, the prepared slurries had relatively low viscosity for casting. SEM photographs results showed polymeric membrane warpping up the anorthite panicles and the homogenous distribution of anorthite particles without the obvious bigger pores.%采用水基流延成型钙长石陶瓷基片坯体,研究分散剂、pH值、粘结剂及塑化剂对浆料流动性能的影响.实验结果表明:当浆料中固相含量为48vol%时,以聚丙烯酸胺为分散剂,浆料的pH值10,粘结剂含量为6.0wt%~8wt%时,增塑剂含量为4wt%~6wt%时,可以制备出稳定性良好、流动性适宜的钙长石流延浆料.通过SEM可以看出,高分子膜均匀包覆在钙长石颗粒表面,并且钙长石颗粒分布均匀,没有明显较大的孔隙.

  18. A Green Route for Substrate-Independent Oil-Repellent Coatings

    Science.gov (United States)

    Xu, Li-Ping; Han, Da; Wu, Xiuwen; Zhang, Qingqing; Zhang, Xueji; Wang, Shutao

    2016-11-01

    Oil repellent surface have lots of practical applications in many fields. Current oil repellent coating may suffer from limited liquid repellency to oils or environmental risks. In this work, we report an eco-friendly ‘green’ processes for preparing oil-repellent surface using a renewable and environmentally benign bioresource alginate. The oil-repellent coating was prepared by a two-step surface coating technique and showed stable oil repellency to many kinds of oils. The fabrication process was very simple with no need for special equipment, and this approach can be successfully employed to various substrates with different compositions, sizes and shapes, or even substrate-independent oil-repellent materials. The as-prepared coating of calcium alginate may have a good future in packaging oil-containing products and foods.

  19. Effect of firing conditions on thick film microstructure and solder joint strength for low-temperature, co-fired ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.

    2000-01-04

    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize solder joints on these substrates. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21-Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of processing conditions that included: (1) double versus triple prints, (2) dielectric window versus no window, and (3) three firing temperatures (800 C, 875 C and 950 C). Sn63-Pb37 solder paste with an RMA flux was screen printed onto the circuit boards. The appropriate packages, which included five sizes of chip capacitors and four sizes of leadless ceramic chip carriers, were placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. Nonsoldered pads were removed from the test vehicles and the porosity of their thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. The double printed substrates without a dielectric window revealed a thick film porosity of 31.2% at 800 C, 26.2% at 875 C and 20.4% at 950 C. In contrast, the thick film porosity of the triple printed substrates with a dielectric window is 24.1% at 800 C, 23.2% at 875 C and 17.6% at 950 C. These observations were compared with the shear strength of the as-fabricated chip capacitor solder joints to determine the effect of firing conditions on solder joint integrity. The denser films from the higher

  20. Chemical deposition of La0.7Ca0.3MnO3±δ films on ceramic substrates

    Directory of Open Access Journals (Sweden)

    Cássio Morilla-Santos

    2011-01-01

    Full Text Available In this paper, it is reported the growth of La0.7Ca0.3MnO3±δ films using a chemical solution deposition method (CSD by the spin-coating technique. Such solution was prepared through a route based on modified polymeric precursor method. Spin-coating deposition on different ceramic substrates was performed and analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The magnetic response of the prepared specimens was studied using a SQUID magnetometer. The obtained results indicated uniform deposition on SrTiO3 and LaAlO3 substrates with similar characteristics. Furthermore, significant differences were detected in the Mn3+/Mn4+ valence ratio and a corresponding diverse magnetic response was observed. The sample prepared on SrTiO3 and LaAlO3 presented a critical temperature around 270 K as expected.

  1. Effect of Thick Film Firing Conditions on the Solderability and Structure of Au-Pt-Pd Conductor for Low-Temperature, Co-Fired Ceramic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.L; Vianco, P.T.

    1999-03-16

    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize such solder joints. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21 -Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of process conditions that included: (1) double versus triple prints, (2) dielectric frame versus no frame, and (3) three firing temperatures (800 C, 875 C and 950 C). Pads were examined from the test vehicles. The porosity of the thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. Solder paste comprised of Sn63-Pb37 powder with an RMA flux was screen printed onto the circuit boards. The appropriate components, which included chip capacitors of sizes 0805 up to 2225 and 50 mil pitch, leadless ceramic chip carriers having sizes of 16 I/O to 68 I/O, were then placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. The solderability of the thick film pads was also observed to be sensitive to the firing conditions. Solderability appeared to degrade by the added processing steps needed for the triple print and dielectric window depositions. However, the primary factor in solderability was the firing temperature. Solderability was poorer when the firing temperature was higher.

  2. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    Science.gov (United States)

    Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

  3. green

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-02-01

    Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

  4. Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates

    Science.gov (United States)

    Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.

    2016-12-01

    In this research work, extracellular biosynthesis of gold nanoparticles (AuNPs) using marine bacterial isolates (Streptomyces sp.) as a reducing/capping/stabilizing bio-agent and chlolauric acid (HAuCl4) as a precursor has been investigated. Surface modification of cotton and viscose knitted fabrics using O2-plasma followed by subsequent treatment with bio-synthesized AuNPs alone and in combination with TiO2NPs or ZnONPs to impart new functional properties namely antibacterial and UV-blocking were studied. The results show that loading of nominated nanomaterials onto the activated fabric samples results in a significant improvement in antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) along with a remarkable enhancement in the UV-protection functionality of the treated fabrics. The highest antibacterial and anti-UV values were obtained when O2-plasma treated fabrics were loaded with AuNPs/ZnONPs combination, irrespective of the used substrate. The imparted functional properties demonstrated remarkable retention even after 15 washings.

  5. Ceramic barrier layers for flexible thin film solar cells on metallic substrates: a laboratory scale study for process optimization and barrier layer properties.

    Science.gov (United States)

    Delgado-Sanchez, Jose-Maria; Guilera, Nuria; Francesch, Laia; Alba, Maria D; Lopez, Laura; Sanchez, Emilio

    2014-11-12

    Flexible thin film solar cells are an alternative to both utility-scale and building integrated photovoltaic installations. The fabrication of these devices over electrically conducting low-cost foils requires the deposition of dielectric barrier layers to flatten the substrate surface, provide electrical isolation between the substrate and the device, and avoid the diffusion of metal impurities during the relatively high temperatures required to deposit the rest of the solar cell device layers. The typical roughness of low-cost stainless-steel foils is in the hundred-nanometer range, which is comparable or larger than the thin film layers comprising the device and this may result in electrical shunts that decrease solar cell performance. This manuscript assesses the properties of different single-layer and bilayer structures containing ceramics inks formulations based on Al2O3, AlN, or Si3N4 nanoparticles and deposited over stainless-steel foils using a rotogravure printing process. The best control of the substrate roughness was achieved for bilayers of Al2O3 or AlN with mixed particle size, which reduced the roughness and prevented the diffusion of metals impurities but AlN bilayers exhibited as well the best electrical insulation properties.

  6. Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics.

    Science.gov (United States)

    Gao, Guojun; Meszaros, Robert; Peng, Mingying; Wondraczek, Lothar

    2011-05-09

    We report on photoluminescence of vanadium-doped lithium zinc silicate glasses and corresponding nanocrystalline Li2ZnSiO4 glass ceramics as broadband UV-to-VIS photoconverters. Depending on dopant concentration and synthesis conditions, VIS photoemission from [VO4]3 is centered at 550-590 nm and occurs over a bandwidth (FWHM) of ~250 nm. The corresponding excitation band covers the complete UV-B to UV-A spectral region. In as-melted glasses, the emission lifetime is about 34 μs up to a nominal dopant concentration of 0.5 mol%. In the glass ceramic, it increases to about 45 μs. For higher dopant concentration, a sharp drop in emission lifetime was observed, what is interpreted as a result of concentration quenching. Self-quenching is further promoted by energy transfer to V4+ centers (2glass and/or synthesis conditions.

  7. Reprint of “Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics”

    Science.gov (United States)

    Berretta, Christian; Poë, Simon; Stovin, Virginia

    2014-08-01

    Evapotranspiration (ET) is a key parameter that influences the stormwater retention capacity, and thus the hydrological performance, of green roofs. This paper investigates how the moisture content in extensive green roofs varies during dry periods due to evapotranspiration. The study is supported by 29 months continuous field monitoring of the moisture content within four green roof test beds. The beds incorporated three different substrates, with three being vegetated with sedum and one left unvegetated. Water content reflectometers were located at three different soil depths to measure the soil moisture profile and to record temporal changes in moisture content at a five-minute resolution. The moisture content vertical profiles varied consistently, with slightly elevated moisture content levels being recorded at the deepest substrate layer in the vegetated systems. Daily moisture loss rates were influenced by both temperature and moisture content, with reduced moisture loss/evapotranspiration when the soil moisture was restricted. The presence of vegetation resulted in higher daily moisture loss. Finally, it is demonstrated that the observed moisture content data can be accurately simulated using a hydrologic model based on water balance and two conventional Potential ET models (Hargreaves and FAO56 Penman-Monteith) combined with a soil moisture extraction function. Configuration-specific correction factors have been proposed to account for differences between green roof systems and standard reference crops.

  8. Green emission from Eu{sup 2+}/Dy{sup 3+} codoped SrO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass-ceramic by ultraviolet light and femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Huidan; Lin, Zhenyu [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Qiang [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800 (China); Chen, Danping, E-mail: d-chen@mail.siom.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800 (China); Liang, Xiaoluan; Xu, Yinsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Guorong, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-02-15

    A spectroscopic investigation of Eu{sup 2+}/Dy{sup 3+} codoped SrO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass-ceramic is presented. The sample exhibits green emission excited by ultraviolet (UV) light and near-IR femtosecond (fs) laser. The emission profile obtained by near-IR fs laser irradiation is similar to that by UV excitation, indicating that both of the emissions come from 5d {yields} 4f transition of the Eu{sup 2+} ions. The relationship between the upconversion luminescence (UCL) intensity and pump power reveals a two-photon process in the conversion of near-IR radiation to the green emission. The possible mechanism of UCL from such glass-ceramic is proposed.

  9. Influence of Glass Components on Chromaticity and Properties of Green Glass-Ceramics%基础成分对绿色微晶玻璃色度及性能的影响

    Institute of Scientific and Technical Information of China (English)

    姜妍彦; 李振全; 王世凯; 刁云超

    2011-01-01

    以CaO-Al2O3-SiO2玻璃为基础,以CuO+Cr2O3为着色剂,通过烧结法制备了绿色微晶玻璃,采用X射线衍射、扫描电子显微镜、色度计、熟膨胀仪和硬度计研究了Al2O3、Na2O和ZnO含量对绿色微晶玻璃晶相结构、色度及性能的影响.结果表明:在所研究的成分范围内,Al2O3、ZnO和Na2O含量的变化不改变绿色微晶玻璃的主晶相,但随着Al2O3加入量的增加微晶相减少,熟膨胀系数和密度减小,显微硬度增大,颜色向褐绿色转变;随着Na2O含量的增加,微晶玻璃的颜色逐渐纯正,光泽度增加;随着ZnO含量的增加,微晶玻璃的色度不变,但表面光泽度降低.%Green glass-ceramics were prepared by sintering method based on CaO-Al2O3-SiO2 system glass, using CuO+Cr2O3 as colorants. Impact of the contents of A12O3, Na2O and ZnO in green glass-ceramics on crystal structure, chromaticity and properties was studied via X-ray diffraction, scanning electron microscope, colorimeter, dilatometer and hardness tester. The results indicate that the main crystal phase of green glass-ceramics doesn't change with the contents of A12O3, Na2O or ZnO in the range of the composition, but the microcrystalline phase, the thermal expansion coefficient decrease, micro-hardness increase, the color changes from bright green to brownish-green with the increasing of A12O3. The color of glass-ceramics gradually becomes bright green and the surface glossiness increases with the increasing of Na2O. The chromaticity of glass-ceramics doesn't change, but the surface glossiness decrease with the increasing of ZnO.

  10. Study on Mechanism of Turning Al2 O3 Green Ceramics Using Cemented Carbides Tools%硬质合金刀具车削氧化铝陶瓷生坯的磨损机理研究

    Institute of Scientific and Technical Information of China (English)

    刘亚运; 邓建新; 张翔; 侯云鹤; 邹雪倩; 吴凤芳

    2016-01-01

    陶瓷生坯是未经烧结的陶瓷压坯,粉体颗粒间未形成冶金结合力,没有陶瓷的硬、脆等特性,因此可以利用这一优点用车削方式加工陶瓷生坯。用冷等静压技术制备Al2 O3陶瓷生坯柱体进行车削试验,探究陶瓷生坯切削加工质量和刀具磨损机理。试验表明刀具主要受到磨粒磨损且适当改变切削参数能明显改善加工表面质量和刀具寿命;并且在试验参数范围内,随着背吃刀量的增加,刀具寿命随之增加;进给量对刀具寿命影响不明显。%Green ceramics is ceramics compact before sintering.There is no metallurgical bonding force between pow-der particles.So it does not have hard and brittle features like ceramics.We can use this advantage to machine green ceram-ics on lathe.In order to study performance of cutting Al2 O3 green ceramics and wear mechanism of cutting tools,we fabrica-ted bulk green alumina compacts by using cold isostaitc pressing technique.The results show that cutting tools are abraded mainly by abrasive wear and we can improve surface roughness and tool life by properly changing cutting speed,cutting depth and feed rate.And tool life will be improved as increasing cutting depth within the scope of experimental parameters. Feed rate has no significant influence on tool life.

  11. The Technology of Pumping Light-weight Substrate for Roof Greening%泵送轻质屋顶绿化基材技术

    Institute of Scientific and Technical Information of China (English)

    叶建军; 韦书勇

    2009-01-01

    Rooof greening is the key measure to improve urban environment. Firstly,this paper analyzes the mommonly used technology solutions in roof greeing, and introduces some details on material selection for each layers and the existing problems in the technology of extensive green roofs.Then ,based on the above, this paper presents a new patented technology--the technology of pumping light-weight substrate for roof greening, fo-cusing on the substrate compositions and construction techniques.%屋顶绿化是改善城市环境的关键举措,本文分析了屋顶绿化的常见形式,介绍了简单屋顶绿化形式各层的材料特点、现有的简单屋顶绿化技术方案及存在的问题.在此基础上,论文介绍了一种新发明技术-泵送轻质屋顶绿化基材技术的材料组成和施工.

  12. Characterization of micro-arc ceramic coatings on Ti-2Al-2.5Zr alloy substrates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc discharge channels of the Ti-2Al-2.5Zr alloy decrease while the discharge channel size increases clearly with an increase in treating time. With an increase of the coating thickness the porous layer thickness increases apparently. Phase composition of the surface layers of the coatings was evaluated by X-ray diffraction and X-ray photoelectron spectroscopy. The results of XRD and XPS analysis show that the MAO coating mainly consists of anatase and rutile TiO2.

  13. Signal enhancement by a multi-layered substrate for mutagen detection using an SOS response-induced green fluorescent protein in genetically modified Escherichia coli.

    Science.gov (United States)

    Etoh, Hiroki; Yasuda, Mitsuru; Akimoto, Takuo

    2011-01-01

    In this paper, we describe a method to enhance the fluorescence signal of mutagen detection using SOS response-induced green fluorescence protein (GFP) in genetically modified Escherichia coli using a multi-layered substrate. To generate E. coli that express SOS response-induced GFP, we constructed a plasmid carrying the RecA promoter located upstream of the GFP gene and used it to transform E. coli BL21. The transformed strain was incubated with mitomycin C (MMC), a typical mutagen, and then immobilized on a multi-layered substrate with Ag and a thin Al(2)O(3) layer on a glass slide. Since the multi-layered substrate technique is an optical technique with potential to enhance the fluorescence of fluorophore placed on top of the substrate, the multi-layered substrate was expected to improve the fluorescence signal of mutagen detection. We obtained an average 14-fold fluorescence enhancement of MMC-induced GFP in the concentration range 1 to 1000 ng/ml. In addition, the lower detection limit of MMC was improved using this technique, and was estimated to be 1 ng/ml because of an enlargement of the difference between the blank and the signal of 1 ng/ml of MMC.

  14. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    Science.gov (United States)

    xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-02-01

    Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  15. Deep green emission at 570nm from InGaN/GaN MQW active region grown on bulk AlN substrate

    Science.gov (United States)

    Shahedipour-Sandvik, F.; Grandusky, J. R.; Jamil, M.; Jindal, V.; Schujman, S. B.; Schowalter, L. J.; Liu, R.; Ponce, F. A.; Cheung, M.; Cartwright, A.

    2005-09-01

    Relatively intense deep-green/yellow photoluminescence emission at ~600 nm is observed for InGaN/GaN multi quantum well (MQW) structures grown on bulk AlN substrates, demonstrating the potential to extend commercial III-Nitride LED technology to longer wavelengths. Optical spectroscopy has been performed on InGaN MQWs with an estimated In concentration of greater than 50% grown by metalorganic chemical vapor phase epitaxy at 750oC. Temperature- and power-dependence, time-resolved photoluminescence as well as spatially resolved cathodoluminescence measurements and transmission electron microscopy have been applied to understand and elucidate the nature of the mechanism responsible for radiative recombination at 600nm as well as higher energy emission band observed in the samples. A comparison between samples grown on bulk AlN and sapphire substrates indicate a lower degree of compositional and/or thickness fluctuation in the latter case. Our results indicate the presence of alloy compositional fluctuation in the active region despite the lower strain expected in the structure contrary to that of low In composition active regions deposited on bulk GaN substrates. Transient photoluminescence measurements signify a stretched exponential followed by a power decay to best fit the luminescence decay indicative of carrier hopping in the active region. Our results point to the fact that at such high In composition (>30%) InGaN compositional fluctuation is still a dominant effect despite lower strain at the substrate-epi interface.

  16. Evaluation of screen-printed gold on low-temperature co-fired ceramic as a substrate for the immobilization of electrochemical immunoassays.

    Science.gov (United States)

    Fakunle, Eyitayo S; Aguilar, Zoraida P; Shultz, John L; Toland, Alan D; Fritsch, Ingrid

    2006-12-05

    Screen-printed gold (SPG, Dupont gold conductor 5734) on low-temperature co-fired ceramic (LTCC) materials (Dupont dielectric tape 951, mostly composed of alumina and silica) has been demonstrated to be a substrate for electrochemical enzyme-linked immunosorbant assays. The effect of two different cleaning treatments and the extent of nonspecific adsorption on the SPG/LTCC and plain LTCC surfaces were also evaluated. LTCC materials hold promise for constructing a new generation of devices for microelectrochemical sensing and assays. Facile fabrication in three dimensions with integrated conducting elements makes them attractive. A standard sandwich immunoassay for a model analyte, mouse IgG, was used to evaluate the LTCC materials. After the assembly of components onto chips of SPG/LTCC and plain LTCC, p-aminophenol that was generated enzymatically by the enzyme label was detected electrochemically with a separate glassy carbon electrode. Cleaning SPG/LTCC with a piranha solution (7:1 vol/vol of concentrated H2SO4/30% H2O2), traditionally used for other gold surfaces prior to SAM assembly, resulted in a notable decrease in assay signal and an increase in nonspecific adsorption when compared to cleaning with water alone. Assay components assemble specifically on plain LTCC, with only a small percent attributed to NSA. Environmental scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy reveal the tremendous chemical heterogeneity and complexity of both SPG/LTCC and plain LTCC surfaces and aid in the explanation of assay results. A 10% acetate Tween bovine serum albumin solution and an ethanolic solution of 4 mM 1-butanol eliminate assay signals originating from plain LTCC. The outcomes of these studies can now be used to achieve miniaturized electrochemical immunoassays on LTCC materials where both plain and SPG surfaces are present.

  17. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  18. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  19. The composition and depth of green roof substrates affect the growth of Silene vulgaris and Lagurus ovatus species and the C and N sequestration under two irrigation conditions.

    Science.gov (United States)

    Ondoño, S; Martínez-Sánchez, J J; Moreno, J L

    2016-01-15

    Extensive green roofs are used to increase the surface area covered by vegetation in big cities, thereby reducing the urban heat-island effect, promoting CO2 sequestration, and increasing biodiversity and urban-wildlife habitats. In Mediterranean semi-arid regions, the deficiency of water necessitates the use in these roofs of overall native plants which are more adapted to drought than other species. However, such endemic plants have been used scarcely in green roofs. For this purpose, we tested two different substrates with two depths (5 and 10 cm), in order to study their suitability with regard to adequate plant development under Mediterranean conditions. A compost-soil-bricks (CSB) (1:1:3; v:v:v) mixture and another made up of compost and bricks (CB) (1:4; v:v) were arranged in two depths (5 and 10 cm), in cultivation tables. Silene vulgaris (Moench) Garcke and Lagurus ovatus L. seeds were sown in each substrate. These experimental units were subjected, on the one hand, to irrigation at 40% of the registered evapotranspiration values (ET0) and, on the other, to drought conditions, during a nine-month trial. Physichochemical and microbiological substrate characteristics were studied, along with the physiological and nutritional status of the plants. We obtained significantly greater plant coverage in CSB at 10 cm, especially for L. ovatus (80-90%), as well as a better physiological status, especially in S. vulgaris (SPAD values of 50-60), under irrigation, whereas neither species could grow in the absence of water. The carbon and nitrogen fixation by the substrate and the aboveground biomass were also higher in CSB at 10 cm, especially under L. ovatus - in which 1.32 kg C m(-2) and 209 g N m(-2) were fixed throughout the experiment. Besides, the enzymatic and biochemical parameters assayed showed that microbial activity and nutrient cycling, which fulfill a key role for plant development, were higher in CSB. Therefore, irrigation of 40% can

  20. Enhanced green upconversion by controlled ceramization of Er{sup 3+}–Yb{sup 3+} co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, J., E-mail: suresh@ua.pt; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-12-25

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na{sub 1.4}Nb{sub 3}Te{sub 4.9}O{sub 18}) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er{sup 3+}–Yb{sup 3+} co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er{sup 3+} ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied.

  1. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2015-11-01

    Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening.

