WorldWideScience

Sample records for ceramic fuel cells

  1. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  2. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  3. Anode-Engineered Protonic Ceramic Fuel Cell with Excellent Performance and Fuel Compatibility

    NARCIS (Netherlands)

    Hua, B.; Yan, N.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Directly utilizing hydrocarbon fuels, particularly methane, is advantageous yet challenging in high-performance protonic ceramic fuel cells. In this work, this technological hurdle is well addressed by selective deposition of secondary electrocatalysts within the porous Ni-cermet anode. This novel

  4. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  5. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    Science.gov (United States)

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  6. Catalytic Surface Promotion of Composite Cathodes in Protonic Ceramic Fuel Cells

    DEFF Research Database (Denmark)

    Solis, Cecilia; Navarrete, Laura; Bozza, Francesco

    2015-01-01

    Composite cathodes based on an electronic conductor and a protonic conductor show advantages for protonic ceramic fuel cells. In this work, the performance of a La5.5WO11.25-δ/ La0.8Sr0.2MnO3+δ (LWO/LSM) composite cathode in a fuel cell based on an LWO protonic conducting electrolyte is shown...

  7. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy

    2014-01-01

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  8. Comprehensive Study on Ceramic Membranes for Low‐Cost Microbial Fuel Cells

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John

    2016-01-01

    Abstract Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low‐cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m−3, respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m−3, respectively. The results indicate the dependence of bio‐film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X‐ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m−2, respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries. PMID:26692569

  9. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Science.gov (United States)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  10. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  11. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  12. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  13. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  14. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells

    Science.gov (United States)

    Choi, Sihyuk; Kucharczyk, Chris J.; Liang, Yangang; Zhang, Xiaohang; Takeuchi, Ichiro; Ji, Ho-Il; Haile, Sossina M.

    2018-03-01

    Over the past several years, important strides have been made in demonstrating protonic ceramic fuel cells (PCFCs). Such fuel cells offer the potential of environmentally sustainable and cost-effective electric power generation. However, their power outputs have lagged behind predictions based on their high electrolyte conductivities. Here we overcome PCFC performance and stability challenges by employing a high-activity cathode, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), in combination with a chemically stable electrolyte, BaZr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411). We deposit a thin dense interlayer film of the cathode material onto the electrolyte surface to mitigate contact resistance, an approach which is made possible by the proton permeability of PBSCF. The peak power densities of the resulting fuel cells exceed 500 mW cm-2 at 500 °C, while also offering exceptional, long-term stability under CO2.

  15. Materiais cerâmicos para células a combustível Ceramic materials for fuel cells

    Directory of Open Access Journals (Sweden)

    D. Z. de Florio

    2004-12-01

    Full Text Available A partir da definição de células a combustível, é feita uma introdução sucinta dos tipos de células e dos materiais cerâmicos que são empregados em projeto e fabricação destes dispositivos geradores de energia elétrica. Tomando por base a ampla literatura científica disponível em publicações periódicas internacionais indexadas e arbitradas, bem como patentes, são relatados com detalhes os materiais cerâmicos com comportamento elétrico adequado para uso como eletrólitos, anodos, catodos, interconectores e selantes, que são os componentes básicos de células a combustível de óxidos sólidos. Por fim, é feita uma avaliação do estado da arte na pesquisa e desenvolvimento de materiais cerâmicos para uso em células a combustível de óxidos sólidos.Basic definitions of fuel cells and a brief introduction of different types of fuel cells are given. A review of the most important ceramic materials being considered for the design and fabrication of devices for producing electrical energy is presented. Ceramic materials with suitable electrical behavior to be used as electrolytes, anodes, cathodes, interconnectors, and sealants of solid oxide fuel cells are reported with details, taking into account the large number of available indexed and refereed scientific publications and patents. Finally, an evaluation of the state of the art of the research and development of ceramic materials for solid oxide fuel cells is presented.

  16. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  17. Advances in Ceramic Supports for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Oran Lori

    2015-08-01

    Full Text Available Durability of catalyst supports is a technical barrier for both stationary and transportation applications of polymer-electrolyte-membrane fuel cells. New classes of non-carbon-based materials were developed in order to overcome the current limitations of the state-of-the-art carbon supports. Some of these materials are designed and tested to exceed the US DOE lifetime goals of 5000 or 40,000 hrs for transportation and stationary applications, respectively. In addition to their increased durability, the interactions between some new support materials and metal catalysts such as Pt result in increased catalyst activity. In this review, we will cover the latest studies conducted with ceramic supports based on carbides, oxides, nitrides, borides, and some composite materials.

  18. Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells

    Science.gov (United States)

    Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.

    2013-11-01

    The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.

  19. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  20. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation

  1. Microstructure and fracture analysis of fully ceramic microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    Nuclear fuel enhancing the accident tolerance is satisfied two parts. First, the performance has to be retained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be reduced largely. FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix compared to the current commercial UO 2 fuel system. SiC ceramic has excellent properties for fuel application. SiC ceramic has low neutron absorption cross-section, excellent irradiation resistivity and high thermal conductivity. Additionally, the relative thermal conductivity of the SiC ceramic as compared to UO 2 is quite good, reducing operational release of fission products form the fuel. TRISO coating layer which is deposited on UO 2 kernel is consists of PyC/SiC/PyC trialyer and buffer PyC layer. SiC matrix composite with TRISO particle was fabricated by hot pressing. 3 to 20 wt.% of sintering additives were added to investigate reaction between sintering additives and outer PyC layer of TRISO coating layer. The relative densities of all specimens show above 92%. The reaction between sintering additives and PyC is observed in most TRISO particles, the thickness of reactants shows about ten micrometers. The thermal shock resistance of SiC matrix composite was investigated

  2. Ethane dehydrogenation over nano-Cr{sub 2}O{sub 3} anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6 (Canada); Krzywicki, Andrzej [NOVA Chemicals Corp., Calgary, Alberta T2P5C6 (Canada)

    2011-02-01

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr{sub 2}O{sub 3} nanoparticles as anode catalyst, BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr{sub 2}O{sub 3} nanoparticles are synthesized by a combustion method. BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm{sup -2} to 118 mW cm{sup -2} and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 C to 750 C. The fuel cell reactor and process are stable at 700 C for at least 48 h. Cr{sub 2}O{sub 3} anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 C. (author)

  3. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  4. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  5. Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

    1987-01-01

    Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs

  6. Coated powder for electrolyte matrix for carbonate fuel cell

    International Nuclear Information System (INIS)

    Iacovangelo, C.D.; Browall, K.W.

    1985-01-01

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell

  7. Updated FY12 Ceramic Fuels Irradiation Test Plan

    International Nuclear Information System (INIS)

    Nelson, Andrew T.

    2012-01-01

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  8. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis

    2013-11-01

    The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Measurement of properties of sealant materials for solid oxide fuel cell systems

    International Nuclear Information System (INIS)

    Boersma, R.J.; Sammes, N.M.; Zhang, Y.

    1998-01-01

    Thermal expansion of ceramic materials, ceramic cements and steels was studied, and their compatibility with materials used in the SOFC system was evaluated. A number of ceramic cements, a glass paste and a glass ceramic were examined to identify their potential as a sealing material in a tubular fuel cell system. Thermal expansion coefficients of these materials were compared for thermal matching with materials employed in the fuel cell construction, such as yttria stabilised with 8 mole% zirconia (8YSZ) and stainless steel. A reasonable match was found for Macor, a glass ceramic, with one of the steel samples studied and with 8YSZ. Candidate sealants were tested for bonding quality, which made it evident that the ceramic cements had to be discarded. Good bonds between Macor and one of the steel samples and Macor and 8YSZ were formed, resulting in a gas tight seal. Uncertainty remains regarding the long term effect of the interface reactions between steel and Macor. Exposure of the Macor and a steel-Macor-8YSZ assembly to the different fuel cell gas atmospheres revealed that the Macor reacts with hydrogen, the long term effect of which is also unknown. Copyright (1998) Australasian Ceramic Society

  10. Generator module architecture for a large solid oxide fuel cell power plant

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  11. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  12. Encapsulation of spent nuclear fuel in ceramic materials

    International Nuclear Information System (INIS)

    Forberg, S.; Westermark, T.

    1983-03-01

    The international situation with regard to deposition of spent nuclear fuel is surveyed, with emphasis on encapsulation in ceramic materials. The feasibility and advantages of ceramic containers, thermodynamic stable in groundwater, are discussed as well as the possibility to ensure that stability for longevity by engineered measures. The design prerequisite are summarized and suggestions are made for a conceptual design, comprising rutile containers with stacks of coiled fuel pins. A novel technique is suggested for the homogeneous sealing of rutile containers at low temperatures. acceptable also for the fuel pin package. Key points are given for research, demonstration and verifications of the design foundations and for future improvements. Of which a few ideas are exemplified. (author)

  13. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  14. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  15. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  16. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  17. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  18. Stable glass-ceramic sealants for solid oxide fuel cells: Influence of Bi{sub 2}O{sub 3} doping

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Ashutosh; Ferreira, Jose M.F. [Department of Ceramics and Glass Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Pascual, Maria J. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Diopside (CaMgSi{sub 2}O{sub 6}) based glass-ceramics in the system SrO-CaO-MgO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-La{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-SiO{sub 2} have been synthesized for sealing applications in solid oxide fuel cells (SOFC). The parent glass composition in the primary crystallization field of diopside has been doped with different amounts of Bi{sub 2}O{sub 3} (1, 3, 5 wt.%). The sintering behavior by hot-stage microscopy (HSM) reveals that all the investigated glass compositions exhibit a two-stage shrinkage behavior. The crystallization kinetics of the glasses has been studied by differential thermal analysis (DTA) while X-ray diffraction adjoined with Rietveld-R.I.R. analysis have been employed to quantify the amount of crystalline and amorphous phases in the glass-ceramics. Diopside and augite crystallized as the primary crystalline phases in all the glass-ceramics. The coefficient of thermal expansion (CTE) of the investigated glass-ceramics varied between (9.06-10.14) x 10{sup -6} K{sup -1} after heat treatment at SOFC operating temperature for a duration varying between 1 h and 200 h. Further, low electrical conductivity, good joining behavior and negligible reactivity with metallic interconnects (Crofer22 APU and Sanergy HT) in air indicate that the investigated glass-ceramics are suitable candidates for further experimentation as sealants in SOFC. (author)

  19. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  20. MATERIALS SCIENCE: New Tigers in the Fuel Cell Tank.

    Science.gov (United States)

    Service, R F

    2000-06-16

    After decades of incremental advances, a spurt of findings suggests that fuel cells that run on good old fossil fuels are almost ready for prime time. Although conventional ceramic cells, known as solid oxide fuel cells, require expensive heat-resistant materials, a new generation of SOFCs, including one featured on page 2031, converts hydrocarbons directly into electricity at lower temperatures. And a recent demonstration of a system of standard SOFCs large enough to light up more than 200 homes showed that it is the most efficient large-scale electrical generator ever designed.

  1. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  2. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  3. Application of fully ceramic microencapsulated fuels in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  4. Application of fully ceramic microencapsulated fuels in light water reactors

    International Nuclear Information System (INIS)

    Gentry, C.; George, N.; Maldonado, I.; Godfrey, A.; Terrani, K.; Gehin, J.

    2012-01-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO 2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  5. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  6. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  7. Method to fabricate high performance tubular solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  8. Stable proton-conducting Ca-doped LaNbO{sub 4} thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: bin@mail.ustc.edu.cn; Wang Songlin; Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China); Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: mgym@ustc.edu.cn

    2009-06-10

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La{sub 0.99}Ca{sub 0.01}NbO{sub 4} (LCN) thin electrolyte was fabricated on a porous NiO-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La{sub 2}O{sub 3}, CaCO{sub 3} and Nb{sub 2}O{sub 5} instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 {mu}m was obtained. A single cell was assembled with (La{sub 0.8}Sr{sub 0.2}){sub 0.9}MnO{sub 3-{delta}}-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm{sup -2} at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  9. Fabrication and characterization of fully ceramic microencapsulated fuels

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, K.A., E-mail: kurt.terrani@gmail.com [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kiggans, J.O.; Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shimoda, K. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Montgomery, F.C.; Armstrong, B.L.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hunn, J.D. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 Degree-Sign C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  10. Method of forming a package for MEMS-based fuel cell

    Science.gov (United States)

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  11. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  12. Molten carbonate fuel cell integral matrix tape and bubble barrier

    International Nuclear Information System (INIS)

    Reiser, C.A.; Maricle, D.L.

    1983-01-01

    A molten carbonate fuel cell matrix material is described made up of a matrix tape portion and a bubble barrier portion. The matrix tape portion comprises particles inert to molten carbonate electrolyte, ceramic particles and a polymeric binder, the matrix tape being flexible, pliable and having rubber-like compliance at room temperature. The bubble barrier is a solid material having fine porosity preferably being bonded to the matrix tape. In operation in a fuel cell, the polymer binder burns off leaving the matrix and bubble barrier providing superior sealing, stability and performance properties to the fuel cell stack

  13. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  14. Ceramic waste forms for fuel-containing masses at Chernobyl

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1994-05-01

    The fuel materials originally in the core of the Chernobyl Unit 4 reactor are now present within the Ukrytie in three major forms: (1) very fine particles of fuel dispersed as dust (about 10 tonnes), (2) fragments of the destroyed core, and (3) lavas containing fuel, cladding, and other materials. All of these materials will need to be immobilized into waste forms suitable for final disposal. We propose a ceramic waste form system that could accommodate all three waste types with a single set of processing equipment. The waste form would include the mineral zirconolite for immobilization of actinide materials (including uranium), perovskite, nepheline, spinel, and other phases as dictated by the chemistry of the lava masses. Waste loadings as high as 50% U can be achieved if pyrochlore, a close relative of zirconolite, is used as the U host. The ceramic immobilization could be achieved with low additions of inert chemicals to minimize the final disposal volume while ensuring a durable product. The sequence of processing would be to collect and immobilize the fuel dust first. This material will require minimal preprocessing and will provide experience in the handling of the fuel materials. Core fragments would be processed next, using a cryogenic crushing stage to reduce the size prior to adding ceramic additives. The lavas would be processed last, which is compatible with the likely sequence of availability of materials and with the complexity of the operations. The lavas will require more adjustment of chemical additive composition than the other streams to ensure that the desired phases are produced in the waste form

  15. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  16. Energy Conversion Efficiency Potential for Forward-Deployed Generation Using Direct Carbon Fuel Cells

    Science.gov (United States)

    2012-05-01

    fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level

  17. Method of producing granulated ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1976-01-01

    For the production of granulated ceramic nuclear fuels with a grain size spectrum as narrow as possible it is proposed to suspend the nuclear fuel powder in a non-aqueous solvent with small content of hydrogen (e.g. chloridized hydrocarbons) while adding a binding agent and then dry it by means of rays. As binding agent polybutyl methane acrylate in dibutyl phthalate is proposed. The method is described by the example of UO 2 -powder in trichloroethylene. The dry granulated material is produced in one working step. (UWI) [de

  18. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  19. Synthesis and characterization of electrolyte-grade 10%Gd-doped ceria thin film/ceramic substrate structures for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Bharadwaj, S. R.; Jadhav, L. D.

    2010-01-01

    In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation....... In case of NiO-GDC composite substrate, the thickness of film was higher (∼ 13 μm) as compared to the film thickness on GDC substrate (∼ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC...

  20. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  1. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  2. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  3. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  4. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  5. Planar solid oxide fuel cells: the Australian experience and outlook

    Science.gov (United States)

    Godfrey, Bruce; Föger, Karl; Gillespie, Rohan; Bolden, Roger; Badwal, S. P. S.

    Since 1992, Ceramic Fuel Cells (CFCL) has grown to what is now the largest focussed program globally for development of planar ceramic (solid oxide) fuel cell, SOFC, technology. A significant intellectual property position in know-how and patents has been developed, with over 80 people involved in the venture. Over $A60 million in funding for the activities of the company has been raised from private companies, government-owned corporations and government business-support programs, including from energy — particularly electricity — industry shareholders that can facilitate access to local markets for our products. CFCL has established state-of-the-art facilities for planar SOFC R&D, with their expansion and scaling-up to pilot manufacturing capability underway. We expect to achieve commercial introduction of our market-entry products in 2002, with prototype systems expected to be available from early 2001.

  6. Novel materials for more robust solid oxide fuel cells in small scale applications

    DEFF Research Database (Denmark)

    Holtappels, Peter

    , especially for remote fuel cell systems. For those applications, redox tolerant and Sulphur resistant fuel electrode materials are advantageous in order to make the cells more tolerant against sudden system failures such as fuel cut off and reformer breakdown. Also for direct feeding of alcohols and higher...... hydrocarbons, coking tolerant electrodes are required. State-of art fuel electrodes are based on a nickel ceramic composite, a nickel cermet, which suffers from low redox stability, susceptibility for sulfur poisoning and coking. Redox stable anodes can be achieved by replacing the Ni-cermet fuel electrode...

  7. Development of ceramic roller bush for diesel fuel injection pump; Nenryo funsha pump yo ceramics sei roller bush no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K; Kamiya, S; Fujimura, M; Tsuzuki, M [Toyota Motor Corp., Aichi (Japan); Taniguchi, K [Denso Corp., Aichi (Japan)

    1997-10-01

    Silicon nitride ceramics have been applied to roller bush for diesel fuel injection pump in order to improve the seizure resistance. It was found that ceramic roller bush made it possible to improve the seizure load by more than three times as compared to conventional metal roller bush when the kerosene was used as lubricant The ceramic roller bush proved to be durable under engine operating conditions. 6 refs., 13 figs., 1 tab.

  8. Solid oxide fuel cells for combined heat and power. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gottrup Barfod, R.; Juel Jensen, K.; Holt, T.; Drejer Jensen, M.; Danoe, S. (TOFC, Kgs. Lyngby (Denmark)); Mikkelsen, L.; Lund Frandsen, H. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-01-15

    The project has focused on examining three aspects that are important to the commercialization of ceramic fuel cells. The three main topics are: - the life and durability of ceramic fuel cells - the design of scalable units - increasing the electrical power. The studies range widely - from fundamental materials studies of the components in a stack to analysis of the requirements from the system that affect the design and the electrical connection of individual cells. In previous designs the lifetime was limited by the corrosion of the metal plate that electrically and mechanically connects the individual fuel cells in a stack. In this project, studies of various commercial types of steel, however, show that the lifetime can be increased significantly by choosing the right type of steel and an optimum operating temperature. In the project a lifetime of the steel of about seven years was achieved, and the steel is both cheaper and stronger than that which has hitherto been used. Another important result from the project is a significant increase of the electrical power. Compared with results from a previous project, the electrical power for a stack with the same area, same operating temperature and the same cell voltage increased by 130 %. This is achieved by a new design of the connection between the individual cells, optimized cells and improved utilization of the cell area. (ln)

  9. Carbonate fuel cells: Milliwatts to megawatts

    Science.gov (United States)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  10. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  11. Fuel cells are gaining ground. Fuel cells as a key technology: future potential, state of the art, economic aspects, practical reports. Proceedings. Brennstoffzellen auf dem Vormarsch. Die Brennstoffzelle als Schluesseltechnologie. Zukunftspotentiale, Stand der Technik, Wirtschaftlichkeit und Praxisberichte. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    1999-01-01

    This conference report comprises 16 papers on fuel cells. Subjects: Funds for fuel cell technology provided by the 4. programme for energy research and energy technologies; Funds provided by the European Commission for demonstration projects; Fuel cells: Stationary applications in power supply; Liberalisation of the energy markets - effects on fuel cell development; Fuel cell technology from a utility's point of view; PEMFC membrane fuel cells; PFC in domestic energy supply; Applications of PEMFC in stationary power generation; Development of a fuel cell drive; Comparative evaluations of passenger car drives with fuel cells and internal combustion engines; Economic aspects of PAFC fuel cells; Development of the carbonate fuel cell (MCFC); Demonstration plant at Santa Clara (MCFC); Development, demonstration and application of oxide ceramics fuel cells SOFC, Experience with SOFC. Four contributions are available as separate records in this database.

  12. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    International Nuclear Information System (INIS)

    Pope, Michael A.; Sen, R. Sonat; Boer, Brian; Ougouag, Abderrafi M.; Youinou, Gilles

    2011-01-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  13. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al_2O_3 and Y_2O_3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  14. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  15. A development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun; Lee, Chang Woo [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Kwy Youl; Yoon, Moon Soo; Kim, Ho Ki; Kim, Young Sik; Mun, Sung In; Eom, Sung Wuk [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of)

    1996-12-31

    Solid oxide fuel cell which was consisted of ceramics has high power density and is very simple in shape. The project named A development of SOFC(Solid Oxide Fuel Cell) technology is to develop the unit cell fabrication processing and to evaluate the unit cell of solid oxide full cell. In this project, a manufacturing process of cathode by citrate method and polymeric precursor methods were established. By using tape casting method, high density thin electrolyte was manufactured and has high performance. Unit cell composed with La{sub 17}Sr{sub 13}Mn{sub 3} as cathode, 8YSZ electrolyte and 50% NiYSZ anode had a performance of O.85 W/cm{sup 2} and recorded 510 hours operation time. On the basis of these results. 100 cm{sup 2} class unit cell will be fabricated and tests in next program (author). 59 refs., 120 figs.

  16. A development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun; Lee, Chang Woo [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Kwy Youl; Yoon, Moon Soo; Kim, Ho Ki; Kim, Young Sik; Mun, Sung In; Eom, Sung Wuk [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of)

    1995-12-31

    Solid oxide fuel cell which was consisted of ceramics has high power density and is very simple in shape. The project named A development of SOFC(Solid Oxide Fuel Cell) technology is to develop the unit cell fabrication processing and to evaluate the unit cell of solid oxide full cell. In this project, a manufacturing process of cathode by citrate method and polymeric precursor methods were established. By using tape casting method, high density thin electrolyte was manufactured and has high performance. Unit cell composed with La{sub 17}Sr{sub 13}Mn{sub 3} as cathode, 8YSZ electrolyte and 50% NiYSZ anode had a performance of O.85 W/cm{sup 2} and recorded 510 hours operation time. On the basis of these results. 100 cm{sup 2} class unit cell will be fabricated and tests in next program (author). 59 refs., 120 figs.

  17. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation; Desenvolvimento de materiais ceramicos aplicados em anodos de celulas a combustivel de oxidos solidos para operacao direta com combustiveis renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Lima, D.B.P.L. de [Instituto Federal do Parana (IFPR), PR (Brazil); Florio, D.Z. de; Bezerra, M.E.O., E-mail: daniela.bianchi@ifpr.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2016-07-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  18. Analytical investigation on cell temperature control method of planar solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y.; Ito, N.; Nakajima, T.; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi (Japan)

    2006-09-15

    The solid oxide fuel cell (SOFC) has a problem in durability of the ceramics used as its cell materials because its operating temperature is very high and the cell temperature fluctuation induces thermal stress in the ceramics. The cell temperature distribution in the SOFC, therefore, should be kept as constant as possible during variable load operation through control of the average current density in the cell. Considering this fact, the authors numerically optimize the operating parameters of air utilization and the inlet gas temperature of the planar SOFC by minimizing the cell temperature shift from its nominal value and propose a new cell temperature control method that adopts these optimum operating parameters for each average current density. The effectiveness of the proposed method is very high and the temperature variation is suppressed to a very low level without lowering the single cell voltage for both the co-flow and counter-flow type cells, indicating that the proposed cell temperature control method makes variable load operation of the planar SOFC possible. (author)

  19. Efficient and Scalable Fabrication of Solid Oxide Fuel Cells via 3D-Printing

    Data.gov (United States)

    National Aeronautics and Space Administration — Although solid oxide fuel cells (SOFCs) are a source of both efficient and clean electricity, the brittle ceramic materials which comprise them are difficult to form...

  20. Proton Content and Nature in Perovskite Ceramic Membranes for Medium Temperature Fuel Cells and Electrolysers

    Directory of Open Access Journals (Sweden)

    Aneta Slodczyk

    2012-07-01

    Full Text Available Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS, thermogravimetric analysis (TGA, Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1–5 × 10−3 mole/mole, but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  1. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  2. Performance of a methane-fueled single-cell SOFC stack at various levels of fuel utilization

    International Nuclear Information System (INIS)

    Ahmed, K.; Bolden, R.; Ramprakash and Foger, K.

    1998-01-01

    Fuel-gas mixtures representing 10 to 85% utilization of a methane-steam mixture at S/C=2 were fed to a single cell stack with a Ni-based anode at 875 deg C. Cell voltage and power output were recorded at current densities of 50 to 350 mA/cm 2 . The accompanying anode off-gas composition at some of these conditions were measured using on-line gas chromatograph and compared with the compositions predicted by a thermodynamic model based on the assumption of no carbon formation. Electrical losses were measured at a chosen current density at various levels of fuel utilization by the galvanostatic current-interruption technique. Cell voltage stability was monitored for up to 1000 h at two levels of fuel utilization. The stack performance was simulated using a mathematical model of the stack; the simulations were compared with the stack test data. Copyright (1998) Australasian Ceramic Society

  3. Method of production of granulates of ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1975-01-01

    To obtain a classified granulate of ceramic nuclear fuels with narrow grain size spectrum, the nuclear fuel powder is made into a slurry in a non-aqueous solvent with a water content as low as possible (e.g. chlorated hydrocarbon), a binder added to it, and spray-dried. The dry granulate desired is already obtained by this working stage. Polybutyl methacrylate in dibutylphthalate is proposed as binder. An example in which uranium dioxide powder is slurried in trichloro-ethylene is described in detail. (UWI/LH) [de

  4. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  5. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

  6. Study of tape casting of Yttria stabilized zirconia for apply in solid oxide fuel cell

    International Nuclear Information System (INIS)

    Santana, Leonardo de Paulo

    2008-01-01

    The hydrogen economy has been risen as new option for supply the growing global demand for energy. A fuel cell is an electrochemical device able to use hydrogen as a energy source. Carbon dioxide (CO 2 ) emission is very low so it is ecologically friendly, once energy is produced by a reaction of hydrogen and oxygen. The production of energy from hydrogen fuelled devices can be done even in small unities and in a distributed way. It can bring energy for isolated communities, where traditional energy distribution systems can not be reached. A fuel cell is composed essentially of 3 components: anode, cathode and the electrolyte. In present days, there are many materials proposed for use as electrolyte in fuel cells. Among then, Yttria stabilized zirconia (YSZ) is the most studied and effectively used in solid oxide fuel cell. Tape casting technology is a cheap, simple and efficient way to cast ceramics slurries in laminates thick enough to be used as components for fuel cells. Considering theses aspects, in this work, ceramic thin film forming was studied using tape casting technology with raw materials prepared from Brazilian zircon ores. It is described in literature that ceramic slurries are generally made from powders with low surface area (often between 0,5 to 10m 2 /g), and the powders used in this study had larger surface area (often between 40 to 80m 2 /g). The use of zeta potential is indicated to study the stability of a suspension of ceramic powders. However, for suspensions with large concentration of solid, it is also necessary to determine the flow curve, because in these conditions, the double electric layer formed during the stabilization of suspensions can be compressed. In the rheological properties study, calcined ceramic powders were classified using a set of ABNT series screens and separated and retained by the de mesh 60 screen. Flow curve of suspension was determined in aqueous suspensions of these powders. For tape casting processing, a binder

  7. Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System

    Science.gov (United States)

    Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  8. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  9. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  10. A review of glass-ceramics for the immobilization of nuclear fuel recycle wastes

    International Nuclear Information System (INIS)

    Hayward, P.J.

    1987-01-01

    This report reviews the status of the Canadian, German, U.S., Japanese, U.S.S.R. and Swedish programs for the development of glass-ceramic materials for immobilizing the high-level radioactive wastes arising from the recycling of used nuclear fuel. The progress made in these programs is described, with emphasis on the Canadian program for the development of sphene-based glass-ceramics. The general considerations of product performance and process feasibility for glass-ceramics as a category of waste form material are discussed. 137 refs

  11. Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs) – A comparative study

    International Nuclear Information System (INIS)

    Nasani, Narendar; Ramasamy, Devaraj; Antunes, Isabel; Perez, Jose; Fagg, Duncan P.

    2015-01-01

    Highlights: • Cermet anodes Ni-BaZrO 3 (Ni-BZO) & Ni-BaZr 0.85 Y 0.15 O 3-δ (Ni-BZY) were synthesised • Resultant microstructure of both cermet anodes shown to be similar • Minimum Rp in Ni-BZY in 10%H 2 /N 2 with matrix phase of higher proton conductivity. • Strong links shown between R2 and proton conduction in cermet matrix phase. • Magnitude of R3 lower for Ni-BZO than for Ni-BZY under similar conditions. - Abstract: The matrix phase of protonic ceramic fuel cell (PCFC) cermet anodes potentially plays a vital role in hydrogen oxidation kinetics. The present work aims to investigate such involvement by selecting ceramic-oxide matrices with widely dissimilar levels of proton conduction. The materials chosen were that of the proton conducting phase BaZr 0.85 Y 0.15 O 3-δ and the nominal composition BaZrO 3 of negligible proton conduction. Cermet anodes Ni-BaZrO 3 and Ni-BaZr 0.85 Y 0.15 O 3-δ were synthesized by the acetate-H 2 O 2 combustion method for Ni contents of 40 vol%. The microstructure and electrochemical performance of the cermet anodes were investigated by scanning electron microscopy (SEM) and electrochemical impedance measurements (EIS) respectively. The polarisation behaviour of the two nickel cermet anodes was studied as a function of temperature, hydrogen partial pressure (pH 2 ) and water vapor partial pressure (pH 2 O). The results confirm that polarisation resistance is highly sensitive to the composition of the ceramic phase of the cermet anode and that the higher frequency electrode response exhibits strong links to levels of proton transport in the ceramic-oxide matrix

  12. Production of nuclear ceramic fuel for nuclear power plants at 'Ulba metallurgical plant' OSC

    International Nuclear Information System (INIS)

    Khadeev, V.G.

    2000-01-01

    The paper describes the flow-sheet of production of uranium dioxide powders and nuclear ceramic fuel pellets of them existing at the facility. 'UMP' OSC applies ADU extraction process of UO2 powders production. An indisputable success of the process is the possibility of use of the wide range of raw materials. Uranium hexafluoride, uranium oxides, uranium metal, uranium tetrafluoride, uranyl salts, uranium ore concentrates, all possible types of uranium-containing materials the processing of which by routine methods is difficult (ashes, scraps, etc.) are used as the raw materials. In addition, a reprocessed nuclear fuel can be used for fuel production. The quality of uranium dioxide powder produced does not depend on the type of uranium raw material used. High selectivity of extraction refining makes possible to obtain material with rather low impurities content that meets practically all specifications for uranium dioxide known to us. Ceramic and process features of uranium dioxide powders, namely, specific surface, bulk density, grain size and sinterability make possible to produce nuclear ceramic fuel with specified features. Quality of uranium dioxide powders produced by 'UMP' OSC was highly rated by General Electric company that is one of the leading companies from fuel manufactures in the USA market . It has certified 'UMP' OSC as its supplier. Currently, our company makes great efforts on establishing production of uranium dioxide powders with natural isotopes content for production of fuel for CANDU reactors. Trial lots of such powders are under tests at some companies manufacturing fuel for this type reactors in Canada, USA and Corea

  13. Fabrication of fully ceramic microencapsulated fuel by hot pressing

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J; Park, J. Y.; Kim, W. J.; Lee, S. J

    2014-01-01

    Fully ceramic microencapsulated(FCM) nuclear fuel is one of the recently suggested concept to enhance stability nuclear fuel itself. The requirements to increase the accident tolerance of nuclear fuel are mainly two parts: First, the performance has to be maintained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be decrease largely. FCM nuclear fuel consists of tristructural isotropic(TRISO) fuel particle and SiC matrix. The relative thermal conductivity of the SiC matrix as compared to UO 2 is quite good, yielding as-irradiated fuel centerline temperature compared to high temperature for the existing fuel leading to reduced stored energy in the core and reduced operational release of fission products from the fuel. Generally SiC ceramics are fabricated via liquid phase sintering due to strong covalent bonding property and low self-diffusivity coefficient. Hot pressing is very effective method to conduct sintering of SiC powder including different second phase. In this study, SiC-matrix composite including TRISO particles were sintered by hot pressing with Al 2 O 3 -Y 2 O 3 additive system. Various sintering condition were investigated to obtain high relative density above 95%. The internal distribution of TRISO particles within SiC-matrix composite was observed by x-ray radiograph. From the analysis of the cross-section of SiC-matrix composite, the fracture of TRISO particles was investigated. In order to uniform distribution of TRISO particle embedded in the SiC matrix, SiC powder overcoating is considered. SiC matrix composite including TRISO was fabricated by hot pressing. FCM pallets with full density were obtained with Al 2 O 3 -Y 2 O 3 additive system. From the microstructure image, the effect of the sintering additive contents and sintering mechanism

  14. High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hanping [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Xue Xingjian, E-mail: Xue@cec.sc.ed [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Liu Xingqin; Meng Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2010-04-02

    Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. A stable, easily sintered perovskite oxide BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.16}Zn{sub 0.04}O{sub 3-{delta}} (BCZYZ) as electrolyte for proton-conducting solid oxide fuel cells (SOFCs) with Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (SSC) composite cathode is investigated. By fabricating thin membrane BCZYZ electrolyte ({approx}20 {mu}m) synthesized by a modified Pechini method on NiO-BCZYZ anode support, PCMFCs are assembled and tested by selecting SSC perovskite cathode with high mixed ionic and electronic conductivities. An open-circuit potential of 1.015 V, a maximal power density of 528 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.15 {Omega} cm{sup 2} is achieved at 700 {sup o}C. The results indicate that BCZYZ proton-conducting electrolyte with SSC cathode is a promising material system for SOFCs.

  15. Hot impact densification (HID) - a new method of producing ceramic nuclear fuel pellets with tight dimensional tolerances

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.; Muehling, G.; Vollath, D.; Zimmermann, H.

    1984-01-01

    The hot impact densification (HID) is a new powerful method for producing ceramic fuel pellets for nuclear reactors. Green ceramic bodies are directly processed to pellets by high speed shaping in the plastic temperature region of ceramic material. Opposed to the well established press sintering procedure it can be heated, densified, and cooled by orders of magnitude faster. Therefore, at high throughputs, small equipment dimensions become possible. The fuel pellets produced meet all requirements, particular the dimensional tolerances achieved are very closed, consequently circular grinding is omitted. Furthermore, the relatively high temperature level of the impact pressing favors the mixed crystal formation of uranium and plutonium oxide. This improves the solubility of the fuel in nitric acid, an essential point at reprocessing. A prototype facility is designed so that automatic fabrication in continuous operation will be possible. The target working cycle for a fuel pellet is in the range of some seconds. (orig.)

  16. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  17. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  18. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  19. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  20. Serviceability of rod ceramic fuel pins on motoring conditions of FTP or NEMF reactor

    International Nuclear Information System (INIS)

    Deryavko, I.I.

    2004-01-01

    The operation conditions of rod ceramic fuel pins in the running hydrogen-cooled technological canals of FTP or NEMF reactor on the motoring conditions are considered. The available postreactor researches of the fuel pins are presented and the additional postreactor researches of fuel pins, tested on this mode in IVG.1 and IRGIT reactors, are carried out. The fuel pins serviceability on motoring conditions of FTP or NEF reactor operation is concluded. (author)

  1. Experiments on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Ohno, Hideo; Naruse, Yuji; Coffin, D.O.; Walthers, C.R.; Binning, K.E.

    1985-01-01

    A ceramic electrolysis cell and a palladium diffuser are developed in Japan and is tested with tritium in Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory, in order to confirm the feasibility as possible upgrades for the fuel cleanup system (PCU). The ceramic electrolysis cell made of stabilized zirconia was operated at 630 0 C for an extended period with a mixture of 3% T 2 O in He carrier gas in the circulation system with oxidizing catalyst bed. The palladium diffuser was tested with circulated pure tritium gas at 280 0 C to verify the compatibility of the alloy with tritium, since the 3 He produced in the metal could cause a degradation. The isotopic effects were also measured for both devices

  2. Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} cubic perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Lin, Bin; Wang, Songlin; Fang, Daru; Dong, Yingchao; Peng, Ranran; Liu, Xingqiu; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Jiang, Yinzhu; Tao, Shanwen [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2008-12-01

    The SrCo{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} (SCS) composite oxide with cubic perovskite structure was synthesized by a modified Pechini method and examined as a novel cathode for protonic ceramic membrane fuel cells (PCMFCs). At 700 C and under open-circuit condition, symmetrical SCS cathode on BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte showed low polarization resistances (R{sub p}) of 0.22 {omega}cm{sup 2} in air. A laboratory-sized tri-layer cell of NiO-BZCY7/BZCY7/SCS was operated from 500 to 700 C with humidified hydrogen ({proportional_to}3% H{sub 2}O) as fuel and the static air as oxidant. A high open-circuit potential of 1.004 V, a maximum power density of 259 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.14 {omega}cm{sup 2} was achieved at 700 C. (author)

  3. Layered perovskite LaBaCuMO{sub 5+x} (M = Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling Yihan; Lin Bin; Zhao Ling; Zhang Xiaozhen; Yu Jia; Peng Ranran; Meng Guangyao [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Liu Xingqin, E-mail: lyhyy@mail.ustc.edu.c [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)

    2010-03-18

    Layered perovskite LaBaCuFeO{sub 5+x} (LBCF) and LaBaCuCoO{sub 5+x} (LBCC) oxides are synthesized by a modified Pechini method and examined as potential cathode materials for intermediate-temperature protonic ceramic membrane fuel cells (IT-PCMFCs). Thin proton-conducting BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) electrolyte and NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY) anode functional layer are prepared over porous anode substrates composed of NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} by a one-step dry-pressing/co-firing process. Laboratory-sized quad-layer cells of NiO-BYCZ/NiO-BYCZ/BYCZ/LBCF (LBCC) are operated from 550 to 700 {sup o}C with humidified hydrogen ({approx}3% H{sub 2}O) as fuel and the static air as oxidant. The single cell with LBCF cathode shows peak power densities of only 327 mW cm{sup -2} at 700 {sup o}C and 105 mW cm{sup -2} for 550 {sup o}C, while the single cell with LBCC cathode shows peak power densities of 432 and 171 mW cm{sup -2} at 700 and 550 {sup o}C, respectively. The dramatic improvement of cell performance is attributed to higher cobaltites catalytic activity than that of ferrites for IT-PCMFCs, which is in good agreement with the results of impedance measurement.

  4. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  5. Reprocessing method of ceramic nuclear fuels in low-melting nitrate molten salts

    International Nuclear Information System (INIS)

    Brambilla, G.; Caporali, G.; Zambianchi, M.

    1976-01-01

    Ceramic nuclear fuel is reprocessed through a method wherein the fuel is dispersed in a molten eutectic mixture of at least two alkali metal nitrates and heated to a temperature in the range between 200 and 300 0 C. That heated mixture is then subjected to the action of a gaseous stream containing nitric acid vapors, preferably in the presence of a catalyst such as sodium fluoride. Dissolved fuel can then be precipitated out of solution in crystalline form by cooling the solution to a temperature only slightly above the melting point of the bath

  6. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  7. Procedure for the fabrication of ceramic fuel pellets with an adjustable structure

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.; Sobek, D.

    1986-01-01

    The invention concerns a procedure for the fabrication of ceramic fuel pellets of UO 2 , PuO 2 , ThO 2 and their mixtures with an adjustable structure. Before or during the milling the particle shaped fuel pellets have been added polyethylenglycol in a 20 - 60 % aqueous solution with an amount of 0.5 - 2.0 % in weight. This additive has an effect on a controlled pore formation and grain growth advancement

  8. Obtaining of ceria - samaria - gadolinia ceramics for application as solid oxide fuel cell (SOFC) electrolyte

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo

    2010-01-01

    Cerium oxide (CeO 2 ) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700 degree C. The most effective additives or dopants for ionic conductivity improvement are (samarium oxide - Sm 2 O 3 ) and gadolinia (gadolinium oxide - Gd 2 O 3 ), fixing the concentration between 10 and 20 molar%. In this work, Ce 0,8 (SmGd) 0,2 O 1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO 2 and other containing 51% of Sm 2 O 3 and 30% of Gd 2 O 3 , both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800 degree C presented high specific surface area (90 - 150 m 2 .g -1 ) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350 degree C. High densification values (>95% TD) was obtained at temperatures above 1400 degree C. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nano powders at low temperatures (200 degree C). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m 2 .g -1

  9. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  10. Glass-ceramic material and method of making

    Science.gov (United States)

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  11. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dolbow, John E. [Duke Univ., Durham, NC (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  12. Microwave assisted sintering of gadolinium doped barium cerate electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arumugam Senthil, E-mail: senthu.ramp@gmail.com [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Balaji, Ramamoorthy [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Jayakumar, Srinivasalu [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamilnadu (India); Pradeep, Chandran [Department of Physics, Indian Institute of Technology, Madras, 600 036, Tamilnadu (India)

    2016-10-01

    In Solid Oxide Fuel Cell (SOFC), electrolyte plays a vital role to increase the energy conversion efficiency. The main hurdle of such electrolyte in fuel cell is its higher operating temperature (1000 °C) which results in design limitation and higher fabrication cost. In order to reduce the operating temperature of SOFC, a suitable electrolyte has been prepared through co-precipitation method followed by microwave sintering of solid ceramic. The calcination temperature for the as-prepared powder was identified using Differential Scanning Calorimetry. The crystal structure of the sample was found to exhibit its orthorhombic perovskite structure. The particle size was determined using High-Resolution Transmission Electron Microscope with uniform in shape and size, match with XRD results and confirmed from structural analysis. Thus, the sample prepared via co-precipitation method and the solid ceramic sintered through microwave can be a promising electrolyte for fuel cells operated at intermediate temperature. - Highlights: • To synthesis the composite electrolyte by chemical method and sinter using microwave. • To reduce the operating temperature of electrolyte for high ionic conductivity in SOFC's. • To study the phase purity and to develop nanocomposite at reduced temperature.