  2. 多孔α-Al2O3基陶瓷片状载体的制备与性能%Preparation and Properties of Porous α-Al2O3 Based Ceramic Disk Substrates

    Institute of Scientific and Technical Information of China (English)

    陈圣博; 刘旭光; 张宝泉

    2013-01-01

    采用干压成型法制备了多孔α-Al2O3基陶瓷片,研究了烧结温度和掺杂SiO2对其结构、形貌和性能的影响.提高烧结温度能增加α-Al2O3基陶瓷片的抗压强度,但收缩率也会随之增大.最佳烧结温度为1180℃,收缩率小于0.5%,抗压强度大于80 MPa.当掺杂SiO2粉体后,陶瓷片中的无定形SiO2在烧结过程中晶化形成方石英,能够促进α-A12O3陶瓷片的烧结.当SiO2含量为12wt%,并在1180℃下烧结时,陶瓷片的收缩率仅为1.2%,抗压强度大于110 MPa.与α-Al2O3陶瓷片相比,其孔径更小但孔径分布更宽.研究表明,α-Al2O3和SiO2/Al2O3陶瓷片均具有良好的分子筛膜生长活性.但由于载体具有不同的物化性质,所制备的ZSM-5分子筛膜具有不同的形貌和尺寸.%Porous α-Al2O3 based ceramics disks were prepared by dry pressure molding method.Influences of sintering temperature and SiO2 dopant on the structure,morphology and properties were investigated.It was founded that compressive strength and shrinkage ratio of αt-Al2O3 ceramic disk both increased with increasing sintering temperature.The shrinkage ratio and compressive strength was less than 0.5% and stronger than 80 MPa,respectively,while the optimum sintering temperature was chosen to be 1180℃.The sintering of αt-Al2O3 ceramic disk would be enhanced by doping SiO2,which crystallized into cristobalite phase from an amorphous phase during the sintering process.α-Al2O3 ceramic disk doped with 12wt% SiO2 sintered at 1180℃ exhibited a stronger compressive strength (110 MPa) and a shrinkage ratio of 1.2%.The ceramic disk possessed a smaller pore size but a wider pore size distribution than that of the pure α-Al2O3 ceramic disk.It was demonstrated that both α-Al2O3 and SiO2 doped α-Al2O3 ceramic disk substrates were favorable for the growth of ZSM-5 zeolite membranes.However,these ZSM-5 zeolite membranes showed different morphologies and crystal sizes,due to the difference in

  3. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    Science.gov (United States)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  5. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  6. Influence of phase transitions on green fluorescence intensity ratio in Er3+ doped Ksub>0.5sub>Nasub>0.5sub>NbOsub>3sub> ceramic.

    Science.gov (United States)

    Liang, Zhang; Sun, Enwei; Pei, Shenghai; Li, Leipeng; Qin, Feng; Zheng, Yangdong; Zhao, Hua; Zhang, Zhiguo; Cao, Wenwu

    2016-12-12

    The fluorescence intensity ratio (FIR) method is a non-contact temperature (T) measurement technique based on thermally coupled levels of rare earth ions in a doped host. Green fluorescence originating from 2Hsub>11/2sub> and 4Ssub>3/2sub> states of Er3+ doped Ksub>0.5sub>Nasub>0.5sub>NbOsub>3sub> (KNN) ceramic are studied in the temperature range of 300 K to 720 K. The fluorescence intensities change dramatically around phase transition points where the crystal symmetry changes, inducing deviation of the FIR from Boltzmann's law. The temperature determined by the FIR method deviates from thermocouple measurements by 7 K at the orthorhombic to tetragonal phase transition (Tsub>O-Tsub>) point and 13 K at the Curie point (Tsub>Csub>). This finding gives guidance for developing fluorescent T sensors with ferroelectrics and may also provide a fluorescent method to detect phase transitions in ferroelectric materials.

  7. 基于陶瓷基体铂薄膜电阻热式气体质量流量计设计%Design of thermal gas mass flowmeter based on platinum film resistors on ceramic substrate

    Institute of Scientific and Technical Information of China (English)

    刘志亮; 姜国光

    2016-01-01

    A kind of design method for thermal gas mass flowmeter based on platinum film resistors on ceramic substrate is presented,principle of thermal gas flowmeter is analyzed,platinum resistive flow sensor based on ceramic substrate is made. In order to reduce power supply,through-hole scheme is proposed. A prototype is fabricated with a thermostatic control circuit and MSP430 MCU processing circuit. Calibration and test are implemented using sonic nozzle calibration device,measurement range of flowmeter is 500~1 500 kg/h,precision is ±0. 5%,and response time is 2 s,which meet demand for most industrial pipe air mass flow test,and has broad application prospects.%提出了一种基于陶瓷基体铂薄膜电阻热式气体质量流量计的设计方法,分析了热式气体流量计的原理,制作了陶瓷铂电阻流量敏感元件,为降低加热功耗,提出了通孔方案.设计了恒温差控制电路和MSP430单片机处理电路,并制作出了实际样机.采用音速喷嘴标定装置对样机进行了标定和测试,该流量计的测量范围500~1 500 kg/h,精度±0. 5%,响应时间2 s,能够满足大工业气体管道流量的测量要求,具有广阔的应用前景.

  8. Estudo da conformação de substratos cerâmicos por laminação a partir de suspensões concentradas de alumina Rolling study of ceramic substrates from concentrate alumina suspensions

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-12-01

    Full Text Available A produção de substratos cerâmicos por laminação, ou conformação viscoplástica, é interessante, pois minimiza problemas inerentes ao processamento como a aglomeração dos pós. Quando a preparação das massas a serem conformadas por esta técnica é realizada a partir de suspensões estáveis, estes problemas quase inexistem, possibilitando a obtenção de produtos íntegros com microestrutura homogênea. Neste trabalho é apresentado o comportamento reológico das suspensões concentradas e das massas de alumina contendo diferentes teores do espessante/plastificante hidroxipropil metilcelulose (HPMC e também o estudo das variáveis de processo envolvidas na conformação por calandragem. Como resultado deste estudo foi possível obter substratos de alumina calandrados densos, utilizando-se uma suspensão concentrada (60% vol., estabilizada com 0,02% de Viscocrete 20HE e com adição de 1,5%m. de HPMC.The ceramic substrates production by calendering, or viscous plastic processing, is interesting because inherent problems as a powder agglomeration is minimized. When the ceramic pastes shaping for this technique are produced from stabilized suspensions these problems almost inexist. This work presents the concentrate suspensions and pastes with different hydroxypropyl methyl cellulose (HPMC thickener content rheological behaviors. The variables involved in calendering shaping were studied, too. The production of dense alumina substrates shaped by calendaring from concentrate suspensions (60 vol.%, stabilized with 0.02 wt.% Viscocrete 20HE and 1.5 wt.% HPMC is possible.

  9. Growth of Epitaxial gamma-Al2O3 Films on Rigid Single-Crystal Ceramic Substrates and Flexible, Single-Crystal-Like Metallic Substrates by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junsoo [ORNL; Goyal, Amit [ORNL; Wee, Sung Hun [ORNL

    2009-01-01

    Epitaxial -Al2O3 thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of -Al2O3 films was confirmed by x-ray diffraction. SrTiO3 and MgO single crystal substrates were used to optimize the growth conditions for epitaxial -Al2O3 film. Under the optimized conditions, epitaxial -Al2O3 thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured, MgO buffer layer. These biaxially textured, -Al2O3 films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications.

  10. Ba2ErNbO6: A new perovskite ceramic substrate for Bi(2223) superconducting thick films (c(0) = 110 K)

    Indian Academy of Sciences (India)

    S U K Nair; P R S Warriar; J Koshy

    2005-02-01

    Barium erbium niobate (Ba2ErNbO6) has been developed as a new substrate for (Bi,Pb)2Sr2Ca2Cu3O [Bi(2223)] superconductor film. Ba2ErNbO6 (BENO) has a cubic perovskite structure with lattice constant, = 8.318 Å. The Bi(2223) superconductor does not show any detectable chemical reaction with BENO even under extreme processing conditions. Dip coated Bi (2223) thick film, Ba2ErNbO6 substrate, gave a c (0) of 110 K and current density of ∼ 4 × 103 A cm-2 at 77 K and zero magnetic field.

  11. Methods of repairing a substrate

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  12. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  13. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  14. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  15. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  16. Growth of epitaxial {gamma}-Al{sub 2}O{sub 3} films on rigid single-crystal ceramic substrates and flexible, single-crystal-like metallic substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junsoo, E-mail: jshin@ornl.go [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Goyal, Amit [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wee, Sung-Hun [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-08-03

    Epitaxial {gamma}-Al{sub 2}O{sub 3} thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of {gamma}-Al{sub 2}O{sub 3} films was confirmed by X-ray diffraction. SrTiO{sub 3} and MgO single crystal substrates were used to optimize the growth conditions for epitaxial {gamma}-Al{sub 2}O{sub 3} film. Under the optimized conditions, epitaxial {gamma}-Al{sub 2}O{sub 3} thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured, MgO buffer layer. These biaxially textured, {gamma}-Al{sub 2}O{sub 3} films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications.

  17. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  18. Method for non-destructive evaluation of ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  20. Simulation and performance study of the ceramic THGEM

    OpenAIRE

    Yan, Jia-qing; Xie, Yu-Guang; Hu, Tao; Lu, Jun-Guang; Zhou, Li; Qu, Guo-Pu; Cai, Xiao; Niu, Shun-Li; Chen, Hai-tao

    2014-01-01

    The THGEMs based on ceramic substrate were developed successfully for neutron and single photon detection. The influences on thermal neutron scattering and the internal radioactivity of both ceramic and FR-4 substrates were studied and compared. The ceramic THGEMs are homemade of 200 um hole diameter, 600 um pitch, 200 um thickness, 80 um rim, and 50 mm*50 mm sensitive area. The FR-4 THGEMs with the same geometry were used for the reference. The gas gain, energy resolution and gain stability ...

  1. Preparation of Lanthanum-Doped Pb(Zr,Ti)O3 Ceramics Sheets by Tape Casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The physical and electrical properties of lanthanum doped Pb(Zr,Ti)O3 ceramic sheets (PLZT) which were prepared by tape casting method were carried out. Tape casting of lanthanum modified PZT was performed using commercial cellulose acetate binders and poly(ethylene glycol) plasticizers in ethanol solvent. Tapes from these slips were casted on a polymer substrate. The PLZT green tapes were stacked for 5 units and sintered in air at 1050℃ for 1 h with heating rate 5℃/min. SEM micrographs show that the tape is dense (90.26% of theoretical density) and rather uniform with grain size of approximately 1.1 ? m. The dielectric permittivity and loss tangent of PLZT ceramics as a function of temperature at 1 kHz suggest that the compounds exhibit a phase transition of diffuse type. The transition temperature (Tm) and piezoelectric coefficient (d33) were 110℃ and 117 pC/N, respectively.

  2. Ka频段陶瓷基板微带带通滤波器设计分析%Design of Ka-band Microstrip Bandpass Filter on Ceramic Substrate

    Institute of Scientific and Technical Information of China (English)

    赵飞; 党元兰; 王璇

    2012-01-01

    为满足微波电路小型化的发展要求,基于陶瓷基板设计了一款Ka频段的微带带通滤波器。分析了滤波器的电路设计原理及工艺设计方案,采用电路优化和三维全波仿真结合的方法对电路进行仿真。在优化后的版图基础上,通过改善膜层附着力、提高加工精度等方式对滤波器的加工进行控制。测试结果满足使用要求,证明了电路及工艺设计方案的正确性。%A Ka-band microstrip bandpass filter using ceramic substrate is designed to meet the requirement of microwave IC miniaturization.The circuit design principle and technology design scheme are analyzed.The circuit is simulated by combining the circuit optimization and 3D full-wave simulation.Based on the optimized layout,the processing of filter is controlled by improving the adhesion of the film and increasing the processing accuracy.The test result proves the validity of the microstrip bandpass filter and its design method.

  3. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  4. 陶瓷单晶(100)基底上外延生长Pt薄膜%Formation of Epitaxial Platinum Films on Ceramics-(100) Single Crystal Substrates

    Institute of Scientific and Technical Information of China (English)

    赵昆; 黄康权; 张丽

    2004-01-01

    用对靶溅射技术在MgAl2O4 (100) (MAO) 和SrTiO3 (100) (STO)单晶基底上制备Pt薄膜.基底温度为700℃时,Pt薄膜外延生长为(200)取向,Pt/STO 薄膜的电阻率很低,而Pt/MAO 薄膜表现出高电阻特征.此外,Pt (50nm)/La0.67Ca0.33MnO3 (50nm)/STO的制备和研究表明,在包括庞磁电阻材料的器件设计中,Pt是一种较好的电极材料.%Thin platinum (Pt) films were prepared on single-crystal substrates MgAl2O4 (100) (MAO) and SrTiO3 (100) (STO) by a facing-target sputtering technique. The films prepared at higher substrate temperature (Ts= 700℃) were grown epitaxially with (200) orientation on SrTiO3 (100) and MgAl2O4 (100). Different from the lower resistivity of Pt/STO film, Pt/MAO film shows a very higher resistivity and the temperature dependence of the resistance exhibits insulator behavior because of the pinhole formation. We also grew epitaxial Pt (50 nm)/La0.67Ca0.33MnO3 (50nm)/STO structure, indicating that Pt is a good electrode for devices involving colossal magnetoresistance materials.

  5. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  6. Dual-role plasticizer and dispersant for ceramic layers

    DEFF Research Database (Denmark)

    2016-01-01

    Thus, one aspect of the invention relates to a green ceramic layer comprising a ceramic material, a binder, and a dual-role dispersant and plasticizer, wherein said dual-role dispersant and plasticizer is an organic di- or tri-ester selected from compounds of formula (I), (II), (III) and (IV......). Another aspect of the present invention relates to a slurry for use in the manufacturing of a green ceramic layer comprising a ceramic material, a solvent, a binder, and a dual-role dispersant and plasticizer, wherein said dual role dispersant and plasticizer is an organic di- or tri- ester. Further...... aspects include uses of and methods of manufacturing said green ceramic layers....

  7. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  8. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    R Knitter; W Bauer

    2003-02-01

    Fabrication of micropatterned ceramics or ceramic microparts make high demands on the precision and resolution of the moulding process. As finishing of miniaturised or micropatterned ceramic components is nearly impossible, shaping has to be done by a replication step in the green, unfired state. To avoid high tooling costs in product development, a rapid prototyping process chain has been established that enables rapid manufacturing of ceramic microcomponents from functional models to small lot series within a short time. This process chain combines the fast and inexpensive supply of master models by rapid prototyping with accurate and flexible ceramic manufacturing by low-pressure injection moulding. Besides proper feedstock preparation and sufficient small grain size, the quality of the final components is mainly influenced by the quality of the master model. Hence, the rapid prototyping method must be carefully selected to meet the requirements of the component to be fabricated.

  9. Eco friendly green and yellow ceramic pigments based on calcium-doped Pr{sub 2}Mo{sub 2}O{sub 9} obtained by addition of mineralizers and chemical coprecipitation.; Ecopigmentos ceramicos verdes y amarillos de Pr{sub 2}Mo{sub 2}O{sub 9} dopados con calcio obtenidos en presencia de mineralizadores y por coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R.; Garcori, C.; Llusar, M.; Garcia, A.; Badenes, J.; Monros, G.

    2011-07-01

    In this paper the synthesis of (Pr{sub 2}-xCa{sub x})Mo{sub 2}O{sub 9} solid solutions by ceramic route is presented. Crystallography and colour evolution from green to yellow described on literature have been checked. When enamelled in a lead free double firing ceramic glaze, pigments produces light yellow colours not better than b*=19. Using NH{sub 4}Cl, NaF and Na{sub 2}SiF{sub 6} as mineralizers in the (Pr{sub 2}-xCa{sub x})Mo{sub 2}O{sub 9} x=0,1 composition with the same molar addition of halogens (0.84 mols per formula weight), a structural effect of fluoride ion is observed but the yellow colour on enamelled samples do not improve. Finally, using an ammonia coprecipitation method in the x=0.6 sample, a similar crystallization to the homologous ceramic sample is detected, but x ray diffraction peaks are more intense and less wide, pointing to a more regular and higher crystal size crystallization which is checked by electronic scanning microscopy. This microstructure give more intense yellow coloured powders and improve their resistance against glaze, producing significantly best yellow colours than ceramic samples. (Author) 14 refs.

  10. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  11. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  12. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  13. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  14. Fatigue strength testing of LTCC and alumina ceramics bonds

    Science.gov (United States)

    Dąbrowski, A.; Matkowski, P.; Golonka, L.

    2012-12-01

    In this paper the results of fatigue strength tests of ceramic joints are presented. These tests have been performed on the samples subjected to thermal and vibration fatigue as well as on the reference samples without any additional loads. The main goal of the investigation was to determine the strength of hybrid ceramics joints using tensile testing machine. The experiment enabled evaluation of fatigue effects in the mentioned joints. Geometry of test samples has been designed according to FEM simulations, performed in ANSYS FEM environment. Thermal stress as well as the stress induced by vibrations have been analyzed in the designed model. In the experiments two types of ceramics have been used — LTCC green tape DP951 (DuPont) and alumina ceramic tape. The samples have been prepared by joining two sintered ceramic beams made of different types of material. The bonds have been realized utilizing low temperature glass or a layer of LTCC green tape.

  15. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  16. DC-magnetron sputtering of ZnO:Al films on (00.1)Al{sub 2}O{sub 3} substrates from slip-casting sintered ceramic targets

    Energy Technology Data Exchange (ETDEWEB)

    Miccoli, I., E-mail: ilio.miccoli@unisalento.it [Photovoltaics R and D Lab, Alfa Impianti S.r.l., Via Baden Powell, I-73044 Galatone, Lecce (Italy); Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, I-73100 Lecce (Italy); Spampinato, R.; Marzo, F. [Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, I-73100 Lecce (Italy); Prete, P. [Istituto per la Microelettronica e Microsistemi del CNR, Unità di Lecce, Via Monteroni, I-73100 Lecce (Italy); Lovergine, N. [Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, I-73100 Lecce (Italy)

    2014-09-15

    Highlights: • ZnO:Al was DC-sputtered on sapphire >350 °C by slip-casting sintered AZO target. • Films are highly (00.1)-oriented, smooth and transparent in the NIR–visible range. • Films growth rate decreases with temperature, while their grain size increases. • A high temperature reduction for sticking coefficients of impinging species is proved. • We prove that Thornton model does not apply to high-temperature DC-sputtered ZnO. - Abstract: High (>350 °C) temperature DC-sputtering deposition of ZnO:Al thin films onto single-crystal (00.1) oriented Al{sub 2}O{sub 3} (sapphire) substrates is reported, using a ultrahigh-density, low-resistivity and low-cost composite ceramic target produced by slip-casting (pressureless) sintering of ZnO–Al{sub 2}O{sub 3} (AZO) powders. The original combination of high-angle θ–2θ (Bragg–Brentano geometry) X-ray diffraction with low angle θ–2θ X-ray reflectivity (XRR) techniques allows us to define the AZO target composition and investigate the structural properties and surface/interface roughness of as-sputtered ZnO:Al films; besides, the growth dynamics of ZnO:Al is unambiguously determined. The target turned out composed of the sole wurtzite ZnO and spinel ZnAl{sub 2}O{sub 4} phases. X-ray diffraction analyses revealed highly (00.1)-oriented (epitaxial) ZnO:Al films, the material mean crystallite size being in the 13–20 nm range and increasing with temperature between 350 °C and 450 °C, while the film growth rate (determined via XRR measurements) decreases appreciably. XRR spectra also allowed to determine rms surface roughness <1 nm for present films and showed ZnO:Al density changes by only a few percent between 350 °C and 450 °C. The latter result disproves the often-adopted Thornton model for the description of the sputter-grown ZnO films and instead points out toward a reduction of the sticking coefficients of impinging species, as the main origin of film growth rate and grain size dependence

  17. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    Directory of Open Access Journals (Sweden)

    Adam D Printz

    Full Text Available This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I, a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II, the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary. The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS. Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO in thin-film electronics over large areas (i.e., solar cells or as a method of rapid prototyping for laboratory-scale devices.

  18. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    Science.gov (United States)

    Printz, Adam D; Chan, Esther; Liong, Celine; Martinez, René S; Lipomi, Darren J

    2013-01-01

    This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1) and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.

  19. Síntese do pigmento cerâmico verde vitória (Ca3Cr2Si3O12 a partir de CaCO3, Cr2O3 e SiO2 Synthesis of the Ceramic Pigment Victoria Green (Ca3Cr2Si3O12 from CaCO3, Cr2O3 and SiO2

    Directory of Open Access Journals (Sweden)

    Viviana Possamai Della

    2008-01-01

    Full Text Available The synthesis of the ceramic pigment Victoria Green (Ca3Cr2Si3O12 is described. As raw materials CaCO3, Cr2O3, and SiO2 obtained from rice husk were used. Borax was used as mineralizer. Raw materials were formulated stoichiometrically and calcined from 1000 to 1200 ºC for 180 min. The main phase detected was uvarovite with particle size below 45 mm. The pigments were applied on ceramic tiles and sintered at 1150 ºC for 40 min. The synthesis process showed to be adequate to produce the green pigment, whose characteristics resemble those of a commercial pigment.

  20. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Science.gov (United States)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  1. Guanidine Soaps As Vehicles For Coating Ceramic Fibers

    Science.gov (United States)

    Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.

    1994-01-01

    Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.

  2. Direct foaming porous alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Salvini, V.R.; Sandurkov, B.A.; Klein-Gunnewiek, R.F.; Pandolfelli, V.C. [Federal Univ. of Sao Carlos, Materials Engineering Dept., FIRE Associate Lab., Sao Carlos, SP (Brazil)

    2007-07-01

    This paper presents the work carried out in order to improve the properties of these porous alumina ceramics, concerning their application as thermal insulating. Changes in solid content of ceramic suspension, variations of pore forming agents and other additives were carried out and their effects on the green and the sintered mechanical strength are also shown. According to the literature, several starch types seem to be attractive pore forming agents as well as binders for porous ceramics. Most of them consist of a mixture of two polysaccharide types, amylose (linear) and amylopectin (highly branched). Corn, potato and rice starches were used in the present study because of their difference in size and shape. In order to increase the mechanical strength of the sintered porous ceramics a part of the Al{sub 2}O{sub 3} in the composition was replaced by Al(OH){sub 3}. Due to the changes of the composition and additives, porosities up to 81% and a mechanical strength of 15 MPa were obtained. (orig.)

  3. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

    Science.gov (United States)

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-03-15

    For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd(2+) ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd(2+) ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity.

  4. Experimental study of ceramic coated tip seals for turbojet engines

    Science.gov (United States)

    Biesiadny, T. J.; Klann, G. A.; Lassow, E. S.; Mchenry, M.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond boat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface.

  5. Influence of the Substrate Composition in Extensive Green Roof on the Effluent Quality%粗放型绿色屋面填料的介质组成对出水水质的影响

    Institute of Scientific and Technical Information of China (English)

    陈昱霖; 李田; 顾俊青

    2014-01-01

    通过模拟降雨实验监测填料组成不同的绿色屋面模拟设施出水水质,研究粗放型绿色屋面设施填料组成对出水污染物特征的影响.结果表明,设施出水中主要的污染物包括不同形态的 N、P 以及 COD;除 COD 外,出水中污染物浓度随累积降雨量增加而下降,具有明显的淋失效应;所有设施出水中重金属含量均较低,初期出水的平均浓度均达到饮用水标准.含有田园土、醋糟的绿化种植土出水营养物质淋失严重,在累计降雨150 mm 情况下,设施出水 TN、TP、COD 平均浓度分别为2.93、0.73和78 mg·L -1,均超过地表水水质标准V类的限值,添加水厂污泥可以有效地减少绿化种植土中 TP 的淋出且不影响植物对 P 的吸收;使用无机复合种植土的设施出水水质较好,但仍需要结合设施对水量削减能力和植物生长状况判断填料是否能够应用于粗放型绿色屋面.%By monitoring the effluent quality from different green roof assemblies during several artificial rain events, the main pollutant characteristics and the influence of substrate composition in extensive green roof on the effluent quality were studied. Results showed that the main pollutants in the effluent were N, P and COD; with the increase of cumulative rain, the concentrations of pollutants in the effluent decreased, which had obvious leaching effect; The average concentrations of heavy metals in the early effluent from all assemblies reached drinking water standard, including the assemblies using crushed bricks; When garden soil and compost were used as organic matter, the assemblies had serious leaching of nutrient substance. After the accumulated rainfall reached 150 mm, the TN, TP and COD concentrations of effluent were 2. 93, 0. 73 and 78 mg·L - 1 , respectively, which exceeded the Surface water V class limit. By means of application of the Water Treatment Residual, the leaching of TP from green planting soil was

  6. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  7. Ceramic tape fabrication: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-04-01

    The production flow for green tapes can be roughly divided into the production of slip and the tape casting/tape calendering process. A slip usually consists of ceramic powder, solvents, binders, plasticizers and dispersants. The preparation of the slip is a critical step in the fabrication of ceramic tapes. To obtain a homogeneous slip, the organic additives must first be weighed and dissolved in the solvent. The ceramic powder is then dispersed and existing agglomerates destroyed. A dispersant is added to prevent the reformation of agglomerates. If necessary, the viscosity is then adjusted, and the slip filtered. The exact sequence depends on the type of slip and the equipment used. To destroy the agglomerates, a wide range of mills is employed, from ball mills through attritor mills to ultrasonic devices (mainly on laboratory scale). A wide variety of grinding media, with different sizes, geometries and materials, is also used. The selection depends largely on the characteristics of the slip (e.g.: viscosity, wettability, drying behaviour), the required properties of the ceramic tapes (permitted content of impurities, sintering behaviour) and the quantities to be processed. In most cases, an actual grinding effect, i.e. size reduction of the particles, is avoided. Some of the most commonly used devices are described. At present, tapes with a thickness of 5 {mu}m can be fabricated - in the next years, thicknesses of around 1{mu}m must be reached. To enable this, slip preparation must be further improved and production performed in an absolutely clean environment (for specific products clean rooms are already standard, but even higher clean room standards will be needed in the future). Moreover, new, finer ceramic powders are necessary with particle sizes on the nanometer scale (nanopowders). (orig.)

  8. Ceramic materials testing and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K. R., LLNL

    1998-04-30

    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  9. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  10. Freeze-Spray Processing of Layered Ceramic Composites (Preprint)

    Science.gov (United States)

    2006-04-01

    remove the ice by sublimation . In order to study the effect of green density on the sintered microstructure, a set of samples were isostatically...Ceram. Forum Int., 79 ( 9 , E35-E38, (2002). ’K. Araki and J. W. Halloran, "Room-Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable ...Vehicles in the Naphtalene- Camphor Eutectic System," J. Am. Cerum Soc. 87 (1 1) 2014-2019 (2004). 9 ~ . Reed, Introduction to the Principles of

  11. The influence of clay fineness upon sludge recycling in a ceramic matrix

    Science.gov (United States)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  12. Performance study of the ceramic THGEM

    CERN Document Server

    Yan, Jia-Qing; Hu, Tao; Lu, Jun-Guang; Zhou, Li; Qu, Guo-Pu; Cai, Xiao; Niu, Shun-Li; Chen, Hai-Tao

    2014-01-01

    The THGEMs based on ceramic substrate were developed successfully for neutron and single photon detection. The influences on thermal neutron scattering and the internal radioactivity of both ceramic and FR-4 substrates were studied and compared. The ceramic THGEMs are homemade of 200 um hole diameter, 600 um pitch, 200 um thickness, 80 um rim, and 50 mm*50 mm sensitive area. The FR-4 THGEMs with the same geometry were used for the reference. The gas gain, energy resolution and gain stability were measured in different gas mixtures by using the 5.9 keV X-rays. The maximum gain of single layer ceramic THGEM reaches 6*104 and 1.5*104 at Ne+CH4 = 95:5 and Ar+i-C4H10 = 97:3, respectively. The energy resolution is better than 24%. The good gain stability was obtained during more than 100 hour continuous test at Ar+CO2 = 80:20. By using the 239Pu source, the alpha deposited energy spectrum and gain curve of ceramic THGEM were measured.

  13. Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianfang; Li, Zhen, E-mail: zhenli@cug.edu.cn; Huang, Yanqiu; Li, Fei; Yang, Qiuran

    2014-01-15

    Highlights: • Low cost cordierite glass–ceramics were fabricated from potassium feldspar. • The glass–ceramics could be highly densified below 950 °C. • The glass–ceramics exhibit extraordinary properties. • The glass–ceramics can be used as LTCC substrates. • The excess SiO{sub 2} improved the microstructure and properties of the glass–ceramics. -- Abstract: Cordierite glass–ceramics for low temperature co-fired ceramic (LTCC) substrates were fabricated successfully using potassium feldspar as the main raw material. The sintering and crystallization behaviors of the glass–ceramics were investigated by the differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The results indicated that the glass–ceramics could be highly densified at 850 °C and the cordierite was the main crystalline phase precipitated from the glasses in the temperature range between 900 and 925 °C. The study also evaluated the physical properties including dielectric properties, thermal expansion and flexural strength of the glass–ceramics. The glass–ceramics showed low dielectric constants in the range of 6–8 and low dielectric losses in the range of 0.0025–0.01. The coefficients of thermal expansion (CTEs) are between 4.32 and 5.48 × 10{sup −6} K{sup −1} and flexural strength of the glass–ceramics are 90–130 MPa. All of those qualify the glass–ceramics for further research to be used as potential LTCC substrates in the multilayer electronic substrate field. Additionally, the excess SiO{sub 2} acted as a great role in improving the sinterability of the glasses, and the microstructure and dielectric properties of the relevant glass–ceramics.

  14. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  15. Ceramic Matrix Composites .

    Directory of Open Access Journals (Sweden)

    J. Mukerji

    1993-10-01

    Full Text Available The present state of the knowledge of ceramic-matrix composites have been reviewed. The fracture toughness of present structural ceramics are not enough to permit design of high performance machines with ceramic parts. They also fail by catastrophic brittle fracture. It is generally believed that further improvement of fracture toughness is only possible by making composites of ceramics with ceramic fibre, particulate or platelets. Only ceramic-matrix composites capable of working above 1000 degree centigrade has been dealt with keeping reinforced plastics and metal-reinforced ceramics outside the purview. The author has discussed the basic mechanisms of toughening and fabrication of composites and the difficulties involved. Properties of available fibres and whiskers have been given. The best results obtained so far have been indicated. The limitations of improvement in properties of ceramic-matrix composites have been discussed.

  16. Ceramic art in sculpture

    OpenAIRE

    Rokavec, Eva

    2014-01-01

    Diploma seminar speaks of ceramics as a field of artistic expression and not just as pottery craft. I presented short overview of developing ceramic sculpture and its changing role. Clay inspires design and touch more than other sculpture media. It starts as early as in prehistory. Although it sometimes seems that was sculptural ceramics neglected in art history overview, it was not so in actual praxis. There is a rich tradition of ceramics in the East and also in Europe during the renaissanc...

  17. Metaphysical green

    OpenAIRE

    Earon, Ofri

    2011-01-01

    “Sensation of Green is about the mental process like touching, seeing, hearing, or smelling, resulting from the immediate stimulation of landscape forms, plants, trees, wind and water. Sensation of Green triggers a feeling of scale, cheerfulness, calmness and peace. The spatial performance of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from th...

  18. Light element ceramics

    OpenAIRE

    Rao, KJ; Varma, KBR; Raju, AR

    1988-01-01

    An overview of a few structually important light element ceramics is presented. Included in the overview are silicon nitide, sialon, aluminium nitride, boron carbide and silicon carbide. Methods of preparation, characterization and industrial applications of these ceramics are summarized. Mechanical properties, industrial production techniques and principal uses of these ceramics are emphasized.

  19. Ceramic to metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  20. Implantable devices having ceramic coating applied via an atomic layer deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.

    2016-03-08

    Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.

  1. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  2. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  3. 碎砖和陶粒配制的拓展型屋顶绿化基材栽种景天植物对比试验%Comparative Study on Planting Sedum Plants in Extensive Green Roof Substrates Made of Crushed Brick and Ceramsite

    Institute of Scientific and Technical Information of China (English)

    叶建军; 朱兆华; 魏道江; 肖衡林; 徐国钢; 梁世庆

    2016-01-01

    Objective] T he objective of the study is to compare the effects of planting sedum plants in green roof substrates made of crushed brick and ceramsite in order to provide the reference for related research . [Methods] With two types of extensive green roof substrate mixed by using 5% distillers'grains ,10% top soil ,25% sand ,compound fertilizer (4 kg/m3 ) and 60% ceramsite ,or 55% crushed brick and 5% lime stone ,we planted two popular Sedum species (Sedum sarmentosum ,SS ;Sedum Linare ,SL) in them ,and then investigated coverage and dry weights of plants ,and nutrient content(total nitrogen ,TN ;total phos‐phorus ,TP;and total kalium ,TK) in substrate within 18 months .[Results] Plant coverage and dry weights from substrate made of crushed brick were greater or equal to those from substrate made of ceram‐site ,while the decreases of TP and TK in two substrates did not differ from each other significantly ,TN in substrate made of crushed brick reduced less than substrate made of ceramsite .The coverage and dry weights of SS were significantly higher than those of SL .[Conclusion] Green roof plants grow better in the green roof substrate made of crushed brick than substrate made of ceramsite ,and thus can replace ceramsite in mix‐ing green roof substrate .%[目的]对比建筑垃圾和陶粒配制的拓展型屋顶绿化基材栽种景天植物的效果,为相关的研究提供参考。[方法]采用酒糟(5%)、表土(10%)、河沙(25%)、复合肥(4 kg/m3)以及60%陶粒或55%碎砖、5%碎石灰石配制的2种屋顶绿化基材,现场栽种2种流行的景天植物垂盆草(Sedum Sarmentosum )和佛甲草(Sedum Linare);在18个月内考察植物盖度、植物干重、基材养分含量的变化。[结果]建筑垃圾基材栽种的植物的盖度和干重大于或等于陶粒基材;建筑垃圾基材的磷、钾养分含量减少与陶粒基材无显著差异,氮养分含量减少量小于陶粒基材;

  4. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    example is a tiny Danish summer house from 1918 . The second example is ‘House before House’ , in Tokyo. The third example is a prefabricated house ‘CHU’ . The analysis evaluates the characteristics of diverse tones of green – from green image to green sensation. The analysis is based on the original...... of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses...... the Sensation of Green? Three existing examples are agents to this discussion. The first example is a Danish summer house. The other two are international urban examples. While the summer house articulates the original meaning of Sensation of Green, the urban examples illustrate its urban context. The first...

  5. Thickness dependence of magnetoelectric response for composites of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on CoFe{sub 2}O{sub 4} ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wang-jing@nuaa.edu.cn; Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wu, Xia; Deng, Chaoyong [School of Electronics and Information Engineering, Guizhou University, Guiyang 550025 (China); Peng, Renci; Wang, Jianjun [School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-08-15

    Using chemical solution spin-coating we grew Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films of different thicknesses on highly dense CoFe{sub 2}O{sub 4} ceramics. X-ray diffraction revealed no other phases except Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} and CoFe{sub 2}O{sub 4}. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} film was important in obtaining strong magnetoelectric coupling.

  6. Thickness dependence of magnetoelectric response for composites of Pb(Zr0.52Ti0.48O3 films on CoFe2O4 ceramic substrates

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-08-01

    Full Text Available Using chemical solution spin-coating we grew Pb(Zr0.52Ti0.48O3 films of different thicknesses on highly dense CoFe2O4 ceramics. X-ray diffraction revealed no other phases except Pb(Zr0.52Ti0.48O3 and CoFe2O4. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr0.52Ti0.48O3 film was important in obtaining strong magnetoelectric coupling.

  7. Ceramic films produced by a gel-dipping process

    Energy Technology Data Exchange (ETDEWEB)

    Santacruz, I.; Ferrari, B.; Nieto, M.I.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Camino de Valdelatas s/n, E-28049 Madrid (Spain)

    2003-09-01

    A novel method for manufacturing self-supporting ceramic films is based on the use of aqueous suspensions containing low concentrations of a biopolymer (carrageenan) and the formation of the film by immersion of a graphite substrate into the ceramic suspension heated at 60 C. A film is obtained by dipping after cooling at RT; burning out graphite during sintering leaves homogeneous, dense, and self-supported films (see Figure for an SEM image). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  8. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  9. Combinatorial study of ceramic tape-casting slurries.

    Science.gov (United States)

    Liu, Zhifu; Wang, Yiling; Li, Yongxiang

    2012-03-12

    Ceramic tape-casting slurries are complex systems composed of ceramic powder, solvent, and a number of organic components. Conventionally, the development of ceramic tape-casting slurries is time-consuming and of low efficiency. In this work, combinatorial approaches were applied to screen the ethanol and ethyl-acetate binary solvent based slurry for ceramic green tape-casting. The combinatorial libraries were designed considering the variation of the amount of PVB (Poly vinyl-butyral) binder, polyethylene-400, and butyl-benzyl-phthalate plasticizers, and glyceryl triacetate dispersant. A parallel magnetic stirring process was used to make the combinatorial slurry library. The properties mapping of the slurry library was obtained by investigating the sedimentation and rheological characteristics of the slurries. The slurry composition was refined by scaling up the experiments and comparing the microstructure, mechanical property, and sintering behavior of green tapes made from the selected slurries. Finally, a kind of ethanol-ethyl acetate binary solvent based slurry system suitable for making X7R dielectric ceramic green tapes was achieved.

  10. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  11. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  12. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  13. Green Architecture

    Science.gov (United States)

    Lee, Seung-Ho

    Today, the environment has become a main subject in lots of science disciplines and the industrial development due to the global warming. This paper presents the analysis of the tendency of Green Architecture in France on the threes axes: Regulations and Approach for the Sustainable Architecture (Certificate and Standard), Renewable Materials (Green Materials) and Strategies (Equipments) of Sustainable Technology. The definition of 'Green Architecture' will be cited in the introduction and the question of the interdisciplinary for the technological development in 'Green Architecture' will be raised up in the conclusion.

  14. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  15. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  16. Ceramic laser materials

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  17. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  18. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  19. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, David A. (Clifton Park, NY); Bacchi, David P. (Schenectady, NY); Connors, Timothy F. (Watervliet, NY); Collins, III, Edwin L. (Albany, NY)

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  20. Literature Review of Polymer Derived Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reuben James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    Polymer Derived Ceramics (PDCs), also known as preceramic polymers, are valuable coating agents that are used to produce surface barriers on substrates such as stainless steel. These barriers protect against a multitude of environmental threats, and have been used since their research and development in 19772. This paper seeks to review and demonstrate the remarkable properties and versatility that PDCs have to offer, while also giving a brief overview of the processing techniques used today.

  1. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  2. Automatically Green

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    2014-01-01

    to consumers. In deciding whether to establish green defaults, choice architects should consider both consumer welfare and a wide range of other costs and benefits. Sometimes that assessment will argue strongly in favor of green defaults, particularly when both economic and environmental considerations point...

  3. Automatically Green

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    to consumers. In deciding whether to establish green defaults, choice architects should consider both consumer welfare and a wide range of other costs and benefits. Sometimes that assessment will argue strongly in favor of green defaults, particularly when both economic and environmental considerations point...

  4. Green Solutions

    Institute of Scientific and Technical Information of China (English)

    LU LING

    2010-01-01

    @@ World Expo's China Pavilion is a large crimson building,but it's green at heart.The pavilion,a magnificent symbol of Chinese culture,is also a "green landmark" on the world stage,thanks to German company Siemens' energy-saving solutions.

  5. Green consumerism

    DEFF Research Database (Denmark)

    de Groot, Judith I.M.; Schuitema, Geertje; Garson, Carrie Lee

    Our presentation will focus on the influence of product characteristics and values on green consumerism. Although generally a majority of consumers support the idea of purchasing green products, we argue, based on social dilemma theory, that proself product characteristics and egoistic...... and biospheric values influence the importance of such ‘green’ product characteristics on purchasing intentions. In two within-subjects full-factorial experimental studies (N = 100 and N = 107), we found that purchase intentions of products were only steered by green characteristics if prices were low...... and the brand was familiar. Green product characteristics did not influence purchase intentions at all when these proself product characteristics were not fulfilled (i.e., high prices and unfamiliar brands). The importance of proself and green product characteristics on purchasing intentions was also...

  6. Green thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cengel, Y.A. [Nevada Univ., Reno, NV (United States). Dept. of Mechanical Engineering

    2006-07-01

    Green components of thermodynamics were identified and general aspects of green practices associated with thermodynamics were assessed. Energy uses associated with fossil fuels were reviewed. Green energy sources such as solar, wind, geothermal and hydropower were discussed, as well as biomass plantations. Ethanol production practices were reviewed. Conservation practices in the United States were outlined. Energy efficiency and exergy analyses were discussed. Energy intensity measurements and insulation products for houses were also reviewed. Five case studies were presented to illustrate aspects of green thermodynamics: (1) light in a classroom; (2) fuel saved by low-resistance tires; and (3) savings with high-efficiency motors; (4) renewable energy; and (5) replacing a valve with a turbine at a cryogenic manufacturing facility. It was concluded that the main principles of green thermodynamics are to ensure that all material and energy inputs minimize the depletion of energy resources; prevent waste; and improve or innovate technologies that achieve sustainability. 17 refs., 2 tabs., 9 figs.

  7. Capacitive pressure sensor in post-processing on LTCC substrates

    NARCIS (Netherlands)

    Meijerink, M.G.H.; Nieuwkoop, E.; Veninga, E.P.; Meuwissen, M.H.H.; Tijdink, M.W.W.J.

    2005-01-01

    A capacitive pressure sensor was realized by means of a post-processing step on a low temperature co-fired ceramics (LTCC) substrate. The new sensor fabrication technology allows for integration of the sensor with interface circuitry and possibly also wireless transmission circuits on LTCC substrate

  8. Modelling and analysis of CVD processes in porous media for ceramic composite preparation

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1991-01-01

    A continuum phenomenological model is presented to describe chemical vapour deposition (CVD) of solid product inside porous substrate media for the preparation of reinforced ceramic-matrix composites [by the chemical vapour infiltration (CVI) process] and ceramic membrane composites (by a modified C

  9. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  10. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  11. Interfacial adhesion of dental ceramic-resin systems

    Science.gov (United States)

    Della Bona, Alvaro

    The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses

  12. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    Science.gov (United States)

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  13. Offshore Substrate

    Data.gov (United States)

    California Department of Resources — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  14. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al{sub 2}O{sub 3}-13 wt%TiO{sub 2}/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Energy Technology Data Exchange (ETDEWEB)

    Palanivelu, R.; Ruban Kumar, A., E-mail: arubankumarvit@gmail.com

    2014-10-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al{sub 2}O{sub 3}-13 wt%TiO{sub 2} (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  15. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instr

  16. Industrial Ceramics: Secondary Schools.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  17. Experimental study of ceramic-coated tip seals for turbojet engines

    Science.gov (United States)

    Biesiadny, T. J.; Mcdonald, G.; Hendricks, R. C.; Klann, G. A.; Lassow, E. S.

    1985-01-01

    Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond coat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface.

  18. Green Coffee

    Science.gov (United States)

    ... combination.Talk with your health provider.Birth control pills (Contraceptive drugs)The body breaks down the caffeine in green coffee to get rid of it. Birth control pills can decrease how quickly the body breaks down ...

  19. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  20. Green Engineering

    Science.gov (United States)

    Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.

  1. Green Kidz

    DEFF Research Database (Denmark)

    Porto, Melina; Daryai-Hansen, Petra; Arcuri, Maria Emilia;

    2016-01-01

    Projektet "Green Kidz. Intercultural environmental citizenship in the English language classroom in Argentina and Denmark" er en del af et internationalt udviklingsprojekt, der er ledet af Michael Byram, Durham University. Projektet belyser, hvordan interkulturelt medborgerskab kan styrkes i...

  2. Green towers and green walls

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture and Planning, Vancouver, BC (Canada)

    2006-07-01

    North American cities face many major environmental and health issues such as urban heat island effect, the intensity of storms, microclimate around buildings, imperviousness of sites, poor air quality and increases in respiratory disease. Several new technologies are starting to address global impacts and community level issues as well as the personal health and comfort of building occupants. These include green towers, living walls, vegetated rooftops and ecological site developments. This paper examined these forms of eco-development and presented their benefits. It discussed green walls in Japan; green towers in Malaysia, Singapore and Great Britain; green facades of climbing plants; active living walls in Canada; and passive living walls in France and Canada. It also discussed thermal walls; thematic walls; vertical gardens and structured wildlife habitat. Last, it presented testing, monitoring, research and conclusions. The Centre for the Advancement of Green Roof Technology is setting up a program to test thermal performance, to assess plant survival and to monitor green walls at the British Columbia Institute of Technology in Vancouver, Canada as much of the research out of Japan is only available in Japanese script. It was concluded that green architecture can provide shade, food, rainwater, shelter for wildlife and mimic natural systems. 15 refs.