  13. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  14. Preparation of Sr2(MgMo)1-xRuxO6 ceramics for use in a solid oxide fuel cell anode

    International Nuclear Information System (INIS)

    Bezerra, Matheus Eiji Ohno; Florio, Daniel Zanetti de; Fonseca, Fabio Coral

    2016-01-01

    Full text: Solid Oxide Fuel Cells are the most efficient devices known for the direct conversion of fuels into electric energy. Such devices have advanced steadily and are already available for specific applications such as portable power and residential stationary generation. The main objective of this work is the development of anodes for SOFC operating directly with renewable fuels, without the addition of water and using strategic fuels such as ethanol and natural gas. Specifically, a family of mixed ionic-electronic compounds has been investigated: the double perovskites with compositions Sr 2 (MgMo) 1-x Ru x O 6 with x = 0; 1; 2; 5; 10 e 20 at.%. This material has been synthesized by polymeric precursor method. The resins were prepared by combining stoichiometric amounts of the starting solutions. The resulting solution was heated treated under magnetic stirring. The thermal decomposition of the polymeric resin was studied by means of simultaneous thermogravimetric and differential scanning calorimetry up to 1500 °C with heating and cooling rates of 10 °/min in Ar. The thermal decomposition result shows mass loss up to, approximately, 900 °C. However X-ray diffraction analyses of the powder heat treated at 900 °C and 1200 °C presents a considerable content of an undesiderate phase (SrMoO 4 ). According to the literature for similar compounds a thermal treatment under reduction conditions could be necessary to obtain the double perovskites single phase. After this treatment the material will be characterized regarding its electrical properties. The expected results will contribute to advance both the understanding of the mixed ionic electronic ceramics and the SOFC technology using renewable fuels. (author)

  15. An initial applications study of ceria-gadolinia solid oxide fuel cells: V. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bauen, A.; Hart, D.; Mould, B.

    1998-11-01

    Fuel cells are categorised by their electrolytes, and the solid oxide fuel cell is so called because its electrolyte consists of a solid ceramic oxide. Commonly this has been a form of zirconia, though other materials are now being considered for their different electrical properties. One of these, ceria doped with gadolinia, shows promise for use in lower temperature regimes than zirconia, and may open up different areas of a future market for consideration. This report considers the opportunities for ceria-gadolinia solid oxide fuel cell systems by comparing them with the application requirements in markets where fuel cells may have potential. The advantages and disadvantages of the technology are analysed, together with the state of the art in research and development. The direction in which research effort needs to move to address some of the issues is assessed. The report then draws conclusions regarding the potential of ceria-gadolinia in solid oxide fuel cell systems and in the energy markets as a whole. It should be noted that while this report is an applications study, some technology assessment has been included. Much of this is found in Volume 2. (author)

  16. Thermal System Modeling for Lunar and Martian Surface Regenerative Fuel Cell Systems

    Science.gov (United States)

    Gilligan, Ryan Patrick; Smith, Phillip James; Jakupca, Ian Joseph; Bennett, William Raymond; Guzik, Monica Christine; Fincannon, Homer J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 degrees Celsius versus SOFCs which operate at temperatures greater than 700 degrees Celsius. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  17. Neutronics Studies Of Uranium-Based Fully Ceramic Micro-Encapsulated Fuel For PWRs

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Gehin, Jess C.

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  18. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  19. Industrial use of SPring-8 in fuel cell development

    International Nuclear Information System (INIS)

    Sugiura, Masahiro

    2007-01-01

    The study of fuel cells by using synchrotron radiation from SPring-8 was reviewed for polymer electrolyte fuel cells (PEFCs; also called proton exchange membrane fuel cells), solid oxide fuel cells (SOFCs), and fuel cell-related materials. PEFCs use a solid polymer as an electrolyte and porous carbon electrodes containing a platinum catalyst. Measurements of Pt particles in the cathode catalyst by x-ray absorption near-edge structure (XANES) showed that the decrease of the particle size of Pt particles caused an increased of the number of 5d orbital holes of Pt atoms. Oxidization processes of Pt particles were measured by time-resolved dispersive x-ray absorption fine structure (XAFS). Measurements by time-gating quick scan XAFS together with dispersive XAFS revealed the reduction-oxidation process of Pt nanoparticles under the operation condition of PEFCs. SOFCs use a hard, non-porous ceramic compound as the electrolyte. SOFCs are operated at very high temperatures - around 1,000degC. Oxides having perovskite and fluorite structures are one of the most promising materials for electrolyte of SOFCs operated at reduced temperatures. The local structures of doped ceria and lanthanum gallate compounds were studied by extended XAFS. It was indicated from the measurements of ionic conductivity of these compounds that the local structure seriously affected oxide ionic conduction. Residual thermal stresses in the electrolyte of the anode-supported planar SOFCs were measured by high-energy x-rays. The crystal structure and electron density distribution of hydrogen storage alloys were measured by x-ray diffraction. (Y.K.)

  20. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  1. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  2. Microstructural changes in NiFe_2O_4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    International Nuclear Information System (INIS)

    Chauhan, Lalita; Sreenivas, K.; Bokolia, Renuka

    2016-01-01

    Structural properties of Nickel ferrite (NiFe_2O_4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe_2O_4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe_2O_4 ceramics with a uniform microstructure and a large grain size.

  3. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Science.gov (United States)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  4. TRU transmutation using ThO2-UO2 and fully ceramic micro-encapsulated fuels in LWR fuel assemblies

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Sergi

    2012-01-01

    The objective of this work is to design new LWR fuel assemblies which are able to efficiently destroy TRU (transuranics) nuclide without degradation of safety aspects by using ThO 2 -UO 2 fuel pins and FCM (Fully Ceramic Micro-encapsulated) fuel pins containing TRU fuel particles. Thorium was mixed to UO 2 in order to reduce the generation of plutonium nuclides and to save the uranium resources in the UO 2 pins. Additionally, the use of thorium contributes to the extension of the fuel cycle length. All calculations were performed by using DeCART (Deterministic Core Analysis based on Ray Tracing) code. The results show that the new concept of fuel assembly has the TRU destruction rates of ∼40% and ∼25% per 1200 EFPD (Effective Full Power Day) over the TRU FCM pins and the overall fuel assembly, respectively, without degradation of FTC and MTC

  5. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  6. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.

    Science.gov (United States)

    Danilov, Nikolay; Lyagaeva, Julia; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2017-08-16

    The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed. To this purpose, a SOFC based on a recently developed BaCe 0.5 Zr 0.3 Dy 0.2 O 3-δ proton-conducting ceramic material was fabricated and tested. The basis of the strategy consists of the use of traditional SOFC testing techniques combined with the current interruption method and electromotive force measurements with a modified polarization-correction assessment. This allows one to determine simultaneously such important parameters as maximal power density; ohmic and polarization resistances; average ion transport numbers; and total, ionic, and electronic film conductivities and their activation energies. The proposed experimental procedure is expected to expand both fundamental and applied basics that could be further adopted to improve the technology of electrochemical devices based on proton-conducting electrolytes.

  7. A direct, single-step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes

    International Nuclear Information System (INIS)

    Feng, X.; Einziger, R.E.; Eschenbach, R.C.

    1997-01-01

    A single-step plasma arc-vitreous ceramic (PAVC) process is described for converting spent nuclear fuel (SNF), SNF sludges, and associated wastes into a vitreous ceramic waste form. This proposed technology is built on extensive experience of nuclear waste form development and nuclear waste treatment using the commercially available plasma arc centrifugal (PAC) system. SNF elements will be loaded directly into a PAC furnace with minimum additives and converted into vitreous ceramics with up to 90 wt% waste loading. The vitreous ceramic waste form should meet the functional requirements for borosilicate glasses for permanent disposal in a geologic repository and for interim storage. Criticality safety would be ensured through the use of batch modes, and controlling the amount of fuel processed in one batch. The minimum requirements on SNF characterization and pretreatment, the one-step process, and minimum secondary waste generation may reduce treatment duration, radiation exposure, and treatment cost

  8. Thermal diffusivity measurement of molten fluoride salt containing ThF4 (improvement of the simple ceramic cell)

    International Nuclear Information System (INIS)

    Kato, Y.; Araki, N.; Kobayashi, K.; Makino, A.

    1985-01-01

    Design conditions of a cylindrical ceramic cell are estimated which can be used to measure the absolute value of thermal diffusivity of molten salts by applying the stepwise heating method. Molten salt is expected to be used in nuclear systems such as the Molten-Salt Reactor, the Accelerator Molten-Salt Breeder, the Fusion Reactor Blanket Coolant, the Fuel Reprocessing System, and so on

  9. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  10. A review and discussion of candidate ceramics for immobilization of high-level fuel reprocessing wastes

    International Nuclear Information System (INIS)

    Hayward, P.J.

    1982-08-01

    This review discusses and attempts to evaluate 11 of the leading ceramic processes for hosting the high-level and high-level plus medium-level wastes which would arise from the reprocessing of used UO 2 , (Th,Pu)O 2 and (Th,U)O 2 fuels. The wasteform materials considered include glass ceramics, supercalcine ceramics, SYNROC ceramics, 'stuffed glass', titanate ceramics, cermets, clay ceramics, cement-based materials and multibarrier wasteforms. Although no attempt has been made to rank these candidates in order of superiority, the conclusion is drawn that, of the materials proposed so far, a glass ceramic appears to be best suited to the Canadian program, taking into account durability in the potential environment of a flooded vault, ability to withstand radiation and transmutation damage without serious loss of durability, ability to accommodate variable waste compositions, and ease of processing and quality control. This conclusion does not necessarily apply to other national waste management programs. However, many of the points raised might be included in any critical assessment of alternative wasteform materials

  11. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  12. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Malik, M M; Kurchania, Rajnish; Kumar, G S

    2015-01-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon. (paper)

  13. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  14. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  15. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Bus Evaluations Fuel Cell Electric Bus Evaluations NREL's technology validation team evaluates fuel cell electric buses (FCEBs) to provide comprehensive, unbiased evaluation results of fuel cell bus early transportation applications for fuel cell technology. Buses operate in congested areas where

  16. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov (United States)

    | NREL Fuel Cell Manufacturing Research and Development Fuel Cell Manufacturing Research and Development NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high costs. A researcher monitoring web-line equipment in the Manufacturing Laboratory Many fuel cell

  17. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  18. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  19. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    International Nuclear Information System (INIS)

    Zhang, Hui; Singh, Raman P.

    2008-01-01

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  20. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  1. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  2. Fuel cells 101

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, B.

    2003-06-01

    A capsule history of fuel cells is given, beginning with the first discovery in 1839 by William Grove, a Welsh judge who, when experimenting with electrolysis discovered that by re-combining the two components of electrolysis (water and oxygen) an electric charge was produced. A century later, in 1958, Francis Thomas Bacon, a British scientist demonstrated the first working fuel cell stack, a technology which was licensed and used in the Apollo spacecraft. In Canada, early research on the development of fuel cells was carried out at the University of Toronto, the Defence Research Establishment and the National Research Council. Most of the early work concentrated on alkaline and phosphoric acid fuel cells. In 1983, Ballard Research began the development of the electrolyte membrane fuel cell, which marked the beginning of Canada becoming a world leader in fuel cell technology development. The paper provides a brief account of how fuel cells work, describes the distinguishing characteristics of the various types of fuel cells (alkaline, phosphoric acid, molten-carbonate, solid oxide, and proton exchange membrane types) and their principal benefits. The emphasis is on proton exchange membrane fuel cells because they are the only fuel cell technology that is appropriate for providing primary propulsion power onboard a vehicle. Since vehicles are by far the greatest consumers of fossil fuels, it follows that proton exchange membrane fuel cells will have the greatest potential impact on both environmental matters and on our reliance on oil as our primary fuel. Various on-going and planned fuel cell demonstration projects are also described. 1 fig.

  3. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  4. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    Science.gov (United States)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  5. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  6. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  7. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  8. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  9. CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells

    Science.gov (United States)

    2008-10-27

    Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC

  10. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  11. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  12. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    International Nuclear Information System (INIS)

    Saxe, Maria

    2008-10-01

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  13. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  14. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    International Nuclear Information System (INIS)

    Saievar-Iranizad, E.; Malekifar, A.

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO 2 ). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cell, a mathematical model had been considered in this article. This model simulates and illustrates the interaction, diffusion and oxygen ions exchange into fuel cell. The electrical power of fuel cell due to the ion exchange can be obtained using a simulation method. The ion exchange simulation, diffusion of molecules, their interactions and system development through the mathematical model has been discussed in this paper

  15. Review of palm oil fuel ash and ceramic waste in the production of concrete

    Science.gov (United States)

    Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar

    2017-11-01

    High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.

  16. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  17. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  18. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  19. Method and device for the dry preparation of ceramic uranium dioxide nuclear fuel wastes

    International Nuclear Information System (INIS)

    Pirk, H.; Roepenack, H.; Goeldner, U.

    1977-01-01

    Reprocessing of waste, resulting from the production of ceramic sintered bodies from uranium dioxide for use as nuclear fuel, in a dry process into very finely dispersed pure U 3 O 8 powder may be improved by applying vibrating screening during oxidation. An appropriate device is described. (UWI) [de

  20. Characterization of ceramic materials - Some methods employed in quality control of nuclear fuels

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferraz, W.B.; Lameiras, F.S.; Lopes, J.A.M.; Santos, A.M.M. dos; Ferreira, R.A.N.

    1986-01-01

    Measuring methods are presented for specific surface, density, open porosity and microstructure, such as bulk density of particles in form of nicrospheres, for characterization of ceramic materials used as nuclear fuels. Some of these methods are alternatives to those usually employed, and they present some advantages, such as economy, speed of execution, and accuracy. (Author) [pt

  1. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  2. Study on low temperature solid oxide fuel cells using Y Doped BaZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ikw Hang; Ji, Sang Hoon; Paek, Jun Yeol; Lee, Yoon Ho; Park, Tae Hyun; Cha, Suk Won [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2012-09-15

    In this study, we fabricate and investigate low temperature solid oxide fuel cells with a ceramic substrate/porous matal/ceramic/porous metal structure. To realize low temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss Yttrium doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350nm thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1{mu}m thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200nm thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806V, and the maximum power density is 11.9mW/cm'2' at 350 .deg. C. Even though a fully dense electrolyte is deposited via PLD, a cross sectional transmission electron microscopy (TEM) image reveals many voids and defects.

  3. Fuel cell opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Harris, K. [Hydrogenics Corporation, Mississauga, ON (Canada)

    2002-07-01

    The opportunities for fuel cell development are discussed. Fuel cells are highly efficient, reliable and require little maintenance. They also produce virtually zero emissions. The author stated that there are some complicated issues to resolve before fuel cells can be widely used. These include hydrogen availability and infrastructure. While the cost of fuel cells is currently very high, these costs are constantly coming down. The industry is still in the early stages of development. The driving forces for the development of fuel cells are: deregulation of energy markets, growing expectations for distributed power generation, discontinuity between energy supply and demand, and environmental concerns. 12 figs.

  4. Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2014-01-01

    Highlights: • Two-temperature homogenized model is applied to thermal analysis of fully ceramic microencapsulated (FCM) fuel. • Based on the results of Monte Carlo calculation, homogenized parameters are obtained. • 2-D FEM/1-D FDM hybrid method for the model is used to obtain 3-D temperature profiles. • The model provides the fuel-kernel and SiC matrix temperatures separately. • Compared to UO 2 fuel, the FCM fuel shows ∼560 K lower maximum temperatures at steady- and transient states. - Abstract: The fully ceramic microencapsulated (FCM) fuel, one of the accident tolerant fuel (ATF) concepts, consists of TRISO particles randomly dispersed in SiC matrix. This high heterogeneity in compositions leads to difficulty in explicit thermal calculation of such a fuel. For thermal analysis of a fuel element of very high temperature reactors (VHTRs) which has a similar configuration to FCM fuel, two-temperature homogenized model was recently proposed by the authors. The model was developed using particle transport Monte Carlo method for heat conduction problems. It gives more realistic temperature profiles, and provides the fuel-kernel and graphite temperatures separately. In this paper, we apply the two-temperature homogenized model to three-dimensional single-channel thermal analysis of the FCM fuel element for steady- and transient-states using 2-D FEM/1-D FDM hybrid method. In the analyses, we assume that the power distribution is uniform in radial direction at steady-state and that in axial direction it is in the form of cosine function for simplicity. As transient scenarios, we consider (i) coolant inlet temperature transient, (ii) inlet mass flow rate transient, and (iii) power transient. The results of analyses are compared to those of conventional UO 2 fuel having the same geometric dimension and operating conditions

  5. Fuel cells

    International Nuclear Information System (INIS)

    Niederdoeckl, J.

    2001-01-01

    Europe has at present big hopes on the fuel cells technology, in comparison with other energy conversion technologies, this technology has important advantages, for example: high efficiency, very low pollution and parallel use of electric and thermal energy. Preliminary works for fuel cells developing and its commercial exploitation are at full speed; until now the European Union has invested approx. 1.7 billion Schillings, 60 relevant projects are being executed. The Austrian industry is interested in applying this technique to drives, thermal power stations and the miniature fuel cells as replacement of batteries in electronic products (Notebooks, mobile telephones, etc.). A general description of the historic development of fuel cells including the main types is given as well as what is the situation in Austria. (nevyjel)

  6. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  7. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  8. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  9. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  10. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Science.gov (United States)

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  11. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Hamid Esfahani

    2017-10-01

    Full Text Available Ceramic nanofibers (NFs have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  12. Cell adhesive ability of a biological foam ceramic with surface modification

    International Nuclear Information System (INIS)

    Zhang Yong; Li Xiaoyu; Feng Fan; Lin Yunfeng; Liao Yunmao; Tian, Weidong; Liu Lei

    2008-01-01

    Biological foam ceramic is a promising material for tissue engineering scaffold because of its biocompatibility, biodegradation and adequate pores measured from micrometer to nanometers. The aim of this study was to evaluate the adhesion and proliferation of adipose-derived stromal cells (ADSCs) on the biological foam ceramic coated with fibronectin. ADSCs were harvested from SD rats and passaged three times prior to seeding onto biological foam surface modified with fibronectin (50 μg/ml). Scaffold without surface modification served as control. To characterize cellular attachment, cells were incubated on the scaffold for 1 h and 3 h and then the cells attached onto the scaffold were counted. The difference of proliferation was appraised using MTT assay at day 1, 3, 5 and 7 before the cells reached confluence. After 7 days of culture, scanning electron microscope (SEM) was chosen to assess cell morphology and attachment of ADSCs on the biological foam ceramic. Attachment of ADSCs on the biological foam ceramic surface modified with fibronectin at 1 h or 3 h was substantially greater than that in control. MTT assay revealed that ADSCs proliferation tendency of the experimental group was nearly parallel to that of control. SEM view showed that ADSCs in the experimental groups connected more tightly and excreted more collagen than that in control. The coating of fibronectin could improve the cell adhesive ability of biological foam ceramics without evident effect on proliferation

  13. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  14. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  15. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  16. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  17. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  18. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a ∼350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development program

  19. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  20. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  1. High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba{sub 0.5}Sr{sub 0.5}Zn{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Lin, Bin; Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), No. 96 Jinzhai Road, Hefei 230026 (China)

    2008-09-15

    Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte based PCMFCs with stable Ba{sub 0.5}Sr{sub 0.5}Zn{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (BSZF) perovskite cathode were investigated. Using thin membrane BZCY7 electrolyte (about 15 {mu}m in thickness) synthesized by a modified Pechini method on NiO-BZCY7 anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.015 V, a maximum power density of 486 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.08 {omega} cm{sup 2} was achieved at 700 C. The results have indicated that BZCY7 proton-conducting electrolyte with BSZF cathode is a promising material system for the next generation solid oxide fuel cells. (author)

  2. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  3. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  4. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  5. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    International Nuclear Information System (INIS)

    Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L.