  3. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  4. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A.; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  5. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  6. Plasma spray deposition of graded metal-ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. (Inst. of Tech. and Reliability of Structures, Czechoslovak Academy of Sciences, Plzen (Czechoslovakia)); Fiala, J. (Central Research Inst., Plzen (Czechoslovakia))

    1992-05-20

    Plasma spraying of graded coatings is described and the metal-ceramic interface of the graded intermediate zone is analysed in terms of a simple physical model. Special attention is devoted to the dominant deposition parameters, powder characteristics and the injector configuration for powder feeding, which play a fundamental role in graded coating deposition with controlled formation of a metal-ceramic intermediate zone. On the basis of a knowledge of these parameters, a new and original formula for the coefficient of homogeneity for simultaneous deposition of metal and ceramic particles at the same spot on the substrate is derived. Furthermore, very interesting topotactical relations are described for the metal-ceramic interface of the graded zone. Various techniques of structural analysis (X-ray diffraction, scanning electron microscopy, optical microscopy) and simple thermodynamic calculations allow a new interpretation to be given of the bonding between the metal and ceramic components. The cohesion of graded metal-ceramic coatings is predicted to be higher than that of ceramic coatings with a metallic bond layer. The results are illustrated by a NiCr-ZrO{sub 2}(MgO) graded coating. (orig.).

  7. Stormwater Attenuation by Green Roofs

    Science.gov (United States)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  8. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  9. Incipient flocculation molding: A new ceramic-forming technique

    Science.gov (United States)

    Arrasmith, Steven Reade

    Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder

  10. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    Science.gov (United States)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  11. The APS ceramic chambers

    Energy Technology Data Exchange (ETDEWEB)

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  12. Method for bonding thin film thermocouples to ceramics

    Science.gov (United States)

    Kreider, Kenneth G.

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  13. Improving green roofs and rail road greening systems using Bacillus subtilis and Lactobacillus ssp.

    Science.gov (United States)

    Grüneberg, H; Oschmann, C; Dunya, S; Ulrichs, C

    2006-01-01

    Aim of the present study was the improvement of existing methods for green roof and rail road greening systems using soil borne bacteria. Bacillus subtilis and Lactobacillus ssp. alone and in combination with vinasse applied to different growing substrates were tested. The substrates were brick chips, textile mats, mineral wool mats, and a commercial available substrate for the Swedish company VegTech. All four substrates were tested along an artificial rail track on the experimental station at Humboldt University Berlin, and partly on an existing rail track in Munich, Germany. Plants selected for the experiments belong to the genus Sedum, which is relatively tolerant to dry conditions. Inoculation of plants with bacteria had no effect on plant growth parameters and on coverage of different mobile bedding systems with Sedum plants. There was no significant difference between the various treatments in Munich. In both experiments, the addition of vinasse alone improved plant growth. Plant growth was significantly different on all substrates, whereas brick chips and the commercial roof soil was the best substrate. Brick chips are a cheap substrate which can be used for rail track greening. The results indicate that the quality of the substrate is the most important factor for remediation and greening of rail tracks and roof tops. The rapid growth of plants can be influenced by the application of vinasse as additional nutrient solution (potash (K) source) or nutrient enriched substrate.

  14. Green banking

    Directory of Open Access Journals (Sweden)

    Maja Drobnjaković

    2013-06-01

    Full Text Available There is an urgent need to march towards “low - carbon economy”. Global challenges of diminishing fossil fuel reserves, climate change, environmental management and finite natural resources serving an expanding world population - these reasons mean that urgent action is required to transition to solutions which minimize environmental impact and are sustainable. We are at the start of the low - carbon revolution and those that have started on their low - carbon journey already are seeing benefits such as new markets and customers, improved economic, social and environmental performance, and reduced bills and risks. Green investment banks offer alternative financial services: green car loans, energy efficiency mortgages, alternative energy venture capital, eco - savings deposits and green credit cards. These items represent innovative financial products.

  15. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  16. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  17. Advanced Ceramics Property Measurements

    Science.gov (United States)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  18. Green networking

    CERN Document Server

    Krief, Francine

    2012-01-01

    This book focuses on green networking, which is an important topic for the scientific community composed of engineers, academics, researchers and industrialists working in the networking field. Reducing the environmental impact of the communications infrastructure has become essential with the ever increasing cost of energy and the need for reducing global CO2 emissions to protect our environment.Recent advances and future directions in green networking are presented in this book, including energy efficient networks (wired networks, wireless networks, mobile networks), adaptive networ

  19. Structural Transformation of Hexagonal (0001)BaTiO3 Ceramics to Tetragonal (111)BaTiO3 Ceramics

    Science.gov (United States)

    Watanabe, Takayuki; Shimada, Mikio; Aiba, Toshiaki; Yabuta, Hisato; Miura, Kaoru; Oka, Kengo; Azuma, Masaki; Wada, Satoshi; Kumada, Nobuhiro

    2011-09-01

    A ceramic slurry that contains a 6H-type Ba(Ti0.95Mn0.05)O3 powder was casted into a plaster mold under 10 T magnetic field to form a green compact of (0001)-oriented Ba(Ti0.95Mn0.05)O3. After sintering the green compact at 1300 °C in air, it was confirmed that the (0001)-oriented 6H-type perovskite structure transformed to a (111)-oriented 3C-type perovskite structure. The structural transformation was again examined using hexagonal BaTiO3 prepared by reducing pseudo-cubic BaTiO3 powder in H2 atmosphere. In this case, the preferred (0001) orientation was not confirmed for the green compacts. After sintering the green compacts at 1300 °C in air, mixed crystal orientations of (100)/(001) and (111) were observed for the resultant tetragonal BaTiO3 ceramics. This (100)/(001) orientation was suppressed by annealing the hexagonal BaTiO3 powder at 1000 °C before slip-casting, leading to highly (111)-oriented ceramics. It was found that the green compacts of (0001)-oriented hexagonal BaTiO3 can transform into (111)-oriented tetragonal BaTiO3 ceramics, maintaining the macroscopic crystal orientations due to a similar atomic stacking along [0001] of 6H-type BaTiO3 and [111] of 3C-type BaTiO3.

  20. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  1. Multifunctional Electronics Core Substrate Configurable Electronics Functionality with Stacked Silicon and Multi-Chip Modules Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A custom multifunctional core substrate scheme comprised of next generation polyimide, ceramic and/or silicon materials will be designed to integrate new 2.5D and...

  2. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  3. Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Tadesse Molla, Tesfaye;

    to the strain rate difference between materials, was calculated using Cai’s model. Camber (curvature) development for in situ co-firing of a bi-layer ceramic green tape has been investigated. Analysis of shape evolution from green to sintered body can be carried out by the thermo-mechanical analysis techniques....

  4. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...

  5. Green Schools.

    Science.gov (United States)

    Kozlowski, David, Ed.

    1998-01-01

    Discusses "going green" concept in school-building design, its cost-savings benefits through more efficient energy use, and its use by the State University of New York at Buffalo as solution to an energy retrofit program. Examples are provided of how this concept can be used, even for small colleges without large capital budgets, and how it can…

  6. Going Green.

    Science.gov (United States)

    Kennedy, Mike

    2001-01-01

    Discusses the benefits that schools and universities can gain by adopting environmentally sensitive practices in their design and operations. Includes resources for locating additional information about green schools and a list of 11 features that represent a comprehensive, sustainable school. (GR)

  7. Green Olympics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ It seems all happened in a moment.White clouds float in blue sky,green trees are decorated by colorful flags with warm smiling images,and the building are taking a brand new appearance...Some magic must has been done to Beijing:it turns to a cleaner,healthier and more beautiful city.

  8. Green Victory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Award-winning solar energy project benefits millions of people in underdeveloped areas The world’s leading green en- ergy prize, Ashden Award for Sustainable Energy, announced on June 19 that China’s Renewable Energy Development Project (REDP) was among its latest recipients. The REDP

  9. Going Green

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.  Created: 4/18/2008 by National Center for Environmental Health (NCEH), ATSDR.   Date Released: 5/8/2008.

  10. Going Green

    Science.gov (United States)

    Witkowsky, Kathy

    2009-01-01

    Going green saves money and can even make money. Sustainable practices promote better health, less absenteeism, and more productivity. They also attract students, who are paying increasing attention to schools' environmental policies. Beyond being the smart thing to do, administrators at the University of Washington say repeatedly, it's the right…

  11. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    Science.gov (United States)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  12. Shape forming of ceramics via gelcasting of aqueous particulate slurries

    Indian Academy of Sciences (India)

    S Dhara; R K Kamboj; M Pradhan; P Bhargava

    2002-11-01

    Gelcasting is a promising technique for shape forming of bulk dense or porous ceramic, metal structures. The process offers a number of advantages over processes such as slip casting, injection molding in forming complex ceramic shapes. It is shown here that the optimization of slurry rheology, choice of mold material, mold design and the drying conditions have a significant role in the overall success of the process. In this process, components of simple or complex shapes can be produced to near net shape by direct casting. If required complex shapes can also be produced by machining the green gelcast bodies. The process of gelcasting also has a lot of potential in forming highly porous ceramic shapes.

  13. Properties of amorphous SiBNC-ceramic fibres

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, H.-P. [Bayer AG, Leverkusen (Germany); Passing, G. [Bayer AG, Leverkusen (Germany); Scholz, H. [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany); Sporn, D. [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany); Jansen, M. [Bonn Univ. (Germany). Inst. fuer Anorganische Chemie; Goering, J. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Werkstoff-Forschung

    1997-06-01

    A new amorphous ceramic material consisting of Si, N, C, and B can be synthesized by pyrolysis of a preceramic polyborosilazane (PBS-Me) made of the ``single source`` precursor Cl{sub 3}Si-NH-BCl{sub 2} (TADB). Novel ceramic fibers consisting of borosilicon carbonitride (SiBN{sub 3}C) can be synthesized from this polymer by using a simple melt spinning process, followed by an intermediate curing step and successive pyrolysis of the obtained infusible green fibers. In the present paper we report on the preparation of the ceramic fibres, as well as their thermal stability, and their mechanical behaviour, including high temperature creep data. The reported mechanical data will be correlated to the microstructure of the fibers. (orig.)

  14. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  15. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  17. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  18. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  20. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  1. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  2. Green Computing

    Directory of Open Access Journals (Sweden)

    K. Shalini

    2013-01-01

    Full Text Available Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer and its parts have been espousing the green cause to help protect environment from computers and electronic waste in any way.Research continues into key areas such as making the use of computers as energy-efficient as Possible, and designing algorithms and systems for efficiency-related computer technologies.

  3. Laser ablative cutting of ceramics for electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Warner, B. E., LLNL

    1996-03-01

    Pulsed, high-beam quality lasers offer unique materials processing characteristics. In processing metals, copper vapor and pulsed Nd:YAG lasers have produced micron-scale cuts and holes with submicron heat-affected zones. Since the cost of laser photons is high and average material removal rates can be slow with ablation, high value-added applications are necessary to justify processing costs. Ceramics present a special challenge for manufacturing because of their high hardness, relatively low thermal conductivity, and brittle nature. Surface damage typically limits the strength of a ceramic part to a small fraction of its bulk strength. This work investigates the use of copper vapor and pulsed diode-pumped Nd:YAG lasers to cut precision features in ceramic substrates. Variations in laser wavelength and power, processing speed, ceramic type, and assist gas were investigated with the goal of producing <100-{mu}m wide by 600-{mu}m deep cuts through silicon-carbide and alumina/titanium-carbide substrates for potential use in electronics. Silicon-carbide bars 250-{mu}m wide by 600-{mu}m high by 2.5-cm long were laser cut from substrates without fracture.

  4. Green toxicology.

    Science.gov (United States)

    Maertens, Alexandra; Anastas, Nicholas; Spencer, Pamela J; Stephens, Martin; Goldberg, Alan; Hartung, Thomas

    2014-01-01

    Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology`s novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical`s lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops

  5. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  6. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  7. High temperature interaction behavior at liquid metal-ceramic interfaces

    Science.gov (United States)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2002-08-01

    Liquid metal/ceramic interaction experiments were undertaken at elevated temperatures with the purpose of developing reusable crucibles for melting reactive metals. The metals used in this work included zirconium (Zr), Zr-8 wt.% stainless steel, and stainless steel containing 15 wt.% Zr. The ceramic substrates include yttria, Zr carbide, and hafnium (Hf) carbide. The metal-ceramic samples were placed on top of a tungsten (W) dish. These experiments were conducted with the temperature increasing at a controlled rate until reaching set points above 2000 °C; the systems were held at the peak temperature for about five min and then cooled. The atmosphere in the furnace was argon (Ar). An outside video recording system was used to monitor the changes on heating up and cooling down. All samples underwent a post-test metallurgical examination. Pure Zr was found to react with yttria, resulting in oxygen (O) evolution at the liquid metal-ceramic interface. In addition, dissolved O was observed in the as-cooled Zr metal. Yttrium (Y) was also present in the Zr metal, but it had segregated to the grain boundaries on cooling. Despite the normal expectations for reactive wetting, no transition interface was developed, but the Zr metal was tightly bound to yttria ceramic. Similar reactions occurred between the yttria and the Zr-stainless steel alloys. Two other ceramic samples were Zr carbide and Hf carbide; both carbide substrates were wetted readily by the molten Zr, which flowed easily to the sides of the substrates. The molten Zr caused a very limited dissolution of the Zr carbide, and it reacted more strongly with the Hf carbide. These reactive wetting results are relevant to the design of interfaces and the development of reactive filler metals for the fabrication of high temperature components through metal-ceramic joining. Parameters that have a marked impact on this interface reaction include the thermodynamic stability of the substrate, the properties of the modified

  8. Applied biotransformations in green solvents.

    Science.gov (United States)

    Hernáiz, María J; Alcántara, Andrés R; García, José I; Sinisterra, José V

    2010-08-16

    The definite interest in implementing sustainable industrial technologies has impelled the use of biocatalysts (enzymes or cells), leading to high chemo-, regio- and stereoselectivities under mild conditions. As usual substrates are not soluble in water, the employ of organic solvents is mandatory. We will focus on different attempts to combine the valuable properties of green solvents with the advantages of using biocatalysts for developing cleaner synthetic processes.

  9. Periphyton biomass on artificial substrates during the summer and winter

    Directory of Open Access Journals (Sweden)

    Altevir Signor

    2015-01-01

    Full Text Available This study evaluated the periphyton production on artificial substrates considering it as a source of low cost live food for fish. Blades of artificial substrates such as wood, black plastic, acrylic, fiberglass, ceramics and glass (all with 144cm2 blades, 24 for each substrate were submerged 20.0cm below the water column for 35 days in the winter and 42 days in the summer. The blades were randomly installed in 200m3 pond and evaluated for the biomass production at different phases during the summer and winter. Four blades of each substrate were collected weekly, and the periphytic community was carefully scraped with a spatula and fixed in 4% formaldehyde. The periphytic biomass productivity was evaluated by artificial substrate area and per day. The results evidenced the characteristic periodicity in periphyton biomass production and a significant variability in the collect period and season in the different artificial substrates used. Ceramic and wood showed the best results in the summer while wood showed the best results in the winter. The priphyton biomass productions differ among periods, substrates and seasons. Wood and ceramics could be indicated for periphyton biomass production in either winter or summer.

  10. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  11. Ceramic thin film thermocouples for SiC-based ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Wrbanek, John D., E-mail: John.D.Wrbanek@nasa.gov; Fralick, Gustave C.; Zhu Dongming

    2012-06-30

    Conductive ceramic thin film thermocouples were investigated for application to silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiC/SiC CMC) components. High temperature conductive oxides based on indium and zinc oxides were selected for testing to high temperatures in air. Sample oxide films were first sputtered-deposited on alumina substrates then on SiC/SiC CMC sample disks. Operational issues such as cold junction compensation to a 0 Degree-Sign C reference, resistivity and thermopower variations are discussed. Results show that zinc oxides have an extremely high resistance and thus increased complexity for use as a thermocouple, but thermocouples using indium oxides can achieve a strong, nearly linear response to high temperatures. - Highlights: Black-Right-Pointing-Pointer Oxide thin film thermocouples tested for SiC/SiC ceramic matrix composites (CMCs) Black-Right-Pointing-Pointer In{sub 2}O{sub 3}, N:In{sub 2}O{sub 3}, ZnO, AlZnO sputtered and tested on Al{sub 2}O{sub 3} and CMC substrates Black-Right-Pointing-Pointer ZnO, AlZnO have high resistance, complex temperature response. Black-Right-Pointing-Pointer In{sub 2}O{sub 3}, N:In{sub 2}O{sub 3} conductive at room temperature, more linear temperature response.

  12. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One....... Architectural green could signify green architecture with inclusive interrelations between green and space, built and unbuilt, inside and outside. The aim of the term is to reflect a new focus in green architecture – its architectural performance. Ecological issues are not underestimated or ignored, but so far......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  13. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    single cycle[21]. In zirconia , ferroelastic domains appeared during the cubic to tetragonal transformation at -2200’C, where [c] axes were elongated...Mechanism in Tetragonal Zirconia ( TZP ) Ceramics," Adv. in Ceramics 24 (1986) 653-662. 26. K. Mehta, J. F. Jue and A. V. Virkar, "Grinding-Liduced...barium copper oxide (YBa2Cu306+x) and dicalcium silicate (Ca 2 SiO4 ). The cubic to tetragonal transformation in PbTiO3 40 was proven to be

  14. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...... will be spherical due to the fast coalescence at the high temperatures in the flame. The primary product from the flame pyrolysis is an aerosol of metal oxide nanoparticles. The aerosol gas from the flame can be utilized for several different purposes, depending on the precursors fed to the flame. With the present...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  15. Statistic><Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2008-01-01

    Co-organizer for and participant at the exhibition: Statistic><Ceramics The Röhsska Museum of Design and Decorative Arts; Gothenborg 5/2-16/3 2008 Museum fur Kunst und Gewerbe, Hamburg 3/4-27/4 2008...

  16. Nanocrystalline and Nanoporous Ceramics

    NARCIS (Netherlands)

    Verweij, Henk

    1996-01-01

    Nanocrystalline and nanoporous ceramics, renowned for their special transport properties, have typical applications in the fields of energy, the environment, and separation technology. One example is a solid oxide fuel cell, where an anode with improved characteristics was obtained by an optimized n

  17. Transformation Toughening of Ceramics

    Science.gov (United States)

    1992-03-01

    chanical twing of ualaneeting Ceramica at High Temperatures. ILondo, Patigue-crack growth in overaged and partially stabi- U.K., 198.""IS. Itoribe... Ceramica " Chapter 18 In Mechanical Prop- ŗR. M. !AcMeeding and A. 0. Evans, ’Mechanics of Transformation ertles of Engineering Ceramics. Edited by W.W

  18. Broadband dielectric response of AlN ceramic composites

    Directory of Open Access Journals (Sweden)

    Iryna V. Brodnikovska

    2014-03-01

    Full Text Available Aluminium nitride (AlN is considered as a substrate material for microelectronic applications. AlN ceramic composites with different amount of TiO2 (up to 4 vol.% were obtained using hot pressing at different sintering temperature from 1700 to 1900 °C. It was shown that milling of the raw AlN powder has strongly influence on sintering and improves densification. Broadband dielectric spectroscopy was used as a nondestructive method for monitoring of the ceramic microstructures. TiO2 additive affects the key properties of AlN ceramics. Thus, porosity of 0.1 %, dielectric permeability of σ = 9.7 and dielectric loss tangent of tanδ = 1.3·10-3 can be achieved if up to 2 vol.% TiO2 is added.

  19. Application of laser radiation in decoration and marking of ceramic products

    Science.gov (United States)

    Chmielewska, D.; Gebel, R.; Szamałek, K.; Olszyna, A.; Marczak, J.; Sarzyński, A.; Strzelec, M.

    2013-01-01

    In cooperation with the Institute of Optoelectronics MUT, the Institute of Ceramics and Building Materials conducts work on laser decoration of ceramic products. Two methods are under development: laser activation and laser sintering. The activation method is based on change of color of specially prepared ceramic material due only to illumination by laser beam. Laser sintering is a deposition welding process in which a layer of ceramic powder is deposited on the substrate material, and the two ceramic materials are fused through the application of laser beam, in turn creating any desired color pattern. The paper describes the influence of some physical phenomena on the progress of the laser process as well as sample experimental results.

  20. GREEN TEA FESTIVAL

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ What is the green tea? The green tea belongs to the type of non-fermenting tea, with a quality feature of "clear tea infusion with green leaves"; this type of tea has the biggest output in China, and the basic processing procedure of the green tea is divided into three steps: heating, rubbing and drying. According to the different processing technologies, the green tea is divided into fried green tea, baked green tea, steamed green tea and dried green tea. The steamed green tea is to heat the tea by steaming; to heat the tea by pan-frying can be divided into frying, baking and drying, which is called heating by frying, heating by baking and heating by drying. West LakeLongjing, Xinyang Maojian, Bi Luochun, and Sanbeixiang belong to fried green tea; Mount Huang Maofeng, Youjiyuluo, and Luhai pekoe belong to baked green tea;Enshiyulu belongs to steamed green tea.

  1. Green shipping management

    CERN Document Server

    Lun, Y H Venus; Wong, Christina W Y; Cheng, T C E

    2016-01-01

    This book presents theory-driven discussion on the link between implementing green shipping practices (GSP) and shipping firm performance. It examines the shipping industry’s challenge of supporting economic growth while enhancing environmental performance. Consisting of nine chapters, the book covers topics such as the conceptualization of green shipping practices (GSPs), measurement scales for evaluating GSP implementation, greening capability, greening and performance relativity (GPR), green management practice, green shipping network, greening capacity, and greening propensity. In view of the increasing quest for environment protection in the shipping sector, this book provides a good reference for firms to understand and evaluate their capability in carrying out green operations on their shipping activities.

  2. Green urbanity

    Directory of Open Access Journals (Sweden)

    Alenka Fikfak

    2012-01-01

    Full Text Available Tourism and other culture-based types of small business, which are the leitmotif in the planning of the Europark Ruardi, are becoming the guiding motif in the spatial development of urban centres that are influenced by dynamic transformation processes. The system should build upon the exploitation of both local and regional environmental features. This would encourage the quest for special environmental features, with an emphasis on their conservation, i.e. sustainable development, and connections in a wider context.The Europark is seen as a new strategic point of the Zasavje Region (the region of the central Sava Valley, which is linked to other important points in a region relevant for tourism. Due to the "smallness" of the region and/or the proximity of such points, development can be fast and effective. The interaction of different activities in space yields endless opportunities for users, who choose their own goals and priorities in the use of space. Four theme areas of the Europark area planning are envisaged. The organisation of activities is based on the composition of the mosaic field patterns, where green fields intertwine with areas of different, existing and new, urban functions. The fields of urban and recreation programmes are connected with a network of green areas and walking trails, along which theme park settings are arranged.