    2015-01-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE–SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors

  6. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  7. Immobilization of preconditioned spent fuel from nuclear research reactors in a ceramic matrix

    International Nuclear Information System (INIS)

    Russo, Diego O.; Rodriguez, Diego S.; Heredia, Arturo D.; Sanfilippo, Miguel; Sterba, Mario E.; Mateos, Patricia

    2002-01-01

    The fuel elements from nuclear research reactors consist in a laminated sandwich of aluminum with a core of some uranium compound. To process this material its necessary to previously eliminate the aluminum covering the fuel, before the conditioning of the rest of the fuel in a stable matrix, in order to obtain an acceptable waste form for a subsequent disposition in a geological repository. Normally, mechanical and chemical methods are proposed for that purpose. One of the most developed techniques for immobilization of the radioactive elements above mentioned, is the vitrification. In this work we propose a method named CERUS (in Spanish Ceramizacion de Elementos Radiactivos con Uranio Sinterizado - Ceramization of radioactive elements with sintered uranium). This is a sinterization of the pre-treated fuel elements mixed with natural uranium oxide. The properties of the blocks obtained are adequate for final disposal in a deep geological reservoir. (author)

  8. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  9. Fuel Cell Vehicle Basics | NREL

    Science.gov (United States)

    Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was

  10. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  11. Fuel cells - a perspective

    International Nuclear Information System (INIS)

    Biegler, T.

    2005-01-01

    Unfortunately, fuel cell publicity conveys expectations and hopes that are often based on uncritical interpretations of the underlying science. The aim here is to use that science to analyse how the technology has developed and what can realistically be delivered by fuel cells. There have been great achievements in fuel cell technology over the past decade, with most types reaching an advanced stage of engineering development. But there has been some muddled thinking about one critical aspect, fuel cell energy efficiency. The 'Carnot cycle' argument, that fuel cells must be much more efficient than heat engines, is a red herring, of no help in predicting real efficiencies. In practice, fuel cells are not always particularly efficient and there are good scientific reasons for this. Cost reduction is a big issue for fuel cells. They are not in principle especially simple devices. Better engineering and mass production will presumably bring costs down, but because of their inherent complexity there is no reason to expect them to be cheap. It is fair to conclude that predictions of fuel cells as commonplace components of energy systems (including a hydrogen economy) need to be treated with caution, at least until major improvements eventuate. However, one type, the direct methanol fuel cell, is aimed at a clear existing market in consumer electronics

  12. Fuel cells

    NARCIS (Netherlands)

    Veen, van J.A.R.; Janssen, F.J.J.G.; Santen, van R.A.

    1999-01-01

    The principles and present-day embodiments of fuel cells are discussed. Nearly all cells are hydrogen/oxygen ones, where the hydrogen fuel is usually obtained on-site from the reforming of methane or methanol. There exists a tension between the promise of high efficiency in the conversion of

  13. Fuel cell cassette with compliant seal

    Science.gov (United States)

    Karl, Haltiner, Jr. J.; Anthony, Derose J.; Klotzbach, Darasack C.; Schneider, Jonathan R.

    2017-11-07

    A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.

  14. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  15. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  16. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  17. Fuel cells for commercial energy

    Science.gov (United States)

    Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred

    1990-04-01

    The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.

  18. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  19. Technical and economic aspects of fuel cell applications in space HVAC systems; Technische und wirtschaftliche Aspekte zum Einsatz von Brennstoffzellen in der Gebaeudeversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Handke, J; Handschin, E

    1999-12-31

    There are two different types of fuel cells for small-scale applications, li.e. polymer electrolyte membrane fuel cells (PEMFC) and high-termperature fuel cells with ceramic solid electrolytes (SOFC). Both types of fuel cells have different advantages and shortcomings. One of the main problems, however, is the fact that research is still going on and that commercial fuel cell systems for space HVAC applications are still not available. (orig.) [Deutsch] Nach dem heutigen Stand werden zwei unterschiedliche Brennstoffzellen-Typen zum Einsatz in Kleinanlagen entwickelt. Neben der zu Klasse der Niedertemperatur-Brennstoffzellen gehoerenden Polymer-Elektrolyt-Membran-Brennstoffzelle (PEMFC) ist dies die Hochtemperatur-Brennstoffzelle auf der Basis eines keramischen Festelektrolyten (SOFC). Beide Brennstoffzellen-Typen haben unterschiedliche Vor- und Nachteile fuer den Einsatz zur Gebaeudeversorgung. Eines der Hauptprobleme, das allerdings beide Zellentypen gemeinsam haben, besteht in der noch nicht abgeschlossenen Entwicklung und - daraus resultierend - der fehlenden kommerziellen Verfuegbarkeit im Bereich der Gebaeudeversorgung. (orig./MM)

  20. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  1. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  2. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  3. Fuel cell hardware-in-loop

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  4. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  5. Materials for fuel cells

    OpenAIRE

    Haile, Sossina M

    2003-01-01

    Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cell...

  6. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  7. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  8. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  9. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  10. Effects of Surface Morphology ZnAl2O4 of Ceramic Materials on Osteoblastic Cells Responses

    International Nuclear Information System (INIS)

    Suarez-Franco, J.L.; Fernandez-Pedrero, J.A.; Ivarez-Perez, M.A.; Garcia-Hipolito, M.; Surarez-Rosales, M.; Fregoso, O.; Juarez-Islas, J.A.; Ivarez-Perez, M.A.

    2013-01-01

    Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl 2 O 4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl 2 O 4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl 2 O 4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nano structured materials have a great potential to be used in dental implant and bone substitute applications.Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl 2 O 4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl 2 O 4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl 2 O 4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves

  11. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  12. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  13. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  14. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  15. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  16. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  17. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lingli; Fan Hongsong; Zhang Xingdong [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064 (China); Hanagata, Nobutaka; Ikoma, Toshiyuki [Biomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Maeda, Megumi; Minowa, Takashi, E-mail: HANAGATA.Nobutaka@nims.go.j [Nanotechnology Innovation Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2009-04-15

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate ({beta}-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in {beta}-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than {beta}-TCP.

  18. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  19. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  20. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  1. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.

    Science.gov (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin

    2017-11-01

    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  2. Solid state protonic conductors II for fuel cells and sensors. Proceedings of the European workshop on solid state materials for low to medium temperature fuel cells and monitors, with special emphasis on proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, J B; Jensen, J; Kleitz, M [eds.

    1983-01-01

    Solid electrolytes for chemical sensing, energy storage and conversion have been actively researched and developed since the early sixties. The zirconia fuel-cell electrolyser, the sodium-sulphur rechargeable battery, the oxygen sensor and lithium batteries can all be cited as significant developments from the field. Although of great potential the solid protonic conductors have somehow been ignored by comparison to the great interest that has been shown in, e.g., the lithium conductors. The long absence of any good, stable protonic conductors could easily explain this. The presence of water in the protonic conductors eliminates the possibility of high-temperature preparation and hence of conventional ceramic processing. Since solid electrolytes are used as dense ceramic membranes, difficulties with the fabrication of protonic electrilytes has been a strong disincentive. However, techniques have been developed for fabricating dense composite membranes; these contain free, but immobilized water that is lost at relatively low temperatures. Framework hydrates hold their water to higher temperatures. Although low-temperature ion-exchange preparations are possible, they yield weak ceramics. Nevertheless, their support on strong substrates, as reported in this conference, may provide an alternate way forward. A second workshop was organised on this theme at Hindsgavl Castle, Denmark, 1982. The aim was to compare the progress made in laboratories in Denmark, France and U.K. and also to review present and and future applications of fuel cells in a broader sense. Thirty scientists and representatives from the Commission of the European Communities, European Space Agency and the Daish Ministry of Energy participated. The proceedings cover all the papers of the workshop and the main comments and suggestions proposed during the discussions.

  3. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  4. Barium boron silicate glass-ceramic for use as sealant in planar SOFC

    International Nuclear Information System (INIS)

    Silva, M.J.; Castanho, S.R.H. Mello; Reis, S.T.

    2012-01-01

    Glass-ceramic seals play an important role in the performance of the solid oxide fuel cell (SOFC). In this work glass-ceramic seals are discussed from the point of view of the thermal behavior of the glass and the electrochemical parameters obtained from polarization curves such as corrosion current densities (i corr ), and corrosion potential (E corr ). A seal material must have a combination of thermal-mechanical and electrochemical properties in order to seal cell components and stacks and prevent side reactions. It must be stable in oxidizing and reducing atmospheres and withstand thermal cycles between room temperature and the cell operating temperature (800 to 900°C). Glass-ceramics in the system BaO- B 2 O 3 -Al 2 O 3 -SiO 2 were investigated and compared from the point of view of sealing ability. Dilatometric analysis, thermal stability against crystallization, microstructure and electrochemical durability are discussed. (author)

  5. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  6. Thermomechanical analysis of porous solid oxide fuel cell by using peridynamics

    Directory of Open Access Journals (Sweden)

    Hanlin Wang

    2017-06-01

    Full Text Available Solid oxide fuel cell (SOFC is widely used in hybrid marine propulsion systems due to its high power output, excellent emission control and wide fuel suitability. However, the operating temperature in SOFC will rise up to 800–1000 ℃ due to redox reaction among hydrogen and oxygen ions. This provides a suitable environment for ions transporting through ceramic materials. Under such operation temperatures, degradation may occur in the electrodes and electrolyte. As a result, unstable voltage, low capacity and cell failure may eventually occur. This study presents thermomechanical analysis of a porous SOFC cell plate which contains electrodes, electrolytes and pores. A microscale specimen in the shape of a plate is considered in order to maintain uniform temperature loading and increase the accuracy of estimation. A new computational technique, peridynamics, is utilized to calculate the deformations and stresses of the cell plate. Moreover, the crack formation and propagation are also obtained by using peridynamics. According to the numerical results, damage evolution depends on the electrolyte/electrode interface strength during the charging process. For weak interface strength case, damage emerges at the electrode/electrolyte interface. On the other hand, for stronger interface cases, damage emerges on pore boundaries especially with sharp corner.

  7. Large-scale calculations of solid oxide fuel cell cermet anode by tight-binding quantum chemistry method

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    Improvement of anode characteristics of solid oxide fuel cells is important for the better cell performance and especially the direct use of hydrocarbons. A mixture of ceramics and metal is generally used as anode, and different combinations of ceramics and metals lead to different electrode characteristics. We performed large-scale calculations to investigate the characteristics of Ni/CeO 2 and Cu/CeO 2 anodes at the electronic level using our tight-binding quantum chemical molecular dynamics program. Charge distribution analysis clarified the electron transfer from metal to oxide in both anodes. The calculations of density of states clarified different contributions of Ni and Cu orbitals to the energy levels at around Fermi level in each cermet. Based on the obtained results, we made considerations to explain different characteristics of both cermet anodes. The effectiveness of our approach for the investigation of complex cermet system was proved

  8. Fuel cells for naval aviation

    International Nuclear Information System (INIS)

    Satzberg, S.; Field, S.; Abu-Ali, M.

    2003-01-01

    Recent advances in fuel cell technology have occurred which make fuel cells increasingly attractive for electric power generation on future naval and commercial aircraft applications. These advances include significant increases in power density, the development of compact fuel reformers, and cost reductions due to commercialization efforts. The Navy's interest in aircraft fuel cells stems from their high energy efficiency (up to 40-60% for simple cycle; 60-70% for combined gas turbine/fuel cell hybrid cycles), and their negligible NOx and hydrocarbon emissions compared to conventional generators. While the U.S. Navy has been involved with fuel cell research and development as early as the 1960s, many of the early programs were for special warfare or undersea applications. In 1997, the Office of Naval Research (ONR) and Naval Sea Systems Command (NAVSEA) initiated a program to marinize commercial fuel cell technology for future Navy shipboard applications. The power density of fuel cell power systems is approaching the levels necessary for serious consideration for aircraft suitability. ONR and Naval Air Systems Command (NAVAIR) are initiating a program to develop a fuel cell power system suitable for future Navy aircraft applications, utilizing as much commercially-available technology as possible. (author)

  9. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  10. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  11. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  12. Preparation of Sr{sub 2}(MgMo){sub 1-x}Ru{sub x}O{sub 6} ceramics for use in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Matheus Eiji Ohno; Florio, Daniel Zanetti de [Universidade Federal do ABC (UFABC), SP (Brazil); Fonseca, Fabio Coral, E-mail: matheus.eiji@aluno.ufabc.edu.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Solid Oxide Fuel Cells are the most efficient devices known for the direct conversion of fuels into electric energy. Such devices have advanced steadily and are already available for specific applications such as portable power and residential stationary generation. The main objective of this work is the development of anodes for SOFC operating directly with renewable fuels, without the addition of water and using strategic fuels such as ethanol and natural gas. Specifically, a family of mixed ionic-electronic compounds has been investigated: the double perovskites with compositions Sr{sub 2}(MgMo){sub 1-x}Ru{sub x}O{sub 6} with x = 0; 1; 2; 5; 10 e 20 at.%. This material has been synthesized by polymeric precursor method. The resins were prepared by combining stoichiometric amounts of the starting solutions. The resulting solution was heated treated under magnetic stirring. The thermal decomposition of the polymeric resin was studied by means of simultaneous thermogravimetric and differential scanning calorimetry up to 1500 °C with heating and cooling rates of 10 °/min in Ar. The thermal decomposition result shows mass loss up to, approximately, 900 °C. However X-ray diffraction analyses of the powder heat treated at 900 °C and 1200 °C presents a considerable content of an undesiderate phase (SrMoO{sub 4}). According to the literature for similar compounds a thermal treatment under reduction conditions could be necessary to obtain the double perovskites single phase. After this treatment the material will be characterized regarding its electrical properties. The expected results will contribute to advance both the understanding of the mixed ionic electronic ceramics and the SOFC technology using renewable fuels. (author)

  13. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  14. Prontonic ceramic membrane fuel cells with layered GdBaCo{sub 2}O{sub 5+x} cathode prepared by gel-casting and suspension spray

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Zhang, Shangquan; Zhang, Linchao; Bi, Lei; Ding, Hanping; Liu, Xingqin; Gao, Jianfeng; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2008-03-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs) with layered GdBaCo{sub 2}O{sub 5+x} (GBCO) cathode, a dense BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte was fabricated on a porous anode by gel-casting and suspension spray. The porous NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY7) anode was directly prepared from metal oxide (NiO, BaCO{sub 3}, ZrO{sub 2}, CeO{sub 2} and Y{sub 2}O{sub 3}) by a simple gel-casting process. A suspension of BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} powders synthesized by gel-casting was then employed to deposit BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) thin layer by pressurized spray process on NiO-BZCY7 anode. The bi-layer with 10 {mu}m dense BZCY7 electrolyte was obtained by co-sintering at 1400 C for 5 h. With layered GBCO cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H{sub 2} as fuel and the static air as oxidant. An open-circuit potential of 0.98 V, a maximum power density of 266 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.16 {omega} cm{sup 2} was achieved at 700 C. (author)

  15. Fuel cells: Trends in research and applications

    Science.gov (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  16. NASA fuel cell applications for space: Endurance test results on alkaline fuel cell electrolyzer components

    International Nuclear Information System (INIS)

    Sheibley, D.W.

    1984-01-01

    Fuel cells continue to play a major role in manned spacecraft power generation. The Gemini and Apollo programs used fuel cell power plants as the primary source of mission electrical power, with batteries as the backup. The current NASA use for fuel cells is in the Orbiter program. Here, low temperature alkaline fuel cells provide all of the on-board power with no backup power source. Three power plants per shipset are utilized; the original power plant contained 32-cell substacks connected in parallel. For extended life and better power performance, each power plant now contains three 32-cell substacks connected in parallel. One of the possible future applications for fuel cells will be for the proposed manned Space Station in low earth orbit (LEO)(1, 2, 3). By integrating a water electrolysis capability with a fuel cell (a regenerative fuel cell system), a multikilowatt energy storage capability ranging from 35 kW to 250 kW can be achieved. Previous development work on fuel cell and electrolysis systems would tend to minimize the development cost of this energy storage system. Trade studies supporting initial Space Station concept development clearly show regenerative fuel cell (RFC) storage to be superior to nickel-cadmium and nickel-hydrogen batteries with regard to subsystem weight, flexibility in design, and integration with other spacecraft systems when compared for an initial station power level ranging from 60 kW to 75 kW. The possibility of scavenging residual O 2 and H 2 from the Shuttle external tank for use in fuel cells for producing power also exists

  17. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-07-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  18. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    International Nuclear Information System (INIS)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-01-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  19. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  20. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  1. Promising energy converters for the next century. Fuel cells for cogeneration systems; Aussichtsreicher Energiewandler fuers naechste Jahrhundert. Brennstoffzelle fuer Kraft-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Hilscher, G

    1996-02-16

    First there is a report on experience with phosphoric acid fuel cell plants (PAFC), which the operators used in a 200 kW plant of Onsi (HEAG, Ruhrgas AG, Thyssengas AG) and a 79 kW plant of Kinetics Technology (Solar-Wasserstoff Bayern GmbH). After this, the present state of development of oxide ceramic high temperature fuel cells (SOFC) and polymer electrolyte diaphragm fuel cells (PEMFC) is briefly described. (MM) [Deutsch] Zuerst wird ueber Erfahrungen mit Phosphorsaeure-Brennstoffzellen-Anlagen (PAFC) berichtet, die die Betreiber einer 200 kW-Anlage von Onsi (HEAG, Ruhrgas AG, Thyssengas AG) und einer 79 kW-Anlage von Kinetics Technology (Solar-Wasserstoff-Bayern GmbH) hatten. Danach wird kurz der derzeitige Stand der Entwicklung bei den oxidkeramischen Hochtemperaturbrennstoffzellen (SOFC) und Polymer-Elektrolyt-Membran-Brennstoffzellen (PEMFC) wiedergegeben. (MM)

  2. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  3. Improvement of the long term stability in the high temperature solid oxide fuel cell using functional layers

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, B.; Guenther, C.; Ruckdaeschel, R. [Siemens AG, Erlangen (Germany)] [and others

    1996-12-31

    In the planar Siemens design of the solid oxide fuel cell a metallic interconnector is used to seperate the ceramic single cells. A disadvantage of the metallic bipolar plate which consists of a chromium alloy is the formation of high volatile Cr-oxides and hydroxides at the surface at the cathode side. The reaction products evaporate and are reduced at the cathode/electrolyte interface to form new crystalline phases. This process gives rise to long term cell degradation. Protective coatings might be successful in preventing the chromium oxide evaporation. The required properties of the protective layers are (I) high electrical conductivity, (II) similar coefficients of thermal expansion to the bipolar plate (III), chemical compatibility to the bipolar plate and cathode material, (IV) a low diffusion coefficient of Cr and (V) chemical stability up to 1223K under oxygen atmosphere. Furthermore, during operation at 1223K an electrical contact between the metallic plate and the electrodes has to be maintained. This problem could be solved using ceramic layer between the metallic plate and the single cells.

  4. "Imaging" LEIS of micro-patterned solid oxide fuel cell electrodes

    Science.gov (United States)

    Druce, John; Simrick, Neil; Ishihara, Tatsumi; Kilner, John

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  5. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  6. Fuel Cell Electric Vehicle Composite Data Products | Hydrogen and Fuel

    Science.gov (United States)

    Cells | NREL Vehicle Composite Data Products Fuel Cell Electric Vehicle Composite Data Products The following composite data products (CDPs) focus on current fuel cell electric vehicle evaluations Cell Operation Hour Groups CDP FCEV 39, 2/19/16 Comparison of Fuel Cell Stack Operation Hours and Miles

  7. Uniqueness of magnetotomography for fuel cells and fuel cell stacks

    International Nuclear Information System (INIS)

    Lustfeld, H; Hirschfeld, J; Reissel, M; Steffen, B

    2009-01-01

    The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm 2 and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

  8. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  9. Commercializing fuel cells: managing risks

    Science.gov (United States)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  10. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  11. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  12. A French fuel cell prototype

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    A French prototype of a fuel cell based on the PEM (proton exchange membrane) technology has been designed by Helion, a branch of Technicatome, this fuel cell delivers 300 kW and will be used in naval applications and terrestrial transport. The main advantages of fuel cell are: 1) no contamination, even if the fuel used is natural gas the quantities of CO 2 and CO emitted are respectively 17 and 75 times as little as the maximal quantities allowed by European regulations, 2) efficiency, the electric yield is up to 60 % and can reach 80 % if we include the recovery of heat, 3) silent, the fuel cell itself does not make noise. The present price of fuel cell is the main reason that hampers its industrial development, this price is in fact strongly dependant on the cost of its different components: catalyzers, membranes, bipolar plates and the hydrogen supply. This article gives the technical characteristics of the Helion's fuel cell. (A.C.)

  13. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  14. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  15. Opportunities for PEM fuel cell commercialization : fuel cell electric vehicle demonstration in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering

    2006-07-01

    The research and development activities devoted to the development of the proton exchange membrane fuel cell (PEMFC) were discussed with reference to its application in the fuel cell electric vehicle (FCEV). In the past decade, PEMFC technology has been successfully applied in both the automobile and residential sector worldwide. In China, more than one billion RMB yuan has been granted by the Chinese government to develop PEM fuel cell technology over the past 5 years, particularly for commercialization of the fuel cell electric vehicle (FCEV). The City of Shanghai has played a significant role in the FCEV demonstration with involvement by Shanghai Auto Industrial Company (SAIC), Tongji University, Shanghai Jiaotong University, and Shanghai Shenli High Tech Co. Ltd. These participants were involved in the development and integration of the following components into the FCEV: fuel cell engines, batteries, FCEV electric control systems, and primary materials for the fuel cell stack. During the course of the next five year-plan (2006-2010), Shanghai will promote the commercialization of FCEV. More than one thousand FCEVs will be manufactured and an FCEV fleet will be in operation throughout Shanghai City by 2010.

  16. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  17. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik

    2014-08-01

    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  18. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  19. Product consistency test and toxicity characteristic leaching procedure results of the ceramic waste form from the electrometallurgical treatment process for spent fuel

    International Nuclear Information System (INIS)

    Johnson, S. G.; Adamic, M. L.: DiSanto, T.; Warren, A. R.; Cummings, D. G.; Foulkrod, L.; Goff, K. M.

    1999-01-01

    The ceramic waste form produced from the electrometallurgical treatment of sodium bonded spent fuel from the Experimental Breeder Reactor-II was tested using two immersion tests with separate and distinct purposes. The product consistency test is used to assess the consistency of the waste forms produced and thus is an indicator of a well-controlled process. The toxicity characteristic leaching procedure is used to determine whether a substance is to be considered hazardous by the Environmental Protection Agency. The proposed high level waste repository will not be licensed to receive hazardous waste, thus any waste forms destined to be placed there cannot be of a hazardous nature as defined by the Resource Conservation and Recovery Act. Results are presented from the first four fully radioactive ceramic waste forms produced and from seven ceramic waste forms produced from cold surrogate materials. The fully radioactive waste forms are approximately 2 kg in weight and were produced with salt used to treat 100 driver subassemblies of spent fuel

  20. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  1. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  2. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  3. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  4. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  5. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  6. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  7. Electrical Properties Of Indium And Yttrium-Doped Barium Cerate-Based Compounds For Use As Ceramic Fuel Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Gawel R.

    2015-06-01

    Full Text Available The aim of this work is to compare the electrical properties of BaCe0.85Y0.15O3−δ (BCY15, BaCe0.70In0.30O3−δ (BCI30 and a composite material consisting of 30%vol. BCY15 and 70%vol. Ce0.85Y0.15O2−δ (YDC15. BCY15 and YDC15 were synthesized by co-precipitation, whereas BCI30 was obtained using the solid-state reaction method. Pellets were initially formed from powders at 5 MPa, after which they were isostatically pressed at 250 MPa and sintered at 1500°C. Electrochemical impedance spectroscopy (EIS was used to determine the electrical properties of the samples in both air (pO2 = 0.021 MPa and Ar-5%H2 atmospheres. In the temperature range 200-400°C in air atmosphere the highest conductivity values were determined for BCY15 (5,22·10−5 − 2.74·10−3 S/cm. On the other hand, the electrical conductivity values obtained for Y70B30 in both atmospheres between 200 and 550°C are in the order of magnitude of 10−7 − 10−3 S/cm. Consequently, it can be concluded that the compounds exhibit significant H+ and O2− electrical conductivity at temperatures above 500°C, which indicates the possibility for their potential use as ceramic fuel cell electrolytes.

  8. Power assisted fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Plichta, E J; Cygan, P J [US Army CECOM, Fort Monmouth, NJ (United States). Research Development and Engineering Center

    1998-02-01

    A hybrid fuel cell demonstrated pulse power capability at pulse power load simulations synonymous with electronics and communications equipment. The hybrid consisted of a 25.0 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a two-cell lead-acid battery. Performance of the hybrid PEMFC was superior to either the battery or fuel cell stack alone at the 18.0 W load. The hybrid delivered a flat discharge voltage profile of about 4.0 V over a 5 h radio continuous transmit mode of 18.0 W. (orig.)

  9. Thoria-fuel irradiation. Program to irradiate 80% ThO2/20% UO2 ceramic pellets at the Savannah River Plant

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1982-02-01

    This report describes the fabrication of proliferation-resistant thorium oxide/uranium oxide ceramic fuel pellets and preparations at the Savannah River Laboratory (SRL) to irradiate those materials. The materials were fabricated in order to study head end process steps (decladding, tritium removal, and dissolution) which would be required for an irradiated proliferation-resistant thorium based fuel. The thorium based materials were also to be studied to determine their ability to withstand average commercial light water reactor (LWR) irradiation conditions. This program was a portion of the Thorium Fuel Cycle Technology (TFCT) Program, and was coordinated by the Oak Ridge National Laboratory (ORNL) under the Consolidated Fuel Reprocessing Program (CFRP). The fuel materials were to be irradiated in a Savannah River Plant (SRP) reactor at conditions simulating the heat ratings and burnup of a commercial LWR. The program was terminated due to a de-emphasis of the TFCT Program, following completion of the fabrication of the fuel and the modified assemblies which were to be used in the SRP reactor. The reactor grade ceramic pellets were fabricated for SRL by Battelle, Pacific Northwest Laboratories. Five fuel types were prepared: 100% UO 2 pellets (control); 80% ThO 2 /20% UO 2 pellets; approximately 80% ThO 2 /20% UO 2 + 0.25 CaO (dissolution aid) pellets; 100% UO 2 hybrid pellets (prepared from sol-gel microspheres); and 100% ThO 2 pellets (control). All of the fuel materials were transferred to SRL from PNL and were stored pending a subsequent reactivation of the TFCT Programs

  10. The next generation fuel cells: anion exchange membrane fuel cells (AEMFC)

    International Nuclear Information System (INIS)

    Tauqir, A.; Zahoor, S.

    2013-01-01

    Many environmentally friendly alternatives (solar, wind, hydroelectric, and geothermal power) can only be used in particular environments. In contrast, fuel cells can have near-zero emissions, are quiet and efficient, and can work in any environment where the temperature is lower than the cell's operating temperature. Among various types of fuel cells, the AEMFC is the most recent one and has advantages such as excellent performance compared to other candidate fuel cells due to its active O/sub 2/ electrode kinetics and flexibility to use a wide range of electro-catalysts such as silver and nickels contrary to expensive one (Platinum) required for proton exchange membrane fuel cell (PEMFC). Anion exchange membrane (AEM) is a crucial part in AEMFC, determining durability and electrochemical performances of membrane electrode assembly (MEA). The role of an AEM is to conduct hydroxyl ions from cathode to anode. If this conduction is not sufficiently high and selective, the corresponding fuel cell will not find any practical application. One of the major problems associated with AEMFC is much lower conductivities of anion compare to proton conductivity in PEMFCs, even upon similar working condition. Thus AEMs is only practical, if it is chemically and mechanically stable against severe basic operation conditions and highly hydroxyl ions conductive. The conventional AEMs based on animated aliphatic and aromatic hydrocarbon or even fluorinated polymers tend to be attacked by hydroxyl ions, causing the degradation during operation is strongly basic conditions. (author)

  11. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  12. Feasibility of fully ceramic microencapsulated (FCM) replacement fuel assembly for OPR-1000 core fully loaded with FCM fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Lee, K.H.; Kwon, H.; Chun, J.H.; Kim, Y.M. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of); Venneri, F. [Ultra Safe Nuclear Corp., Los Alamos, NM (United States)

    2014-07-01

    The feasibility of replacing conventional UO{sub 2} fuel assemblies (FAs) of light water reactors with accident-tolerant fully ceramic microencapsulated (FCM) FAs has been explored referencing OPR-1000, 1000MW{sub e} PWR. An optimum FCM FA design, 16x16 FCM FA with Silicon Carbide-coated Zircaloy cladding, was selected based on core-level scoping analysis for five FCM FA design candidates screened from FA-level study. For the selected FCM FA design, detailed core following analysis from initial to equilibrium cores, initially fully loaded with the FCM FAs, was carried out to quantify core physics parameters. Using these parameters, the core thermal-hydraulics and coated fuel particle performance of the FCM core was assessed, and the safety margin and accident-tolerance of the FCM core was evaluated for limiting design- and beyond design-basis-accidents. From the study, it has been demonstrated that the FCM fuel is a viable option in replacing the OPR-1000 core with enhanced safety and accident tolerance while maintaining the core neutronics, thermal-hydraulics and mechanical compatibility. (author)

  13. 1986 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  14. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  15. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  16. Glass-ceramic joint and method of joining

    Science.gov (United States)

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Clinton, TN; Pederson, Larry R [Kennewick, WA

    2003-03-18

    The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al.sub.2 O.sub.3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO.sub.2 with up to 50 mol % B.sub.2 O.sub.3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al.sub.2 O.sub.3 -M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  17. Ansaldo programs on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marcenaro, B.G.; Federici, F. [Ansaldo Ricerche Srl, Genova (Italy)

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  18. Importance of Fuel Cell Tests for Stability Assessment—Suitability of Titanium Diboride as an Alternative Support Material

    Directory of Open Access Journals (Sweden)

    Christina Roth

    2014-06-01

    Full Text Available Carbon corrosion is a severe issue limiting the long-term stability of carbon-supported catalysts, in particular in the highly dynamic conditions of automotive applications. (Doped oxides have been discussed as suitable alternatives to replace carbon, but often suffer from poor electron conductivity. That is why non-oxide ceramics, such as tungsten carbide and titanium nitride, have been discussed recently. Titanium diboride has also been proposed, due to its promising activity and stability in an aqueous electrochemical cell. In this work, Pt nanoparticles were deposited onto μm-sized TiB2 particles with improved grain size, manufactured into porous gas diffusion electrodes and tested in a realistic polymer electrolyte membrane (PEM fuel cell environment. In contrast to the model studies in an aqueous electrochemical cell, in the presence of oxygen and high potentials at the cathode side of a real fuel cell, TiB2 becomes rapidly oxidized as indicated by intensely colored regions in the membrane-electrode assembly (MEA. Moreover, already the electrode manufacturing process led to the formation of titanium oxides, as shown by X-ray diffraction measurements. This demonstrates that Cyclic Voltammetry (CV measurements in an aqueous electrochemical cell are not sufficient to prove stability of novel materials for fuel cell applications.

  19. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Swaney, P.M.; Tiegs, T.N.

    2004-01-01

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO 2 , Al 2 O 3 , Gd 2 O 3 , etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO 2 ) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al 2 O 3 ) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO 2 for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate casks with variable cermet compositions

  20. Pt/Al/sub 2/O/sub 3/- carbon nanocomposite as a catalyst for fuel cells

    International Nuclear Information System (INIS)

    Naeem, R.; Ahmed, R.; Ansari, M.S.

    2013-01-01

    Catalysts comprising platinum nanoparticles (Pt NPs) on carbon support are used in fuel cells for the hydrogen and electricity production by electrochemical oxidation of methanol. However, the catalyst is not the best in terms of its performance. Considering role of the support as significant towards efficiency and durability of the catalyst, there is need for introducing novel support materials to replace carbon alone. Deposition of various metallic NPs on ceramic-carbon (hybrid) supports has been reported to improve thermal, mechanical, electrical and chemical properties of different types of catalyst. In search of better performing catalysts for proton exchange membrane fuel cells (PEMFCs), hybrid supports having different ceramic materials should be synthesized. In this regard Pt/Al/sub 2/O/sub 3/-Carbon (nanocomposites) have been synthesized and applied as promising catalysts in the PEMFCs; results obtained for the nanocomposites were compared with Pt/carbon and Pt/Al/sub 2/O/sub 3/. Vulcan carbon was purified and functionalized prior to use; presence of oxygen containing functional groups on carbon was established from the FTIR spectrum, Hybrid support (1:8 by weight ratio of ceramic and carbon) were already prepared in aqueous 2-propanol employing sonication method on to which Pt NPs (10% by weight in all the cases) were deposited by simple chemical reduction of PtCl/sub 4/ by NaBH/sub 4/ under controlled conditions. The catalysts were subjected to various characterization techniques like TGA (for thermal stability), EDX (for chemical composition), SEM (for surface morphology) and XRD (for cell-shape and -volume, material density and average crystalline size). Catalysts efficiencies for the methanol oxidation were investigated through cyclic voltammetery (CV) by comparing electrochemical surface area, peak current, exchange current density and rate constant in the acidic and basic media. Pt/Al/sub 2/O/sub 3/-carbon exhibited better catalytic efficiencies

  1. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  2. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  3. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  4. Orbiter fuel cell improvement assessment

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1981-08-01

    The history of fuel cells and the theory of fuel cells is given. Expressions for thermodynamic and electrical efficiencies are developed. The voltage losses due to electrode activation, ohmic resistance and ionic diffusion are discussed. Present limitations of the Orbiter Fuel Cell, as well as proposed enhancements, are given. These enhancements are then evaluated and recommendations are given for fuel cell enhancement both for short-range as well as long-range performance improvement. Estimates of reliability and cost savings are given for enhancements where possible

  5. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-22

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  6. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    Science.gov (United States)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  7. Third International Fuel Cell Conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-30

    The Third International Fuel Cell Conference was held on November 30 to December 3, 1999 in City of Nagoya. A total of 139 papers, including those for plenary, sectional and poster cessions, were presented. In the plenary session, US's DOE presented fuel cell power plant development in the United States, EC fuel cells in perspective and fifth European framework programme, and Japan overview of the New Sunshine Program. In the polymer electrolyte fuel cells sessions, 23 papers were presented, including current status of commercialization and PEMFC systems developed by Toshiba. In the phosphoric acid fuel cells session, 6 papers were presented, including field test results and market developments. In the molten carbonate fuel cells session, 24 papers were presented, including development of 1,000kW MCFC power plant. In the solid oxide fuel cells session, 20 papers were presented, including 100kW SOFC field test results. The other topics include market analysis and fuel processes. (NEDO)

  8. Third International Fuel Cell Conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-30

    The Third International Fuel Cell Conference was held on November 30 to December 3, 1999 in City of Nagoya. A total of 139 papers, including those for plenary, sectional and poster cessions, were presented. In the plenary session, US's DOE presented fuel cell power plant development in the United States, EC fuel cells in perspective and fifth European framework programme, and Japan overview of the New Sunshine Program. In the polymer electrolyte fuel cells sessions, 23 papers were presented, including current status of commercialization and PEMFC systems developed by Toshiba. In the phosphoric acid fuel cells session, 6 papers were presented, including field test results and market developments. In the molten carbonate fuel cells session, 24 papers were presented, including development of 1,000kW MCFC power plant. In the solid oxide fuel cells session, 20 papers were presented, including 100kW SOFC field test results. The other topics include market analysis and fuel processes. (NEDO)

  9. The birth of the fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Don

    2001-12-01

    Everyone knows that Thomas Alva Edison invented the light bulb, Alexander Graham Bell the telephone and that the Otto and Diesel engines were invented by two Germans bearing those names. But who invented the fuel cell? Fuel cells generate electricity with virtually zero pollution by combining gaseous fuels and air. There are different types generally described as high temperature or low temperature fuel cells. Here, Don Prohaska delves into a recently published book: The Birth of the Fuel Cell, by a descendant of one of the fathers of the fuel cell, and sheds new light on the early days of this technology. (Author)

  10. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  11. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  12. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  13. 14 CFR 31.45 - Fuel cells.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  14. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  15. Development of solid oxide fuel cells; Desenvolvimento de celulas a combustivel do tipo oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, Jaime S.; Alencar, Marcelo Goncalves F. de; Amaral, Alexandre Alves do; Benedicto, Joao Paulo Santos; Silva, Marcos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica

    2006-07-01

    Fuel cells allow the energy production without the thermodynamic restriction of the conversion of heat into work. Among their various types, the solid oxide fuel cells (SOFC), operating at high temperatures, allow the methane conversion into electricity directly on the anode. The main element of the SOFC is the structure A/E/C: anode/electrolyte/cathode, all sintered at high temperature as resistant ceramic materials. Dense electrolyte (YSZ: zirconia stabilized for Yttria) separates the anode (Ni+Co/YSZ: cobalt promoted nickel, supported on YSZ) and cathode (LSM: strontium-doped lanthanum manganite), both with porosity obtained by graphite addition. To obtain suitable A/E/C pellets, the layer sintering with appropriate mechanical and textural characteristics is essential, requiring excellent electric junctions between them. The cell performance has been evaluated between 850 and 950 degree C, using hydrogen or methane fuel; the tension and current for different resistance values in the electrical circuit have been measured. The cobalt addition to the cell anode significantly increased its activity for the reform reaction. The beneficial effect was probably due to the easier nickel reduction in cobalt presence. This work had the objectives of developing and evaluating electro-catalysts, as well as the solid oxide fuel cells using these catalysts as anode. Five SOFC models (SOFC 1 to SOFC 5) are described; all of them were developed aiming at improving the preparation of the anode/electrolyte/cathode structure (A/E/C). (author)

  16. Fuel cells fuelled by Saccharides

    International Nuclear Information System (INIS)

    Schechner, P.; Mor, L.; Sabag, N.; Rubin, Z.; Bubis, E.

    2005-01-01

    Full Text:Saccharides, like glucose, fructose and lactose, are ideal renewable fuels. They have high energy content, are safe, transportable, easy to store, non-flammable, non poisonous, non-volatile, odorless, easy to produce anywhere and abundant. Fuel Cells are electro-chemical devices capable to convert chemical energy into electrical energy from fuels, with theoretical efficiencies higher than 0.8 at room temperatures and with low pollutant emissions. Fuel Cells that can produce electricity form saccharides will be able to replace batteries, power electrical plants from biomass wastes, and serve as engines for transportation. In spite of these advantages, saccharide fuelled fuel cells are no available yet. Two obstacles hinder the feasibility of this potentially revolutionary device. The first is the high stability of the saccharides, which requires a good catalyst to extract the electrons from the saccharide fuel. The second is related to the nature of the Fuel Cells: the physical process takes place at the interface surface between the fuel and the electrode. In order to obtain high densities, materials with high surface to volume ratio are needed. Efforts to overcome these obstacles will be described. The use of saccharides as a fuel was treated from the thermodynamic point of view and compared with other common fuels currently used in fuel cells. We summarize measurements performed in a membrane less Alkaline Fuel Cell, using glucose as a fuel and KOH as electrolyte. The anode has incorporated platinum particles and operated at room temperature. Measurements were done, at different concentrations of glucose, of the Open Circuit Voltage, Polarization Curves and Power Density as function of the Current Density. The maximum Power Density reached was 0.61 mW/cm 2 when the Current density was 2.13 mA/cm 2 and the measured Open Circuit Voltage was 0.771 V

  17. “Imaging” LEIS of micro-patterned solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, John, E-mail: john.druce@i2cner.kyushu-u.ac.jp [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Simrick, Neil [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Ishihara, Tatsumi [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Kilner, John [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom)

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  18. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  19. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  20. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Science.gov (United States)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  1. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2013-02-01

    Full Text Available Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC and molten carbonate fuel cell (MCFC have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV for projects was estimated and commented.