  3. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  4. Fluorinated precursors of superconducting ceramics, and methods of making the same

    Science.gov (United States)

    Wiesmann, Harold; Solovyov, Vyacheslav

    2008-04-22

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  5. Ceramic tubesheet design analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  6. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  7. Development and application of a green-chemistry solution deposition technique for buffer layer coating on cube-textured metal substrates in view of further deposition of rare-earth based superconductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P

    , allowing the epitaxial growth of the superconducting layer. State-of-the-art coated conductor hetero structures are mainly based on CeO2 based buffer stacks that consist of a sequence of several different buffer layers. Buffer layers deposited by continuous chemical deposition techniques, which...... and hazardous chemicals such as 2-methoxyethanol, and trifluroacetic acid (TFA). Therefore, in our research the main focus was on the development of SrTiO3 single buffer layers based on environmentally safe chemicals, to reach the engineering requirements for continuous coating of long substrate tapes. A new......Superconductor based energy production has been thoroughly researched by many scientists all over the world, due to the advantage of zero electric resistance that will contribute to the energy saving capabilities. Recently successful developments have been reported in coated conductor architectures...

  8. Microstructural properties of BaTiO{sub 3} ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Apartado Postal 2861, 22800 Ensenada, Baja California (Mexico)

    2000-07-01

    A microstructural study of BaTiO{sub 3} ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO{sub 3} thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO{sub 3} ceramic samples and thin films, as deposited and after an annealing process. (Author)

  9. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  10. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  11. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    Science.gov (United States)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  12. An Innovative Approach for Improving the Reliability of Reticulated Porous Ceramics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An innovative approach has been developed to fabricate reticulated porous ceramics (RPCs) with uniform macrostruc-ture by using the polymeric sponge as the templates. In this approach, the coating process comprises of two stages,In the first stage, the thicker slurry was used to coat uniformly the sponge substrate. The green body was preheatedto produce a reticulated preform with enough handling strength after the sponge was burned out. In the second stage,the thinner slurry was used to coat uniformly the preform. The population of the microscopic and macroscopic flawsin the structure is reduced significantly by recoating process. A few filled cells and cell faces occur in the fabricationand the struts were thickened. A statistical evaluation by means of Weibull statistics was carried out on the bendstrength data of RPCs, which were prepared by the traditional approach and innovative approach, respectively. Theresult shows that the mechanical reliability of RPCs is improved by the innovative approach. This innovative approachis very simple and controlled easily, and will open up new technological applications for RPCs.

  13. Heat flux measurements on ceramics with thin film thermocouples

    Science.gov (United States)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  14. Green Roofs and Green Building Rating Systems

    Directory of Open Access Journals (Sweden)

    Liaw

    2015-01-01

    Full Text Available The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED and Ecology, Energy, Waste, and Health (EEWH rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationship between green coverage and the credits of the rating systems, evaluated the credits efficiency, and performed cost analysis. As an example, we used a university building in Keelung, Northern Taiwan. The findings suggest that with EEWH, the proposed green coverage is 50–75%, whereas with LEED, the proposed green coverage is 100%. These findings have implications for the application of green roofs in green building.

  15. The green building envelope: vertical greening

    OpenAIRE

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve the environment in urban areas and is becoming a key design consideration in modern building developments. Vertical greening of structures offers large surfaces with vegetation and at the same time...

  16. Central Region Green Infrastructure

    Data.gov (United States)

    Minnesota Department of Natural Resources — This Green Infrastructure data is comprised of 3 similar ecological corridor data layers ? Metro Conservation Corridors, green infrastructure analysis in counties...

  17. Self-Assembling, Flexible, Pre-Ceramic Composite Preforms

    Science.gov (United States)

    Jaskowiak, Martha H.; Eckel, Andrew J.; Gorican, Daniel

    2009-01-01

    In this innovation, light weight, high temperature, compact aerospace structures with increased design options are made possible by using self-assembling, flexible, pre-ceramic composite materials. These materials are comprised of either ceramic or carbon fiber performs, which are infiltrated with polymer precursors that convert to ceramics upon thermal exposure. The preform architecture can vary from chopped fibers formed into blankets or felt, to continuous fibers formed into a variety of 2D or 3D weaves or braids. The matrix material can also vary considerably. For demonstration purposes, a 2D carbon weave was infiltrated with a SiC polymer precursor. The green or unfired material is fabricated into its final shape while it is still pliable. It is then folded or rolled into a much more compact shape, which will occupy a smaller space. With this approach, the part remains as one continuous piece, rather than being fabricated as multiple sections, which would require numerous seals for eventual component use. The infiltrated preform can then be deployed in-situ. The component can be assembled into its final shape by taking advantage of the elasticity of the material, which permits the structure to unfold and spring into its final form under its own stored energy. The pre-ceramic composites are converted to ceramics and rigidized immediately after deployment. The final ceramic composite yields a high-temperature, high-strength material suitable for a variety of aerospace structures. The flexibility of the material, combined with its high-temperature structural capacity after rigidization, leads to a less complex component design with an increased temperature range. The collapsibility of these structures allows for larger components to be designed and used, and also offers the potential for increased vehicle performance. For the case of collapsible nozzle extensions, a larger nozzle, and thus a larger nozzle exit plane, is possible because interference with

  18. The green building envelope: vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  19. Joining of ZrO2/CePO4 Green Bodies Using Slurries

    Institute of Scientific and Technical Information of China (English)

    刘名郑; 刘家臣; 高海; 王丽娟; 霍伟荣; 王凯利

    2004-01-01

    Ce-ZrO2 and ZrO2/CePO4 ceramic system was joined in the green body by using mixed powder. Three kinds of systems are discussed. The microstructure and bending strengths of the joint were investigated and it is found that the Ce-ZrO2 and 30%CePO4/ZrO2 ceramics can be well joined in the green body. A joint with high mechanical property and good microstructure can be obtained after sintering without applied pressure. Complexly shaped ceramic components can be created by the technique of green state joining. A new way to produce them is provided and the cost is reduced due to the simplicity of the process.

  20. The Determinants of Green Radical and Incremental Innovation Performance: Green Shared Vision, Green Absorptive Capacity, and Green Organizational Ambidexterity

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-11-01

    Full Text Available This study proposes a new concept, green organisational ambidexterity, that integrates green exploration learning and green exploitation learning simultaneously. Besides, this study argues that the antecedents of green organisational ambidexterity are green shared vision and green absorptive capacity and its consequents are green radical innovation performance and green incremental innovation performance. The results demonstrate that green exploration learning partially mediates the positive relationships between green radical innovation performance and its two antecedents—green shared vision and green absorptive capacity. In addition, this study indicates that green exploitation learning partially mediates the positive relationships between green incremental innovation performance and its two antecedents—green shared vision and green absorptive capacity. Hence, firms have to increase their green shared vision, green absorptive capacity, and green organisational ambidexterity to raise their green radical innovation performance and green incremental innovation performance.

  1. Ceramics for High Power Lasers

    Science.gov (United States)

    2013-07-01

    ICP-MS) on 25 elements ranging from transition metals, rare earths , alkali, alkaline earths and silicon on a set of selected YAG ceramics and...our knowledge of the origin of optical losses in ceramic laser host materials while initiating a program of research on 2-micron, thulium- doped fiber...During Year 1 of this program, we produced and characterized laser grade Nd:YAG and low optical loss Gd3+ doped YAG and Tm:YAG ceramics . Laser

  2. Sol-gel derived ceramics

    OpenAIRE

    1990-01-01

    The synthesis of ceramic raw materials has become an important factor in ceramic technologies. The increasing demands to the performance of ceramic compounds has caused increased activities for the preparation of tailor-made raw materials. Amongst a variety of new syntheses like flame pyrolysis, reactive spray drying, plasma or laser assisted techniques, the sol-gel process plays an important and increasing role. The process describes the building up of an inorganic (in general an oxide) netw...

  3. Tailored Ceramics for Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Joel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  4. SOLID-STATE CERAMIC LIGHTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Brown

    2003-06-01

    Meadow River Enterprises, Inc. (MRE) and the New York State College of Ceramics at Alfred University (NYSCC) received a DOE cooperative agreement award in September 1999 to develop an energy-efficient Solid-State Ceramic Lamp (SSCL). The program spanned a nominal two(2) year period ending in February of 2002. The federal contribution to the program totaled $1.6 million supporting approximately 78% of the program costs. The SSCL is a rugged electroluminescent lamp designed for outdoor applications. MRE has filed a provisional patent for this ''second generation'' technology and currently produces and markets blue-green phosphor SSCL devices. White phosphor SSCL devices are also available in prototype quantities. In addition to reducing energy consumption, the ceramic EL lamp offers several economic and societal advantages including lower lifecycle costs and reduced ''light pollution''. Significant further performance improvements are possible but will require a dramatic change in device physical construction related to the use of micro-powder materials and processes. The subject ''second-generation'' program spans a 27 month period and combines the materials and processing expertise of NYSCC, the manufacturing expertise of Meadow River Enterprises, and the phosphor development expertise of OSRAM Sylvania to develop an improved SSCL system. The development plan also includes important contributions by Marshall University (a part of the West Virginia University system). All primary development objectives have been achieved with the exception of improved phosphor powders. The performance characteristics of the first generation SSCL devices were carefully analyzed in year 1 and a second generation lamp was defined and optimized in year 2. The provisional patent was ''perfected'' through a comprehensive patent application filed in November 2002. Lamp efficiency was improved more than 2:1.

  5. Preparation and characteristics of porous ceramics

    Institute of Scientific and Technical Information of China (English)

    Dongmei SHAO; Peiping ZHANG; Liyan MA; Juanjuan LIU

    2007-01-01

    Pyrophyllite is always used for making porous ceramics. In order to design the preparation technics of porous ceramics with pyrophyllite reasonably we must know the classifications, characteristics, properties and applications of porous ceramics. The classification and characteristics of porous ceramics are reviewed in this article; and several common preparations with their advantages and disadvantages are also introduced. The authors discussed the problems existing in researching and developing process for porous ceramics, and forecasted the development prospect of porous ceramics.

  6. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  7. Ceramic Piezoelectric Transducers

    Science.gov (United States)

    1979-06-01

    more det led paper delineating the dielectric, electrostrictive., and thermoelastic behavior has been prepared for submission to Journal of Applied...material was demonstrated using an adaptation of the replamineform ceramic technol- ogy which had been evolved earlier in MRL for prosthetic bone implant...esti- mates made by Henning (4.1). It should be realized that the phenomenological analysis which has 11 I I I » I been completed essentially

  8. Processing Nanostructured Structural Ceramics

    Science.gov (United States)

    2006-08-01

    aspects of the processing of nanostructured ceramics, viz. • • • The production of a flowable and compactable dry nanopowder suitable for use in... composition due to the different synthesis routes used. Therefore, ‘industry-standard’ dispersants can cause flocculation rather than dispersion...stabilised zirconia (3-YSZ) were no higher than for conventional, micron-sized material of the same composition . However, detailed crystallographic

  9. Rheology of Superplastic Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constitutive equation of rheglogy describing a phenomenological level of superplastic deformation as functional correlation between tensor components of stress and strain rate has been analyzed for the case of superplastic ceramic flow. Rheological properties of material are taken into account by means of scalar rheological coefficients of shear and volume viscosity, which are functions of temperature, effective stress (or strain rate) and density of material.

  10. Carbon sequestration potential of extensive green roofs.

    Science.gov (United States)

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter.

  11. Interaction of color glazes with Japanese ceramic pieces

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Kazuhide; Kato, Takafumi

    1999-09-01

    Measurements of penetration activation energies of the traditional glazes, such as 'Te stu-Aka (Iron-Red)' and 'Wara-Jiro (Straw-White)', into the ceramic body were made on certain Japanese brand clay samples at the glaze-firing process. The observed values ranged from 35 kj/mol of 'Imari-Straw White' combination to 240 k/mol of 'Karatsu White-Iron Red' combination. Next, the manifestation of copper green color of an experimental glaze, mounted on the 'Imari White' test pieces, was examined after firing at 1300 degree C under various atmospheres. Air produced green, while N{sub 2} and CO{sub 2} atmospheres made the same glaze rather colorless and a CO atmosphere produced a faintly pink color. On the basis of the 1976 CIE L*a*b* color three-dimensional system, it has been discovered that an addition of 2 wt % CuCl{sub 2} {center_dot} 2H{sub 2}O to the 'Wara-Jiro' glaze produced an optimal greenness in air. Also, by comparing a series of pottery works glazed with 'Oribe' green glaze, it has been revealed that there are many types of greenness derived from the difference in Value (L*) as well as in Chroma (C*). A commercially available 'Kutani' sake cup possessed an almost pure green color. (author)

  12. Dental ceramics: a current review.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2014-03-01

    Ceramics are used for many dental applications and are characterized in various ways, including by their hardness, brittleness, thermal and electrical insulation, and biocompatibility. The ceramics most commonly used in dentistry are oxides, particularly silicon dioxide (SiO2), or silica; aluminum oxide (Al2O3), or alumina; and zirconium dioxide (ZrO2), or zirconia. This article reviews the microstructure of current dental ceramic materials and how it relates to their mechanical properties, clinical techniques, and optical properties. Typical ceramics currently in use are described, and their clinically relevant properties such as strength, fracture, polishability, and wear are compared. Cementation methods are also discussed.

  13. Strength and Microstructure of Ceramics

    Science.gov (United States)

    1989-11-01

    Noncransforming Ceramics" S.J. Bennison and B.R. Lawn Acca Hetall., in press. 12. "Fatigue Limits in Noncyclic Loading of Ceramics With Crack-Resiscance Curves" S...notched-beam (SENB) and specimens with small-scale flaws with theoretically-predicted curve from present analysis. 40 (a) -A’K - - - -- - -- - - - -- p1 ...and B.R. Lawn , Acca Mevall., submitted. 16. H. Sakai and R.C. Bradt, J. Ceram. Soc. Japan 2k 801 (1988). 17. B.R. Lawn, J. Amer. Ceram. Soc. 6j 83

  14. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  15. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  16. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  17. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  18. Green nanotechnology

    Science.gov (United States)

    Smith, Geoff B.

    2011-10-01

    Nanotechnology, in particular nanophotonics, is proving essential to achieving green outcomes of sustainability and renewable energy at the scales needed. Coatings, composites and polymeric structures used in windows, roof and wall coatings, energy storage, insulation and other components in energy efficient buildings will increasingly involve nanostructure, as will solar cells. Nanostructures have the potential to revolutionize thermoelectric power and may one day provide efficient refrigerant free cooling. Nanomaterials enable optimization of optical, opto-electrical and thermal responses to this urgent task. Optical harmonization of material responses to environmental energy flows involves (i) large changes in spectral response over limited wavelength bands (ii) tailoring to environmental dynamics. The latter includes engineering angle of incidence dependencies and switchable (or chromogenic) responses. Nanomaterials can be made at sufficient scale and low enough cost to be both economic and to have a high impact on a short time scale. Issues to be addressed include human safety and property changes induced during manufacture, handling and outdoor use. Unexpected bonuses have arisen in this work, for example the savings and environmental benefits of cool roofs extend beyond the more obvious benefit of reduced heat flows from the roof into the building.

  19. Green chromatography.

    Science.gov (United States)

    Płotka, Justyna; Tobiszewski, Marek; Sulej, Anna Maria; Kupska, Magdalena; Górecki, Tadeusz; Namieśnik, Jacek

    2013-09-13

    Analysis of organic compounds in samples characterized by different composition of the matrix is very important in many areas. A vast majority of organic compound determinations are performed using gas or liquid chromatographic methods. It is thus very important that these methods have negligible environmental impact. Chromatographic techniques have the potential to be greener at all steps of the analysis, from sample collection and preparation to separation and final determination. The paper summarizes the approaches used to accomplish the goals of green chromatography. While complete elimination of sample preparation would be an ideal approach, it is not always practical. Solventless extraction techniques offer a very good alternative. Where solvents must be used, the focus should be on the minimization of their consumption. The approaches used to make chromatographic separations greener differ depending on the type of chromatography. In gas chromatography it is advisable to move away from using helium as the carrier gas because it is a non-renewable resource. GC separations using low thermal mass technology can be greener because of energy savings offered by this technology. In liquid chromatography the focus should be on the reduction of solvent consumption and replacement of toxic and environmentally hazardous solvents with more benign alternatives. Multidimensional separation techniques have the potential to make the analysis greener in both GC and LC. The environmental impact of the method is often determined by the location of the instrument with respect to the sample collection point.

  20. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  1. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Science.gov (United States)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  2. Surface modification of graphite and ceramics with metals using induction heating

    Science.gov (United States)

    Ikeshoji, Toshi-Taka; Imoto, Akiko; Suzumura, Akio; Katori, Mana; Yamazaki, Takahisa; Sakamoto, Masahiro; Sakimichi, Satoshi

    2014-08-01

    In order to join metals to graphite or ceramics by soldering or brazing, a new surface modification method using induction heating was developed for graphite and ceramics. Such source metals as Cu, Ni, Cr, etc. were induction-heated in vacuum atmosphere and making deposited films on the deposition substrate, or the target substrate; graphite, AlN, Si3N4. The applicability of this method was investigated and the deposited layer was analysed by SEM observation, Auger electron spectrum analysis, X-ray diffractometry, and EPMA. By comparison of ambient vacuum pressure during deposition and the saturated vaopr pressure of source metals, this method was considered to utilize the sublimation phenomenon.

  3. Lower energy costs in the ceramics industry - via ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zander, H.P.

    1983-04-01

    Ceramic fibres, due to their high thermal and chemical resistance, receive increasing attention as insulating material for industrial purposes. After a short characterisation, examples of furnace wall lining are given, and a tunnel-kiln car for baking of sanitation ceramics is investigated with a view to possibilities of supplementary insulation.

  4. Green corridors basics

    DEFF Research Database (Denmark)

    Panagakos, George

    2016-01-01

    SuperGreen project, which aimed at advancing the green corridor concept through a benchmarking exercise involving Key Performance Indicators (KPIs). The chapter discusses the available definitions of green corridors and identifies the characteristics that distinguish a green corridor from any other...

  5. Green piezoelectric for autonomous smart textile

    Science.gov (United States)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  6. [Study on optimization gradation of substrates in vertical flow constructed wetlands].

    Science.gov (United States)

    Wu, Jun-mei; Zhang, Xiang-ling; Wang, Rong; Xu, Dong; He, Feng; Wu, Zhen-bin

    2010-05-01

    Bio-ceramic, anthracite, zeolite, steel slag and vermiculite were used as substrate according to different kinds of gradation to treat wastewater in vertical-flow constructed wetlands simulation systems. The results show that the removal ability of COD by graded substrates according to particle size are better than single substrates, and average removal efficiency by graded bio-ceramic is up to 72.91%. The removal rate of TN by graded zeolite, which reaches 91.23%, is higher than single zeolite. No significant difference (p nitrogen removal between single and combined use of bio-ceramic and zeolite. The pH values in effluents of all columns filled with steel slag and anthracite are within normal limits, but phosphorus removal of all columns filled with steel slag and anthracite are lower than that filled with single substrates, except for the column filled with anthracite, vermiculite and steel slag from up to down. No difference between planted and unplanted systems can be observed. The present results probably provide a basis for vertical-flow constructed wetland design, among which based on the characteristic of wastewater proper selection of high-efficiency graded substrates, e.g., graded bio-ceramic, graded zeolite, graded anthracite, combined use of bio-ceramic, zeolite and anthracite, is a guarantee of better performance at a high hydraulic loading rate.

  7. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  8. A new freeze casting technique for ceramics

    Science.gov (United States)

    Araki, Kiyoshi

    A new freeze casting technique for ceramics capable of manufacturing near room temperature with a sublimable vehicle has been developed in order to eliminate expensive processes under extremely cold temperatures in the conventional freeze casting. Fluid concentrated slurries of Al2O 3 powder in molten camphene (C10H16) were successfully prepared at 55°C with a small amount of a dispersant. These slurries were quickly solidified (frozen) at room temperature to yield a rigid solid green body, where the frozen camphene was easily removed by sublimation (freeze-drying) with negligible shrinkage. Sintering was successfully conducted without any special binder burnout process to yield dense sintered bodies (over 98% T.D). An organic alloy with a eutectic composition in the naphthalene (C 10H8)-camphor (C10H16O) binary system with a eutectic temperature of 31°C was also found to be a successful vehicle for the new ceramic freeze casting. The fabrication processes are almost the same as those with camphene. It was found that vehicles with off-eutectic compositions resulted in large voids in the sintered body due to the ceramic particle rejection by pro-eutectic crystals during freezing. At the eutectic composition, fine lamellar microstructure in the solidified vehicle inhibits the particle rejection. The proposed advantages of the new freeze casting technique with a sublimable vehicle include; (1) elimination of extremely cold temperatures used in conventional freeze casting; (2) elimination of troublesome binder burnout process; and (3) fast manufacturing cycle due to quick solidification. Porous ceramic bodies with unique interconnected pore channels were fabricated by the new freeze casting with lower solid content. The unique channels surrounded by fully dense walls have nearly circular cross-sections unlike conventional aqueous freeze casting. The porosity and the channel diameters are controllable by the solid content in the slurry. The unique channels are

  9. Preparation of Bauxite Ceramic Microsphere

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiaosu; LIU Pingan; LI Xiuyan; SHUI Anze; ZENG Lingke

    2007-01-01

    Ceramic microspheres were prepared by using Chinese bauxite as raw materials through the centrifugal spray drying method. The control technology of microsphere size, degree of sphericity was researched. The ceramic microspheres were sintered by a double sintering process. The microstructure and composition of ceramic microsphere were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray energy spectroscopy. The results show that the degree of sphericity of the ceramic microsphere was good and the particle size was 10-100 μm. The XRD analysis reveals that the main crystalline phase of the ceramic microsphere was α- Al2O3 and mullite (3Al2O3·2SiO2). The product can be used as reinforced material for composite material, especially for antiskid and hard wearing aluminum alloy coating.