  2. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov (United States)

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  5. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  6. Arrangement of fuel cell system for TNRF

    International Nuclear Information System (INIS)

    Nojima, Takehiro; Yasuda, Ryo; Iikura, Hiroshi; Sakai, Takuro; Matsubayashi, Masahito; Takenaka, Nobuyuki; Hayashida, Hirotoshi

    2012-02-01

    Polymer electrolyte fuel cells (fuel cells) can be potentially employed as sources of clean energy because they discharge only water as by-products. Fuel cells generate electricity with supply of oxygen and hydrogen gases. However, the water produced by the fuel cells blocks the gas supply, thereby degrading their performances. Therefore, it is important to understand the behavior of the water produced by the fuel cells in order to facilitate their development. Neutron radiography is a useful tool for visualizing the distribution of water in fuel cells. We have designed fuel cell operation system for TNRF (Thermal Neutron Radiography Facility) at JRR-3. The fuel cell operation system consists of various components such as gas flow and humidification systems, hydrogen-diluting system, purge system, and safety system for hydrogen gas. We tested this system using a Japan Automobile Research Institute (JARI) standard cell. The system performed stably and efficiently. In addition, neutron radiography tests were carried out to visualize the water distribution. The water produced by the fuel cell was observed during the fuel cell operation. (author)

  7. Fuel Production from Seawater and Fuel Cells Using Seawater.

    Science.gov (United States)

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fuel cells principles, design, and analysis

    CERN Document Server

    Revankar, Shripad T

    2014-01-01

    ""This book covers all essential themes of fuel cells ranging from fundamentals to applications. It includes key advanced topics important for understanding correctly the underlying multi-science phenomena of fuel cell processes. The book does not only cope with traditional fuel cells but also discusses the future concepts of fuel cells. The book is rich on examples and solutions important for applying the theory into practical use.""-Peter Lund, Aalto University, Helsinki""A good introduction to the range of disciplines needed to design, build and test fuel cells.""-Nigel Brandon, Imperial Co

  9. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  10. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  11. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  12. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  13. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  14. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  15. Proton-conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  16. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  17. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Zeng, Fanrong; Wang, Shaorong; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Inorganic Energy Materials and Power Source Engineering Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm{sup -2} at 850, 800, and 750 C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells. (author)

  18. Climate Change Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  19. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  20. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  1. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  2. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  3. The TMI regenerable solid oxide fuel cell

    Science.gov (United States)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  4. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  5. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  7. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  8. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    Science.gov (United States)

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  9. Ceramic UO2 powder production at Cameco Corporation

    International Nuclear Information System (INIS)

    Kwong, A.K.; Kuchurean, S.M.

    1997-01-01

    This presentation covers the various aspects of ceramic grade uranium dioxide (UO 2 ) powder production at Cameco Corporation and its use as fuel and blanket fuel for heavy-water and light-water reactors, respectively. In addition, it discusses the significant production variables that affect production and product quality. It also provides an insight into how various support groups such as Quality Assurance, Analytical Services, and Technology Development fit into the quality cycle and contribute to a successful operation. The ability of Cameco to identify, measure and control the physical and chemical properties of ceramic grade UO 2 has resulted in the production of uniform quality powder. This has meant that 100% of Cameco's ceramic grade UO 2 powder produced since mid-1989 has been accepted by the fuel manufacturers. (author)

  10. The TMI Regenerative Solid Oxide Fuel Cell

    Science.gov (United States)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  11. Fuel cell APU for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daggett, D.L. [Boeing Commercial Airplane, Seattle, WA (United States); Lowery, N. [Princeton Univ., Princeton, NJ (United States); Wittmann, J. [Technische Univ. Muenchen (Germany)

    2005-07-01

    The Boeing Company has always sought to improve fuel efficiency in commercial aircraft. An opportunity now exists to explore technology that will allow fuel efficiency improvements to be achieved while simultaneously reducing emissions. Replacing the current aircraft gas turbine-powered Auxiliary Power Unit with a hybrid Solid Oxide Fuel Cell is anticipated to greatly improve fuel efficiency, reduce emissions and noise as well as improve airplane performance. However, there are several technology hurdles that need to be overcome. If SOFC technology is to be matured for the betterment of the earth community, the fuel cell industry, aerospace manufacturers and other end users all need to work together to overcome these challenges. Aviation has many of the same needs in fuel cell technology as other sectors, such as reducing cost and improving reliability and fuel efficiency in order to commercialize the technology. However, there are other distinct aerospace needs that will not necessarily be addressed by the industrial sector. These include development of lightweight materials and small-volume fuel cell systems that can reform hydrocarbon fuels. Aviation also has higher levels of safety requirements. Other transportation modes share the same requirement for vibration and shock tolerant fuel cell stacks. Lastly, as fuel cells are anticipated to be operated in flight, they must be capable of operating over a wide range of atmospheric conditions. By itself, the aviation sector does not appear to offer enough of a potential market to justify the investment required by any one manufacturer to develop fuel cells for APU replacements. Therefore, means must be found to modularize components and make SOFC stacks sufficiently similar to industrial units so that manufacturing economy of scales can be brought to bear. Government R and D and industry support are required to advance the technology. Because aerospace fuel cells will be higher performing units, the benefits of

  12. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels

    International Nuclear Information System (INIS)

    Poitou, B.

    2007-11-01

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  13. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  14. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  15. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Swaney, P.M.; Tiegs, T.N. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO{sub 2}, Al{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO{sub 2}) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al{sub 2}O{sub 3}) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO{sub 2} for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate

  16. Simplified fuel cell system model identification

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France); Hankache, W. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France)]|[Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France); Hissel, D. [Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France)

    2006-07-01

    This paper discussed a simplified physical fuel cell model used to study fuel cell and supercap energy applications for vehicles. Anode, cathode, membrane, and electrode elements of the cell were modelled. A quasi-static Amphlett model was used to predict voltage responses of the fuel cell as a function of the current, temperature, and partial pressures of the reactive gases. The potential of each cell was multiplied by the number of cells in order to model a fuel cell stack. The model was used to describe the main phenomena associated with current voltage behaviour. Data were then compared with data from laboratory tests conducted on a 20 cell stack subjected to a current and time profile developed using speed data from a vehicle operating in an urban environment. The validated model was used to develop iterative optimization algorithms for an energy management strategy that linked 3 voltage sources with fuel cell parameters. It was concluded that classic state and dynamic measurements using a simple least square algorithm can be used to identify the most important parameters for optimal fuel cell operation. 9 refs., 1 tab., 6 figs.

  17. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Canadian fuel cell commercialization roadmap update : progress of Canada's hydrogen and fuel cell industry

    International Nuclear Information System (INIS)

    Filbee, S.; Karlsson, T.

    2009-01-01

    Hydrogen and fuel cells are considered an essential part of future low-carbon energy systems for transportation and stationary power. In recognition of this, Industry Canada has worked in partnership with public and private stakeholders to provide an update to the 2003 Canadian Fuel Cell Commercialization Roadmap to determine infrastructure requirements for near-term markets. The update includes technology and market developments in terms of cost and performance. This presentation included an overview of global hydrogen and fuel cell markets as background and context for the activities of the Canadian industry. Approaches toward commercial viability and mass market success were also discussed along with possible scenarios and processes by which these mass markets could develop. Hydrogen and fuel cell industry priorities were outlined along with recommendations for building a hydrogen infrastructure

  19. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  20. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  1. Aerosol feed direct methanol fuel cell

    Science.gov (United States)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  2. Gelcasting of strontium doped lanthanum manganite for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Abdul Haleem, B.; Bhuvana, R.; Udayakumar, A.

    2009-01-01

    Solid oxide fuel cells (SOFCs) are devices that offer high efficiency power output with negligible emissions. Cathode supported tubular SOFCs consist of porous cathode tubes made up of strontium doped lanthanum manganite, La 1-x Sr x MnO 3 (LSM) that work as functional component as well as structural support for the rest of the cell components. Gelcasting is one of the most suitable methods for the fabrication of porous ceramics. This paper describes the fabrication of porous LSM cathode by gelcasting process. Gelcasting parameters such as monomer concentration, powder volume fraction, pH of the slurry, etc were optimized. Slow drying of green specimens minimized warpage and cracking. Sintered specimens with controlled porosity were obtained by the use of suitable pore-forming agents. The coefficient of thermal expansion (CTE) of sintered specimens was measured, which was found matching with the CTE values of cell components reported in the literature. These results have shown the suitability of the gelcast generated LSM cathodes for SOFC applications. (author)

  3. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  4. 1990 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  5. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  6. FY 1998 annual report. Research and development on ceramic gas turbine (300kW class)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research and development have been made on a small ceramic gas turbine which is high in efficiency, low in pollutant emission, capable of corresponding to different fuels, and can be utilized in cogeneration and/or movable electric power generation systems. Fundamental researches in developing and researching heat resistant ceramic parts have been carried out on a method for fabricating turbine nozzles using heat resistant silicon nitride, improvement in accuracy in fabricating combustors using the heat resistant silicon nitride, and casting of turbine blades made from sialon. In developing the devices, researches were made on reliability of bond between a ceramic blade and a metallic disk, air-fuel ratio in a combustor, distribution of fuel concentrations, fuel injection methods, reduction of loss in a diffuser in a compressor, and matching of the diffuser with an impeller. In addition, research and development were performed on a single shaft ceramic gas turbine for cogeneration and a double shaft ceramic gas turbine. Researches were executed on reliability of ceramic materials. (NEDO)

  7. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  8. Accelerated testing of fuel cell components in 2 x 2 inch fuel cells

    International Nuclear Information System (INIS)

    Coleman, A.J.; Adams, A.A.; Joebstl, J.A.; Walker, G.W.

    1981-01-01

    A description is presented of diagnostic procedures which can be used to predict failure modes and assess the effects of these failures on fuel cell performance. Some straightforward diagnostic techniques have been used to evaluate fuel cells assembled with a variety of matrix and electrode combinations. These techniques included accelerated on-off cycling, thermal cycling with H2/CO mixtures, and automatic polarization measurements. Information has been obtained concerning the effects of electrolyte management and catalyst poisoning on performance and lifetime characteristics of 2 x 2 in. single cells. The use of on-off cycling has shown that short-term fuel cell performance is generally unaffected by load changes and cycle sequence in 2 x 2 in. cells when electrolyte management is adequate. Dynamic polarization curves can be used instead of point by point steady-state plots without any loss in accuracy

  9. World wide IFC phosphoric acid fuel cell implementation

    Energy Technology Data Exchange (ETDEWEB)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  10. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  11. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  12. Fuel Cell Seminar, 1992: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  13. Modelling of fluid flow in tape casting of thin ceramics: Analytical approaches and numerical investigations

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    Tape casting has been used to produce thin layers of ceramics that can be used as single layers or can be stacked and laminated into multilayered structures. Many startup products such as multilayered inductors, multilayered varistors, piezoelectrics, ceramic fuel cells and lithium ion battery...... components are dependent upon tape casting technology. One of the growing sciences in the processing of ceramics by tape casting is the use of fluid flow analysis to control and enhance the final tapes. The fluid dynamics analysis of the ceramic slurries during tape casting is an efficient mean to elucidate...... the physical parameters crucial to the process. A review of the development of the tape casting process with particular focus on modelling the material flow is presented and in this context the current status is examined and future potential discussed....

  14. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  15. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  16. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  17. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  18. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  19. Navy fuel cell demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  20. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  1. Environmental Technology Assessment of Introducing Fuel Cell City Buses. A Case Study of Fuel Cell Buses in Goeteborg

    Energy Technology Data Exchange (ETDEWEB)

    Karlstroem, Magnus

    2002-07-01

    Over the last several years, fuel cell systems have improved. These advancements have increased the expectations that fuel cells are a feasible option for several applications such as transportation and stationary use. There are several reasons why fuel cell buses in city centres appear to be the most beneficial market niche to begin introducing the technology in. The goal of the report is to compile information about fuel cell buses relevant for city administrators working with public transport and environmental issues. A literature review of the fuel cells in buses is included. This study also consists of an environmental assessment of using fuel cell buses with hydrogen produced in various ways for buses on bus route 60 in Goeteborg by 2006. The fuel cell buses are compared with other bus and fuel alternatives. There are two goals of the case study: 1. The first goal is to describe the technical system, the methodology, and the problem for the intended audience. In the future, this study could help frame future investment decisions. 2. The second goal is to present environmental performance results---emission, health, monetary---relative the alternative bus technologies. The model calculations showed that the social benefits were approximately SEK 910,000 each year if all buses were fuel cell buses compared with developed diesel buses. If the fuel cell buses were compared to natural gas buses, then the benefits were SEK 860,000 each year. The benefits were SEK 1.39/bus/km compared with diesel buses or SEK 1.30/bus/km compared with natural gas buses.

  2. Economic feasibility prediction of the commercial fuel cells

    International Nuclear Information System (INIS)

    Ma Yan; Karady, George G.; Winston, Anthony; Gilbert, Palomino; Hess, Robert; Pelley, Don

    2009-01-01

    This paper presents a prediction method and corresponding Visual Basic program to evaluate the economic feasibility of the commercial fuel cells in utility systems. The economic feasibility of a fuel cell is defined as having a net present value (NPV) greater than zero. The basic process of the method is to combine fuel cell specifications and real energy market data to calculate yearly earning and cost for obtaining the NPV of fuel cells. The Fuel Cell Analysis Software was developed using Visual Basic based on the proposed method. The investigation of a 250 kW molten carbonate fuel cell (FuelCell Energy DFC300A) predicted that, for application specifically in Arizona, United States, no profit would result from the installation of this fuel cell. The analysis results indicated that the efficiency, investment cost, and operation cost are three key factors affecting potential feasibility of the commercial fuel cells

  3. Fuel cell collaboration in the United States. Follow up report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Fuel cell technology continues to grow in the United States, with strong sales in stationary applications and early markets such as data centers, materials handling equipment, and telecommunications sites. New fuel cell customers include Fortune 500 companies Apple, eBay, Coca-Cola, and Walmart, who will use fuel cells to provide reliable power to data centers, stores, and facilities. Some are purchasing multi-megawatt (MW) systems, including three of the largest non-utility purchases of stationary fuel cells in the world by AT and T, Apple and eBay - 17 MW, 10 MW and 6 MW respectively. Others are replacing fleets of battery forklifts with fuel cells. Sysco, the food distributor, has more than 700 fuel cell-powered forklifts operating at seven facilities, with more on order. Mega-retailer Walmart now operates more than 500 fuel cell forklifts at three warehouses, including a freezer facility. Although federal government budget reduction efforts are impacting a wide range of departments and programs, fuel cell and hydrogen technology continues to be funded, albeit at a lower level than in past years. The Department of Energy (DOE) is currently funding fuel cell and hydrogen R and D and has nearly 300 ongoing projects at companies, national labs, and universities/institutes universities. The American Recovery and Reinvestment Act (ARRA) of 2009 and DOE's Market Transformation efforts have acted as a government ''catalyst'' for market success of emerging technologies. Early market deployments of about 1,400 fuel cells under the ARRA have led to more than 5,000 additional fuel cell purchases by industry with no DOE funding. In addition, interest in Congress remains high. Senators Richard Blumenthal (D-CT), Chris Coons (D-DE), Lindsey Graham (R-SC) and John Hoeven (R-ND) re-launched the bipartisan Senate Fuel Cell and Hydrogen Caucus in August 2012 to promote the continued development and commercialization of hydrogen and fuel cell technologies

  4. Study on component interface evolution of a solid oxide fuel cell stack after long term operation

    Science.gov (United States)

    Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian

    2018-05-01

    A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.

  5. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  6. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  7. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  8. European opportunities for fuel cell commercialisation

    Science.gov (United States)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    The European electricity market is changing. This paper will look at the background to power generation in Europe and highlight the recent factors which have entered the market to promote change. The 1990s seem to offer great possibilities for fuel cell commercialisation. Awareness of environmental problems has never been greater and there is growing belief that fuel cell technology can contribute to solving some of these problems. Issues which have caused the power industry in Europe to re-think its methods of generation include: concern over increasing carbon dioxide emissions and their contribution to the greenhouse effect; increasing SO x and NO x emissions and the damage cause by acid rain; the possibility of adverse effects on health caused by high voltage transmission lines; environmental restrictions to the expansion of hydroelectric schemes; public disenchantment with nuclear power following the Chernobyl accident; avoidance of dependence on imported oil following the Gulf crisis and a desire for fuel flexibility. All these factors are hastening the search for clean, efficient, modular power generators which can be easily sited close to the electricity consumer and operated using a variety of fuels. It is not only the power industry which is changing. A tightening of the legislation concerning emissions from cars is encouraging European auto companies to develop electric vehicles, some of which may be powered by fuel cells. Political changes, such as the opening up of Eastern Europe will also expand the market for low-emission, efficient power plants as attempts are made to develop and clean up that region. Many Europeans organisations are re-awakening their interest, or strengthening their activities, in the area of fuel cells because of the increasing opportunities offered by the European market. While some companies have chosen to buy, test and demonstrate Japanese or American fuel cell stacks with the aim of gaining operational experience and

  9. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  10. Thematic outlook: the technical outlook for the fuel cell research network (PACO). July 21, 2003 update no. 14; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 21 juillet 2003, no. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of several recent articles and patents are gathered here. They deal with fuel cells and hydrogen production and storage. Their different titles are given below: 1)fuel cells fed with wood in different buildings 2)use of CO{sub 2} produced in a SOFC in a reactor in which algae are produced 3)PEMFC systems: the requirement of using polymers running at higher temperatures to better manage the heat and water 4)a technical and economical assessment of a fuel cell system decoupled of the electric network to feed buildings located in Sweden 5)use of ammonia as fuel in SOFC 6)direct oxidation fuel cells running with pure propanol-2 6)fuel cells at protonic ceramics for a running at a higher yield with methane 7)future role of gold in fuel cell systems 8)a heat management system in a fuel cell 9)tests in real conditions of the running of a fuel cell hybrid bus 10)a hydrogen production unit from hydrocarbons without releases for fuel cells used for mobile and portable applications 11)development of a methanol reformer for fuel cells 12)the reforming of liquid hydrocarbons for fuel cells used in transport applications 13)the properties of hydrogen storage in metallic hydrides with vanadium having a centred cubic structure. The references of these articles and patents are detailed. (O.M.)

  11. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  12. DOE perspective on fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  13. FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity

    Directory of Open Access Journals (Sweden)

    Jian-Hui Li

    2011-01-01

    Full Text Available Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3- (LSF as cathode material, and BaCe0.7Zr0.1Y0.2O3- (BCZY perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.

  14. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  15. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  16. A neutronic feasibility study of the AP1000 design loaded with fully ceramic micro-encapsulated fuel

    International Nuclear Information System (INIS)

    Liang, C.; Ji, W.

    2013-01-01

    A neutronic feasibility study is performed to evaluate the utilization of fully ceramic microencapsulated (FCM) fuel in the AP1000 reactor design. The widely used Monte Carlo code MCNP is employed to perform the full core analysis at the beginning of cycle (BOC). Both the original AP1000 design and the modified design with the replacement of uranium dioxide fuel pellets with FCM fuel compacts are modeled and simulated for comparison. To retain the original excess reactivity, ranges of fuel particle packing fraction and fuel enrichment in the FCM fuel design are first determined. Within the determined ranges, the reactor control mechanism employed by the original design is directly used in the modified design and the utilization feasibility is evaluated. The worth of control of each type of fuel burnable absorber (discrete/integral fuel burnable absorbers and soluble boron in primary coolant) is calculated for each design and significant differences between the two designs are observed. Those differences are interpreted by the fundamental difference of the fuel form used in each design. Due to the usage of silicon carbide as the matrix material and the fuel particles fuel form in FCM fuel design, neutron slowing down capability is increased in the new design, leading to a much higher thermal spectrum than the original design. This results in different reactivity and fission power density distributions in each design. We conclude that a direct replacement of fuel pellets by the FCM fuel in the AP1000 cannot retain the original optimum reactor core performance. Necessary modifications of the core design should be done and the original control mechanism needs to be re-designed. (authors)

  17. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  18. Alkaline fuel cell technology in the lead

    International Nuclear Information System (INIS)

    Nor, J.K.

    2004-01-01

    The Alkaline Fuel Cell (AFC) was the first fuel cell successfully put into practice, a century after William Grove patented his 'hydrogen battery' in 1839. The space program provided the necessary momentum, and alkaline fuel cells became the power source for both the U.S. and Russian manned space flight. Astris Energi's mission has been to bring this technology down to earth as inexpensive, rugged fuel cells for everyday applications. The early cells, LABCELL 50 and LABCELL 200 were aimed at deployment in research labs, colleges and universities. They served well in technology demonstration projects such as the 1998 Mini Jeep, 2001 Golf Car and a series of portable and stationary fuel cell generators. The present third generation POWERSTACK MC250 poised for commercialization is being offered to AFC system integrators as a building block of fuel cell systems in numerous portable, stationary and transportation applications. It is also used in Astris' own E7 and E8 alkaline fuel cell generators. Astris alkaline technology leads the way toward economical, plentiful fuel cells. The paper highlights the progress achieved at Astris, improvements of performance, durability and simplicity of use, as well as the current and future thrust in technology development and commercialization. (author)

  19. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  20. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.; Kucernak, Anthony R.; Aguiar, Patricia; Atkins, Stephen C.; Brandon, Nigel P.; Clague, Ralph; Cohen, Lesley F.; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J.; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-01-01

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due

  1. Thermal stress management of a solid oxide fuel cell using neural network predictive control

    International Nuclear Information System (INIS)

    Hajimolana, S.A.; Tonekabonimoghadam, S.M.; Hussain, M.A.; Chakrabarti, M.H.; Jayakumar, N.S.; Hashim, M.A.

    2013-01-01

    In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. - Highlights: • Effect of the operating parameters on the fuel cell temperature is analysed. • A neural network predictive controller (NNPC) is implemented. • The performance of NNPC is compared with the PI controller. • A detailed model is used for

  2. Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation

    Science.gov (United States)

    Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.

    2014-02-01

    The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.

  3. NEDO fuel/storage technology subcommittee. 18th project report meeting; NEDO nenryo chozo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, reports fuel and storage technologies, taking reference to the research and development of technologies relating to fuel cell power generation, cell power storage system of a novel type, ceramic gas turbine, superconductor-generated power application, wide-area energy utilization network system (urbane eco-energy system), high-temperature superconductor-supported flywheel power storage, demonstration of a novel method of load levelling, demonstration test for the establishment of a centralized control system, and so forth. Reported also is research and development involving a molten carbonate fuel cell power generation system, current status of distributed cell power storage system development (large lithium secondary storage battery technology development), current status of superconductor-generated power application technology, regenerative cycle type 2-shaft ceramic gas turbine for a 300kW-class cogeneration system, high-density latent heat transportation, and so forth. (NEDO)

  4. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    Science.gov (United States)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  5. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). January 31, 2002 update, no. 5; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 31 janvier 2002, no. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, hydrogen production and hydrogen storage: fuel cells and fuel cell systems with a non-aqueous electrolyte; the co-development of a fuel cell electrode by Mitsubishi Materials, Kansai Electric Power and Fine Ceramics; a tubular fuel cell under development at the Japan national institute of advanced industrial sciences and technologies (AIST); a patent for an essential component (electro-catalyst) of Medis Technologies' fuel cells; a SOFC with good performances; influence of CO concentration and gas pressure on the performances of a PAFC-type cell; analysis of the life cycle of hydrogen fuel: a methodology for a strategic approach of decision; R and D of a clean hydrogen-based energy system; Teledyne Energy Systems proposes a new hydrogen production system; green alga: still more hydrogen; thermodynamic study and optimization of the hydrogen production by Enterobacter aerogenes; large-scale hydrogen production from hydrocarbons; comparative study of fuels for the production of hydrogen on-board of fuel cell powered vehicles; hydrogen storage in carbon nano-structures; fundamental aspects of the Ti-H system: theoretical and experimental behaviour. (J.S.)

  6. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  7. Different effects of a novel CaO-MgO-SiO₂-based multiphase glass-ceramic on cell behaviors of normal and cancer cells in vitro.

    Science.gov (United States)

    Zhang, Mengjiao; Chen, Xianchun; Pu, Ximing; Liao, Xiaoming; Huang, Zhongbing; Yin, Guangfu

    2014-04-01

    The effects in vitro of a novel multiphase glass-ceramic (with nominal composition of 43.19% CaO, 7.68% MgO, and 49.13% SiO2 in weight percent) on cell adhesion, proliferation, differentiation and ultrastructure of human osteosarcoma cell line MG63, mouse fibroblasts L929, and human lung adenocarcinoma epithelial cell line A549 were investigated in this research. Scanning electron microscopy (SEM) micrographs revealed that the surface morphology of this glass-ceramic was beneficial to cell adhesion. The glass-ceramic extracts at certain concentrations could stimulate the proliferation and differentiation of MG63 and L929 cells, whereas inhibit A549 proliferation, which might be resulted from the released Si ions. In addition, when cultured with 0.1mg/mL glass-ceramic powder suspension, the cell ultrastructure of MG63 showed abundant organelles and L929 displayed the phenomena of cellular stress response. While more interestingly, A549 exhibited chromatin condensation, mitochondria swell and RER expansion, which was presumed to be early signs of apoptosis. These results suggest that this novel CaO-MgO-SiO2-based multiphase glass-ceramic has potential for bone regeneration and tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-12-01

    Full Text Available Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

    El uso de interconectores metálicos en pilas de combustible de óxido sólido (SOFC en sustitución de materiales cerámicos ha sido posible gracias a la investigación y desarrollo de nuevos materiales metálicos. Inicialmente, el uso de interconectores metálicos fue limitado, debido a la elevada temperatura de trabajo, ocasionando de forma rápida la degradación del material, lo que impedía que fuesen una alternativa. A medida que la temperatura de trabajo de las SOFC descendió, el uso de interconectores metálicos demostró ser una buena alternativa, dado que son más fáciles de fabricar y más baratos que los interconectores cerámicos. Sin embargo, los interconectores metálicos continúan degradándose a pesar de descender la temperatura a la que operan las SOFC y, asimismo, los productos de corrosión favorecen las pérdidas eléctricas de la pila de combustible. Recubrimientos de níquel, cromo, aluminio, zinc, manganeso, itrio y lantano entre el interconector y los electrodos reduce dichas pérdidas eléctricas.

  9. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  10. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  11. Numerical evaluation of micro-structural parameters of porous supports in metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Brandstätter, Wilhelm

    2014-01-01

    Metallic supported Solid Oxide Fuel Cells (SOFCs) are considered as a durable and cost effective alternative to the state-of-the-art ceramic supported cell designs. In order to understand the mass and charge transport in the metal-support of this new type of cell a novel technique involving X......-ray tomography and micro-structural modelling is presented in this work. The simulation technique comprises a novel treatment of the boundary conditions, which leads to more accurate effective transport parameters compared to those, which can be achieved with the conventional homogenisation procedures....... Furthermore, the porosity distribution in the metal-support was determined, which provided information about the inhomogeneous nature of the material. In addition to that, transport parameters for two identified, different dense layers of the metal-support are evaluated separately. The results...

  12. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  13. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    Science.gov (United States)

    2015-01-20

    into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works

  14. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  15. The Western Canada Fuel Cell Initiative (WCFCI)

    International Nuclear Information System (INIS)

    Birss, V.; Chuang, K.

    2006-01-01

    Vision: Western Canada will become an international centre for stationary power generation technology using high temperature fuel cells that use a wide variety of fossil and biomass fuels. Current research areas of investigation: 1. Clean efficient use of hydrocarbons 2. Large-scale electricity generation 3. CO2 sequestration 4. Direct alcohol fuel cells 5. Solid oxide fuel cells. (author)

  16. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  17. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  18. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  19. Prospects for UK fuel cells component suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.; Tunnicliffe, M.

    2002-07-01

    This report examines the capabilities of the UK fuel cell industry in meeting the expected increase in demand, and aims to identify all UK suppliers of fuel cell components, evaluate their products and match them to fuel cell markets, and identify components where the UK is in a competitive position. Component areas are addressed along with the need to reduce costs and ensure efficient production. The well established supplier base in the UK is noted, and the car engine manufacturing base and fuel supply companies are considered. The different strengths of UK suppliers of the various types of fuel cells are listed. The future industry structure, the opportunities and dangers for business posed by fuel cells, the investment in cleaner technologies by the large fuel companies, opportunities for catalyst suppliers, and the residential combined heat and power and portable electronics battery markets are discussed.

  20. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  1. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  2. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  3. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  4. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  5. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  6. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  7. Fuel cell added value for early market applications

    Science.gov (United States)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert

    2015-08-01

    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  8. Fuel cells for portable, mobile and hybrid applications

    International Nuclear Information System (INIS)

    Roberge, R.; Kaufman, A.

    2002-01-01

    The introduction of fuel cell systems for a variety of low-power applications (below 1000 watts) means they can be used for applications such as portable power sources and mobile power sources. The energy and power are separate elements in a fuel cell system. The power is provided by the fuel cell stack (output characteristics are dependent on the cell active area, number of cells, and operating conditions), and the energy is defined by the fuel (hydrogen) storage. The authors indicated that proton exchange membrane fuel cells are the most appropriate for small fuel cell systems, since they have a temperature range ambient to 90 Celsius, ambient air (non-humidified), and load following response. In addition, they possess a solid electrolyte, high power density and specific power, and low-pressure operation. Simplicity of operation is the key to the design of a fuel cell system. The parameters to be considered include hydrogen supply, air supply, water management, and thermal management. Some of the options available for fuels are: compressed hydrogen, metal hydrides, chemical hydrides, and carbon-based hydrogen storage. Some of the factors that will help in determining market penetration are: rapid cost reduction with volume, fuel infrastructure, proven reliability, and identification of applications where fuel cells provide superior performance. 2 figs

  9. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1976-01-01

    The proposal refers to the optimization of the power distribution in a reactor core which is provided with several successive rod-shaped fuel cells. A uniform power output - especially in radial direction - is aimed at. This is achieved by variation of the dwelling periods of the fuel cells, which have, for this purpose, a fuel mixture changing from layer to layer. The fuel cells with the shortest dwelling period are arranged near the coolant inlet side of the reactor core. The dwelling periods of the fuel cells are adapted to the given power distribution. As neighboring cells have equal dwelling periods, the exchange can be performed much easier then with the composition currently known. (UWI) [de

  10. Hydrogen fuel cells for cars and buses

    NARCIS (Netherlands)

    Janssen, L.J.J.

    2007-01-01

    The use of hydrogen fuel cells for cars is strongly promoted by the governments of many countries and by international organizations like the European Community. The electrochem. behavior of the most promising fuel cell (polymer electrolyte membrane fuel cell, PEMFC) is critically discussed, based

  11. Proceedings of the fuel cells `95 review meeting

    Energy Technology Data Exchange (ETDEWEB)

    George, T.J.

    1995-08-01

    This document contains papers presented at the Fuel Cells `95` Review Meeting. Topics included solid oxide fuel cells; DOE`s transportation program; ARPA advanced fuel cell development; molten carbonate fuel cells; and papers presented at a poster session. Individual papers have been processed separately for the U.S. DOE databases.

  12. Thermochemistry of brazing ceramics and metals in air

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, Kirsten; Schlaefer, Thomas; Kopp, Nils [RWTH Aachen (DE). Surface Engineering Inst. (IOT)

    2011-08-15

    Reactive air brazing offers economically and technologically advantageous joining of ceramics to metals. Solid oxide fuel cells and membranes for oxyfuel combustion are recent fields of application. However, it remains a problem that strong metallurgical reactions between brazes and base materials occur. These reactions were analysed by differential scanning calorimetry tests to get a better understanding. Therefore, three braze alloys (Ag8Cu, Ag8Cu0.5Ti and Ag4Cu4Ni) and five base materials (alumina, 3YSZ partially stabilised zirconia, BSCF perovskite ceramic, X1CrTi-La22 and X15CrNiSi25-20) were investigated. The reaction peaks correlate with the formation of reaction layers, which were observed in metallographic analysis of brazed specimens. The results help to explain the reaction mechanisms and allow optimised selection of filler metals and brazing temperature. (orig.)

  13. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  14. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO{sub 2} fuel reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J C

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of {sup 129}I, {sup 85}Kr and {sup 14}C. (author). 104 refs., 9 tabs., 5 figs.

  15. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  16. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  17. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  18. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  19. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  20. Fuel cell technology; Brennstoffzellen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Stimming, U; Friedrich, K A; Cappadonia, M; Vogel, R

    1999-12-31

    Hydrogen from fossil or renewable sources is an important fuel for low-emission power generation in fuel cells. Methanol and maybe also ethanol can also be produced by direct electrochemical processes in low-temperature fuel cells (PEMFC, PAFC). Fuel cell systems with high operating temperatures are highly flexible with regard to fuel but tend to have material problems. On the other hand, rapid developments in materials development and the possibility of production technology transfer from the electronics industry lead one to expect a breakthrough in the near future. But in spite of this, niche market applications will prevail. Since power stations have a longer life than motor vehicles and fuel cells in mobile applications, emission reductions from fuel cell applications in road vehicles are more probable on a medium-term basis than from applications in power stations. (orig.) [Deutsch] Wasserstoff, der sowohl aus fossilen wie auch aus regenerativen Quellen erschlossen werden kann, ist ein wesentlicher Brennstoff fuer die emissionsarme Elektrizitaetsproduktion in Brennstoffzellen. Methanol und eventuell Ethanol koennen auch direkt elektrochemisch in Niedertemperaturbrennstoffzellen (PEMFC, PAFC) umgesetzt werden. Brennstoffzellensysteme mit hohen Betriebstemperaturen erlauben eine hohe Flexibilitaet bezueglich der verwendeten Brennstoffe, sind aber nach wie vor durch starke Materialprobleme belastet. Die enormen Fortschritte in der Materialentwicklung einerseits sowie ein moeglicher Transfer von Fertigungstechnologien aus der Elektronikindustrie andererseits lassen eine zukuenftige grosstechnische Nutzung von Brennstoffzellen erwarten. Die technische Einfuehrung wird dennoch nur ueber Nischenmaerkte moeglich sein. Da die mittlere Lebensdauer eines Kraftwerks deutlich hoeher ist als die eines Strassenfahrzeugs, ausserdem Brennstoffzellen auch in staerkerem Masse in Fahrzeugen eingesetzt werden koennen, sind mittelfristig Emissionen eher durch

  1. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of...... with hydrogen production or electric cars, and on the other hand using biomass and bio fuels [11]. Fuel cells can have an important role in these future energy systems.......In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... flexibility, such as SOFCs, heat pumps and heat storage technologies are more important than storing electricity as hydrogen via electrolysis in energy systems with high amounts of wind [12]. Unnecessary energy conversions should be avoided. However in future energy systems with wind providing more than 50...

  2. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  3. Metals and Ceramics Division. Annual progress report, ending June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  4. Metals and Ceramics Division. Annual progress report, ending June 30, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented

  5. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  6. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  7. Fuel cell mining vehicles: design, performance and advantages

    International Nuclear Information System (INIS)

    Betournay, M.C.; Miller, A.R.; Barnes, D.L.

    2003-01-01

    The potential for using fuel cell technology in underground mining equipment was discussed with reference to the risks associated with the operation of hydrogen vehicles, hydrogen production and hydrogen delivery systems. This paper presented some of the initiatives for mine locomotives and fuel cell stacks for underground environments. In particular, it presents the test results of the first applied industrial fuel cell vehicle in the world, a mining and tunneling locomotive. This study was part of an international initiative managed by the Fuel Cell Propulsion Institute which consists of several mining companies, mining equipment manufacturers, and fuel cell technology developers. Some of the obvious benefits of fuel cells for underground mining operations include no exhaust gases, lower electrical costs, significantly reduced maintenance, and lower ventilation costs. Another advantage is that the technology can be readily automated and computer-based for tele-remote operations. This study also quantified the cost and operational benefits associated with fuel cell vehicles compared to diesel vehicles. It is expected that higher vehicle productivity could render fuel cell underground vehicles cost-competitive. 6 refs., 1 tab

  8. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  9. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  10. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  11. A Development of Ethanol/Percarbonate Membraneless Fuel Cell

    Directory of Open Access Journals (Sweden)

    M. Priya

    2014-01-01

    Full Text Available The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

  12. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  13. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley

    2013-01-01

    An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated...... by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM...

  14. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  15. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  16. PORTABLE PEM FUEL CELL SYSTEM: WATER AND HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    SITI NAJIBAH ABD RAHMAN

    2016-07-01

    Full Text Available Portable polymer electrolyte membrane (PEM fuel cell power generator is a PEM fuel cell application that is used as an external charger to supply the demand for high energy. Different environments at various ambient temperatures and humidity levels affect the performance of PEM fuel cell power generators. Thermal and water management in portable PEM fuel cells are a critical technical barrier for the commercialization of this technology. The size and weight of the portable PEM fuel cells used for thermal and water management systems that determine the performance of portable PEM fuel cells also need to be considered. The main objective of this paper review was to determine the importance of water and thermal management systems in portable PEM fuel cells. Additionally, this review investigated heat transfer and water transport in PEM fuel cells. Given that portable PEM fuel cells with different powers require different thermal and water management systems, this review also discussed and compared management systems for low-, medium-, and high-power portable PEM fuel cells.

  17. Fuel cell system with interconnect

    Science.gov (United States)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  18. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas

    2008-01-01

    The subject of this thesis is ceramic mixed ionic and electronic conductors (MIECs). MIECs have potential uses, such as solid oxygen permeation membranes, as catalysts, and as components in fuel cells. The MIECs examined in this thesis are all oxide ion conducting materials. This thesis describes...

  19. Maritime Fuel Cell Generator Project.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.

  20. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  1. Extending EV Range with Direct Methanol Fuel Cells

    OpenAIRE

    Steckmann, Kai

    2009-01-01

    Electric cars are the vehicles of the future, and there is a proven hybrid system for extending their mileage. Direct methanol fuel cells (DMFCs) provide safe, lightweight, onboard battery charging that can free car owners from worry about running out of power. The hybrid system includes a DMFC fuel cell, fuel cell cartridge and electric vehicle batteries. The fuel cell operates almost silently with virtually no exhaust, it is immune to extreme weather and the convenient fuel cartridges featu...

  2. The fuel cell yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Stanojević Dušan D.

    2005-01-01

    Full Text Available The fuel cell has some characteristics of a battery carrying out direct chemical conversion into electric energy. In relation to classical systems used for chemical energy conversion into electric power, through heat energy and mechanical operation, the fuel cell has considerably higher efficiency. The thermo-mechanical conversion of chemical into electric energy, in thermal power plants is carried out with 30% efficiency, while the efficiency of chemical conversion into electric energy, using a fuel cell is up to 60%. With the exception of the space programme, the commercial usage of the fuel cell did not exist up to 1990, when the most developed countries started extensive financial support of this source of energy. By 1995, more than a hundred fuel cells were installed in the process of electricity generation in Europe, USA and Japan, while nowadays there are thousands of installations, of efficient energetic capacity. Because of its superior characteristics, the fuel cell compared to other commercial electric energy producers, fulfills the most important condition - it does not pollute or if it does, the level is minimal. With such characteristics the fuel cell can help solve the growing conflict between the further economic development of mankind and the preservation of a clean and healthy natural environment.

  3. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  4. Three dimensional analysis of planar solid oxide fuel cell stack considering radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Inui, Y.; Urata, A.; Kanno, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2007-05-15

    The authors have been engaged in numerical simulations of the planar type solid oxide fuel cell (SOFC) to make clear the dependence of the cell performance on its operating conditions. Up to now, the authors have already developed the simulation codes for the one channel region and the single cell plate in its cell stack. To calculate accurately the effect of radiation heat transfer from the cell stack surfaces, however, a code that can treat the whole cell stack is necessary. In the present study, therefore, the authors newly develop a three dimensional simulation code of the planar SOFC stack, and the detailed effect of the radiation heat transfer is investigated. It is made clear that the conventional codes are sufficiently accurate, and the newly developed whole cell stack code is not inevitable to predict the maximum cell temperature. This is because the thermal conductivity of the cell materials made of ceramics is very small, and the central part of the cell stack is almost free from the influence of radiation heat transfer. On the other hand, the stack simulation is needed to calculate accurately the cell voltage because the radiation heat transfer reduces it when the ambient temperature is low. The bad influence of low ambient temperature on the voltage is, however, small and relatively high voltage is obtained even when the ambient temperature is very low. (author)

  5. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  6. On-site fuel cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-01-01

    In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.

  7. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  8. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  9. Ceramic finned-plate recuperator for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.; Strumpf, H.; Kotchick, D.

    1985-01-01

    High-level recuperation of high-temperature industrial furnaces offers an economically effective means for improving both process and fuel utilization. A ceramic recuperator capable of operating in fuel gas temperatures of up to 1350/sup 0/C and providing a combustion air preheat temperature of 1100/sup 0/C can provide in excess of 50 percent savings in fuel comsumption over an unrecuperated furnace. This recuperator consists of an array of cast ceramic finned plates. The fin geometries are such that when the plates are stacked together, they form the heat transfer flow passages for both the flue gas and combustion air streams. A reference design for industrial recuperator system was created. The current development efforts conducted on this recuperator concept, as well as plans for future activities, are described.

  10. Fuel cell propulsion for urban duty vehicles: Bavarian fuel cell bus project

    International Nuclear Information System (INIS)

    Wurster, R.; Altmann, M.; Sillat, D.; Kalk, K. W.; Hammerschmidt, A.; Stuehler, W.; Holl, E.

    1998-01-01

    Following a feasibility study and a detailed specification phase, the realization of a fuel cell city bus prototype was started in autumn 1996. The project is a joint development effort of Siemens, MAN and Linde, which receives a 50 % funding by the Bavarian State Ministry for Economic Affairs, Transport and Technology (BStMWVT) in the context of the Hydrogen Initiative Bavaria. An MAN low-floor bus will be equipped with the components for a fuel cell drive system. The PEM fuel cell is developed by the power generation division of Siemens. Four fuel cell modules deliver a total electrical output of 120 kW to the two electric motors, which are linked by a summation gearbox by the Siemens Transportation Systems Division. MAN Technologie AG is responsible for the compressed hydrogen storage system allowing for a driving range of more than 250 km, while Linde AG takes care of the hydrogen periphery and delivers the hydrogen for the test operation scheduled for the beginning of the year 2000. Project coordination is done by Ludwig-Boelkow System-technik GmbH. The project is divided into four phases. The conceptual design phase is scheduled to last until the end of 1997. The partly overlapping system integration phase will end in the first quarter of 1999. The subsequent test and commissioning phase will prepare the test operation at the beginning of 2000 with a bus operator yet to be defined. (author)

  11. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  12. Fuel cell research: Towards efficient energy

    CSIR Research Space (South Africa)

    Rohwer, MB

    2008-11-01

    Full Text Available fuel cells by optimising the loading of catalyst (being expensive noble metals) and ionomer; 2) Improving conventional acidic direct alcohol fuel cells by developing more efficient catalysts and by investigating other fuels than methanol; 3... these components add significantly to the overall cost of a PEMFC. 1 We focused our research activities on: 1) The effect of the loading of catalytic ink on cell performance; 2) The effect of the ionomer content in the catalytic ink; 3) Testing...