  10. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  11. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  12. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  13. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  14. Green Roofs and Green Building Rating Systems

    OpenAIRE

    Liaw; Chao-Hsien

    2015-01-01

    The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED) and Ecology, Energy, Waste, and Health (EEWH) rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationsh...

  15. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHENDe-jiu; WANGYu-lin; GUWei-chao; XINGGuang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  16. Microstructures and Mechanical Properties of Ceramic/Metal Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin-sheng; JIANG Bing; LIU Jie; HUANG Shi-yong

    2003-01-01

    The ceramic/metal gradient thermal barrier coatings (CMGTBCs) which combined the conceptions of thermal barrier coatings ( TBG ) and functional gradient materials ( FGMs ) are investigated. The structure model studied in this paper is a general model which includes four different layers: pure ceramic layer , ceramic/metal gradient layer, pure metal layer, and substrate layer. The microstructures of gradient layer have different ceramics and metal volume fraction profile along with the direction of thickness. The profile function used to describe the gradient microstructures can be expressed in power-law or polynomial expression. The mechanical properties of CMGTBCs are obtained by means of microscopic mechanics. As special cases, the interactive solutions are given by Mori- Tanaka method, and the non- interactive solutions by dilute solution. The Young's modulus calculated by these methods are compared with those by other methods , e g, the rule of mixtures.

  17. Needs assessment for manufacturing ceramic gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.; McSpadden, S.B.; Morris, T.O.; Pasto, A.E.

    1995-11-01

    An assessment of needs for the manufacturing of ceramic gas turbine components was undertaken to provide a technical basis for planning R&D activities to support DOE`s gas turbine programs. The manufacturing processes for ceramic turbine engine components were examined from design through final inspection and testing. The following technology needs were identified: Concurrent engineering early in the design phase to develop ceramic components that are more readily manufacturable. Additional effort in determining the boundaries of acceptable design dimensions and tolerances through experimental and/or analytical means. Provision, by the designer, of a CAD based model of the component early in the design cycle. Standardization in the way turbine components are dimensioned and toleranced, and in the way component datum features are defined. Rapid means of fabricating hard tooling, including intelligent systems for design of tooling and rapid prototyping of tooling. Determination of process capabilities by manufacturing significant numbers of parts. Development of more robust ceramic manufacturing processes which are tolerant of process variations. Development of intelligent processing as a means of controlling yield and quality of components. Development of computer models of key manufacturing steps, such as green forming to reduce the number of iterations required to manufacture intolerance components. Development of creep feed or other low-damage precision grinding for finish machining of components. Improved means of fixturing components for finish machining. Fewer and lower-cost final inspection requirements. Standard procedures, including consistent terminology and analytical software for dimensional inspection of components. Uniform data requirements from the US turbine engine companies. An agreed-upon system of naming ceramic materials and updating the name when changes have been made.

  18. Material Characterization of Strontium Ferrite Powders for Producing Sintered Magnets by Ceramic Injection Molding (MagnetPIM)

    OpenAIRE

    Dietmar Drummer; Susanne Messingschlager

    2014-01-01

    For this study, different strontium ferrite powders were mixed with a filling ratio of about 60 vol% in a binder system and formed into green compacts. During the process of injection molding, a magnetic field was generated in the tool via a magnetic coil, which enables magnetization and orientation of the ceramic particles. All powders were successfully processed by MagnetPIM. The investigations identified that it is impossible to extrapolate from the magnetic properties of a green compact t...

  19. High pressure ceramic heat exchanger

    Science.gov (United States)

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  20. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Carline R. G. van den Breemer

    2015-01-01

    Full Text Available Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS. Materials and Methods. An extensive literature search concerning the cementation of single-unit glass-ceramic posterior restorations was conducted in the databases of MEDLINE (Pubmed, CENTRAL (Cochrane Central Register of Controlled Trials, and EMBASE. To be considered for inclusion, in vitro and in vivo studies should compare different cementation regimes involving a “glass-ceramic/cement/human tooth” complex. Results and Conclusions. 88 studies were included in total. The in vitro data were organized according to the following topics: (microshear and (microtensile bond strength, fracture strength, and marginal gap and integrity. For in vivo studies survival and quality of survival were considered. In vitro studies showed that adhesive systems (3-step, etch-and-rinse result in the best (microshear bond strength values compared to self-adhesive and self-etch systems when luting glass-ceramic substrates to human dentin. The highest fracture strength is obtained with adhesive cements in particular. No marked clinical preference for one specific procedure could be demonstrated on the basis of the reviewed literature. The possible merits of IDS are most convincingly illustrated by the favorable microtensile bond strengths. No clinical studies regarding IDS were found.

  1. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  2. Aluminium surface treatment with ceramic phases using diode laser

    Science.gov (United States)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  3. Dynamically compacted all-ceramic lithium-ion batteries

    Science.gov (United States)

    Jak, Michiel J. G.; Ooms, Frans G. B.; Kelder, Erik M.; Legerstee, Waiter J.; Schoonman, Joop; Weisenburger, Alfons

    This paper deals with a cell design and a unique manufacturing process for all solid-state lithium-ion batteries. Detailed analyses of the manufacturing of the components for such a battery and the compaction of the green battery are presented. The electrodes were made of coatings of LiMn 2O 4 on metal foils. The electrolyte was a free-standing foil of the ceramic electrolyte Li-doped BPO 4 in a polymer matrix. The different layers were wound and compacted by using magnetic pulse compaction. Several characteristics of the compacted batteries are presented.

  4. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    Science.gov (United States)

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  5. Effects of rare earth addition on sintering process and dielectric property of cordierite based glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇

    2004-01-01

    The effects of rare earth oxide on the sintering and dielectric property of cordierite-based glass-ceramics with non-stoichiometric composition prepared by quenching of molten droplets were investigated. The results show that the addition of rare earth oxide can lower the sintering temperature of cordierite glass-ceramics, improve the densification process and obviously reduce sintering activation energy. It is found that the densification of cordieritebased glass-ceramics is a liquid phase sintering process. The dielectric constant of the sintered compacts enhances with the increase of the density. When the sintering temperature is identical, the rare earth addition is found to have a noticeable effect on the dielectric loss of glass-ceramics. The properties of the glass-ceramics containing rare earth oxide appear to be correct for low firing temperature substrates.

  6. Optical substrate materials for synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  7. Fundamental studies of ceramic/metal interfacial reactions at elevated temperatures.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-12-14

    This work characterizes the interfaces resulting from exposing oxide and non-oxide ceramic substrates to zirconium metal and stainless steel-zirconium containing alloys. The ceramic/metal systems together were preheated at about 600 C and then the temperatures were increased to the test maximum temperature, which exceeded 1800 C, in an atmosphere of high purity argon. Metal samples were placed onto ceramic substrates, and the system was heated to elevated temperatures past the melting point of the metallic specimen. After a short stay at the peak temperature, the system was cooled to room temperature and examined. The chemical changes across the interface and other microstructural developments were analyzed with energy dispersive spectroscopy (EDS). This paper reports on the condition of the interfaces in the different systems studied and describes possible mechanisms influencing the microstructure.

  8. A novel ceramic printing technique based on electrostatic atomization of a suspension

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, S.N.; Edirisinghe, M.J. [Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); De Wilde, T. [Micromech, Chilford Court, Rayne Road, Braintree, Essex CM7 2QS (United Kingdom)

    2002-09-01

    A novel computer-controlled method of depositing ceramic droplets, according to a pre-determined architecture is described. A 21 vol% alumina suspension flowing through a nozzle was subjected to electrostatic atomization in the cone-jet mode at different applied voltages. By using a point-like ground electrode the resulting spray was focused and printed on a substrate placed between the nozzle and the ground electrode. The substrate was moved with the aid of a 2-axis computer controlled stepper motor driven system which enabled the forming of different ceramic architectures. As an example, the word CERAMIC was printed. At an applied voltage of 10 kV, droplet relics in the print were in the size range 30-60 {mu}m. (orig.)

  9. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  10. Strength and Microstructure of Ceramics.

    Science.gov (United States)

    1991-10-01

    34 microplasticity " stage in crack initiation from the flaw’ " for alumina ceramics has been carried out. Results of (from literal adaptations of the original...us to identify frontal-zone microcracking or even microplasticity . However. bridge degradation as a cause of the fatigue process. "Wear" direct...Ceramics", J. Aust. Ceram. Soc. 16 4-9. [24] A.W. Ruff and S.M. Wiederhorn (1979) "Erosion by Solid Particle Impact ", in Treatise on Materials Science and

  11. Green Power Partnership 100 Green Power Users

    Science.gov (United States)

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Partners on this list use green power to meet 100 of their U.S. organization-wide electricity use.

  12. Tribal Green Building Toolkit

    Science.gov (United States)

    This Tribal Green Building Toolkit (Toolkit) is designed to help tribal officials, community members, planners, developers, and architects develop and adopt building codes to support green building practices. Anyone can use this toolkit!

  13. Green Infrastructure Modeling Toolkit

    Science.gov (United States)

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  14. Green Power Markets

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership defines Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit.

  15. Green Power Communities

    Science.gov (United States)

    GPCs are towns, villages, cities, counties, or tribal governments in which the local government, businesses, and residents collectively use green power in amounts that meet or exceed EPA's Green Power Community purchase requirements.

  16. What Is Green Power?

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership defines Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit.

  17. Green Power Partner List

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. There are thousands of Green Power Partners, all listed on this page.

  18. Electrical properties and sensing ability of novel piezoelectric ceramic fibers with Pt core

    Science.gov (United States)

    Du, Jianzhou; Qiu, Jinhao; Zhu, Kongjun; Ji, Hongli; Zhao, Huayun

    2012-04-01

    The traditional sintering method was used to sinter the pure and Fe2O3 doped 0.55Pb(Ni0.33Nb0.67)O3-0.45Pb(Zr0.3Ti0.7)O3 (abbreviate as PNN-PZT and PFNN-PZT, respectively) ceramics. The addition of Fe2O3 significantly improved the microstructure and electrical properties. Compared with pure PNN-PZT ceramics, higher dielectric and piezoelectric properties of d31~-390 pC/N, ɛ r ~6298 were obtained for the PFNN-PZT sample sintered at 1175°C for 2 h. Hence, the PFNN-PZT ceramics sample was selected to fabricate piezoelectric ceramic fibers with Pt core (PFC). Both the green fibers and bulk ceramics were sintered at 1150-1225°C for 2 h in a closed crucible, respectively. The effect of sintering temperature on the microstructure and electrical properties of the PFNN-PZT fibers was investigated. The optimal piezoelectric properties are obtained for the sample sintered at 1175°C for 2 h. The relative dielectric constant and piezoelectric constant show peak values of ɛ r~3683, d31~-197.4 pC/N, respectively. The PFC is a new type piezoelectric device, which can be used for sensors or actuators. The results of sensing experiment show that the piezoelectric ceramic fiber with Pt core has high sensitivity for the Lamb waves.

  19. Selected Properties Of Thermally Sprayed Oxide Ceramic Coatings

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2015-09-01

    Full Text Available The article presents the results of the study on exploitation properties of flame sprayed ceramic coatings produced by oxide ceramic material in the form of powder on the aluminum oxide Al2O3 matrix with 3% titanium oxide TiO2 addition and also on the zirconium oxide (ZrO2 matrix with 30% calcium oxide (CaO on the substrate of unalloyed structural steel of S235JR grade. As a primer powder, metallic powder on the base of Ni-Al-Mo has been applied. Plates with dimensions of 5×200×300 mm and also front surfaces of ∅40×50 mm cylinders have been flame sprayed. Spraying of primer coating has been done using RotoTec 80 torch and external specific coating has been done with CastoDyn DS 8000 torch. Investigations of coating properties are based on metallography tests, phase composition research, measurement of microhardness, coating adhesion to the ground research (acc. to EN 582:1996 standard, abrasive wear resistance (acc. to ASTM G65 standard and erosion wear resistance (acc. to ASTM G76-95 standard and thermal stroke study. Performed tests have shown that the flame spraying with 97%Al2O3 powder containing 3% TiO2 and also by the powder based on zirconium oxide (ZrO2 containing 30% calcium oxide (CaO performed in a wide range of technological parameters allow to obtain high quality ceramic coatings with thickness up to ca. 500 μm on a steel substrate. The primer coating sprayed with the Ni-Al-Mo powder to the steel substrate and external coatings sprayed has the of mechanical bonding character. The coatings are characterized by high adhesion to the substrate and also high erosion and abrasive wear resistance and the resistance for cyclic thermal stroke.

  20. JPRS Report, Science & Technology, Japan, Fine Ceramics Industry Basic Issues Forum

    Science.gov (United States)

    2007-11-02

    substrate material, and phosphates for use as bioceramic materials; and such structural materials as zirconia, silicon 26 carbide, and silicon nitride. R&D...communications equipment, and for bioceramics materials in the medical equipment field. And while R&D has yet to get underway, it is hoped that fine ceramics...Lion Corporation Bioceramic dental crowns Ishihara Pharmaceuticals Aluminum titanate machinable

  1. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  2. What Is Green?

    Science.gov (United States)

    Pokrandt, Rachel

    2010-01-01

    Green is a question with varying answers and sometimes no answer at all. It is a question of location, resources, people, environment, and money. As green really has no end point, a teacher's goal should be to teach students to question and consider green. In this article, the author provides several useful metrics to help technology teachers…

  3. Green roof Malta

    OpenAIRE

    2015-01-01

    In Malta, buildings cover one third of the Island, leaving greenery in the dirt track. Green roofs are one way to bring plants back to urban areas with loads of benefits. Antoine Gatt, who manages the LifeMedGreenRoof project at the University of Malta, tells us more. http://www.um.edu.mt/think/green-roof-malta/

  4. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  5. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  6. The green agenda

    CERN Document Server

    Calder, Alan

    2009-01-01

    This business guide to Green IT was written to introduce, to a business audience, the opposing groups and the key climate change concepts, to provide an overview of a Green IT strategy and to set out a straightforward, bottom line-orientated Green IT action plan.

  7. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  8. Recent progress in ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.

    1998-09-01

    Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

  9. Bringing Ceramic Parts to Earth

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    The benefits of using ceramic engine components are well known:They are tougher than metal parts, weigh less, and can withstand hotter operating temperatures.So why aren’t they being used now? High cost.

  10. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  11. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  12. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  13. Ceramic Forum International yearbook 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reh, H. (ed.)

    2004-12-01

    This is the second English-language edition of our 'ceramic forum international Yearbook'. In this year's 'Ceramics World', the perpetually updated textbook section, you will find papers surveying the already in technical ceramics established fields of 'bioceramics' and 'ceramic armouring'. From the traditional ceramics sector, from which news of more and more innovations have been reaching us in recent months, we have picked out 'decorating processes for ceramic tiles' as these are currently enjoying an undreamt-of boom thanks to the development of completely new shaping processes. A soundly researched study on 'rheology in ceramics' completes this section of the yearbook. Interested ceramists will again find everything they need for their day-to-day work - the index will help them to find the information they need fast. This information is available under the following headings: (A) Product News: Short notes on outstanding new machines, kilns, plants and equipment as well as new raw materials on the market, supplied by both European and overseas suppliers. (B) Abstracts: A compilation of abridged articles, all of which published during the last 12 months, discussing interesting processes and products or new directions in research. (C) ESD - European Suppliers Directory: Who supplies what? In English, German, Spanish, Italian and French with about 220 company entries. (D) Appendix: Listing ceramics laboratories in Europe; the periodic system; the most important physical units and the conversion of older ones to SI units (and vice versa); essential formulas for use in the ceramist's daily practice. (orig.)

  14. Continuous flow synthesis of nanoparticles using ceramic microfluidic devices.

    Science.gov (United States)

    Gómez-de Pedro, S; Puyol, M; Alonso-Chamarro, J

    2010-10-15

    A microfluidic system based on the low-temperature co-fired ceramics technology (LTCC) is proposed to reproducibly carry out a simple one-phase synthesis and functionalization of monodispersed gold nanoparticles. It takes advantage of the LTCC technology, offering a fast prototyping without the need to use sophisticated facilities, reducing significantly the cost and production time of microfluidic systems. Some other interesting advantages of the ceramic materials compared to glass, silicon or polymers are their versatility and chemical resistivity. The technology enables the construction of multilayered systems, which can integrate other mechanical, electronic and fluidic components in a single substrate. This approach allows rapid, easy, low cost and automated synthesis of the gold colloidal, thus it becomes a useful approach in the progression from laboratory scale to pilot-line scale processes, which is currently demanded.

  15. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  16. Ceramic materials and growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Ohgushi, H.; Yoshikawa, T.; Okumura, M.; Nakajima, H.; Takakura, Y. [Nara Medical Univ. (Japan). Dept. of Orhtopaedic Surgery; Dohi, Y. [Nara Medical Univ. (Japan). Dept. of Public Health; Noshi, T.; Ikeuchi, M. [Nara Medical Univ. (Japan). Dept. of Oral and Maxillofacial Surgery

    2001-07-01

    Recently, many types of growth factors have been purified and used for promoting cell differentiation cascade. The activity of growth factors can be detected in vitro such as culture condition. However, the activity is difficult to detect when these factors are locally administered in vivo, because these dissipate soon after the administration. In order to retain growth factors in local milieu, these can be incorporated with biocompatible porous ceramic materials. Such ceramic/factors composites when implanted in vivo, can trigger certain types of cell differentiation cascade resulted in new tissue formation and tissue regeneration. The paper describes the ceramic / growth factors composites especially hydroxyapatite ceramic (HA) / bone morphogenetic protein (BMP) composite to induce osteoblastic differentiation of mesenchymal stem cells. The HA/BMP composite supported the osteoblastic differentiation on the HA surface and finally resulted in bone bonding to the HA. When the marrow mesenchymal stem cells (MSCs) were impregnated in pore areas of HA ceramics, the composites showed more and rapid bone formation than the HA/BMP and HA/MSCs composite, indicating the synergistic effect of BMP and MSCs. These findings indicate the importance of ceramic surface to evoke osteoblastic differentiation as well as to capture the molecules of growth factors for the cell differentiation. (orig.)

  17. Ferroelectric ceramics in a pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Belgorod State University, Belgorod 308015 (Russian Federation); Miroshnik, V. S.; Volkov, V. I. [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Oleinik, A. N. [Belgorod State University, Belgorod 308015 (Russian Federation)

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  18. Biocompatible glass-ceramic materials for bone substitution.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana

    2008-01-01

    A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.

  19. Storing Waste in Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W L; Sickafus, K

    2004-07-20

    Not all the nuclear waste destined for Yucca Mountain is in the form of spent fuel. Some of it will be radioactive waste generated from the production of nuclear weapons. This so-called defense waste exists mainly as corrosive liquids and sludge in underground tanks. An essential task of the U.S. high-level radioactive waste program is to process these defense wastes into a solid material--called a waste form. An ideal waste form would be extremely durable and unreactive with other repository materials. It would be simple to fabricate remotely so that it could be safely transported to a repository for permanent storage. What's more, the material should be able to tolerate exposure to intense radiation without degradation. And to minimize waste volume, the material must be able to contain high concentrations of radionuclides. The material most likely to be used for immobilization of radioactive waste is glass. Glasses are produced by rapid cooling of high-temperature liquids such that the liquid-like non-periodic structure is preserved at lower temperatures. This rapid cooling does not allow enough time for thermodynamically stable crystalline phases (mineral species) to form. In spite of their thermodynamic instability, glasses can persist for millions of years. An alternate to glass is a ceramic waste form--an assemblage of mineral-like crystalline solids that incorporate radionuclides into their structures. The crystalline phases are thermodynamically stable at the temperature of their synthesis; ceramics therefore tend to be more durable than glasses. Ceramic waste forms are fabricated at temperatures below their melting points and so avoid the danger of handling molten radioactive liquid--a danger that exists with incorporation of waste in glasses. The waste form provides a repository's first line of defense against release of radionuclides. It, along with the canister, is the barrier in the repository over which we have the most control. When a waste

  20. Microwave flexible transistors on cellulose nanofibrillated fiber substrates

    Science.gov (United States)

    Seo, Jung-Hun; Chang, Tzu-Hsuan; Lee, Jaeseong; Sabo, Ronald; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-06-01

    In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly biodegradable, flexible, and high performance devices. Double-gate flexible Si NM TFTs built on a CNF substrate have shown an electron mobility of 160 cm2/V.s and fT and fmax of 4.9 GHz and 10.6 GHz, respectively. This demonstration proves the microwave frequency capability and, considering today's wide spread use of wireless devices, thus indicates the much wider utility of CNF substrates than that has been demonstrated before. The demonstration may also pave the way toward portable green devices that would generate less persistent waste and save more valuable resources.

  1. A novel processing route for carbon nanotube reinforced glass-ceramic matrix composites

    Science.gov (United States)

    Dassios, Konstantinos G.; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2015-03-01

    The current study reports the establishment of a novel feasible way for processing glass- and ceramic- matrix composites reinforced with carbon nanotubes (CNTs). The technique is based on high shear compaction of glass/ceramic and CNT blends in the presence of polymeric binders for the production of flexible green bodies which are subsequently sintered and densified by spark plasma sintering. The method was successfully applied on a borosilicate glass / multi-wall CNT composite with final density identical to that of the full-dense ceramic. Preliminary non-destructive evaluation of dynamic mechanical properties such as Young's and shear modulus and Poisson's ratio by ultrasonics show that property improvement maximizes up to a certain CNT loading; after this threshold is exceeded, properties degrade with further loading increase.

  2. Ensuring near-optimum homogeneity and densification levels in nano-reinforced ceramics

    Science.gov (United States)

    Dassios, Konstantinos G.; Barkoula, Nektaria-Marianthi; Alafogianni, Panagiota; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2016-04-01

    The development of a new generation of high temperature ceramic materials for aerospace applications, reinforced at a scale closer to the molecular level and three orders of magnitude less than conventional fibrous reinforcements, by embedded carbon nanotubes, has recently emerged as a uniquely challenging scientific effort. The properties of such materials depend strongly on two main factors: i) the homogeneity of the dispersion of the hydrophobic medium throughout the ceramic volume and ii) the ultimate density of the resultant product after sintering of the green body at the high-temperatures and pressures required for ceramic consolidation. The present works reports the establishment of two independent experimental strategies which ensure achievement of near perfect levels of tube dispersion homogeneity and fully dense final products. The proposed methodologies are validated across non-destructive evaluation data of materials performance.

  3. Ceramic fibers for matrix composites in high-temperature engine applications

    Science.gov (United States)

    Baldus; Jansen; Sporn

    1999-07-30

    High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.