  13. Fuel cells. Pt. 1; Celle a combustibile. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Campanari, S; Macchi, E [Milan Politecnico (Italy). Dip. di Energetica

    1999-01-01

    Direct conversion of chemical energy into electricity (without intermediate heat generation) is a long-established method to improve the efficiency of power generation, as well as to reduce polluting emissions from thermal plants. The origins of fuel cells, as well as their operating principles, are dealt with. Then, various types of cells are taken into consideration, on the basis of both their characteristics and the operating principles of electrolytes. Finally, structure and operation of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Alkaline Fuel Cells (AFC) and Phosphoric Acid Fuel Cells (PAFC) are described. [Italiano] La conversione diretta dell`energia chimica del combustibile in energia elettrica, senza passare attraverso la produzione di calore, rappresenta una via ormai ampiamente collaudata per migliorare l`efficienza della produzione di energia elettrica e per contenere le emissioni generate dagli impianti termoelettrici. L`articolo, dopo una breve presentazione della storia dello sviluppo nel tempo delle celle a combustibile, espone i principi di funzionamento delle stesse. Si esaminano quindi i vari tipi di cella a partire dalle caratteristiche e dalle modalita` di funzionamento degli elettroliti che ne definiscono la classificazione. Successivamente vengono illustrate le caratteristiche costruttive e funzionali delle celle ad elettrolita polimerico (PEMFC), delle celle alcaline (AFC) e delle celle ad acido fosforico (PAFC).

  14. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    Energy Technology Data Exchange (ETDEWEB)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  15. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  16. State of the States: Fuel Cells in America

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-15

    This 2011 report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides an update of fuel cell and hydrogen activity in the 50 states and District of Columbia. State activities reported include new policies and funding, recent and planned fuel cell and hydrogen installations, and recent activities by state industries and universities.

  17. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  18. Review of Fuel Cell Technologies for Military Land Vehicles

    Science.gov (United States)

    2014-09-01

    2 3. FUELLING FUEL CELLS ...OEM Original Equipment Manufacturer PEM Proton Exchange Membrane PEMFC Proton Exchange Membrane Fuel Cell SOFC Solid Oxide Fuel Cell TRL Technical...UNCLASSIFIED DSTO-TN-1360 UNCLASSIFIED 4 3. Fuelling Fuel Cells 3.1 Hydrogen Hydrogen, either in its pure form or as reformate from another fuel is

  19. Fuel cells show promise as vehicle power source

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Fuel-cell-powered vehicles appear to offer great promise for energy-saving, high-efficiency transportation. Fuel cells are both highly efficient (50% thermal efficiency has been demonstrated by some) and non-polluting (water being the main by-product). Dramatic improvements in performance have occurred recently due to aerospace and utility RandD efforts. The primary vehicle considered at workshops of laboratory and industrial investigators was a fuel cell/battery hybrid, in which fuel cells are paralleled by batteries. Fuel cells are used for cruising power and battery recharge, while batteries supply transient power for acceleration and starting

  20. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  1. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Science.gov (United States)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  2. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency......Efficient fuel cells and electrolysers are still at the development stage. In this dissertation, future developed fuel cells and electrolysers are analysed in future renewable energy sys‐ tems. Today, most electricity, heat and transport demands are met by combustion tech‐ nologies. Compared...

  3. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell b...

  4. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  5. Fuel Cells in the Waste-to-Energy Chain Distributed Generation Through Non-Conventional Fuels and Fuel Cells

    CERN Document Server

    McPhail, Stephen J; Moreno, Angelo

    2012-01-01

    As the availability of fossils fuels becomes more limited, the negative impact of their consumption becomes an increasingly relevant factor in our choices with regards to primary energy sources. The exponentially increasing demand for energy is reflected in the mass generation of by-products and waste flows which characterize current society’s development and use of fossil sources. The potential for recoverable material and energy in these ever-increasing refuse flows is huge, even after the separation of hazardous constituent elements, allowing safe and sustainable further exploitation of an otherwise 'wasted' resource.  Fuel Cells in the Waste-to-Energy Chain explores the concept of waste-to-energy through a 5 step process which reflects the stages during the transformation of  refuse flows to a valuable commodity such as clean energy. By providing selected, integrated alternatives to the current centralized, wasteful, fossil-fuel based infrastructure, Fuel Cells in the Waste-to-Energy Chain explores ho...

  6. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    Science.gov (United States)

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  7. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  8. Fuel cell catholyte regenerating apparatus

    International Nuclear Information System (INIS)

    Struthers, R. C.

    1985-01-01

    A catholyte regenerating apparatus for a fuel cell having a cathode section containing a catholyte solution and wherein fuel cell reaction reduces the catholyte to gas and water. The apparatus includes means to conduct partically reduced water diluted catholyte from the fuel cell and means to conduct the gas from the fuel cell to a mixing means. An absorption tower containing a volume of gas absorbing liquid solvent receives the mixed together gas and diluted catholyte from the mixing means within the absorption column, the gas is absorbed by the solvent and the gas ladened solvent and diluted catholyte are commingled. A liquid transfer means conducts gas ladened commingled. A liquid transfer means conducts gas ladened commingled solvent and electrolyte from the absorption column to an air supply means wherein air is added and commingled therewith and a stoichiometric volume of oxygen from the air is absorbed thereby. A second liquid transfer means conducts the gas ladened commingled solvent and diluted catholyte into a catalyst column wherein the oxygen and gas react to reconstitute the catholyte from which the gas was generated wna wherein the reconstituted diluted catholyte is separated from the solvent. Recirculating means conducts the solvent from the catalyst column back into the absorption column and liquid conducting means conducts the reconstituted catholyte to a holding tank preparatory for catholyte to a holding tank preparatory for recirculation through the cathode section of the fuel cell

  9. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  10. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G [Technische Univ., Berlin (Germany); Hoehlein, B [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  11. Proceedings of the Fuel Cells `97 Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors and end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.

  12. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  13. Business Case for Fuel Cells 2016

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Gangi, Jennifer [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The report provides an overview of recent private sector fuel cell installations at U.S. businesses as of December 31, 2016. This list is by no means exhaustive. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  14. Micro & nano-engineering of fuel cells

    CERN Document Server

    Leung, Dennis YC

    2015-01-01

    Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort to the development and commercialization of fuel cells important for our daily lives. However, abundant issues, ranging from mechanistic study to system integration, still need to be figured out before massive applications can be used. Miniaturizatio

  15. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  16. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  17. Testing system for a fuel cells stack

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Lazar, Roxana Elena

    2006-01-01

    Hydrogen and electricity together represent one of the most promising ways to realize sustainable energy, whilst fuel cells provide the most efficient conversion devices for converting hydrogen and possibly other fuels into electricity. Thus, the development of fuel cell technology is currently being actively pursued worldwide. Due to its simple operation and other fair characteristics, the Proton Exchange Membrane Fuel Cell (PEMFC) is especially suitable as a replacement for the internal combustion engine. The PEMFC is also being developed for decentralized electricity and heat generation in buildings and mobile applications. Starting with 2001 the Institute of Research - Development for Cryogenics and Isotopic Technologies - ICIT - Rm. Valcea developed research activities supported by the Romanian Ministry of Education and Research within the National Research Program in order to bridge the gap to European competencies in the area of hydrogen and fuel cells. The paper deals with the testing system designed and developed in ICIT Rm. Valcea as a flexible and versatile tool allowing a large scale of parameter settings and measurements on a single cell or on a fuel cells stack onto a wind range of output power values. (authors)

  18. Analysis of ceramic materials for impact members in isotopic heat sources

    International Nuclear Information System (INIS)

    Simonen, F.A.; Duckworth, W.H.

    1976-01-01

    Of the available high strength ceramics, silicon nitride offers the most promise followed by silicon carbide and aluminum oxide, and stress analyses show severe limitations on allowable velocities for impact with granite following reentry for these ceramics. Impact velocities in the 100 to 200 fps regime can be achieved only by the addition of an additional layer to distribute the high contact stress. Besides impact limitations, application of ceramic materials in heat sources would present problems both in terms of weight and fabrication. The required thickness of a ceramic impact member would be comparable to that for a carbon-carbon composite material, but the least dense of the high strength ceramics are 2 to 3 times more dense than the carbon-carbon composites. Fabrication of a ceramic heat source would require a high strength bond between the fuel and the impact member if reasonable impact velocities are to be achieved. Formation of such a bond in ceramic materials is a difficult task under normal circumstances, and would be more difficult under the restrictions imposed on the processing and handling of the 238 PuO 2 fuel. 16 fig

  19. Fuel cells as renewable energy sources

    International Nuclear Information System (INIS)

    Cacciola, G.; Passalacqua, E.

    2001-01-01

    The technology level achieved in fuel cell (FC) systems in the last years has significantly increased the interest of various manufacturing industries engaged in energy production and distribution even under the perspectives that this technology could provide. Today, the fuel cells (FCs) can supply both electrical and thermal energy without using moving parts and with a high level of affordability with respect to the conventional systems. FCs can utilise every kind of fuel such as hydrocarbons, hydrogen available from the water through renewable sources (wind, solar energy), alcohol etc. Thus, they may find application in many field ranging from energy production in large or small plants to the cogeneration systems for specific needs such as for residential applications, hospitals, industries, electric vehicles and portable power sources. Low temperature polymer electrolyte fuel cells (PEFC, DMFC) are preferred for application in the field of transportation and portable systems. The CNR-ITAE research activity in this field concerns the development of technologies, materials and components for the entire system: electrocatalysts, conducting supports, electrolytes, manufacturing technologies for the electrodes-electrolyte assemblies and the attainment of fuel cells with high power densities. Furthermore, some activities have been devoted to the design and realisation of PEFC fuel cell prototypes with rated power lower than I kW for stationary and mobile applications [it

  20. American fuel cell bus project : first analysis report.

    Science.gov (United States)

    2013-06-01

    This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration : funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALST...

  1. Application of La-Doped SrTiO3 in Advanced Metal-Supported Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sabrina Presto

    2018-03-01

    Full Text Available Composite materials frequently allow the drawbacks of single components to be overcome thanks to a synergistic combination of material- and structure-specific features, leading to enhanced and also new properties. This is the case of a metallic-ceramic composite, a nickel-chromium-aluminum (NiCrAl foam impregnated with La-doped Strontium Titanate (LST. This particular cermet has very interesting properties that can be used in different fields of application, namely: mechanical robustness provided by the metal foam; and chemical stability in harsh conditions of temperature and atmosphere by promotion of a thin protective layer of alumina (Al2O3; high electronic conductivity given by a percolating ceramic conducting phase, i.e., La-doped Strontium Titanate. In this paper, its application as a current collector in a metal-supported Solid Oxide Fuel Cells (SOFC was studied. Firstly, the electronic properties of different compositions, stoichiometric and under stoichiometric, of LST were analyzed to choose the best one in terms of conductivity and phase purity. Then, LST chemical stability was studied in the presence of Al2O3 at different temperatures, gas compositions and aging times. Finally, stability and conductivity of LST-impregnated NiCrAl foam composite materials were measured, and LST was found to be fully compatible with the NiCrAl foam, as no reactions were detected in oxidizing and reducing atmosphere after up to 300 h operation at 750 °C and 900 °C between the Al2O3 layer and LST. Results showed that the composite is suitable as a current collector in innovative designs of metal-supported SOFC, like the Evolve cell, in which the metallic part is supposed not only to provide the structural stability to the cell, but also to play the role of current collector due to the impregnation of ceramic material.

  2. FFTF/IEM cell fuel pin weighing system

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-01-01

    The Interim Examination and Maintenance (IEM) cell in the Fast Flux Test Facility (FFTF) is used for remote disassembly of irradiated fuel and materials experiments. For those fuel experiments where the FFTF tag-gas detection system has indicated a fuel pin cladding breach, a weighing system is used in identifying that fuel pin with a reduced weight due to the escape of gaseous and volatile fission products. A fuel pin weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF), was the basis for the IEM cell system. Design modifications to the original equipment were centered around adapting the machine to the differences between the two facilities and correcting deficiencies discovered during functional testing in the IEM cell mock-up

  3. National fuel cell seminar. Program and abstracts. [Abstracts of 40 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Abstracts of 40 papers are presented. Topics include fuel cell systems, phosphoric acid fuel cells, molten carbonate fuel cells, solid fuel and solid electrolyte fuel cells, low temperature fuel cells, and fuel utilization. (WHK)

  4. Fuel cells (part 2)

    International Nuclear Information System (INIS)

    Campanari, S.; Macchi, E.

    1999-01-01

    The article, following and completing the issues dealt with in part 1 (CH4 Energia Metano, 1/99, p. 7), describe the operating characteristic and construction features of molten carbonate and solid oxide fuel cells (MCFC and SOFC). For the latter type, construction cost are evaluated by various authors and research institutes. The article ends by presenting some tables showing the classification and the main characteristics of various fuel cells, and well as the effect of some gases on the behaviour of some of them [it

  5. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  6. Fuel for ADS: State-of-the-art, requirements, current and future programmes

    International Nuclear Information System (INIS)

    Gabrielli, F.

    2015-01-01

    Fuels are the cornerstone of research/development programs of accelerator-driven systems for transmuting minor actinides (MA). Compared with the fuels for critical reactors, fuels for ADS are generally U-free to improve the transmutation performance and contain high volumetric concentrations (about 50%) of MA and Pu compounds. Their specific fabrication, reprocessing, design and safety issues are being currently investigated. This paper provides an overview of the current state-of-the-art of the assessment of these innovative fuels. Emphasis has been placed on the main outcomes of the work performed within the Sixth FP EU EUROTRANS Programme, which provided a decisive step forward in improving knowledge on fabrication, properties, and behaviour under irradiation of these challenging fuels. In EUROTRANS, for the ADS application, the focus was on Ceramic-Ceramic (Pu,MA)O 2 + MgO and Ceramic-Metallic (Pu,MA)O 2 + 92 Mo composite fuels, which were recommended for the European Facility for Industrial Transmutation (EFIT). The fuels consist of particles of (Pu,MA)O 2 phases dispersed in a magnesia or molybdenum matrix. Solid nitride (Pu,MA,Zr)O 2 fuels have also been considered as a back-up solution. This paper presents the main experimental results from out-of-pile and in-pile experiments of the Ceramic-Ceramic and Ceramic-Metallic composite fuels as well as related safety assessments. Further, the on-going research and development activities on fuels loaded with large amount of MA will be presented. (author)

  7. Risk and investment in the fuel cell industry

    International Nuclear Information System (INIS)

    Henriques, I.; Sadorsky, P.

    2004-01-01

    The energy industry is one of the building blocks of the new economy. Currently, the global energy industry is going through a transformation from high carbon content fuels like crude oil to less carbon content fuels like natural gas and hydrogen. Fuel cells are the backbone of the hydrogen economy. Advances in fuel cell technology have the potential to improve the living standards of people in all countries. New sources of financial capital, however, remain a problem. In the fuel cell industry, the future of a firm often depends upon the success or failure of a few key products. This tends to make these firms very risky to invest in and, as a result, makes it difficult for these firms to secure financial investment capital. Oil price movements remain one very important source of risk to fuel cell companies. Conventional wisdom suggests that higher oil prices stimulate interest in alternative energy sources like fuel cells and the stock prices of publicly traded fuel cell companies tend to perform well when oil prices are high. Lower oil prices, however, have the opposite effect. Consequently, oil price movements may affect the rates of return of the companies currently in the fuel cell industry. In this paper, we empirically analyze the stock price sensitivity of a sample of fuel cell companies to oil price risk. In particular, we look at both the impact and magnitude of oil price changes on fuel cell stock prices. Both symmetric and asymmetric oil price changes are considered. Our results indicate that oil price risk is not an important source of risk that impacts the equity returns of fuel cell companies. We find that market risk factors are much more important. We then offer suggestions on how to manage this risk. These results are useful for managers, investors, policy makers, and others who are interested in the strategic management, financing and risk management of firms building the hydrogen economy. (author)

  8. Robust and reliable fuel cells; Robusta och tillfoerlitliga braensleceller

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Joakim [Cellkraft AB, Stockholm (Sweden)

    2012-03-15

    For fuel cells to be a viable alternative for backup power in applications, where reliability is a critical factor, the reliability of fuel cells has to be high and documented. Based on intrinsic properties of fuel cells, it is safe to argue that it is possible to make them highly reliable, but to unleash the full reliability potential of fuel cells, some great engineering work has to be performed. Cellkraft has since many years been addressing this issue and this project is an important piece of this puzzle. The project included both a large number of laboratory testing of fuel cells and long experiments in field environment to verify the results from the laboratory work. The development work performed within this project is a solid base for the continuous work to fulfil Cellkraft's own, tough, technical reliability targets. The project targets below were achieved within this project: 1. The fuel cell start with 100 % reliability. 2. The fuel cell provides nominal power within 30 seconds in 100 % of the cases. 3. The fuel cell keeps providing nominal power as long as there is a demand in 100 % of the cases. 4. No cell in the fuel cell deviates from the mean cell potential with more than 0,1 V at full power.

  9. Carbon-based Fuel Cell. Final report

    International Nuclear Information System (INIS)

    Steven S. C. Chuang

    2005-01-01

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  10. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  11. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Hiroyasu [Government Industrial Research Inst., Osaka (Japan)

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  12. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  13. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  14. Fuel cell design using a new heuristic method

    International Nuclear Information System (INIS)

    Perusquia, R.; Montes T, J. L.; Ortiz S, J. J.; Castillo M, A.

    2014-10-01

    In this paper a new method for the pre-design of a typical fuel cell with a structural array of 10 x 10 fuel elements for a BWR is presented. The method is based on principles of maximum dispersion and minimum peaks of local power within the array of fuel elements. The pre-design of the fuel cells is made by simulation in two dimensions (2-D) through the cells physics code CASMO-4. For this purpose of pre-design the search process is guided by an objective function which is a combination of the main neutronic parameters of the fuel cell. The results show that the method is a promising tool that could be used for the design of fuel cells for use in a nuclear plant BWR. (Author)

  15. A fuel cell city bus with three drivetrain configurations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junping [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Yong [School of Automobile and Transporting Engineering, Liaoning Institute of Technology, Jinzhou, Liaoning 121001 (China); Chen, Quanshi [State Key Laboratory of Automobile Safety and Energy Conservation, Tsinghua University, Beijing 100084 (China)

    2006-09-22

    Three fuel cell city buses of the energy hybrid- and power hybrid-type were re-engineered with three types of drivetrain configuration to optimize the structure and improve the performance. The energy distribution, hydrogen consumption, state of charge (SOC) and the power variation rate were analyzed when different drivetrain configurations and parameters were used. When powered only by a fuel cell, the bus cannot recover the energy through regenerative braking. The variation of the fuel cell power is large and frequent, which is not good for the fuel cell. When the fuel cell is linked to a battery pack in parallel, the bus can recover the energy through regenerative braking. The energy distribution is determined by the parameters of the fuel cell and the battery pack in the design stage to reduce the power variation rate of the fuel cell. When the fuel cell and DC/DC converter connected in series links the battery pack in parallel, energy can be recovered and the energy distribution can be adjusted online. The power variation rate of both the fuel cell and the battery pack are reduced. (author)

  16. State of the States: Fuel Cells in America, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra; Delmont, Elizabeth; Gangi, Jennifer

    2010-04-01

    This report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. It features the top five fuel cell states (in alphabetical order): California, Connecticut, New York, Ohio, and South Carolina. State activities reported include supportive fuel cell and hydrogen policies, installations and demonstrations, road maps, and level of activism.

  17. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  18. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  19. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  20. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    Science.gov (United States)

    2011-01-01

    major types of fuel cells in practice are listed below: Polymer Electrolyte Membrane Fuel Cell ( PEMFC ) Alkaline Fuel cell (AFC) Phosphoric Acid...Material Operating Temperature (oC) Efficiency (%) PEMFC H2, Methanol, Formic Acid Hydrated Organic Polymer < 90 40-50 AFC Pure H2 Aqueous