  4. Performance of Ceramics in Severe Environments

    Science.gov (United States)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  5. Finite element simulation of a ceramic drying process considering pore shape and porosity

    Science.gov (United States)

    Keum, Y. T.; Oh, J. W.

    2005-03-01

    When a green ceramic is dried, the particles flocculate into a fishnet structure in the gel phase. The range of pore size is between the micro-scale and the nano-scale. In general, the elastic properties of porous materials are affected by both pore shape and porosity. Using the homogenization method, the elastic tensor of nanoscopic gel unit cell, varying with the porosity, is first computed. Using the finite element method, the drying process of a green ceramic insulator is simulated, based on the elastic properties of a microscopic particle aggregate unit cell with circular and cross pores, found from the nanoscopic elastic tensor using the homogenization method. Consideration of the pore shape and porosities in a simulation can provide a more accurate residual stress distribution.

  6. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  7. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  8. Origin and Development of Chinese Ceramics

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    CERAMICS is animportant partof traditionalChinese culture and re-flects the wisdomand creativity of theCinese people.Kilnsfrom many differentdynasties have fired anumber of ceramic arti-cles of high artistic val-

  9. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  10. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  11. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  12. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino

    2016-05-01

    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  13. Ordered ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  14. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  15. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Manso, B.; Pablos, A. de; Belmonte, M.; Osendi, M. I.; Miranzo, P.

    2014-04-01

    Concentrated ceramic inks based on (SiC) powders, with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densification of the as-produced 3D structures, previously heat treated in air at 600 degree centigrade for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS) furnace. The effects of the amount of sintering additives (7 - 20 wt. %) and the size of the SiC powders (50 nm and 0.5 {mu}m) on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized (SiC) powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink), involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics. (Author)

  16. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly [Ceralink Incorporated, Troy, NY (United States); Ross, Nicole [Ceralink Incorporated, Troy, NY (United States)

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  17. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  18. Micromechanical Evaluation of Ceramic Matrix Composites

    Science.gov (United States)

    1991-02-01

    Materials Sciences Corporation AD-A236 756 M.hM. 9 1 0513 IEIN HIfINU IIl- DTIC JUN 06 1991 MICROMECHANICAL EVALUATION OF S 0 CERAMIC MATRIX COMPOSITES C...Classification) \\() Micromechanical Evaluation of Ceramic Matrix Composites ) 12. PERSONAL AUTHOR(S) C-F. Yen, Z. Hashin, C. Laird, B.W. Rosen, Z. Wang 13a. TYPE...and strengthen the ceramic composites. In this task, various possibilities of crack propagation in unidirectional ceramic matrix composites under

  19. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad

    2016-04-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces.

  20. Green growth in fisheries

    DEFF Research Database (Denmark)

    Nielsen, Max; Ravensbeck, Lars; Nielsen, Rasmus

    2014-01-01

    Climate change and economic growth have gained a substantial amount of attention over the last decade. Hence, in order to unite the two fields of interest, the concept of green growth has evolved. The concept of green growth focuses on how to achieve growth in environment-dependent sectors, without...... harming the environment. Fishery is an environment-dependent sector and it has been argued that there is no potential for green growth in the sector owing to global overexploitation, leaving no scope for production growth. The purpose of this paper is to explain what green growth is and to develop...... a conceptual framework. Furthermore, the aim is to show that a large green growth potential actually exists in fisheries and to show how this potential can be achieved. The potential green growth appears as value-added instead of production growth. The potential can be achieved by reducing overcapacity...

  1. Ceramics and ceramic matrix composites - Aerospace potential and status

    Science.gov (United States)

    Levine, Stanley R.

    1992-01-01

    Thermostructural ceramics and ceramic-matrix composites are attractive in numerous aerospace applications; the noncatastrophic fracture behavior and flaw-insensitivity of continuous fiber-reinforced CMCs renders them especially desirable. The present development status evaluation notes that, for most highly-loaded high-temperature applications, the requisite fiber-technology base is at present insufficient. In addition to materials processing techniques, the life prediction and NDE methods are immature and require a projection of 15-20 years for the maturity of CMC turbine rotors. More lightly loaded, moderate temperature aircraft engine applications are approaching maturity.

  2. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  3. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  4. Journal of the Chinese Ceramic Society

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    ISSN 2095-7645CN 10-1189/TQAims and Scope The Journal of the Chinese Ceramic Society is a premier archival journal devoted to publishing top quality original research that advances the fundamental and applied science of ceramic materials.Today’s ceramic science is an interdisciplinary field that has expanded beyond its

  5. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  6. Green roofs as a means of pollution abatement.

    Science.gov (United States)

    Rowe, D Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues.

  7. Dynamic properties of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E. [Sandia National Labs., Albuquerque, NM (United States). Experimental Impact Physics Dept.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  8. Low cost porous MgO substrates for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.

    2016-01-01

    This paper delineates the fabrication of porous magnesium oxide (MgO) ceramics with high porosity and gas permeability by warm pressing using pre-calcined MgO powder and fugitive pore former (combination of graphite and polymethyl methacrylate). Effect of pore former on the microstructure develop......O substrates were measured and correlated. Economic analysis of the MgO substrates was performed and it was found that MgO was much cheaper compared to perovskite and fluorite materials...

  9. Proton conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  10. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  11. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  12. Nanomechanics of hard films on compliant substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Earl David, Jr. (Sandia National Laboratories, Albuquerque, NM); Emerson, John Allen (Sandia National Laboratories, Albuquerque, NM); Bahr, David F. (Washington State University, Pullman, WA); Moody, Neville Reid; Zhou, Xiao Wang; Hales, Lucas (University of Minnesota, Minneapolis, MN); Adams, David Price (Sandia National Laboratories, Albuquerque, NM); Yeager,John (Washington State University, Pullman, WA); Nyugen, Thao D. (Johns Hopkins University, Baltimore, MD); Corona, Edmundo (Sandia National Laboratories, Albuquerque, NM); Kennedy, Marian S. (Clemson University, Clemson, SC); Cordill, Megan J. (Erich Schmid Institute, Leoben, Austria)

    2009-09-01

    Development of flexible thin film systems for biomedical, homeland security and environmental sensing applications has increased dramatically in recent years [1,2,3,4]. These systems typically combine traditional semiconductor technology with new flexible substrates, allowing for both the high electron mobility of semiconductors and the flexibility of polymers. The devices have the ability to be easily integrated into components and show promise for advanced design concepts, ranging from innovative microelectronics to MEMS and NEMS devices. These devices often contain layers of thin polymer, ceramic and metallic films where differing properties can lead to large residual stresses [5]. As long as the films remain substrate-bonded, they may deform far beyond their freestanding counterpart. Once debonded, substrate constraint disappears leading to film failure where compressive stresses can lead to wrinkling, delamination, and buckling [6,7,8] while tensile stresses can lead to film fracture and decohesion [9,10,11]. In all cases, performance depends on film adhesion. Experimentally it is difficult to measure adhesion. It is often studied using tape [12], pull off [13,14,15], and peel tests [16,17]. More recent techniques for measuring adhesion include scratch testing [18,19,20,21], four point bending [22,23,24], indentation [25,26,27], spontaneous blisters [28,29] and stressed overlayers [7,26,30,31,32,33]. Nevertheless, sample design and test techniques must be tailored for each system. There is a large body of elastic thin film fracture and elastic contact mechanics solutions for elastic films on rigid substrates in the published literature [5,7,34,35,36]. More recent work has extended these solutions to films on compliant substrates and show that increasing compliance markedly changes fracture energies compared with rigid elastic solution results [37,38]. However, the introduction of inelastic substrate response significantly complicates the problem [10,39,40]. As

  13. Ceramic veneers with minimum preparation.

    Science.gov (United States)

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; Carvalho, Ricardo Marins; Furuse, Adilson Yoshio

    2013-10-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative treatment also improved the function of the anterior guidance. It can be concluded that the conservative use of minimum thickness ceramic laminate veneers may provide satisfactory esthetic outcomes while preserving the dental structure.

  14. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff.

  15. Ceramics in fission and fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1986-04-01

    The role of ceramic components in fission and fusion reactors is described. Almost all of the functions normally performed by ceramics, except mechanical, are required of nuclear ceramics. The oxides of uranium and plutonium are of predominant importance in nuclear applications, but a number of other ceramics play peripheral roles. The unique service conditions under which nuclear ceramics must operate include intense radiation fields, high temperatures and large temperature gradients, and aggressive chemical environments. Examples of laboratory research designed to broaden understanding of the behavior of uranium dioxide in such conditions are given. The programs described include high temperature vaporization, diffusional processes, and interaction with hydrogen.

  16. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    Science.gov (United States)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  17. Customers’ Intention to Use Green Products: the Impact of Green Brand Dimensions and Green Perceived Value

    Directory of Open Access Journals (Sweden)

    Doszhanov Aibek

    2015-01-01

    Full Text Available This study aimed to identify the relationships between green brand dimension (green brand awareness, green brand image, and green brand trust, green perceived value and customer’s intention to use green products. Data was collected through structured survey questionnaire from 384 customers of three hypermarkets in Kuala-Lumpur. Data was analyzed based on multiple regression analysis. The results indicate that there are significant relationships between green brand awareness, green brand trust, green perceived value, and customer’s intention to use green products. However, green brand image was not found to have significant relationship with customer’s intention to use green products. The discussion presented suggestions for marketers and researchers interested in green branding.

  18. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  19. Green product innovation strategy

    NARCIS (Netherlands)

    Driessen, P.H.

    2005-01-01

    Over the last decades, companies have started to incorporate green issues in product innovation strategies. This dissertation studies green product innovation strategy, its antecedents and its outcomes. A three-stage approach is followed. In the first stage, the topic is explored and a preliminary r

  20. Manufacturing Green Consensus

    DEFF Research Database (Denmark)

    Gulsrud, Natalie Marie; Ooi, Can Seng

    2014-01-01

    In an increasingly global economy, being green, or having an environmentally sustainbale place brand, provides a competitive advantage. Singapore, long known as the ``garden city´´ has been a leader in green city imaging since the founding of the equatorial city-state, contributing, in large part...

  1. Green Buildings and Health.

    Science.gov (United States)

    Allen, Joseph G; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S; Eitland, Erika Sita; Spengler, John D

    2015-09-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading "Health Performance Indicators" for use in future studies of buildings and health.

  2. Greening the Future

    Science.gov (United States)

    Williamson, Norma Velia

    2011-01-01

    Because educators vicariously touch the future through their students, the author believes that they sometimes have the uncanny ability to see the future. One common future forecast is the phenomenal growth of green jobs in the emerging green economy, leading to the creation of the "Reach of the Sun" Solar Energy Academy at La Mirada…

  3. Introduction: Experimental Green Strategies

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    Defining new ways in which archietcts are responding to the challenge of creating sustainable architecture , Experimental Green Strategies present a state of the art in applied ecological architectural research.......Defining new ways in which archietcts are responding to the challenge of creating sustainable architecture , Experimental Green Strategies present a state of the art in applied ecological architectural research....

  4. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  5. Custodial Operations: Green & Sustainable

    Science.gov (United States)

    Campbell, J. Kirk

    2008-01-01

    Custodial Operations can have a significant impact on institutional green and sustainable goals if given the proper support and challenge. This article describes the green and sustainable custodial operations in place at Carleton College in Northfield, Minnesota. The article reviews the college's sustainable efforts on biodegradables, packaging,…

  6. Measuring Our Greenness

    Institute of Scientific and Technical Information of China (English)

    HUYONG

    2005-01-01

    Green GDP has become a buzzword of late. For two decades or more, China's rapid economic growth-and its equally rapid environmental destruction and resource depletion-has astonished the world. But now, China is on the fast track to developing a Green GDP.

  7. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  8. Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-02-01

    To explore the edge effect on intrasplat cracking of thermally sprayed ceramic splats, crack patterns of splats were experimentally observed and investigated through mechanical analysis. Both the polycrystalline splats and single-crystal splats showed obvious edge effects, i.e., preferential cracking orientation and differences in domain size between center fragments and edge fragments. In addition, substrate/interface delamination on the periphery was clearly observed for single-crystal splats. Mechanical analysis of edge effect was also carried out, and it was found that both singular normal stress in the substrate and huge peeling stress and shear stress at the interface were induced. Moreover, effective relief of tensile stress in splats is discussed. The good correspondence between experimental observations and mechanical analysis is elaborated. The edge effect can be used to tailor the pattern morphology and shed further light on coating structure design and optimization.

  9. On Maximal Green Sequences

    CERN Document Server

    Brüstle, Thomas; Pérotin, Matthieu

    2012-01-01

    Maximal green sequences are particular sequences of quiver mutations which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-Cordova-Vafa in the context of supersymmetric gauge theory. Our aim is to initiate a systematic study of these sequences from a combinatorial point of view. Interpreting maximal green sequences as paths in various natural posets arising in representation theory, we prove the finiteness of the number of maximal green sequences for cluster finite quivers, affine quivers and acyclic quivers with at most three vertices. We also give results concerning the possible numbers and lengths of these maximal green sequences. Finally we describe an algorithm for computing maximal green sequences for arbitrary valued quivers which we used to obtain numerous explicit examples that we present.

  10. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  11. Building the green way.

    Science.gov (United States)

    Lockwood, Charles

    2006-06-01

    Just five or six years ago, the term "green building" evoked visions of barefoot, tie-dyed, granola-munching denizens. There's been a large shift in perception. Of course, green buildings are still known for conserving natural resources by, for example, minimizing on-site grading, using alternative materials, and recycling construction waste. But people now see the financial advantages as well. Well-designed green buildings yield lower utility costs, greater employee productivity, less absenteeism, and stronger attraction and retention of workers than standard buildings do. Green materials, mechanical systems, and furnishings have become more widely available and considerably less expensive than they used to be-often cheaper than their standard counterparts. So building green is no longer a pricey experiment; just about any company can do it on a standard budget by following the ten rules outlined by the author. Reliable building-rating systems like the U.S. Green Building Council's rigorous Leadership in Energy and Environmental Design (LEED) program have done much to underscore the benefits of green construction. LEED evaluates buildings and awards points in several areas, such as water efficiency and indoor environmental quality. Other rating programs include the UK's BREEAM (Building Research Establishment's Environmental Assessment Method) and Australia's Green Star. Green construction is not simply getting more respect; it is rapidly becoming a necessity as corporations push it fully into the mainstream over the next five to ten years. In fact, the author says, the owners of standard buildings face massive obsolescence. To avoid this problem, they should carry out green renovations. Corporations no longer have an excuse for eschewing environmental and economic sustainability. They have at their disposal tools proven to lower overhead costs, improve productivity, and strengthen the bottom line.

  12. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  13. Art Education: Creative Ceramic Arts.

    Science.gov (United States)

    Swan, Nora; Marinaccio, Louis

    A course in forming, decorating, glazing, and firing pottery is presented. Upon completion of the course, the student will be expected to be familiar with all terms and characteristics connected with pottery and ceramics, and he will be expected to be able to properly handle and form clay. Course content includes the history of clay handling,…

  14. Properties Research of Ceramic Layer

    Directory of Open Access Journals (Sweden)

    Z. Żółkiewicz

    2012-12-01

    Full Text Available In the method of full mould the polystyrene model, which fills the mould cavity in the course of filling by the liquid metal is subjected tothe influence of high temperature and passes from the solid, through the liquid, to the gaseous state. During this process solid and gaseousproducts of thermal decomposition of polystyrene patterns occur. The kinetics of this process is significantly influenced by the gasificationtemperature, density and mass of the polystyrene patterns. One of the basic parameters is the amount and rate of gas from the polystyrenemodel during its thermal decomposition. Specific properties of ceramic layer used for lost foam castings are required. To ensure optimalprocess flow of metal in the form proper permeability of the ceramic layer is needed.To ensure optimal conditions for technological casting method EPS patterns are tested and determined are the technological parametersand physical-chemical process in: material properties of the pattern, properties of the ceramic layer applied to the pattern, pattern gasification kinetics pouring processIn the course of the research the characteristics of polystyrene and ceramic layer were determined.

  15. Doubled-ended ceramic thyratron

    CERN Multimedia

    1974-01-01

    The double-ended ceramic thyratron CX 1171 B, with its coaxial voltage divider for the SPS. Such a switch, paralleled by three ignitrons in series forms the "thyragnitron" arrangement, and can switch 10 kA, 25 ms pulses, with very fast rise times.

  16. Optical scattering in glass ceramics

    NARCIS (Netherlands)

    Mattarelli, M.; Montagna, M.; Verrocchio, P.

    2008-01-01

    The transparency of glass ceramics with nanocrystals is generally higher than that expected from the theory of Rayleigh scattering. We attribute this ultra-transparency to the spatial correlation of the nanoparticles. The structure factor is calculated for a simple model system, the random sequentia

  17. Wear resistance of ceramic coating on AZ91 magnesium alloy by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; LIU Zheng; CHEN Li-jia; CHEN Ji; HAN Zhong

    2006-01-01

    The ceramic coating formed on AZ91 magnesium alloy by micro-arc oxidation (MAO) was characterized. The results show that the ceramic coating(3.4-23 μm in thickness)on the surface of AZ91 alloy was attained under different micro-arc oxidation treatment conditions, which consist mainly of MgO, Mg2SiO4 and MgSiO3 phases. Nano-hardness in a cross-sectional specimen was determined by nano-indentation experiment. The MAO coatings exhibit higher hardness than the substrate. Dry sliding wear tests for the MAO coatings and AZ91 alloy were also carried out using an oscillating friction and wear tester in a ball-on-disc contact configuration. The wear resistance of the MAO coatings is improved respectively under different treatment time as a result of different structures of ceramic coatings formed on AZ91 alloy.

  18. Preparation of cross-sectional specimens of ceramic thermal barrier coatings for transmission electron microscopy.

    Science.gov (United States)

    Unal, O; Heuer, A H; Mitchell, T E

    1990-04-01

    During the microstructural examination of ceramic thermal barrier coatings by transmission electron microscopy (TEM), initial efforts for the preparation of cross-sectional thin foils from interface regions by conventional means were mostly failures. Delamination of the Y2O3-stabilized ZrO2 ceramic coating from the nickel-base alloy substrate sometimes occurred during fine polishing at around 80 microns thickness but mostly occurred during dimpling. Because of this sensitivity, special techniques for mechanical handling were developed so that ion milling could give thin enough regions of the metal-ceramic interface. TEM showed convincingly that the highly fragile nature of the coatings is in fact due to the extensive porosity at the interface developed as a result of heat treatment.

  19. DEVELOPMENT OF COMPLEX EQUIPMENT FOR PLASMA SPRAY CERAMIC COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2017-01-01

    Full Text Available Develop a set equipment for plasma forming ceramic coatings. The article presents characteristics and parameters of the developed complex equipment for formation of plasma ceramic coatings as well as results of its testing. Methods of research is based on studies of structural elements composite plasma coatings system ZrO2 – Y2O3  obtained  using  developed complex equipment. One of the most effective ways to protect the components from high temperature corrosion and oxidation is formation on the surface of plasma thermal barrier coatings. For thermal barrier coating has very strict requirements: сharacterized by a smooth change of physico-mechanical properties (porosity, microhardness, elastic modulus in the cross section of the metal substrate to the outer ceramic layer; to withstand multiple cycles of thermal cycling from room temperature to the operating temperature; to maintain gastightness under operating conditions and thus ensure a sufficiently high level of adhesive strength. For realization of new technological schemes applying thermal barrier coatings with high operational characteristics was developed, patented and manufactured a range of new equipment. The experiments show that authors developed PBG-1 plasmatron and powder feeder PPBG-04 have at least 2–3 times the service life during the deposition of ceramic materials compared to the standard equipment of the company "Plasma-Technik", by changing the structure of the cathode-anode plasma torch assembly and construction of the delivery unit of the feeder to facilitate the uniform supply of the powder into the plasma jet and the best of his penetration. The result is better plasma coatings with improved operational characteristics: adhesion strength is increased to 1.3–2 times, material utilization in 1.5–1.6 times microhardness 1.2–1.4 times the porosity is reduced by 2–2.5 times.

  20. Going Green: Greening Your Marketing Efforts

    Science.gov (United States)

    Germain, Carol Anne

    2009-01-01

    There is no doubt that the "Going Green" movement is in full swing. With global warming and other ecological concerns, people are paying closer attention to environmental issues and striving to live in a more sustainable world. For libraries, this is a perfect opportunity to be active in a campus-wide program and simultaneously promote library…

  1. Collection Development "Green Business": The Green Capitalist

    Science.gov (United States)

    Eagan, Robert

    2009-01-01

    The "greening" of corporate behemoths like Wal-Mart, DuPont, and Toyota has received much media attention in recent years. But consider small businesses: according to the U.S. Small Business Administration, of the estimated 27 million firms in the United States, 99.7 percent have fewer than 500 employees, 97.5 percent have fewer than 20, and more…

  2. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.;

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been...

  3. Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climats

    NARCIS (Netherlands)

    Ravesloot, Christoph Maria

    2015-01-01

    Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of co

  4. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  5. Development of adherent ceramic coatings to reduce contact stress damage of ceramics. Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, S.F.; Selverian, J.H.; O`Neil, D. [GTE Labs., Inc., Waltham, MA (United States)

    1992-11-01

    Strongly adherent coatings were deposited on reaction bonded Si{sub 3}N{sub 4} (RBSN), sintered SiC (SSC), and HIP`ed Si{sub 3}N{sub 4} (HSN) and using a newly developed chemical vapor deposition (CVD) process. Performance of the coating was assessed by oxidation, strength and contact stress testing. A new method was developed to experimentally determine the strength and Weibull modulus of thin brittle films on ceramic substrates. A significant portion of the study was devoted to numerical modeling of the coatings in order to understand the contributions of residual stress as different coating materials and thicknesses were combined. Coating designs were further analyzed by simulating the crack growth behavior in multilayer films while accounting for the interface fracture mechanics. This work has shown that the Al{sub 2}0{sub 3+}ZrO{sub 2} composite coating developed in this program can provide resistance to oxidation and contact stress. Commercial application of the composite coating has been successfully demonstrated by useof the Al{sub 2}0{sub 3+}ZrO{sub 2} composite as a protective coating on a Si{sub 3}N{sub 4} cutting tool.

  6. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  7. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  8. New ceramic coating technique using laser spraying process

    Science.gov (United States)

    Tsukamoto, Koichi; Yanagisawa, Takeshi; Uchiyama, Futodhi; Obara, Akira; Okutomi, Mamoru; Kimura, Shinji; Yamada, Akimasa; Shen, Hong L.; Wang, Zhongcheng; Shen, Qinwo; Chatterjee, Udit; Bhar, Gopal C.

    1998-08-01

    A new ceramic coating technique using a CO2 laser has been developed. A high power density laser beam passes near the substrate. Coating materials are supplied by an extra-high accuracy powder supply device and pass across the laser beam. The coating materials are melted in the laser beam and deposited on the substrate surface. A YSZ (Yttria Stabilized Zirconia) layer and a LaCoO3 layer are made for high temperature solid oxide fuel cells. The crystal structures of the coated layers are the same as that of the original coating materials. Superconducting BPSCCO ceramic films are also made with this process. The films show super-conductivity with Tc at 81 K. The Jc of the specimen is 440 A/cm2 at 77 K. We can easily handle and arrange not only metal but also refractory materials. By adopting a multi-axis robot and a surface treatment laser technique, the laser spraying method described here makes it possible to produce highly functional and three dimensional parts of devices directly from raw powder materials. Thus the proposed method will open the path to an unexplored field of key production technology.

  9. Evaluation of interface reactions in thermal barrier ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Celik, E.; Avci, E.; Yilmaz, F. [Sakarya Univ. (Turkey). Eng. Fac.

    1997-12-01

    In this study, the interface reactions in thermal barrier ceramic coatings (TBCs) on AISI 304L stainless steel substrates were investigated. The plasma-spray technique was employed to deposit metallic and ceramic powders such as MgZrO{sub 3}, NiAl+MgZrO{sub 3} and NiCrAl+MgZrO{sub 3} on the substrate. The porosity of these coatings, measured by an optical method, was found to be between 6 and 9%. Oxidation tests were carried out to evaluate the interface reactions in TBCs at temperatures of 800, 900 and 1000 C. The microstructures of the powders, coatings and oxidized coatings were examined by means of an optical microscope and X-ray diffractometry. The results show that the oxidation kinetics depend strongly on oxide layer thickness, temperature, duration of oxidation and composition of the bond coat. It was also observed that the oxidation rate changed with temperature was initially linear and then exponential. (orig.) 14 refs.

  10. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  11. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Seitz, Hermann; Rieder, Wolfgang; Irsen, Stephan; Leukers, Barbara; Tille, Carsten

    2005-08-01

    This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtained from a patient can be used to design the implant for a target defect. In the 3D printing technique, a box filled with ceramic powder is printed with a polymer-based binder solution layer by layer. Powder is bonded in wetted regions. Unglued powder can be removed and a ceramic green body remains. We use a modified hydroxyapatite (HA) powder for the fabrication of 3D printed scaffolds due to the safety of HA as biocompatible implantable material and efficacy for bone regeneration. The printed ceramic green bodies are consolidated at a temperature of 1250 degrees C in a high temperature furnace in ambient air. The polymeric binder is pyrolysed during sintering. The resulting scaffolds can be used in tissue engineering of bone implants using patient-derived cells that are seeded onto the scaffolds. This article describes the process chain, beginning from data preparation to 3D printing tests and finally sintering of the scaffold. Prototypes were successfully manufactured and characterized. It was demonstrated that it is possible to manufacture parts with inner channels with a dimension down to 450 microm and wall structures with a thickness down to 330 microm. The mechanical strength of dense test parts is up to 22 MPa.

  12. Preparation and Microstructure of Glass-ceramics and Ceramic Composite Materials

    Institute of Scientific and Technical Information of China (English)

    HE Feng; XIE Junlin; HAN Da

    2008-01-01

    The technology and microstructure of glass-ceramics and ceramic composite materials were studied.A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics.According to the expansion coefficient of the ceramic body,that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted.a-wollastonite was found present as the major crystalline phase in glass-ceramic.The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period.The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1100℃.resulting in an interface between them.To achieve good sintered properties of glass-ceramics and the chosen ceramic body,at least a four-hour sintering time is used.

  13. Four decades of ZERODUR mirror substrates for astronomy

    Science.gov (United States)

    Döhring, Thorsten; Jedamzik, Ralf; Westerhoff, Thomas; Hartmann, Peter

    2009-05-01

    Initiated in 1968 by the first order of Max-Planck-Institute in Heidelberg successful history of ZERODUR(R) continues now since 40 years. ZERODUR(R) zero expansion glass ceramic from SCHOTT has been the material of choice in astronomy for decades, thanks to its special properties such as its extremely high thermal and mechanical stability. Today most of the major modern optical telescopes of the 4 m class and of the 8 m to 10 m class are equipped with ZERODUR(R) . For the future several Extremely Large Telescope (ELT) projects are in development, which are designed with even larger primary mirrors ranging from 30 m to 42 m. Also here ZERODUR(R) is under consideration. A historical review, prominent examples of astronomical projects with glass ceramic mirror substrates, and an outlook to the future is given in this paper.

  14. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  15. Chitin Nanofiber Transparent Paper for Flexible Green Electronics.

    Science.gov (United States)

    Jin, Jungho; Lee, Daewon; Im, Hyeon-Gyun; Han, Yun Cheol; Jeong, Eun Gyo; Rolandi, Marco; Choi, Kyung Cheol; Bae, Byeong-Soo

    2016-07-01

    A transparent paper made of chitin nanofibers (ChNF) is introduced and its utilization as a substrate for flexible organic light-emitting diodes is demonstrated. Given its promising macroscopic properties, biofriendly characteristics, and availability of the raw material, the utilization of the ChNF transparent paper as a structural platform for flexible green electronics is envisaged.

  16. Spectral Markers of Erythrocytes on Solid Substrate

    Science.gov (United States)

    Paiziev, Adkhamjon A.; Krakhmalev, V. A.

    Proposed in previous paper [1,2] the new nondestructive method of optical microscopy allows to examine the structures of living cells (human erythrocytes) in their natural colors without its staining by using a specially designed substrate for deposition of biological sample and observing a native blood smears in reflected light. Color interference contrast image is achieved due to special condition of experiment is connected with chose of angle of incidental light, wave length of light of reflected ray, chemical composition of sample, thickness of sample, refractive index of sample, refractive index of substrate, chemical composition of substrate [1,2]. We can identify chemical compounds of erythrocytes after calibration color scale by alternative methods. For comparison we used Synchrotron Radiation based Fourier Transformed Infrared (SR-FTIR) microspectroscopy. By focusing of infrared beam of FTIR microscope on cell surface we can screen and distinguish difference erythrocytes by its color. For example on Fig. 49.1 we can see two neighbored erythrocytes where one of them have red color (point 1) and other-green (point 5). To identify their spectral markers we measured IR absorption spectra of cells at different points (1,2,3,4 and 5). Intermediated area (points 3 and 4) correspond to substrate spectra (silicon substrate) and their spectra are same. The peaks at 2,850 and 2,920 cm-1 correspond mainly to the CH2 stretching modes of the methylene chains in membrane lipids. At 1,650 cm-1 the amide I band is observed, which results, principally, from the n(CO) stretching vibrations of the protein amide bonds; the amide II band, near 1,550 cm-1, is a combination of the d(N-H) bending and n(C-N) stretching vibrations of the amide bonds. The peaks at 2,850 and 2,920 cm-1 correspond mainly to the CH2 stretching modes of the methylene chains in membrane lipids [3. The intensities of the absorption bands at 2,920 and 2,850 cm-1 in green erythrocyte (point 5) were also

  17. A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff.

    Science.gov (United States)

    Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai

    2013-01-01

    The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p < 0.05), and the first-flush effect did not occur during the 27 simulated rain events. The results also revealed that the concentration of these nutrient pollutants in the runoff strongly depended on the features of the nutrient substrates used in the green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.

  18. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  19. Green Light Pulse Oximeter

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  20. Green syntheses, v.1

    CERN Document Server

    Tundo, Pietro

    2014-01-01

    Introduction to the Green Syntheses SeriesPietro Tundo and John AndraosApplication of Material Efficiency Metrics to Assess Reaction Greenness-Illustrative Case Studies from Organic SynthesesJohn AndraosReaction 1: Synthesis of 3-Benzyl-5-Methyleneoxazolidin-2-one from N-Benzylprop-2-yn-1-Amine and CO2Qing-Wen Song and Liang-Nian HeReaction 2: Synthesis of the 5-Membered Cyclic Carbonates from Epoxides and CO2Qing-Wen Song, Liang-Nian HePart I: Green Methods for the Epoxidation of

  1. Robust plasmonic substrates

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...... and breaking. DLC coating with thicknesses between 25 and 105 nm is found to considerably increase the mechanical strength of the substrates while at the same time ensuring conservation of sufficient field enhancements of the gold plasmonic substrates....

  2. Sustainable green urban planning: the Green Credit Tool

    NARCIS (Netherlands)

    Cilliers, E.J.; Diemont, E.; Stobbelaar, D.J.; Timmermans, W.

    2010-01-01

    Purpose – The Green Credit Tool is evaluated as a method to quantify the value of green-spaces and to determine how these green-space-values can be replaced or compensated for within urban spatial planning projects. Design/methodology/approach – Amersfoort Local Municipality created the Green Credit

  3. Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    Science.gov (United States)

    Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.

    1979-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.

  4. Green Office 2015; Green Office 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ubachs, H.J.G. [Imtech, Eindhoven (Netherlands)

    2009-06-15

    The project Green Office 2015 is an integral, sustainable and multiple district development in which urban development, landscape, architecture, indoor and technology are integrated. The participants in this project show that integral design has an added value in comparison to a traditional design process. They want to enrich the building and building services sector with their shared knowledge and expertise on sustainable office buildings. [Dutch] Dit artikel beschrijft Het Green Office 2015 project: een integrale, duurzame en meervoudige gebiedsontwikkeling waarin stedenbouw, landschap, architectuur, interieur en technologie samengaan. Met dit project willen de participanten aantonen dat integraal ontwerpen meerwaarde oplevert ten opzichte van de traditionele manier van werken. Alle partijen willen ook, met hun gezamenlijke kennis en expertise, de bouw- en installatiesector verrijken met ideeen voor duurzame kantoorgebouwen.

  5. Au@PVP核壳纳米粒子作为表面增强拉曼散射基底检测孔雀石绿%Au@PVP Core-Shell Nanoparticles Used as Surface-Enhanced Raman Spectroscopic Substrate to Detect Malachite Green

    Institute of Scientific and Technical Information of China (English)

    徐宁宁; 张芹; 郭伟; 李钦涛; 徐杰

    2016-01-01

    The core-shell nanopaticles of Au@polyvinyl-pyrrolidone ( PVP) with uniform size and controllabe shell-thickness were prepared by hydrothermal method. The core-shell nanoparticles could be assembled to be the monolayer array on Si substrate relying on the dispersion of core-shell nanoparticles arising from PVP shell. The malachite green ( MG ) absorbed by H-bond could be detected on the array under the electromagnetic enhancement of inner-core Au nanoparticles. Under the conditions of the optimum shell-thickness of Au@PVP and the appropriate absorbed time of MG, the detection of MG could be realized in the linear range from 1 × 10-10 mol/L to 1 × 10-5 mol/L with the correlation coefficient ( R2 ) of 0. 98. The detection limit was 10-12 mol/L. This method was applied to the determination of MG in tilapia fish fillets of Xiagang market. No MG was found in this real sample. The spiked recoveries of the sample ranged from 70. 8% to 126. 0%. This method is simple and accurate, and can be used for detection of MG in the fish.%采用水热法合成了粒径均一、壳层厚度可控的Au@PVP核壳纳米粒子,利用壳层PVP分子分散纳米粒子的特性,使其形成均一、排列致密的单层结构,利用其内核金纳米粒子的等离子共振效应实现了孔雀石绿( MG)分子的表面增强拉曼检测。通过优化吸附时间与壳层厚度,在致密的、均匀的核壳纳米粒子表面增强拉曼散射(SERS)基底上实现MG分子高灵敏分析检测,检测线性范围1×10-10~1×10-5 mol/L,线性相关系数R2达到0.98,检出限可达1×10-12 mol/L。将本方法用于罗非鱼鱼肉中MG含量检测,样品未检出,样品加标回收率为70.8%~126.0%。结果表明,本方法快速准确、操作简单,可用于鱼肉中MG的快速检测。

  6. No More Green Thumbs!

    Science.gov (United States)

    Bland, Judith A.

    1977-01-01

    An alternative method of bacterial spore staining using malachite green is described. This technique is designed to save time and expense by a less messy procedure. Advantages and adaptations of the technique are also given. (MR)

  7. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  8. Phonon Green's function.

    OpenAIRE

    1991-01-01

    The concepts of source and quantum action principle are used to produce the phonon Green's function appropriate for an initial phonon vacuum state. An application to the Mossbauer effect is presented.

  9. Compliance for Green IT

    CERN Document Server

    Calder, Alan

    2009-01-01

    The growing range of Green IT regulations are challenging more and more organisations to take specific steps to ensure they are in compliance with sometimes complex regulations, ranging from cap & trade requirements through to regulations concerning IT equipment disposal.

  10. Hot Green Wheels

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China hands out subsidies for purchases of new energy vehicles to spur green car interest After months of waiting, the Ministry of Finance announced on June 1a trial program to subsidize purchases of new energy vehicles in the

  11. Green Sturgeon Acoustic Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database is used to hold tracking data for green sturgeon tagged in Central California. The data collection began in late 2002 and is ongoing.

  12. Green Turtle Critical Habitat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  13. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  14. Build up the Ceramics Platform, Enhance the Brand Effect

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ To promote the export trade of China ceramics industry, to develop the overseas marking channel for domestic architecture sanitary ceramics industry ,China Ceramics City ,jointly with China's Foreign Trade magazine,start to publicize on the overseas market.

  15. Finite Element Analysis of Ceramic Coatings under Spherical Indentation with Metallic Interlayer: Part Ⅰ Uncracked Coatings

    Institute of Scientific and Technical Information of China (English)

    Minh-Quy LE; Seock-Sam KIM

    2006-01-01

    Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.

  16. A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks.

    Science.gov (United States)

    Vilatela, Juan J; Rabanal, M E; Cervantes-Sodi, Felipe; García-Ruiz, Máximo; Jiménez-Rodríguez, José A; Reiband, Gerd; Terrones, Mauricio

    2015-04-01

    We demonstrate a spray pyrolysis method to grow carbon nanotubes (CNTs) with high degree of crystallinity, aspect ratio and degree of alignment on a variety of different substrates, such as conventional steel, carbon fibres (CF) and ceramics. The process consists in the chemical vapour deposition of both a thin SiO2 layer and CNTs that subsequently grow on this thin layer. After CNT growth, increases in specific surface by factors of 1000 and 30 for the steel and CF samples, respectively, are observed. CNTs growth on ceramic surfaces results in a surface resistance of 37.5 Ohm/sq. When using conventional steel as a rector tube, we observed CNTs growth rates of 0.6 g/min. Details of nanotube morphology and the growth mechanism are discussed. Since the method discussed here is highly versatile, it opens up a wide variety of applications in which specific substrates could be used in combination with CNTs.

  17. Ceramics as biomaterials for dental restoration.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Watzke, Ronny; Peschke, Arnd; Kappert, Heinrich

    2008-11-01

    Sintered ceramics and glass-ceramics are widely used as biomaterials for dental restoration, especially as dental inlays, onlays, veneers, crowns or bridges. Biomaterials were developed either to veneer metal frameworks or to produce metal-free dental restorations. Different types of glass-ceramics and ceramics are available and necessary today to fulfill customers' needs (patients, dentists and dental technicians) regarding the properties of the biomaterials and the processing of the products. All of these different types of biomaterials already cover the entire range of indications of dental restorations. Today, patients are increasingly interested in metal-free restoration. Glass-ceramics are particularly suitable for fabricating inlays, crowns and small bridges, as these materials achieve very strong, esthetic results. High-strength ceramics are preferred in situations where the material is exposed to high masticatory forces.

  18. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  19. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    Science.gov (United States)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  20. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    Science.gov (United States)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  1. Green's functions with applications

    CERN Document Server

    Duffy, Dean G

    2015-01-01

    This second edition systematically leads readers through the process of developing Green's functions for ordinary and partial differential equations. In addition to exploring the classical problems involving the wave, heat, and Helmholtz equations, the book includes special sections on leaky modes, water waves, and absolute/convective instability. The book helps readers develop an intuition about the behavior of Green's functions, and considers the questions of the computational efficiency and possible methods for accelerating the process.

  2. Managing green infrastructures

    OpenAIRE

    Manton, Michael

    2014-01-01

    The term green infrastructure addresses the spatial structure of anthropogenic, semi-natural and natural areas, as well as other environmental features which enable society to benefit from ecosystems’ multiple services. Focusing on two green infrastructures, anthropogenic wet meadows and natural forest successions, this thesis applies a macro-ecological approach based on comparisons of multiple landscapes as complex social-ecological systems. Firstly, the trophic interactions of avian predati...

  3. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography Caracterização de cerâmicas e adesão à resina: II- relação entre tratamento de superfície, resistência adesiva, tenacidade de fratura da interface e fractografia

    OpenAIRE

    2005-01-01

    The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters ...

  4. The sustainability of green funds

    NARCIS (Netherlands)

    Scholtens, B.

    2011-01-01

    This paper analyses the performance of the Dutch "Green Funds Scheme". This scheme is a policy instrument to advance green projects. The scheme relies on tax compensation for private investors who save or invest in green institutions below market returns. The green institutions select and monitor ce

  5. High Efficacy Green LEDs by Polarization Controlled MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Christian [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2013-03-31

    Amazing performance in GaInN/GaN based LEDs has become possible by advanced epitaxial growth on a wide variety of substrates over the last decade. An immediate push towards product development and worldwide competition for market share have effectively reduced production cost and generated substantial primary energy savings on a worldwide scale. At all times of the development, this economic pressure forced very fundamental decisions that would shape huge industrial investment. One of those major aspects is the choice of epitaxial growth substrate. The natural questions are to what extend a decision for a certain substrate will limit the ultimate performance and to what extent, the choice of a currently more expensive substrate such as native GaN could overcome any of the remaining performance limitations. Therefore, this project has set out to explore what performance characteristic could be achieved under the utilization of bulk GaN substrate. Our work was guided by the hypotheses that line defects such as threading dislocations in the active region should be avoided and the huge piezoelectric polarization needs to be attenuated – if not turned off – for higher performing LEDs, particularly in the longer wavelength green and deep green portions of the visible spectrum. At their relatively lower performance level, deep green LEDs are a stronger indicator of relative performance improvements and seem particular sensitive to the challenges at hand.

  6. Evaluation of bond strength of various margin ceramics to a zirconia ceramic

    NARCIS (Netherlands)

    Comlekoglu, M. Erhan; Dundar, Mine; Ozcan, Mutlu; Gungor, M. Ali; Gokce, Bulent; Artunc, Celal

    2008-01-01

    Objective: This study evaluated the bond strengths of four different margin ceramics based on fluoroapatite and feldspath to a zirconia ceramic. Methods: Zirconia cores (Zirconzahn) (N = 28, n = 7/margin ceramic group) were fabricated according to the manufacturers' instructions (diameter: 4 mm; thi

  7. Properties of Ceramic Fiber and Ceramic Shot in Wet-laid Processes

    Institute of Scientific and Technical Information of China (English)

    CHENG Long-di

    2002-01-01

    The paper deals with the different sinking properties of ceramic fiber and the ceramic shot in wetlaid nonwoven processes. The difference between the sinking properties of the fiber and the shot is very great according to theory analysis and the test. From results of calculating and practical testing, the method of removing ceramic shots during manufacturing is put forward.

  8. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  9. Experiences with Voice to Design Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede; Jensen, Kristoffer

    2013-01-01

    This article presents SoundShaping, a system to create ceramics from the human voice and thus how digital technology makes new possibilities in ceramic craft. The article is about how experiential knowledge that the craftsmen gains in a direct physical and tactile interaction with a responding....... The shape is output to a 3D printer to make ceramic results. The system demonstrates the close connection between digital technology and craft practice. Several experiments and reflections demonstrate the validity of this work....

  10. Experiences with voice to design ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede; Jensen, Kristoffer

    2014-01-01

    This article presents SoundShaping, a system to create ceramics from the human voice and thus how digital technology makes new possibilities in ceramic craft. The article is about how experiential knowledge that the craftsmen gains in a direct physical and tactile interaction with a responding....... The shape is output to a 3D printer to make ceramic results. The system demonstrates the close connection between digital technology and craft practice. Several experiments and reflections demonstrate the validity of this work....

  11. Reticulated porous silicon nitride-based ceramics

    OpenAIRE

    Mazzocchi, Mauro; Medri, Valentina; Guicciardi, Stefano

    2012-01-01

    The interest towards the production of porous silicon nitride originates from the unique combination of light weight, of mechanical and physical properties typical of this class of ceramics that make them attractive for many engineering applications. Although pores are generally believed to deteriorate the mechanical properties of ceramics (the strength of porous ceramics decreases exponentially with an increase of porosity), the recent literature reports that porous silicon nitride can exhib...

  12. Journal of the Chinese Ceramic Society

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    ISSN 2095-7645CN 10-1189/TQ Aims and Scope The Journal of the Chinese Ceramic Society is a premier archival journal devoted to publishing top quality original research that advances the fundamental and applied science of ceramic materials.Today’S ceramic science is an interdisciplinary field that has expanded beyond its traditional core to areas as diverse as electronics and energy materials,and bio-and

  13. Using a ceramic chamber in kicker magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.

    1993-05-01

    A ceramic chamber inside kicker magnets can provide the relevant field risetime. On the other hand, some metallic coating inside has to prevent static charge buildup and shield the beam from ceramic and ferrite at high frequencies to avoid possible resonances. The issues concerning the metallized ceramic chamber, such as coupling impedances and requirements on the coating, are studied to find a compromise solution for kickers of the Medium Energy Booster at the Superconducting Super Collider.

  14. Silsesquioxane-derived ceramic fibres

    Science.gov (United States)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  15. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  16. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  17. Oxide perovskite crystals for HTSC film substrates microwave applications

    Science.gov (United States)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  18. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  19. Ceramic veneers with minimum preparation

    OpenAIRE

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; de CARVALHO, Ricardo Marins; Furuse, Adilson Yoshio

    2013-01-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative t...

  20. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; J. Konieczny; W. Kwaśny; M. Pawlyta

    2009-01-01

    Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD).Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS) method. Thin foils of substrates and coatings by transmission electron micr...